JP2004130494A - Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition - Google Patents

Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition Download PDF

Info

Publication number
JP2004130494A
JP2004130494A JP2002300333A JP2002300333A JP2004130494A JP 2004130494 A JP2004130494 A JP 2004130494A JP 2002300333 A JP2002300333 A JP 2002300333A JP 2002300333 A JP2002300333 A JP 2002300333A JP 2004130494 A JP2004130494 A JP 2004130494A
Authority
JP
Japan
Prior art keywords
oxygen
carbon
layer
highest
cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002300333A
Other languages
Japanese (ja)
Inventor
Makoto Nishida
西田 真
Tetsuhiko Honma
本間 哲彦
Akira Osada
長田 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002300333A priority Critical patent/JP2004130494A/en
Publication of JP2004130494A publication Critical patent/JP2004130494A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface covered cutting tool for exhibiting high abrasion resistance in a high speed cutting condition. <P>SOLUTION: In a component concentration distribution structure, composite carbonate hard covering layer of Al and Zr with thickness of 2-25 μm is deposited on a surface of a base body, a maximum content point of Al and oxygen and a maximum content point of Zr and carbon are alternately repeated at a predetermined interval along the layer thickness direction of the covering layer, and contents of Al and Zr and oxygen and carbon continuously change between both points. Al/(Al+Zr) and oxygen/(oxygen + carbon) indicating mutual content ratio of Al and Zr and oxygen and carbon at the maximum content point of Al and oxygen establish 0.80-0.96 and 0.80-0.96 in atom ratio, respectively. Zr/(Zr+Al) and carbon/(carbon + oxygen) indicating mutual content ratio of Zr and Al and carbon and oxygen at the maximum content point of Zr and carbon establish 0.80-0.96 and 0.80-0.96 in atom ratio, respectively. The interval between both adjacent points is set at 0.01-0.2 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高強度と耐熱塑性変形性を有し、さらに高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼や鋳鉄などの切削加工を、高い発熱を伴う高速切削条件で行なった場合にも、切刃部に偏摩耗の原因となる熱塑性変形の発生なく、硬質被覆層がすぐれた耐摩耗性を長期に亘って発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆サーメット工具として、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆サーメット工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成されたサーメット基体の表面に、個々の層厚が0.1μm以下のAl酸化物(以下、Alで示す)層とZr炭化物(以下、ZrCで示す)層とを交互積層して、2〜25μmの全体平均層厚で蒸着してなる被覆サーメット工具が提案され、前記硬質被覆層を構成するAl−ZrC交互積層が、Al層による高温硬さおよび耐熱性と、ZrC層による強度を具備することから、かかる被覆サーメット工具を各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆サーメット工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製のサーメット基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、サーメット基体を前記サーメット基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、ヒータで装置内を、例えば800〜1100℃の範囲内の所定の温度に加熱した後、Al層形成には、反応ガスとして、容量%で(以下、反応ガスの%は容量%を示す)、
AlCl:1〜6%、
CO:5〜15%、
HCl:1〜5%、
:残り、
からなる組成を有する反応ガスを用い、また、ZrC層形成には、
ZrCl:1〜3%、
CH:10〜20%、
:残り、
からなる組成を有する反応ガスを用い、これらの反応ガスを予め真空排気された装置内に前記反応ガス吹き出し管を通して、装置内の反応ガス圧力を5〜40kPaの範囲内の所定の圧力に保持しながら、交互に導入することによりAl−ZrC交互積層からなる硬質被覆層を形成することにより製造されることも知られている。
【0005】
【特許文献1】
特開昭62−50465号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを高い発熱を伴う高速切削に用いると、特にAl−ZrC交互積層からなる硬質被覆層のZrC層は高強度を有するものの、高温硬さおよび耐熱性が不十分であり、しかもその層構造が薄層交互多重層であるために、高速切削時に発生する高熱によって切刃部に熱塑性変形が起り易く、この結果切刃部に偏摩耗が発生し、摩耗が促進されるようになることから、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆サーメット工具を開発すべく、研究を行った結果、
(a)硬質被覆層を、上記の従来被覆サーメット工具の硬質被覆層の構成層であるAl層およびZrC層に代って、これらの複合化合物、すなわちAlとZrの複合炭酸化物(以下、Al−Zr炭酸化物という)層で構成すると共に、前記Al−Zr炭酸化物層を上記の図1,2に示される化学蒸着装置を用いて形成するに際して、例えば図3に反応ガス組成自動制御システムが概略チャート図で示される通り、反応ガス組成および流量中央制御装置に、前記Al−Zr炭酸化物層からなる硬質被覆層に層厚方向にそってAlおよび酸素の最高含有点とZrおよび炭素の最高含有点とを所定間隔をおいて交互に繰り返し形成させる目的で、前記Alおよび酸素の最高含有点並びにZrおよび炭素の最高含有点に対応した反応ガス組成、並びに前記両点間のAlと酸素およびZrと炭素の連続変化に対応した反応ガス組成、さらに前記両点間の間隔を、過去の実績データに基づいてインプットし、この反応ガス組成および流量中央制御装置からの制御信号にしたがって、原料ガスボンベからのHガス、COガス、CHガス、およびHClガスの流量をそれぞれの原料ガス流量自動制御装置にて制御しながら、化学蒸着装置の反応ガス吹き出し管に導入すると、層厚方向にそって、Alおよび酸素の最高含有点とZrおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Zrおよび炭素の最高含有点、前記Zrおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびZrと炭素の含有量が連続的に変化する成分濃度分布構造をもったAl−Zr炭酸化物層からなる硬質被覆層が形成されるようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造のAl−Zr炭酸化物層において、
上記Alおよび酸素の最高含有点におけるAlとZrおよび酸素と炭素の相互含有割合を示すAl/(Al+Zr)および酸素/(酸素+炭素)を、それぞれ原子比で、
Al/(Al+Zr):0.80〜0.96、
酸素/(酸素+炭素):0.80〜0.96、
上記Zrおよび炭素の最高含有点におけるZrとAlおよび炭素と酸素の相互含有割合を示すZr/(Zr+Al)および炭素/(炭素+酸素)を、それぞれ原子比で、
Zr/(Zr+Al):0.80〜0.96、
炭素/(炭素+酸素):0.80〜0.96、
とし、かつ隣り合う上記Alおよび酸素の最高含有点と上記Zrおよび炭素の最高含有点の厚さ方向の間隔を0.01〜0.2μmとすると、
上記Alおよび酸素の最高含有点部分では、Alのもつ高温硬さと耐熱性に相当するすぐれた高温硬さと耐熱性、さらにAlおよび酸素に比して相対的に小量ではあるがZrおよび炭素の含有によって強度も具備するようになり、一方上記Zrおよび炭素の最高含有点部分では、ZrCのもつ強度に相当する高強度と、Zrおよび炭素に比して相対的に小量ではあるがAlおよび酸素の含有によって熱塑性変形を抑制するのに十分な高温硬さと耐熱性を具備するようになり、かつこれらAlおよび酸素の最高含有点と上記Zrおよび炭素の最高含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温硬さと耐熱性、および高強度を具備するようになり、さらに前記両点間でAlと酸素およびZrと炭素の含有量が連続的に変化(成分濃度分布構造)することにより、層間剥離の原因となる層界面が存在しないことになり、したがって、硬質被覆層がかかる構成のAl−Zr炭酸化物層からなる被覆サーメット工具は、特に各種の鋼や鋳鉄などの切削加工を、高速で行なった場合にも、切刃部に熱塑性変形が発生することなく、硬質被覆層がすぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、サーメット基体の表面に、Al−Zr炭酸化物層からなる硬質被覆層を2〜25μmの全体平均層厚で蒸着してなる被覆サーメット工具において、
上記硬質被覆層が、層厚方向にそって、Alおよび酸素の最高含有点とZrおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Zrおよび炭素の最高含有点、前記Zrおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとZrおよび炭素と酸素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Alおよび酸素の最高含有点におけるAlとZrおよび酸素と炭素の相互含有割合を示すAl/(Al+Zr)および酸素/(酸素+炭素)が、それぞれ原子比で、
Al/(Al+Zr):0.80〜0.96、
酸素/(酸素+炭素):0.80〜0.96、
上記Zrおよび炭素の最高含有点におけるZrとAlおよび炭素と酸素の相互含有割合を示すZr/(Zr+Al)および炭素/(炭素+酸素)が、それぞれ原子比で、
Zr/(Zr+Al):0.80〜0.96、
炭素/(炭素+酸素):0.80〜0.96、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Zrおよび炭素の最高含有点の間隔が、0.01〜0.2μmである、
高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する被覆サーメット工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆サーメット工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Alおよび酸素の最高含有点
Al−Zr炭酸化物層のZrおよび炭素成分には強度を向上させ、同Alおよび酸素成分には高温硬さおよび耐熱性を向上させる作用があり、したがってAlおよび酸素の最高含有点ではAlおよび酸素の含有割合を相対的に高くしてすぐれた高温硬さと耐熱性を具備せしめ、かつ小量ではあるがZrおよび炭素の含有によって強度も具備せしめることにより、高熱発生を伴う高速切削ですぐれた耐摩耗性を発揮するものとするが、この場合AlとZrおよび酸素と炭素の相互含有割合を示すAl/(Al+Zr)および酸素/(酸素+炭素)がいずれも原子比で(以下、同じ)0.96を越えると、実質的にAl酸化物で構成されるようになることから、高強度を有するZrと炭素の最高含有点が隣接して存在しても層自体の強度の低下は避けられず、この結果切刃部にチッピングが発生し易くなり、一方同値が0.80未満になると高温硬さおよび耐熱性が急激に低下し、摩耗促進の原因となることから、Al/(Al+Zr)および酸素/(酸素+炭素)の値をいずれも0.80〜0.96と定めた。
【0011】
(b)Zrおよび炭素の最高含有点
上記の通りAlおよび酸素の最高含有点は相対的にすぐれた高温硬さと耐熱性を有するが、反面相対的に強度が不十分であるため、このAlおよび酸素の最高含有点の強度不足を補う目的で、高強度を有するZrおよび炭素の最高含有点を厚さ方向に交互に介在させるものである。しかし、ZrとAlおよび炭素と酸素の相互含有割合を示すZr/(Zr+Al)および炭素/(炭素+酸素)が、それぞれ0.96を越えると、実質的にZr窒化物で構成されるようになることから、Zrおよび炭素の最高含有点に熱塑性変形を抑制するのに十分な高温硬さと耐熱性を確保することができず、これが偏摩耗発生の原因となり、摩耗が促進されるようになり、一方同値が0.80未満になると、所望のすぐれた強度を確保することができず、この結果チッピングが発生し易くなることから、Zr/(Zr+Al)および炭素/(炭素+酸素)の値をいずれも0.80〜0.96と定めた。
【0012】
(c)Alおよび酸素の最高含有点とZrおよび炭素の最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温硬さと耐熱性、さらに高強度を確保することができなくなり、またその間隔が0.2μmを越えるとそれぞれの点がもつ欠点、すなわちAlおよび酸素の最高含有点であれば強度不足、Zrおよび炭素の最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、熱塑性変形が発生して摩耗進行が促進されるようになることから、その間隔を0.01〜0.2μmと定めた。
【0013】
(d)硬質被覆層の全体平均層厚
その層厚が2μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が25μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜25μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.05のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製のサーメット基体A1〜A10を形成した。
【0015】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiC=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.05のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製のサーメット基体B1〜B6を形成した。
【0016】
