JP3900521B2 - Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions - Google Patents

Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions Download PDF

Info

Publication number
JP3900521B2
JP3900521B2 JP2002233423A JP2002233423A JP3900521B2 JP 3900521 B2 JP3900521 B2 JP 3900521B2 JP 2002233423 A JP2002233423 A JP 2002233423A JP 2002233423 A JP2002233423 A JP 2002233423A JP 3900521 B2 JP3900521 B2 JP 3900521B2
Authority
JP
Japan
Prior art keywords
nitrogen
content point
carbon
cutting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002233423A
Other languages
Japanese (ja)
Other versions
JP2004074302A (en
Inventor
晃 長田
哲彦 本間
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002233423A priority Critical patent/JP3900521B2/en
Publication of JP2004074302A publication Critical patent/JP2004074302A/en
Application granted granted Critical
Publication of JP3900521B2 publication Critical patent/JP3900521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高強度を有し、したがって各種の鋼や鋳鉄などの切削加工を、特に高切り込みや高送りなどの重切削条件で行なった場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、原子比で、
Ti/(Ti+Zr):0.40〜0.60、
窒素/(窒素+炭素):0.40〜0.60、
を満足するTiとZrの複合炭窒化物[以下、(Ti,Zr)CNで示す]層からなる硬質被覆層を1〜15μmの平均層厚で蒸着してなる被覆超硬工具が提案され、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製の超硬基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、超硬基体を前記超硬基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、
反応ガス組成(容量%で):TiCl4:0.1〜6%、ZrCl4:0.05〜5%、CH3CN:0.6〜5%、N2:0.5〜40%、H2:残り、
反応雰囲気温度:900〜1050℃、
反応雰囲気圧力:5〜50kPa、
の条件で(Ti,Zr)CNからなる硬質被覆層を形成することにより製造されることも知られている(例えば特許文献2参照)。
【0005】
【特許文献1】
特開昭62−56564号公報
【特許文献2】
特開2001−11632号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、切削加工は高切り込みや高送りなどの重切削条件での切削が強く求めらる傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、特に切削加工を重切削条件で行なった場合には、硬質被覆層の強度不足が原因で、硬質被覆層にチッピング(微少欠け)が発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図1,2に示される化学蒸着装置を用いて形成された従来被覆超硬工具を構成する(Ti,Zr)CN層は、厚さ全体に亘って実質的に均一な組成を有し、したがって均質な強度と硬さを有するが、(Ti,Zr)CN層を形成するに際して、例えば図3に反応ガス組成自動制御システムが概略チャート図で示される通り、反応ガス組成および流量中央制御装置に、前記(Ti,Zr)CN層からなる硬質被覆層に層厚方向にそってTiおよび窒素の最高含有点とTiおよび窒素の最低含有点とを所定間隔をおいて交互に繰り返し形成させる目的で、前記Tiおよび窒素の最高含有点並びにTiおよび窒素の最低含有点に対応した反応ガス組成、並びに前記両点間のTiと窒素の連続変化に対応した反応ガス組成(この場合Tiおよび窒素の連続変化に対応してZrおよび炭素の含有量も変化することは当然である)、さらに前記両点間の間隔および硬質被覆層の全体層厚を、過去の実績データに基づいてインプットし、この反応ガス組成および流量中央制御装置からの制御信号にしたがって、原料ガスボンベからのH2ガス、CH4ガス、N2ガス、およびHClガスの流量、さらにTiCl4ガスおよびZrCl4ガスの流量をそれぞれの原料流量自動制御装置にて制御しながら、化学蒸着装置の反応ガス吹き出し管に導入すると、層厚方向にそって、Tiおよび窒素の最高含有点とTiおよび窒素の最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Tiおよび窒素の最高含有点から前記Tiおよび窒素の最低含有点、前記Tiおよび窒素の最低含有点から前記Tiおよび窒素の最高含有点へTiと窒素およびZrと炭素の含有量が連続的に変化する成分濃度分布構造をもつた(Ti,Zr)CN層からなる硬質被覆層が形成されるようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Ti,Zr)CN層において、
上記Tiおよび窒素の最高含有点におけるTiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)を、それぞれ原子比で、
Ti/(Ti+Zr):0.80〜0.98、
窒素/(窒素+炭素):0.80〜0.98、
上記Tiおよび窒素の最低含有点におけるTiとZriおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)を、それぞれ原子比で、
Ti/(Ti+Zr):0.40〜0.60、
窒素/(窒素+炭素):0.40〜0.60、
とし、かつ隣り合う上記Tiおよび窒素の最高含有点と上記Tiおよび窒素の最低含有点の厚さ方向の間隔を0.01〜0.2μmとすると、
上記Tiおよび窒素の最高含有点部分では、Tiと窒素が主体を占め、これら両成分の作用によってきわめて高い強度を示すようになり、一方上記Tiおよび窒素の最低含有点部分では、上記の従来(Ti,Zr)CN層のもつ硬さおよび強度に相当する硬さおよび強度が確保され、かつこれらTiおよび窒素の最高含有点と最低含有点の間隔をきわめて小さくしたことから、層全体の特性として前記従来(Ti,Zr)CN層に比して、同等の硬さを保持した状態で、強度が一段と向上したものになり、したがって、硬質被覆層がかかる構成の(Ti,Zr)CN層からなる被覆超硬工具は、各種の鋼や鋳鉄などの切削加工を、特に重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、(Ti,Zr)CN層からなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる被覆超硬工具において、
上記硬質被覆層が、層厚方向にそって、Tiおよび窒素の最高含有点とTiおよび窒素の最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Tiおよび窒素の最高含有点から前記Tiおよび窒素の最低含有点、前記Tiおよび窒素の最低含有点から前記Tiおよび窒素の最高含有点へTiおよび窒素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Tiおよび窒素の最高含有点におけるTiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)が、それぞれ原子比で、
Ti/(Ti+Zr):0.80〜0.98、
窒素/(窒素+炭素):0.80〜0.98、
上記Tiおよび窒素の最低含有点におけるTiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)が、それぞれ原子比で、
Ti/(Ti+Zr):0.40〜0.60、
窒素/(窒素+炭素):0.40〜0.60、
を満足し、かつ隣り合う上記Tiおよび窒素の最高含有点と上記Tiおよび窒素の最低含有点の間隔が、0.01〜0.2μmである、
重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Tiおよび窒素の最高含有点
上記の通り硬質被覆層である(Ti,Zr)CN層の厚さ方向に沿ってTiおよび窒素成分の相対的に高い部分を繰り返し形成して層自体の強度を一段と向上させ、一方上記の従来(Ti,Zr)CN層と同等の組成を有するTiよび窒素成分の含有量の相対的に低い部分、すなわちTiおよび窒素の最低含有点を繰り返し形成して層自体に硬さを確保するものであり、したがって、この結果重切削加工での耐チッピング性が前記従来(Ti,Zr)CN層に比して著しく向上するようになるが、この場合TiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)がいずれも原子比で(以下、同じ)0.98を越えると、実質的にTiと窒素からなり、高強度を有するようになるが硬さの低いものとなり、相対的に高い硬さを有するTiと窒素の最低含有点が隣接して存在しても層自体の硬さ低下は避けられず、この結果摩耗が急速に進行するようになり、一方同値が0.80未満になるとZrおよび炭素の含有量が相対的に多くなり、これら両成分の作用で層自体の硬さが上昇するようになって、チッピングが発生し易くなることから、Ti/(Ti+Zr)および窒素/(窒素+炭素)の値をいずれも0.80〜0.98と定めた。
【0011】
(b)Tiおよび窒素の最低含有点
上記の通りTiおよび窒素の最高含有点は相対的にきわめて高い強度を有するが、反面相対的に硬さが不十分であるため、このTiおよび窒素の最高含有点の硬さ不足を補う目的で、上記の従来(Ti,Zr)CN層のもつ硬さと同等の相対的に高い硬さを有するTiおよび窒素の最低含有点を厚さ方向に交互に介在させるものである。しかし、TiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)が、それぞれ0.60を越えると、Tiと窒素で占められる割合が多くなり過ぎて、反面Zrと炭素の占める割合が少なくなり過ぎて、所望の硬さを確保することができず、この結果摩耗の進行が促進されるようになり、一方同値がいずれも0.40未満になると、相対的にZrおよび炭素が増加し、この結果硬さは上昇するものの、急激な強度低下が起って、チッピングが発生し易くなることから、Ti/(Ti+Zr)および窒素/(窒素+炭素)の値をいずれも0.40〜0.60と定めた。
【0012】
(c)Tiおよび窒素の最高含有点とTiおよび窒素の最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所定の硬さを確保した上で、一段と高い強度を確保することができなくなり、またその間隔が0.2μmを越えるとそれぞれの点がもつ欠点、すなわちTiおよび窒素の最高含有点であれば硬さ不足、Tiおよび窒素の最低含有点であれば強度不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗の進行が促進されるようになることから、その間隔を0.01〜0.2μmと定めた。
【0013】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐チッピング性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、平均粒径:6.5μmを有する粗粒WC粉末、同3.5μmを有する中粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.0μmの(Ti,W)CN(質量比で、TiC/TiN/WC=24/20/56)粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、ボールミルで72時間混合し、減圧乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を、表面部にCo富化層を形成するものについては13.3Pa、そして全体に亘って均一組織を有するものについては6.7Paの真空中、温度:1430℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.08のホーニング加工を施してISO規格・CNMG160608のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。なお、超硬基体A−1、A−3、A−4、A−6、A−7、およびA−9の表面部にCo富化層の形成が見られた。
【0015】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.10のホーニング加工を施してISO規格・CNMG160612のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。
【0016】
つぎに、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される超硬基体支持パレットの位置決め穴に載置した状態で装入し、まず、装置内をヒーターで900℃に加熱したところで、TiCl4:4.2%、N2:30%、H2:残りからなる組成を有する反応ガスを反応ガス吹き出し管を通して導入して、装置内の反応雰囲気圧力を30kPaとし、この状態で30分間保持して前記超硬基体表面に、下地密着層として0.3μmの平均層厚をもった窒化チタン(TiN)層を形成し、ついで、同じく装置内の雰囲気温度をヒーターにて加熱して1020℃とした後、図3に示される反応ガス組成自動制御システムの反応ガス組成および流量中央制御装置に、過去の実績データにしたがって、表3に示されるTiおよび窒素の最高含有点並びにTiおよび窒素の最低含有点の目標Ti/(Ti+Zr)および目標窒素/(窒素+炭素)に対応する反応ガス組成、前記Tiおよび窒素の最高含有点とTiおよび窒素の最低含有点間のTiとZrおよび窒素と炭素の含有量の連続変化に対応する反応ガス組成、さらに表4,6に示される前記両点間の目標間隔および硬質被覆層の目標全体層厚をインプットし、この反応ガス組成および流量中央制御装置からの信号にしたがって作動するコントロールバルブ内蔵の原料ガス流量自動制御装置を通して、原料ガスであるH2ガス、N2ガス、CH4ガス、TiCl4ガス、およびZrCl4ガス(この場合、前記TiCl4ガスは図示の通り流量制御されたH2ガスをキャリアガスとしてTiCl4ガス気化器に送り、ここで液体から気化されたTiCl4と共に原料ガス流量自動制御装置に送られ、また前記ZrCl4ガスは、ZrCl4発生器で金属Zrと流量制御されたHClガスを反応させることにより形成される)を、それぞれのガス流量を自動制御しながら、図1の化学蒸着装置の反応ガス吹き出し管から装置内に導入し(装置内の反応雰囲気圧力は常に7kPaに保持される)、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標Ti/(Ti+Zr)および目標窒素/(窒素+炭素)のTiおよび窒素の最高含有点と、Tiおよび窒素の最低含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Tiおよび窒素の最高含有点から前記Tiおよび窒素の最低含有点、前記Tiおよび窒素の最低含有点から前記Tiおよび窒素の最高含有点へTiとZrおよび窒素と炭素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0017】
また、比較の目的で、上記の超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、上記したTiN層形成条件と同じ条件で下地密着層として0.3μmの平均層厚を有するTiN層を形成し、ついで反応雰囲気温度を1020℃に加熱した後、それぞれ表6,7に示される目標Ti/(Ti+Zr)および目標窒素/(窒素+炭素)に対応した組成の反応ガスを反応ガス吹き出し管から導入し、反応雰囲気圧力を7kPaに一定とした条件で、前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、表6,7に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Zr)CN層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0018】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の丸棒、
切削速度:280m/min.、
切り込み:5.5mm、
送り:0.28mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式連続高切り込み切削加工試験、
被削材:JIS・S40Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:280m/min.、
切り込み:1.5mm、
送り:0.45mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式断続高送り切削加工試験、さらに、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:330m/min.、
切り込み:6.0mm、
送り:0.30mm/rev.、
切削時間:10分、
の条件での鋳鉄の乾式断続高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面チッピング幅を測定した。この測定結果を表4〜7に示した。
【0019】
【表1】

Figure 0003900521
【0020】
【表2】
Figure 0003900521
【0021】
【表3】
Figure 0003900521
【0022】
【表4】
Figure 0003900521
【0023】
【表5】
Figure 0003900521
【0024】
【表6】
Figure 0003900521
【0025】
【表7】
Figure 0003900521
【0026】
この結果得られた本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16を構成する硬質被覆層について、厚さ方向に沿ってTi、Zr、窒素、および炭素の含有量をオージェ分光分析装置を用いて測定し、この測定結果から各測定点におけるTi/(Ti+Zr)および窒素/(窒素+炭素)値を算出したところ、本発明被覆超硬チップ1〜16の硬質被覆層では、Tiおよび窒素の最高含有点と、Tiおよび窒素の最低含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつTiおよび窒素の最高含有点からTiおよび窒素の最低含有点、前記Tiおよび窒素の最低含有点からTiおよび窒素の最高含有点へTiとZrおよび窒素と炭素の含有量が連続的に変化する成分濃度分布構造を有することも確認され、また、硬質被覆層の全体平均層厚も目標全体層厚と実質的に同じ値を示した。一方前記従来被覆超硬チップ1〜16の硬質被覆層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標全体層厚と実質的に同じ全体平均層厚を示すことが確認された。
【0027】
【発明の効果】
表3〜7に示される結果から、硬質被覆層が層厚方向に、相対的に一段と高い強度を有するTiおよび窒素の最高含有点と上記の従来(Ti,Zr)CN層のもつ硬さに相当する相対的に高い硬さを有するTiおよび窒素の最低含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Tiおよび窒素の最高含有点から前記Tiおよび窒素の最低含有点、前記Tiおよび窒素の最低含有点から前記Tiおよび窒素の最高含有点へTiとZrおよび窒素と炭素の含有量が連続的に変化する成分濃度分布構造を有する本発明被覆超硬チップ1〜16は、いずれも各種の鋼や鋳鉄などの切削加工を、高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のない従来被覆超硬チップ1〜16においては、特に重切削条件では強度不足が原因でチッピングが発生し、これが原因で、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】被覆超硬工具を構成する硬質被覆層を形成するのに用いられている化学蒸着装置を例示する概略縦断面図である。
【図2】化学蒸着装置の構造部材である超硬基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。
【図3】この発明の被覆超硬工具を構成する硬質被覆層の形成に用いられる反応ガス組成自動制御システムの概略チャート図である。[0001]
BACKGROUND OF THE INVENTION
In the present invention, the hard coating layer has high strength, and therefore, when the cutting of various steels and cast irons is performed under heavy cutting conditions such as high cutting and high feed, the hard coating layer has excellent resistance. The present invention relates to a surface-coated cemented carbide cutting tool that exhibits chipping properties (hereinafter referred to as a coated cemented carbide tool).