つぎに、上記のサーメット基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示されるサーメット基体支持パレットの位置決め穴に載置した状態で装入し、まず、装置内をヒーターで900℃に加熱したところで、TiCl:4.2%、N:30%、H:残りからなる組成を有する反応ガスを反応ガス吹き出し管を通して導入して、装置内の反応雰囲気圧力を30kPaとし、この状態で40分間保持して下地密着層として0.3μmの平均層厚をもった窒化チタン(TiN)層を形成し、ついで、同じく装置内の雰囲気温度をヒーターにて加熱して1020℃とした後、図3に示される反応ガス組成自動制御システムの反応ガス組成および流量中央制御装置に、過去の実績にデータにしたがって、表3に示されるAlおよび酸素の最高含有点の目標Al/(Al+Zr)および酸素/(酸素+炭素)、さらにZrおよび炭素の最高含有点の目標Zr/(Zr+Al)および炭素/(炭素+酸素)に対応する反応ガス組成、前記Alおよび酸素の最高含有点とZrおよび炭素の最高含有点間のAlとZrおよび酸素と炭素の含有量の連続変化に対応する反応ガス組成、さらに表4,6に示される前記両点間の目標間隔および硬質被覆層の目標全体層厚をインプットし、この反応ガス組成および流量中央制御装置からの信号にしたがって作動するコントロールバルブ内臓の原料ガス流量自動制御装置を通して、原料ガスであるHガス、CHガス、COガス、およびHClガス(なお、同じく原料ガスであるAlClガスおよびZrClガスは、それぞれAlClガス発生器およびZrClガス発生器で金属Alおよび金属ZrとHClガスを反応させることにより形成される)を、それぞれのガス流量を制御しながら、図1の化学蒸着装置の反応ガス吹き出し管から装置内に導入し(装置内の反応雰囲気圧力は常に7kPaに保持される)、もって前記サーメット基体の表面に、層厚方向に沿って表3,4に示される目標Al/(Al+Zr)および酸素/(酸素+炭素)のAlおよび酸素の最高含有点と、目標Zr/(Zr+Al)および炭素/(炭素+酸素)のZrおよび炭素の最高含有点とが交互に、同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Zrおよび炭素の最高含有点、前記Zrおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとZrおよび酸素と炭素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
【0017】
また、比較の目的で、これらサーメット基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、Al層の形成条件を、
反応ガス組成:AlCl:4.2%、CO:12.0%、HCl:3.5%、H:残り、
反応雰囲気温度:1050℃、
反応雰囲気圧力:7kPa、
とし、また、ZrC層の形成条件を、
反応ガス組成:ZrCl:2.0%、CH:15.6%、H:残り、
反応雰囲気温度:1050℃、
反応雰囲気圧力:7kPa、
として、それぞれ表6,7に示される目標層厚のAl層およびZrC層の交互積層からなる硬質被覆層を、前記サーメット基体A1〜A10およびB1〜B6のそれぞれの表面に、同じく表6,7に示される目標全体層厚で蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。
【0018】
つぎに、上記の各種被覆チップを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜10および従来被覆チップ1〜10については、
被削材:JIS・SNCM240の丸棒、
切削速度:450m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式連続高速切削加工試験、
被削材:JIS・S25Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min.、
切り込み:2.0mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式断続高速切削加工試験、さらに、
被削材:JIS・FC150の丸棒、
切削速度:500m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での鋳鉄の乾式連続高速切削加工試験を行い、また、本発明被覆チップ11〜16および従来被覆チップ11〜16については、
被削材:JIS・SCr420の丸棒、
切削速度:400m/min.、
切り込み:2.0mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式連続高速切削加工試験、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min.、
切り込み:2.0mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式断続高速切削加工試験、さらに、
被削材:JIS・FC300の丸棒、
切削速度:450m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での鋳鉄の乾式連続高速切削加工試験を行い、いずれの切削加工試験でも切刃の最大逃げ面摩耗幅を測定した。この測定結果を表7に示した。
【0019】
【表1】

Figure 2004130494
【0020】
【表2】
Figure 2004130494
【0021】
【表3】
Figure 2004130494
【0022】
【表4】
Figure 2004130494
【0023】
【表5】
Figure 2004130494
【0024】
【表6】
Figure 2004130494
【0025】
【表7】
Figure 2004130494
【0026】
この結果得られた本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16を構成する硬質被覆層について、厚さ方向に沿ってAl、Zr、酸素、および炭素の含有量をオージェ分光分析装置を用いて測定し、この測定結果から各測定点におけるAl/(Al+Zr)および酸素/(酸素+炭素)値、さらにZr/(Zr+Al)および炭素/(炭素+酸素)値を算出したところ、本発明被覆超硬チップ1〜16の硬質被覆層では、Alおよび酸素の最高含有点と、Zrおよび炭素の最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつAlおよび酸素の最高含有点からZrおよび炭素の最高含有点、前記Zrおよび炭素の最高含有点からAlおよび酸素の最高含有点へAlとZrおよび酸素と炭素の含有量が連続的に変化する成分濃度分布構造を有することが確認され、硬質被覆層の平均層厚も目標全体層厚と実質的に同じ値を示した。また、従来被覆超硬チップ1〜16の硬質被覆層においても目標層厚と実質的に同じ平均層厚のAl層とZrC層とが交互に、かつ目標全体層厚と実質的に同じ平均層厚で形成されていることが確認された。
【0027】
【発明の効果】
表3〜7に示される結果から、硬質被覆層が層厚方向に、相対的にすぐれた高温硬さと耐熱性を有し、強度も具備するAlおよび酸素の最高含有点と、相対的に高強度を有し、さらに熱塑性変形を抑制するのに十分な高温硬さと耐熱性も具備するZrおよび炭素の最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Zrおよび炭素の最高含有点、前記Zrおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとZrおよび酸素と炭素の含有量が連続的に変化する成分濃度分布構造を有する本発明被覆チップ1〜16は、いずれも各種の鋼や鋳鉄などの切削加工を、高い発熱を伴う高速切削加工条件で行なった場合にも、切刃部に熱塑性変形が発生することなく、硬質被覆層がすぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層がAl層とZrC層の交互積層からなる従来被覆チップ1〜16においては、前記硬質被覆層のZrC層の高温硬さおよび耐熱性不足、さらに薄層交互多重層構造が原因で特に高速切削条件では、切刃部に偏摩耗の原因となる熱塑性変形が発生し、摩耗進行が促進されることから、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高速切削条件で行なった場合にも、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】被覆サーメット工具を構成する硬質被覆層を形成するのに用いた化学蒸着装置を例示する概略縦断面図である。
【図2】化学蒸着装置の構造部材であるサーメット基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。
【図3】この発明の被覆サーメット工具を構成する硬質被覆層の形成に用いられる反応ガス組成自動制御システムの概略チャート図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a hard coating layer having high strength and heat-resistant plastic deformation properties, as well as excellent high-temperature hardness and heat resistance. Even when the cutting is performed, a cutting tool made of a surface-coated cermet (hereinafter referred to as a coated cermet tool) in which the hard coating layer exhibits excellent wear resistance over a long period of time without occurrence of thermoplastic deformation which causes uneven wear on the cutting edge portion. It is about).