[0002]
[Prior art]
In general, coated carbide tools are used for throwaway inserts that are detachably attached to the tip of a cutting tool for drilling and cutting of various materials such as steel and cast iron, and for flat cutting. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. Also, the throwaway tip is detachably attached and cutting is performed in the same way as the solid type end mill Throwaway end mill tools are known.
[0003]
Further, as a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). ) On the surface, in atomic ratio,
Ti / (Ti + Zr): 0.40 to 0.60,
Nitrogen / (Nitrogen + Carbon): 0.40-0.60,
A coated carbide tool formed by vapor-depositing a hard coating layer composed of a composite carbonitride of Ti and Zr satisfying the following (hereinafter referred to as (Ti, Zr) CN) layer with an average layer thickness of 1 to 15 μm is proposed, It is also known to exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of various steels and cast iron (see, for example, Patent Document 1).
[0004]
Furthermore, as shown in the schematic longitudinal sectional view of FIG. 1, for example, the coated carbide tool has a stainless steel reaction gas blowing pipe standing at the center thereof. A graphite cemented carbide substrate support pallet illustrated in a schematic perspective view in (a) and a schematic plan view in (b) is skewered and laminated, and these are heated by a heater through a stainless steel cover. A chemical vapor deposition apparatus having a structure is used, and the cemented carbide substrate is mounted on the chemical vapor deposition apparatus in a state where the carbide substrate is placed as illustrated in a number of reaction gas passage hole positions formed on the bottom surface of the carbide substrate support pallet. Enter
Reaction gas composition (by volume%): TiCl 4: 0.1~6% , ZrCl 4: 0.05~5%, CH 3 CN: 0.6~5%, N 2: 0.5~40%, H 2 : Remaining
Reaction atmosphere temperature: 900-1050 ° C.
Reaction atmosphere pressure: 5 to 50 kPa,
It is also known that it is manufactured by forming a hard coating layer made of (Ti, Zr) CN under the conditions (see, for example, Patent Document 2).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 62-56564 [Patent Document 2]
Japanese Patent Laid-Open No. 2001-11632
[Problems to be solved by the invention]
In recent years, the performance of cutting machines has been dramatically improved, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting. Accordingly, cutting is performed under heavy cutting conditions such as high cutting and high feed. However, in the above conventional coated carbide tool, there is no problem when it is used under normal cutting conditions, but cutting was performed under heavy cutting conditions. In this case, since the chipping (small chipping) is likely to occur in the hard coating layer due to insufficient strength of the hard coating layer, the service life is reached in a relatively short time.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated carbide tool in order to develop a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer particularly under heavy cutting conditions. As a result of conducting research with a focus on the hard coating layer,
(A) The (Ti, Zr) CN layer constituting the conventional coated carbide tool formed by using the chemical vapor deposition apparatus shown in FIGS. 1 and 2 has a substantially uniform composition throughout the thickness. Therefore, when forming a (Ti, Zr) CN layer, the reaction gas composition automatic control system is schematically shown in FIG. In the central flow rate control device, the highest content point of Ti and nitrogen and the lowest content point of Ti and nitrogen are alternately arranged at predetermined intervals along the layer thickness direction on the hard coating layer composed of the (Ti, Zr) CN layer. For the purpose of repeated formation, the reaction gas composition corresponding to the highest content point of Ti and nitrogen and the lowest content point of Ti and nitrogen, and the reaction gas composition corresponding to the continuous change of Ti and nitrogen between the two points (in this case) Ti It is natural that the content of Zr and carbon also changes in response to the continuous change of nitrogen and nitrogen), and the distance between the two points and the total thickness of the hard coating layer are input based on past data. According to the control signal from the reaction gas composition and the flow rate central controller, the flow rates of H 2 gas, CH 4 gas, N 2 gas, and HCl gas from the source gas cylinder, and the flow rates of TiCl 4 gas and ZrCl 4 gas Are introduced into the reaction gas blowing pipe of the chemical vapor deposition apparatus while being controlled by the respective raw material flow automatic control devices, the maximum content point of Ti and nitrogen and the minimum content point of Ti and nitrogen are found along the layer thickness direction. Repetitively present alternately at predetermined intervals, and from the highest content point of Ti and nitrogen to the lowest content point of Ti and nitrogen, the lowest content of Ti and nitrogen A hard coating layer composed of a (Ti, Zr) CN layer having a component concentration distribution structure in which the contents of Ti, nitrogen, and Zr and carbon continuously change from Ti to the highest content point of Ti and nitrogen is formed. To become.
[0008]
(B) In the (Ti, Zr) CN layer of the repeated continuous change component concentration distribution structure of (a) above,
Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) indicating the mutual content ratio of Ti and Zr and nitrogen and carbon at the highest content point of Ti and nitrogen, respectively, in atomic ratio,
Ti / (Ti + Zr): 0.80 to 0.98,
Nitrogen / (nitrogen + carbon): 0.80 to 0.98,
Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) indicating the mutual content ratio of Ti and Zri and nitrogen and carbon at the minimum content point of Ti and nitrogen, respectively, in atomic ratio,
Ti / (Ti + Zr): 0.40 to 0.60,
Nitrogen / (Nitrogen + Carbon): 0.40-0.60,
And the distance in the thickness direction between the adjacent highest content point of Ti and nitrogen and the lowest content point of Ti and nitrogen is 0.01 to 0.2 μm,
In the highest content point portion of Ti and nitrogen, Ti and nitrogen occupy mainly, and the action of both these components shows extremely high strength, while in the lowest content point portion of Ti and nitrogen, the conventional ( Since the hardness and strength corresponding to the hardness and strength of the Ti, Zr) CN layer are ensured, and the distance between the highest content point and the lowest content point of these Ti and nitrogen is extremely small, Compared to the conventional (Ti, Zr) CN layer, the strength is further improved while maintaining the same hardness. Therefore, from the (Ti, Zr) CN layer in which the hard coating layer is applied, The coated cemented carbide tool will exhibit excellent chipping resistance even when cutting various steels and cast iron, especially under heavy cutting conditions.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made on the basis of the above research results, and a hard coating layer composed of a (Ti, Zr) CN layer is deposited on the surface of a cemented carbide substrate with an overall average layer thickness of 1 to 15 μm. In the coated carbide tool
In the hard coating layer, the highest content point of Ti and nitrogen and the lowest content point of Ti and nitrogen are alternately present at predetermined intervals along the layer thickness direction, and the highest content point of Ti and nitrogen A content concentration distribution structure in which the content of Ti and nitrogen continuously changes from the lowest content point of Ti and nitrogen, from the lowest content point of Ti and nitrogen to the highest content point of Ti and nitrogen,
Further, Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) indicating the mutual content ratios of Ti and Zr and nitrogen and carbon at the highest content point of Ti and nitrogen are atomic ratios, respectively.
Ti / (Ti + Zr): 0.80 to 0.98,
Nitrogen / (nitrogen + carbon): 0.80 to 0.98,
Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) indicating the mutual content ratio of Ti and Zr and nitrogen and carbon at the minimum content point of Ti and nitrogen are respectively atomic ratios.
Ti / (Ti + Zr): 0.40 to 0.60,
Nitrogen / (Nitrogen + Carbon): 0.40-0.60,
And the distance between the highest content point of Ti and nitrogen adjacent to each other and the lowest content point of Ti and nitrogen is 0.01 to 0.2 μm.
It is characterized by a coated cemented carbide tool that exhibits excellent chipping resistance under heavy cutting conditions.
[0010]
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(A) Maximum content point of Ti and nitrogen As described above, a relatively high portion of Ti and nitrogen components is repeatedly formed along the thickness direction of the (Ti, Zr) CN layer which is a hard coating layer, and the layer itself Strength is further improved, while a portion having a composition equivalent to that of the conventional (Ti, Zr) CN layer and a relatively low content of Ti and nitrogen components, that is, a minimum content point of Ti and nitrogen is repeatedly formed. The layer itself secures the hardness. Therefore, as a result, the chipping resistance in the heavy cutting process is remarkably improved as compared with the conventional (Ti, Zr) CN layer. When Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon), which indicate the mutual content ratio of Zr and nitrogen and carbon, exceed 0.98 in atomic ratio (hereinafter the same), it substantially consists of Ti and nitrogen. High strength However, even if the minimum content point of Ti and nitrogen having relatively high hardness is adjacent to each other, a decrease in the hardness of the layer itself is inevitable, resulting in wear. On the other hand, when the equivalence is less than 0.80, the contents of Zr and carbon are relatively increased, and the hardness of the layer itself is increased by the action of these two components. Therefore, the values of Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) were both set to 0.80 to 0.98.