[0002]
[Prior art]
In general, as a coated cermet tool, a throw-away tip used detachably attached to the tip of a cutting tool for turning or planing of various materials such as steel or cast iron, a drill used for drilling cutting, etc. There are miniature drills, solid type end mills used for face milling, grooving, shoulder processing, and the like. Also, a throwaway that performs cutting similarly to the solid type endmill by detachably attaching the throwaway tip. End mill tools and the like are known.
[0003]
Further, as a coated cermet tool, the thickness of each layer is set to 0. 0 on the surface of a cermet substrate composed of a tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or a titanium carbonitride (hereinafter, referred to as TiCN) -based cermet. A coated cermet formed by alternately laminating an Al oxide (hereinafter, referred to as Al 2 O 3 ) layer having a thickness of 1 μm or less and a Zr carbide (hereinafter, referred to as ZrC) layer, and vapor-depositing with an overall average layer thickness of 2 to 25 μm. A tool has been proposed, and since the Al 2 O 3 —ZrC alternating layer constituting the hard coating layer has high-temperature hardness and heat resistance by the Al 2 O 3 layer and strength by the ZrC layer, such a coated cermet tool Is also known to exhibit excellent cutting performance when used for continuous cutting or intermittent cutting of various steels or cast irons (for example, see Patent Document 1).
[0004]
Further, as shown in the schematic longitudinal sectional view of FIG. 1, for example, the above-mentioned coated cermet tool is provided with a reaction gas blowing pipe made of stainless steel at the center thereof. ) Is a schematic perspective view, and a cermet base support pallet made of graphite exemplified in the schematic plan view is skewered and laminated and fitted, and these are heated by a heater via a stainless steel cover. Using a chemical vapor deposition apparatus having a cermet substrate, the cermet substrate is loaded into the chemical vapor deposition apparatus in a state where the cermet substrate is placed as shown in a number of reaction gas passage holes formed on the bottom surface of the cermet substrate support pallet, in the inside of the apparatus, was heated to a predetermined temperature in the range, for example, 800 to 1100 ° C., the the Al 2 O 3 layer formed, as a reaction gas, by volume% (hereinafter,% of the reaction gas is a volume% Be),
AlCl 3 : 1 to 6%,
CO 2 : 5 to 15%,
HCl: 1-5%,
H 2 : remaining,
A reaction gas having a composition consisting of:
ZrCl 4 : 1-3%,
CH 4: 10~20%,
H 2 : remaining,
Using a reaction gas having a composition consisting of the following, these reaction gases are passed through the reaction gas blowing pipe into a device that has been previously evacuated, and the reaction gas pressure in the device is maintained at a predetermined pressure within a range of 5 to 40 kPa. However, it is also known to manufacture by forming a hard coating layer composed of Al 2 O 3 —ZrC alternately laminated by introducing them alternately.
[0005]
[Patent Document 1]
JP-A-62-50465
[Problems to be solved by the invention]
In recent years, the performance of cutting equipment has been remarkably improved, and on the other hand, there has been a strong demand for labor saving, energy saving, and further cost reduction for cutting work. in coated cermet tool, the use of this high-speed cutting with a high fever, although particular ZrC layer of hard coating layer made of Al 2 O 3 -ZrC alternately stacked has a high strength, high-temperature hardness and heat resistance not Sufficient, and because the layer structure is a thin layer alternating multilayer structure, high heat generated during high-speed cutting tends to cause thermoplastic deformation at the cutting edge, resulting in uneven wear at the cutting edge and wear. At present, the service life can be reached in a relatively short period of time because it is promoted.
[0007]
[Means for Solving the Problems]
Therefore, the present inventors have conducted research from the above-described viewpoints to develop a coated cermet tool in which a hard coating layer exhibits excellent wear resistance particularly in high-speed cutting.