[0011]
(B) Minimum content point of Ti and nitrogen As described above, the maximum content point of Ti and nitrogen has a relatively very high strength, but on the other hand, since the hardness is relatively insufficient, the maximum content of Ti and nitrogen. In order to compensate for the lack of hardness of the content points, the minimum content points of Ti and nitrogen having relatively high hardness equivalent to the hardness of the conventional (Ti, Zr) CN layer are alternately interposed in the thickness direction. It is something to be made. However, when Ti / (Ti + Zr) and Nitrogen / (Nitrogen + Carbon), which indicate the mutual content ratio of Ti and Zr and nitrogen and carbon, respectively exceed 0.60, the ratio occupied by Ti and nitrogen becomes too large. On the other hand, the proportion of Zr and carbon is too small, and the desired hardness cannot be ensured. As a result, the progress of wear is promoted, while the same value is less than 0.40. Zr and carbon are relatively increased, and as a result, the hardness is increased. However, since the strength is sharply reduced and chipping is likely to occur, Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon). ) Values were determined to be 0.40 to 0.60.
[0012]
(C) Interval between the highest content point of Ti and nitrogen and the lowest content point of Ti and nitrogen If the distance is less than 0.01 μm, it is difficult to form each point clearly with the above composition. In addition to ensuring the predetermined hardness, it becomes impossible to secure a further high strength, and if the distance exceeds 0.2 μm, each point has a defect, that is, the highest content point of Ti and nitrogen Insufficient hardness, if the minimum content point of Ti and nitrogen, insufficient strength appears locally in the layer, this is likely to cause chipping or promote the progress of wear, The interval was set to 0.01 to 0.2 μm.
[0013]
(D) Overall average layer thickness of hard coating layer If the layer thickness is less than 1 μm, the desired chipping resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
As raw material powder, a coarse WC powder having an average particle size of 6.5 μm, a medium WC powder having the same 3.5 μm, a fine WC powder having the same 0.8 μm, a TaC powder having the same 1.3 μm, and 1.2 μm being the same. NbC powder, 1.2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, 1.0 μm (Ti, W) CN (by mass ratio, TiC / TiN / WC = 24/20/56) ) Powder and Co powder of 1.8 μm were prepared, and each of these raw material powders was blended in the blending composition shown in Table 1, mixed in a ball mill for 72 hours, dried under reduced pressure, and then compacted at a pressure of 100 MPa. In this case, the green compact is formed into a vacuum at 13.3 Pa for the one having a Co-enriched layer on the surface and 6.7 Pa for one having a uniform structure throughout, and the temperature: 1430 Baked at ℃ for 1 hour And, after sintering, R the cutting edge portion: forming a WC-based cemented carbide superhard substrate A1~A10 having a tip shape of ISO standard · CNMG160608 subjected to honing of 0.08. In addition, formation of Co-enriched layers was observed on the surface portions of the carbide substrates A-1, A-3, A-4, A-6, A-7, and A-9.
[0015]
In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.10, and ISO standard / CNMG160612. TiCN-based cermet carbide substrates B1 to B6 having the following chip shape were formed.
[0016]
Next, each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and then the carbide shown in FIG. 2 is placed in the chemical vapor deposition apparatus shown in FIG. First, when the inside of the apparatus was heated to 900 ° C. with a heater, it was loaded with TiCl 4 : 4.2%, N 2 : 30%, H 2 : remaining. A reaction gas having a composition is introduced through a reaction gas blowing tube, the reaction atmosphere pressure in the apparatus is set to 30 kPa, and this state is maintained for 30 minutes, and an average layer of 0.3 μm is formed on the surface of the cemented carbide substrate as a base adhesion layer. After forming a titanium nitride (TiN) layer having a thickness and then heating the atmospheric temperature in the apparatus to 1020 ° C. with a heater, the reaction gas composition of the reaction gas composition automatic control system shown in FIG. and In accordance with the past actual data, the amount of Ti and nitrogen maximum content points and the Ti and nitrogen minimum content points target Ti / (Ti + Zr) and target nitrogen / (nitrogen + carbon) shown in Table 3 Corresponding reaction gas composition, reaction gas composition corresponding to continuous change of Ti and Zr and nitrogen and carbon contents between the highest content point of Ti and nitrogen and the lowest content point of Ti and nitrogen, and further in Tables 4 and 6 Input the target distance between the two points shown and the target total layer thickness of the hard coating layer, and through the raw material gas flow automatic control device built in the control valve that operates according to the signal from the reaction gas composition and the flow rate central control device, H 2 gas as a source gas, N 2 gas, CH 4 gas, TiCl 4 gas, and ZrCl 4 gas (in this case, the TiCl 4 gas is shown passing Sent to the TiCl 4 gas vaporizer flow controlled H 2 gas as a carrier gas, where it is sent to the raw gas flow automatic control device with TiCl 4 which has been vaporized from the liquid and said ZrCl 4 gas, ZrCl 4 generator 1 is introduced into the apparatus from the reaction gas blowing pipe of the chemical vapor deposition apparatus of FIG. 1 while automatically controlling the respective gas flow rates (formed by reacting the metal Zr with the flow-controlled HCl gas). The reaction atmosphere pressure is always maintained at 7 kPa), so that the target Ti / (Ti + Zr) and target nitrogen / (nitrogen + carbon) shown in Tables 3 and 4 along the layer thickness direction are formed on the surface of the cemented carbide substrate. The highest content point of Ti and nitrogen and the lowest content point of Ti and nitrogen are alternately present at the target intervals shown in Tables 3 and 4, and the highest content point of Ti and nitrogen. Component concentration distribution in which the contents of Ti and Zr, and nitrogen and carbon continuously change from the content point to the minimum content point of Ti and nitrogen, and from the minimum content point of Ti and nitrogen to the maximum content point of Ti and nitrogen, respectively By depositing a hard coating layer having a structure and a target total layer thickness also shown in Tables 3 and 4, the present invention surface-coated cemented carbide throwaway tip (hereinafter referred to as the present invention coated carbide tool) 1 to 16 were manufactured.
[0017]
Further, for the purpose of comparison, the above-mentioned carbide substrates A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone and dried, and then charged into ordinary chemical vapor deposition apparatuses shown in FIGS. Then, a TiN layer having an average layer thickness of 0.3 μm was formed as a base adhesion layer under the same conditions as the TiN layer formation conditions described above, and then the reaction atmosphere temperature was heated to 1020 ° C. Under the conditions that a reaction gas having a composition corresponding to target Ti / (Ti + Zr) and target nitrogen / (nitrogen + carbon) is introduced from a reaction gas blowing tube and the reaction atmosphere pressure is kept constant at 7 kPa, From the (Ti, Zr) CN layer having the target composition and the target layer thickness shown in Tables 6 and 7 and having substantially no composition change along the layer thickness direction on each surface of A10 and B1 to B6 Become By depositing the quality coating layer, conventional coating conventional surface-coated cemented carbide indexable as cemented carbide (hereinafter, conventional coating called carbide inserts) were 1-16 were prepared, respectively.
[0018]
Next, with the present invention coated carbide tips 1-16 and conventional coated carbide tips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SCM440 round bar,
Cutting speed: 280 m / min. ,
Cutting depth: 5.5 mm,
Feed: 0.28 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-cut cutting test of alloy steel under the conditions of
Work material: JIS / S40C lengthwise equal length 4 fluted round bars,
Cutting speed: 280 m / min. ,
Incision: 1.5mm,
Feed: 0.45 mm / rev. ,
Cutting time: 10 minutes,
Carbon steel dry intermittent high feed cutting test under the conditions of
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 330 m / min. ,
Cutting depth: 6.0 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 10 minutes,
The dry interrupted high-cut cutting test of cast iron was performed under the conditions described above, and the flank chipping width of the cutting edge was measured in any cutting test. The measurement results are shown in Tables 4-7.
[0019]
[Table 1]
Figure 0003900521
[0020]
[Table 2]
Figure 0003900521
[0021]
[Table 3]
Figure 0003900521
[0022]
[Table 4]
Figure 0003900521
[0023]
[Table 5]
Figure 0003900521
[0024]
[Table 6]
Figure 0003900521
[0025]
[Table 7]
Figure 0003900521
[0026]
For the hard coating layers constituting the coated carbide chips 1 to 16 of the present invention and the conventional coated carbide chips 1 to 16 obtained as a result, the contents of Ti, Zr, nitrogen, and carbon along the thickness direction were Auger. When measured using a spectroscopic analyzer and the Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) values at each measurement point were calculated from the measurement results, the hard coating layers of the coated carbide tips 1 to 16 of the present invention were used. , Ti and nitrogen maximum content points and Ti and nitrogen minimum content points are alternately and repeatedly present at substantially the same composition and interval as the target values, respectively, and from the highest content point of Ti and nitrogen It has a component concentration distribution structure in which the contents of Ti and Zr and nitrogen and carbon continuously change from the lowest content point, the lowest content point of Ti and nitrogen to the highest content point of Ti and nitrogen. Both confirmed also showed an overall average layer thickness even entire target layer thickness substantially the same value of the hard layer. On the other hand, in the hard coating layers of the conventional coated carbide chips 1 to 16, no composition change is observed along the thickness direction, and the composition is substantially the same as the target composition and the overall average layer thickness is substantially the same as the target overall layer thickness. It was confirmed to show thickness.
[0027]
【The invention's effect】
From the results shown in Tables 3 to 7, the hard coating layer has the highest content point of Ti and nitrogen having relatively higher strength in the layer thickness direction and the hardness of the conventional (Ti, Zr) CN layer. The lowest content points of Ti and nitrogen having relatively high hardness are alternately present at predetermined intervals, and from the highest content point of Ti and nitrogen, the lowest content point of Ti and nitrogen, The coated carbide chips 1-16 of the present invention having a component concentration distribution structure in which the contents of Ti and Zr and nitrogen and carbon continuously change from the lowest content point of Ti and nitrogen to the highest content point of Ti and nitrogen, In all cases, the hard coating layer exhibits excellent chipping resistance even when cutting various steels and cast iron under heavy cutting conditions such as high cutting and high feed, while the hard coating layer Layer thickness direction In the conventional coated carbide tips 1 to 16 having substantially no change in composition along the chip, chipping occurs due to insufficient strength, particularly under heavy cutting conditions, and this may lead to a service life in a relatively short time. it is obvious.