(A) In place of the Al 2 O 3 layer and the ZrC layer, which are the constituent layers of the hard coating layer of the conventional coated cermet tool, the hard coating layer is replaced with a composite compound of these compounds, that is, a composite carbonate of Al and Zr ( When the Al-Zr carbonate layer is formed by using the chemical vapor deposition apparatus shown in FIGS. 1 and 2 above, for example, the reaction gas composition is automatically set in FIG. As shown in the schematic chart of the control system, the reaction gas composition and the flow rate central control unit, the hard coating layer consisting of the Al-Zr carbonate layer, along the thickness direction along the highest content point of Al and oxygen, Zr and The reaction gas composition corresponding to the highest Al and oxygen content and the highest Zr and carbon content for the purpose of alternately and repeatedly forming the highest carbon content at predetermined intervals. The reaction gas composition corresponding to the continuous change of Al and oxygen and Zr and carbon between the two points, and the interval between the two points are input based on past actual data, and the reaction gas composition and the flow rate central control are input. While controlling the flow rates of the H 2 gas, CO 2 gas, CH 4 gas, and HCl gas from the source gas cylinders by the respective source gas flow automatic controllers according to the control signal from the apparatus, the reaction gas of the chemical vapor deposition apparatus is used. When introduced into the blowing pipe, the highest content points of Al and oxygen and the highest content points of Zr and carbon are alternately and repeatedly present at predetermined intervals along the layer thickness direction, and the highest content points of Al and oxygen are present. From the highest Zr and carbon content, from the highest Zr and carbon content to the highest Al and oxygen content from Al and oxygen and Zr and carbon To become that as hard layer the content is made of Al-Zr carbonates layer having a continuously varying component concentration distribution structure is formed.
[0008]
(B) In the Al-Zr carbonate layer of the above-mentioned (a) repeating and continuously changing component concentration distribution structure,
Al / (Al + Zr) and oxygen / (oxygen + carbon), which indicate the mutual content of Al and Zr and oxygen and carbon at the highest content points of Al and oxygen, are represented by atomic ratios, respectively.
Al / (Al + Zr): 0.80 to 0.96,
Oxygen / (oxygen + carbon): 0.80 to 0.96,
Zr / (Zr + Al) and carbon / (carbon + oxygen) which indicate the mutual content of Zr and Al and carbon and oxygen at the highest Zr and carbon content points are represented by the following atomic ratios:
Zr / (Zr + Al): 0.80 to 0.96,
Carbon / (carbon + oxygen): 0.80 to 0.96,
And, when the interval in the thickness direction between the adjacent highest content points of Al and oxygen and the highest content points of Zr and carbon is 0.01 to 0.2 μm,
At the highest Al and oxygen content points, excellent high-temperature hardness and heat resistance corresponding to the high-temperature hardness and heat resistance of Al 2 O 3 , and Zr, although relatively small compared to Al and oxygen, And at the highest content point of Zr and carbon, a high strength corresponding to the strength of ZrC and a relatively small amount as compared with Zr and carbon. Has sufficient high-temperature hardness and heat resistance to suppress thermoplastic deformation due to the inclusion of Al and oxygen, and the distance between the maximum content point of Al and oxygen and the maximum content point of Zr and carbon is extremely large. Due to the reduced size, the layer as a whole has excellent high-temperature hardness, heat resistance, and high strength, and further contains Al and oxygen and Zr and carbon between the two points. Is continuously changed (component concentration distribution structure), there is no layer interface causing delamination, and therefore, a coated cermet tool composed of an Al-Zr carbonate layer having such a configuration as a hard coating layer In particular, even when cutting various kinds of steel and cast iron at high speed, the hard coating layer shows excellent wear resistance without causing thermoplastic deformation on the cutting edge, and over a long period of time Demonstrate excellent cutting performance.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made based on the above research results, and has a coating formed by evaporating a hard coating layer composed of an Al-Zr carbonate layer on the surface of a cermet substrate with a total average layer thickness of 2 to 25 μm. In cermet tools,
In the hard coating layer, the highest content points of Al and oxygen and the highest content points of Zr and carbon are alternately present at predetermined intervals along the layer thickness direction, and the highest content points of the Al and oxygen are present. From the maximum content point of Zr and carbon, and the maximum content point of Zr and carbon to the maximum content point of Al and oxygen. And
Further, Al / (Al + Zr) and oxygen / (oxygen + carbon) indicating the mutual content ratio of Al and Zr and oxygen and carbon at the highest content points of Al and oxygen are represented by atomic ratios, respectively.
Al / (Al + Zr): 0.80 to 0.96,
Oxygen / (oxygen + carbon): 0.80 to 0.96,
Zr / (Zr + Al) and carbon / (carbon + oxygen), which indicate the mutual content of Zr and Al and carbon and oxygen at the highest Zr and carbon content points, are represented by the following atomic ratios:
Zr / (Zr + Al): 0.80 to 0.96,
Carbon / (carbon + oxygen): 0.80 to 0.96,
And the interval between the adjacent highest content points of Al and oxygen and the highest content points of Zr and carbon is 0.01 to 0.2 μm,
The present invention is characterized by a coated cermet tool in which a hard coating layer exhibits excellent wear resistance under high-speed cutting conditions.
[0010]
Next, the reason why the configuration of the hard coating layer constituting the coated cermet tool of the present invention is limited as described above will be described.
(A) The highest content point of Al and oxygen The Zr and carbon components of the Al-Zr carbonate layer improve the strength, and the Al and oxygen components have the effect of improving the high-temperature hardness and heat resistance. By providing relatively high Al and oxygen contents at the highest content point of oxygen and providing excellent high-temperature hardness and heat resistance, and by providing a small amount of Zr and carbon, also providing strength. Excellent wear resistance is exhibited by high-speed cutting with high heat generation. In this case, Al / (Al + Zr) and oxygen / (oxygen + carbon), which indicate the mutual content of Al and Zr and oxygen and carbon, are used. If the atomic ratio exceeds 0.96 (hereinafter the same), it will be substantially composed of Al oxide, so that Zr having high strength and the highest content point of carbon are adjacent to each other. Even if present, a decrease in the strength of the layer itself is inevitable, and as a result, chipping tends to occur at the cutting edge. On the other hand, when the value is less than 0.80, the high-temperature hardness and heat resistance sharply decrease, resulting in wear. Since it causes acceleration, the values of Al / (Al + Zr) and oxygen / (oxygen + carbon) were both set to 0.80 to 0.96.
[0011]
(B) Maximum content point of Zr and carbon As described above, the maximum content point of Al and oxygen has relatively excellent high-temperature hardness and heat resistance, but on the other hand, the strength is relatively insufficient. In order to compensate for the insufficient strength at the highest oxygen content point, the highest strength Zr and carbon highest content points are alternately interposed in the thickness direction. However, when Zr / (Zr + Al) and carbon / (carbon + oxygen), which indicate the mutual content ratios of Zr and Al and carbon and oxygen, respectively exceed 0.96, they become substantially composed of Zr nitride. Therefore, high temperature hardness and heat resistance sufficient to suppress thermoplastic deformation cannot be secured at the highest content point of Zr and carbon, which causes uneven wear and accelerates wear. On the other hand, if the value is less than 0.80, the desired excellent strength cannot be ensured, and as a result chipping is likely to occur. Therefore, the values of Zr / (Zr + Al) and carbon / (carbon + oxygen) Were all set to 0.80 to 0.96.
[0012]
(C) Spacing between the highest content points of Al and oxygen and the highest content points of Zr and carbon If the spacing is less than 0.01 μm, it is difficult to form each point clearly with the above composition. In addition, it is impossible to secure the desired excellent high-temperature hardness and heat resistance, and further high strength, and if the interval exceeds 0.2 μm, it is a disadvantage that each point has, that is, the highest content point of Al and oxygen. Insufficient strength and maximum content of Zr and carbon cause high temperature hardness and insufficient heat resistance to appear locally in the layer, causing chipping to occur easily or causing thermoplastic deformation to promote wear progress. Therefore, the interval is set to 0.01 to 0.2 μm.
[0013]
(D) Overall average layer thickness of the hard coating layer If the layer thickness is less than 2 μm, the desired wear resistance cannot be secured, while if the average layer thickness exceeds 25 μm, chipping is likely to occur. Therefore, the average layer thickness was determined to be 2 to 25 μm.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder each having an average particle diameter of 1 to 3 μm were prepared. The mixture was wet-mixed for 72 hours in a ball mill, dried and pressed into a green compact at a pressure of 100 MPa, and the green compact was heated to 1400 ° C. for 1 hour in a vacuum of 6 Pa. After sintering under the condition of holding, after sintering, the cutting edge portion is subjected to honing processing of R: 0.05, and the cermet bases A1 to A10 made of WC base cemented carbide having a chip shape of ISO standard CNMG120408 are formed. Formed.
[0015]
In addition, as raw material powders, TiCN (TiC / TiC = 50/50 by weight) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder each having an average particle size of 0.5 to 2 μm , Co powder, and Ni powder were prepared, and these raw material powders were blended in the composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. This green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.05 to conform to ISO standard CNMG120408. The cermet bases B1 to B6 made of TiCN-based cermet having the chip shape described above were formed.
[0016]
Next, each of the cermet substrates A1 to A10 and B1 to B6 was ultrasonically cleaned in acetone and dried, and then placed in a chemical vapor deposition apparatus shown in FIG. 1 to support the cermet substrate shown in FIG. First, when the inside of the apparatus was heated to 900 ° C. by a heater, the composition composed of TiCl 4 : 4.2%, N 2 : 30%, and H 2 : remaining was placed. The reaction gas is introduced through a reaction gas blow-out tube, the pressure of the reaction atmosphere in the apparatus is set to 30 kPa, and this state is maintained for 40 minutes, and titanium nitride (TiN) having an average layer thickness of 0.3 μm as a base adhesion layer is provided. After a layer was formed and the atmosphere temperature in the apparatus was also heated to 1020 ° C. by a heater, the reaction gas composition and flow rate of the reaction gas composition automatic control system shown in FIG. According to the data of the past performance, the central control unit sets the target Al / (Al + Zr) and oxygen / (oxygen + carbon) of the maximum Al and oxygen contents shown in Table 3, and the maximum Zr and carbon contents. The reaction gas composition corresponding to the target Zr / (Zr + Al) and carbon / (carbon + oxygen), the content of Al and Zr and the content of oxygen and carbon between the highest content point of Al and oxygen and the highest content point of Zr and carbon. The reaction gas composition corresponding to the continuous change, and the target distance between the two points and the target total layer thickness of the hard coating layer shown in Tables 4 and 6 are input. Therefore, the source gas H 2 gas, CH 4 gas, CO 2 gas, and HCl gas (such as H The source gases AlCl 3 gas and ZrCl 4 gas are formed by reacting metal Al and metal Zr with HCl gas in an AlCl 3 gas generator and a ZrCl 4 gas generator, respectively. While controlling the gas flow rate, the reaction gas was introduced into the apparatus from the reaction gas blow-out pipe of the chemical vapor deposition apparatus of FIG. 1 (the pressure of the reaction atmosphere in the apparatus was always kept at 7 kPa). The target Al / (Al + Zr) and oxygen / (oxygen + carbon) maximum Al and oxygen content points shown in Tables 3 and 4 along the direction, and the target Zr / (Zr + Al) and carbon / (carbon + oxygen) Zr and the highest content point of carbon are alternately and repeatedly present at the target intervals also shown in Tables 3 and 4, and are located before the highest content point of Al and oxygen. It has a component concentration distribution structure in which the contents of Al, Zr, oxygen, and carbon continuously change from the highest content point of Zr and carbon, and the highest content point of Zr and carbon to the highest content point of Al and oxygen, respectively. Then, by depositing a hard coating layer having the target total layer thickness shown in Tables 3 and 4, a throw-away tip made of the surface-coated cermet of the present invention as a coated cermet tool of the present invention (hereinafter referred to as the coated tip of the present invention). ) 1-16 were produced respectively.
[0017]
Further, for the purpose of comparison, these cermet substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone, dried, and then loaded into a normal chemical vapor deposition apparatus also shown in FIGS. The conditions for forming the Al 2 O 3 layer are as follows:
Reaction gas composition: AlCl 3 : 4.2%, CO 2 : 12.0%, HCl: 3.5%, H 2 : remaining,
Reaction atmosphere temperature: 1050 ° C,
Reaction atmosphere pressure: 7 kPa,
And the conditions for forming the ZrC layer are as follows:
Reaction gas composition: ZrCl 4: 2.0%, CH 4: 15.6%, H 2: remainder,
Reaction atmosphere temperature: 1050 ° C,
Reaction atmosphere pressure: 7 kPa,
A hard coating layer composed of alternately laminated Al 2 O 3 layers and ZrC layers having the target layer thicknesses shown in Tables 6 and 7, respectively, was placed on the surface of each of the cermet substrates A1 to A10 and B1 to B6. By performing vapor deposition with the target total layer thickness shown in FIGS. 6 and 7, conventional surface-coated cermet throw-away tips (hereinafter, referred to as conventional coated tips) 1 to 16 as conventional coated cermet tools were produced, respectively.
[0018]
Next, in a state where the above-mentioned various coating tips are screwed to the tip of a tool steel tool with a fixing jig, the coating tips 1 to 10 of the present invention and the conventional coating tips 1 to 10 are:
Work material: JIS SNCM240 round bar,
Cutting speed: 450 m / min. ,
Cut: 1.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Dry continuous high-speed cutting test of alloy steel under the conditions of
Work material: JIS S25C lengthwise round bar with four equally spaced longitudinal grooves,
Cutting speed: 400 m / min. ,
Notch: 2.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
Intermittent high-speed cutting test of carbon steel under the following conditions,
Work material: JIS FC150 round bar,
Cutting speed: 500 m / min. ,
Cut: 1.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
A dry continuous high-speed cutting test of cast iron was performed under the following conditions. Also, for the coated tips 11 to 16 of the present invention and the coated tips 11 to 16 of the related art,
Work material: JIS / SCr420 round bar,
Cutting speed: 400 m / min. ,
Notch: 2.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Dry continuous high-speed cutting test of alloy steel under the conditions of
Work material: JIS S15C lengthwise round bar
Cutting speed: 400 m / min. ,
Notch: 2.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Intermittent high-speed cutting test of carbon steel under the following conditions,
Work material: JIS FC300 round bar,
Cutting speed: 450 m / min. ,
Cut: 1.5 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
A dry continuous high-speed cutting test was performed on cast iron under the conditions described above, and the maximum flank wear width of the cutting edge was measured in each cutting test. Table 7 shows the measurement results.
[0019]
[Table 1]
Figure 2004130494
[0020]
[Table 2]
Figure 2004130494
[0021]
[Table 3]
Figure 2004130494
[0022]
[Table 4]
Figure 2004130494
[0023]
[Table 5]
Figure 2004130494
[0024]
[Table 6]
Figure 2004130494
[0025]
[Table 7]
Figure 2004130494
[0026]
With respect to the hard coating layers constituting the coated carbide tips 1 to 16 of the present invention and the conventional coated carbide tips 1 to 16 obtained as a result, the contents of Al, Zr, oxygen, and carbon along the thickness direction were determined by Auger. The measurement was performed using a spectroscopic analyzer, and the Al / (Al + Zr) and oxygen / (oxygen + carbon) values, and further the Zr / (Zr + Al) and carbon / (carbon + oxygen) values at each measurement point were calculated from the measurement results. However, in the hard coating layers of the coated superhard tips 1 to 16 of the present invention, the highest content points of Al and oxygen and the highest content points of Zr and carbon are alternately repeated at substantially the same composition and interval as the target values. From the highest content of Al and oxygen to the highest content of Zr and carbon, from the highest content of Zr and carbon to the highest content of Al and oxygen It was confirmed to have a component concentration distribution structure content changes continuously carbon, the average layer thickness of the hard layer showed a target total layer thickness substantially the same value. Further, in the conventional target layer thickness even in the hard coating layer of the coated carbide inserts 1 through 16 is substantially the same average layer thickness of the Al 2 O 3 layer and ZrC layer alternately, and the target total layer thickness and substantially It was confirmed that they were formed with the same average layer thickness.
[0027]
【The invention's effect】
From the results shown in Tables 3 to 7, the hard coating layer has relatively excellent high-temperature hardness and heat resistance in the layer thickness direction, the highest content points of Al and oxygen having strength, and the relatively high hardness. It has high strength and high temperature hardness sufficient to suppress thermoplastic deformation and the highest content points of Zr and carbon, which also have heat resistance, are alternately and repeatedly present at predetermined intervals, and the maximum of Al and oxygen are present. Component concentration distribution structure in which the contents of Al, Zr and oxygen and carbon continuously change from the content point to the highest content point of Zr and carbon, and from the highest content point of Zr and carbon to the highest content point of Al and oxygen The coated tips 1 to 16 of the present invention can be used for cutting various types of steel or cast iron under high-speed cutting conditions with high heat generation, without causing thermoplastic deformation at the cutting edge. , Hard coating layer Shows excellent abrasion resistance, relative to exhibit excellent cutting performance for a long period of time, in the conventional coated chip 1-16 hard layer is composed of alternate lamination of the Al 2 O 3 layer and ZrC layer, Due to the lack of high-temperature hardness and heat resistance of the ZrC layer of the hard coating layer and the thin-layer alternating multilayer structure, particularly under high-speed cutting conditions, thermoplastic deformation causing uneven wear occurs in the cutting edge portion, and wear progresses. It is clear that the service life is reached in a relatively short time from the promotion of
As described above, the coated cermet tool of the present invention has excellent resistance not only to cutting under normal conditions, but also to cutting of various types of steel and cast iron under high-speed cutting conditions. Since it exhibits abrasion and exhibits excellent cutting performance over a long period of time, it can sufficiently cope with labor-saving and energy-saving of the cutting process, and further, cost reduction.
[Brief description of the drawings]
FIG. 1 is a schematic vertical sectional view illustrating a chemical vapor deposition apparatus used for forming a hard coating layer constituting a coated cermet tool.
FIGS. 2A and 2B show a cermet substrate support pallet as a structural member of the chemical vapor deposition apparatus, wherein FIG. 2A is a schematic perspective view and FIG.
FIG. 3 is a schematic chart of a reaction gas composition automatic control system used for forming a hard coating layer constituting the coated cermet tool of the present invention.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン系サーメットで構成されたサーメット基体の表面に、AlとZrの複合炭酸化物層からなる硬質被覆層を2〜25μmの全体平均層厚で蒸着してなる表面被覆サーメット工具製切削工具において、
上記硬質被覆層が、層厚方向にそって、Alおよび酸素の最高含有点とZrおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Zrおよび炭素の最高含有点、前記Zrおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとZrおよび酸素と炭素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Alおよび酸素の最高含有点におけるAlとZrおよび酸素と炭素の相互含有割合を示すAl/(Al+Zr)および酸素/(酸素+炭素)が、それぞれ原子比で、
Al/(Al+Zr):0.80〜0.96、
酸素/(酸素+炭素):0.80〜0.96、
上記Zrおよび炭素の最高含有点におけるZrとAlおよび炭素と酸素の相互含有割合を示すZr/(Zr+Al)および炭素/(炭素+酸素)が、それぞれ原子比で、
Zr/(Zr+Al):0.80〜0.96、
炭素/(炭素+酸素):0.80〜0.96、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Zrおよび炭素の最高含有点の間隔が、0.01〜0.2μmであること、
を特徴とする高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具。
A surface obtained by depositing a hard coating layer composed of a composite carbonate layer of Al and Zr on a surface of a cermet substrate composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet with a total average layer thickness of 2 to 25 μm. In cutting tools made of coated cermet tools,
In the hard coating layer, the highest content points of Al and oxygen and the highest content points of Zr and carbon are alternately present at predetermined intervals along the layer thickness direction, and the highest content points of the Al and oxygen are present. From the maximum content point of Zr and carbon, and the maximum content point of Zr and carbon to the maximum content point of Al and oxygen. And
Further, Al / (Al + Zr) and oxygen / (oxygen + carbon) indicating the mutual content ratio of Al and Zr and oxygen and carbon at the highest content points of Al and oxygen are represented by atomic ratios, respectively.
Al / (Al + Zr): 0.80 to 0.96,
Oxygen / (oxygen + carbon): 0.80 to 0.96,
Zr / (Zr + Al) and carbon / (carbon + oxygen), which indicate the mutual content of Zr and Al and carbon and oxygen at the highest Zr and carbon content points, are represented by the following atomic ratios:
Zr / (Zr + Al): 0.80 to 0.96,
Carbon / (carbon + oxygen): 0.80 to 0.96,
And the interval between the adjacent highest content points of Al and oxygen and the highest content points of Zr and carbon is 0.01 to 0.2 μm;
A surface-coated cermet cutting tool with a hard coating layer that exhibits excellent wear resistance under high-speed cutting conditions.
JP2002300333A 2002-10-15 2002-10-15 Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition Withdrawn JP2004130494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300333A JP2004130494A (en) 2002-10-15 2002-10-15 Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300333A JP2004130494A (en) 2002-10-15 2002-10-15 Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition

Publications (1)

Publication Number Publication Date
JP2004130494A true JP2004130494A (en) 2004-04-30

Family

ID=32289197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300333A Withdrawn JP2004130494A (en) 2002-10-15 2002-10-15 Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition

Country Status (1)

Country Link
JP (1) JP2004130494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213651A (en) * 2004-01-26 2005-08-11 Sandvik Ab Cemented carbide tool and cemented carbide thereof
JP2010121735A (en) * 2008-11-20 2010-06-03 Motoyama Eng Works Ltd Valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213651A (en) * 2004-01-26 2005-08-11 Sandvik Ab Cemented carbide tool and cemented carbide thereof
JP2010121735A (en) * 2008-11-20 2010-06-03 Motoyama Eng Works Ltd Valve

Similar Documents

Publication Publication Date Title
JP4048364B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2004130494A (en) Surface covered cutting tool made of cermet having hard covering layer having high abrasion resistance in high speed cutting condition
JP3900521B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3900523B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3922132B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3963136B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP2004050382A (en) Surface-coated cemented carbide tool exhibiting superior chipping resistance under high-speed and heavy-duty cutting conditions
JP2004174615A (en) Surface covering cemented carbide cutting tool having hard covering layer exhibiting excellent chipping resistance under high speed multiple cutting conditions
JP3922128B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900516B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3963149B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3948020B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2005034912A (en) Surface coated cemented carbide cutting tool having hard surface coating layer which is excellent in wear resistance and chipping resistance under high-speed and heavy-cutting condition
JP2007075968A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP2004154878A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting excellent wear resistance under high speed heavy cutting condition
JP3900528B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900526B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900518B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3900519B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900527B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3903483B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110