As described above, the coated carbide tool of the present invention is excellent not only for cutting under normal conditions, but also when cutting various steels and cast irons under heavy cutting conditions. Since it exhibits chipping resistance and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfactorily cope with labor saving and energy saving of cutting work and cost reduction.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view illustrating a chemical vapor deposition apparatus used for forming a hard coating layer constituting a coated carbide tool.
2A and 2B show a cemented carbide substrate support pallet that is a structural member of a chemical vapor deposition apparatus, in which FIG. 2A is a schematic perspective view, and FIG. 2B is a schematic plan view.
FIG. 3 is a schematic chart of a reaction gas composition automatic control system used for forming a hard coating layer constituting the coated carbide tool of the present invention.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、TiとZrの複合炭窒化物層からなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる表面被覆超硬合金製切削工具において、
上記硬質被覆層が、層厚方向にそって、Tiおよび窒素の最高含有点とTiおよび窒素の最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Tiおよび窒素の最高含有点から前記Tiおよび窒素の最低含有点、前記Tiおよび窒素の最低含有点から前記Tiおよび窒素の最高含有点へTiおよび窒素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Tiおよび窒素の最高含有点におけるTiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)が、それぞれ原子比で、
Ti/(Ti+Zr):0.80〜0.98、
窒素/(窒素+炭素):0.80〜0.98、
上記Tiおよび窒素の最低含有点におけるTiとZrおよび窒素と炭素の相互含有割合を示すTi/(Ti+Zr)および窒素/(窒素+炭素)が、それぞれ原子比で、
Ti/(Ti+Zr):0.40〜0.60、
窒素/(窒素+炭素):0.40〜0.60、
を満足し、かつ隣り合う上記Tiおよび窒素の最高含有点と上記Tiおよび窒素の最低含有点の間隔が、0.01〜0.2μmであること、
を特徴とする重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
Surface-coated carbide formed by vapor-depositing a hard coating layer composed of a composite carbonitride layer of Ti and Zr on the surface of a tungsten carbide base cemented carbide substrate or a titanium carbonitride-based cermet substrate with an overall average layer thickness of 1 to 15 μm. In alloy cutting tools,
In the hard coating layer, the highest content point of Ti and nitrogen and the lowest content point of Ti and nitrogen are alternately present at predetermined intervals along the layer thickness direction, and the highest content point of Ti and nitrogen A content concentration distribution structure in which the content of Ti and nitrogen continuously changes from the lowest content point of Ti and nitrogen, from the lowest content point of Ti and nitrogen to the highest content point of Ti and nitrogen,
Furthermore, Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon), which indicate the mutual content ratio of Ti and Zr and nitrogen and carbon at the highest content point of Ti and nitrogen, are atomic ratios, respectively.
Ti / (Ti + Zr): 0.80 to 0.98,
Nitrogen / (nitrogen + carbon): 0.80 to 0.98,
Ti / (Ti + Zr) and nitrogen / (nitrogen + carbon) indicating the mutual content ratio of Ti and Zr and nitrogen and carbon at the minimum content point of Ti and nitrogen are respectively atomic ratios.
Ti / (Ti + Zr): 0.40 to 0.60,
Nitrogen / (Nitrogen + Carbon): 0.40-0.60,
The distance between the highest content point of Ti and nitrogen adjacent to each other and the lowest content point of Ti and nitrogen is 0.01 to 0.2 μm,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions characterized by
JP2002233423A 2002-08-09 2002-08-09 Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions Expired - Fee Related JP3900521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233423A JP3900521B2 (en) 2002-08-09 2002-08-09 Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233423A JP3900521B2 (en) 2002-08-09 2002-08-09 Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions

Publications (2)

Publication Number Publication Date
JP2004074302A JP2004074302A (en) 2004-03-11
JP3900521B2 true JP3900521B2 (en) 2007-04-04

Family

ID=32018555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233423A Expired - Fee Related JP3900521B2 (en) 2002-08-09 2002-08-09 Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions

Country Status (1)

Country Link
JP (1) JP3900521B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075840A1 (en) * 2018-10-11 2020-04-16 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits exceptional adhesion resistance, plastic deformation resistance, and anomalous damage resistance
JP7385172B2 (en) * 2018-10-11 2023-11-22 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent welding resistance, plastic deformation resistance, and abnormal damage resistance.
WO2020162365A1 (en) * 2019-02-07 2020-08-13 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exhibiting superior deposition resistance, plastic-deformation resistance, and abnormal damage resistance
WO2021177406A1 (en) * 2020-03-06 2021-09-10 三菱マテリアル株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
JP2004074302A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP2007168032A (en) Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition
JP3900521B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP4048364B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP4224782B2 (en) Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3900518B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3900516B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3948020B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4075052B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under heavy cutting conditions.
JP3948019B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3900519B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900527B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900528B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3903483B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900526B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900523B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3922132B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2004154878A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting excellent wear resistance under high speed heavy cutting condition
JP3963136B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2004237425A (en) Cutting tool made of surface coated cemented carbide coated with hard coating layer having excellent wear resistance at high cutting speed
JP3922128B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3963149B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees