JP4224782B2 - Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions - Google Patents

Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions Download PDF

Info

Publication number
JP4224782B2
JP4224782B2 JP2003196842A JP2003196842A JP4224782B2 JP 4224782 B2 JP4224782 B2 JP 4224782B2 JP 2003196842 A JP2003196842 A JP 2003196842A JP 2003196842 A JP2003196842 A JP 2003196842A JP 4224782 B2 JP4224782 B2 JP 4224782B2
Authority
JP
Japan
Prior art keywords
highest content
content point
layer
nitrogen
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003196842A
Other languages
Japanese (ja)
Other versions
JP2005034912A (en
Inventor
西田  真
哲彦 本間
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003196842A priority Critical patent/JP4224782B2/en
Publication of JP2005034912A publication Critical patent/JP2005034912A/en
Application granted granted Critical
Publication of JP4224782B2 publication Critical patent/JP4224782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層がすぐれた高温強度と高温硬さを有し、さらにすぐれた高温耐酸化性も具備し、したがって各種の鋼や鋳鉄などの切削加工を、特に高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合に、硬質被覆層がチッピング(微小欠け)などの発生なく、すぐれた耐摩耗性を発揮する表面被覆スローアウエイチップ(以下、被覆チップという)に関するものである。
【0002】
【従来の技術】
一般に、被覆チップとして、炭化タングステン(以下、WCで示す)基超硬合金基体または炭窒化チタン(以下、TiCNで示す)基サーメット基体(以下、これら基体を総称して超硬基体という)の表面に、
組成式:(Zr1−E Ti)C1−F (ただし、原子比で、Eは0.40〜0.60、Fは0.40〜0.60を示す)、
を満足するZrとTiの複合炭窒化物[以下、(Zr,Ti)CNで示す]層からなる硬質被覆層を1〜15μmの平均層厚で化学蒸着してなる被覆チップが知られており、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている(例えば特許文献1参照)。
【0003】
さらに、上記の被覆チップが、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製の超硬基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、超硬基体を前記超硬基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、
反応ガス組成(容量%で):ZrCl4:0.05〜5%、TiCl4:0.1〜6%、CH4:0.1〜10%、N2:0.5〜40%、H2:残り、
反応雰囲気温度:900〜1050℃、
反応雰囲気圧力:5〜50kPa、
の条件で(Zr,Ti)CNからなる硬質被覆層を形成することにより製造されることも知られている。
【0004】
【特許文献1】
特開昭62−56564号公報
【0005】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、切削加工は高速化の傾向を深め、かつ高切り込みや高送りなどの重切削条件での切削加工が強く求められる傾向にあるが、上記の従来被覆チップにおいては、これを通常の切削加工条件で用いた場合には問題はないが、特に切削加工を高い発熱を伴なう高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、硬質被覆層の高温強度および高温硬さ不足が原因で、硬質被覆層の摩耗進行が一段と促進し、かつチッピングも発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速重切削加工条件で硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する被覆チップを開発すべく、上記の従来被覆チップを構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図1,2に示される化学蒸着装置を用いて形成された従来被覆チップを構成する(Zr,Ti)CN層は、厚さ全体に亘って実質的に均一な組成を有し、したがって均質な高温強度と高温硬さを有するが、(Zr,Ti)CN層を形成するに際して、例えば図3に反応ガス組成自動制御システムが概略チャート図で示される通り、反応ガス組成および流量中央制御装置に、前記(Zr,Ti)CN層からなる硬質被覆層に層厚方向にそってZrおよび窒素の最高含有点とTiおよび炭素の最高含有点とを所定間隔をおいて交互に繰り返し形成させる目的で、前記Zrおよび窒素の最高含有点並びにTiおよび炭素の最高含有点に対応した反応ガス組成、並びに前記両点間のZrと窒素およびTiと炭素の連続変化に対応した反応ガス組成、さらに前記両点間の間隔および硬質被覆層の層厚を、過去の実績データに基づいてインプットし、この反応ガス組成および流量中央制御装置からの制御信号にしたがって、原料ガスボンベからのH2ガス、CH4ガス、N2ガス、およびHClガスの流量、さらにZrCl4およびTiCl4の流量をそれぞれの原料流量自動制御装置にて制御しながら、化学蒸着装置の反応ガス吹き出し管に導入すると、層厚方向にそって、Zrおよび窒素の最高含有点とTiおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Zrおよび窒素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Zrおよび窒素の最高含有点へZrと窒素およびTiと炭素の含有割合がそれぞれ連続的に変化する成分濃度分布構造をもつた(Zr,Ti)CN層からなる硬質被覆層が形成されるようになること。
【0007】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Zr,Ti)CN層において、
上記Zrおよび窒素の最高含有点が、
組成式:(Zr1−X Ti)N1−Y(ただし、原子比で、Xは0.02〜0.20、Yは0.02〜0.20を示す)、
上記Tiおよび炭素の最高含有点が、
組成式:(Ti1−A Zr)C1−B (ただし、原子比で、Aは0.02〜0.20、Bは0.02〜0.20を示す)、
をそれぞれ満足し、かつ隣り合う上記Zrおよび窒素の最高含有点と上記Tiおよび炭素の最高含有点の厚さ方向の間隔を0.01〜0.2μmとすると、
上記Zrおよび窒素の最高含有点部分では、Zrおよび窒素が主体を占め、これら両成分の作用によってきわめて高い高温強度を示し、一方上記Tiおよび炭素の最高含有点部分では、Tiおよび炭素が主体を占め、これら両成分の作用によって高い高温硬さを示すようになり、かつこれらZrおよび窒素の最高含有点と上記Tiおよび炭素の最高含有点の間隔をきわめて小さくしたことから、層全体の特性として一段とすぐれた高温強度と高温硬さを具備するようになること。
【0008】
(c)さらに、上記(a)および(b)の繰り返し連続変化成分濃度分布構造の(Zr,Ti)CN層を1〜15μmの平均層厚で下側層として蒸着形成し、ついで、同じく図1,2に示される化学蒸着装置を用い、通常の条件、すなわち、
反応ガス組成(容量%で):AlCl:1〜6%、CO:5〜15%、HCl:1〜5%、H2:残り、
反応雰囲気温度:800〜1070℃、
反応雰囲気圧力:5〜10kPa、
の条件で、前記(Zr,Ti)CN層に重ねて上側層として0.5〜15μmの平均層厚で酸化アルミニウム(以下、Alで示す)層を蒸着形成すると、この結果の硬質被覆層は、上記繰り返し連続変化成分濃度分布構造の(Zr,Ti)CN層によって上記従来(Zr,Ti)CN層に比して一段とすぐれた高温強度および高温硬さを有し、さらに前記Al層によってすぐれた高温耐酸化性も具備するようになることから、かかる硬質被覆層を蒸着形成した被覆チップは、各種の鋼や鋳鉄などの切削加工を高い発熱を伴なう高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、切刃部にチッピング(微少欠け)などの発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)上側層として、0.5〜15μmの平均層厚を有するAl層、
(b)下側層として、1〜15μmの平均層厚を有する(Zr,Ti)CN層、
以上(a)および(b)からなる硬質被覆層を化学蒸着してなる被覆チップにして、
上記下側層を、層厚方向にそって、Zrおよび窒素の最高含有点とTiおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Zrおよび窒素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Zrおよび窒素の最高含有点へZrとTiおよび窒素と炭素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Zrおよび窒素の最高含有点が、
組成式:(Zr1−X Ti)N1−Y(ただし、原子比で、Xは0.02〜0.20、Yは0.02〜0.20を示す)、
上記Tiおよび炭素の最高含有点が、
組成式:(Ti1−A Zr)C1−B (ただし、原子比で、Aは0.02〜0.20、Bは0.02〜0.20を示す)、
を満足し、かつ隣り合う上記Zrおよび窒素の最高含有点と上記Tiおよび炭素の最高含有点の間隔が、0.01〜0.2μmである、
高速重切削条件で硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する被覆チップに特徴を有するものである。
【0010】
つぎに、この発明の被覆チップにおいて、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)下側層におけるZrおよび窒素の最高含有点
上記の通り硬質被覆層の下側層を構成する(Zr,Ti)CN層においては、厚さ方向に沿ってZrおよび窒素の最高含有点を繰り返し形成して層自体の高温強度を向上させ、同じくTiよび炭素の最高含有点を繰り返し形成して層自体の高温硬さを向上させるものであり、したがってZrおよび窒素の最高含有点では高温強度が著しく向上したものになるので、高い機械的衝撃を伴なう重切削でのチッピングの発生抑制効果が十分に発揮されるようになるが、この場合Tiおよび炭素の含有割合を示すX値およびY値がそれぞれ原子比で(以下、同じ)0.02未満になると、実質的にZrと窒素で構成されるようになることから、所定の高温硬さを確保することができなくなり、高い高温硬さを有するTiと炭素の最高含有点が隣接して存在しても層自体の摩耗が促進するようになり、一方同X値およびY値が0.20を越えると、高温強度が急激に低下し、チッピング発生の原因となることから、X値およびY値をいずれも0.02〜0.20と定めた。
【0011】
(b)下側層におけるTiおよび炭素の最高含有点
上記の通りZrおよび窒素の最高含有点は相対的にすぐれた高温強度を有するが、反面相対的に高温硬さの低いものであるため、このZrおよび窒素の最高含有点の高温硬さ不足を補う目的で、高温硬さの高いTiおよび炭素の最高含有点を厚さ方向に交互に介在させるものである。しかし、Zrおよび窒素の含有割合を示すA値およびB値がそれぞれ0.02未満になると、所定の高温強度を確保することができず、すぐれた高温強度を有するZrと窒素の最高含有点が隣接して存在してもチッピングが発生し易くなり、一方同A値およびB値がそれぞれ0.20を越えると、高温硬さを高い状態に保持することができなくなり、層自体の摩耗が促進するようになることから、A値およびB値をいずれも0.02〜0.20と定めた。
【0012】
(c)下側層におけるZrおよび窒素の最高含有点とTiおよび炭素の最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温強度と高温硬さを確保することができなくなり、またその間隔が0.2μmを越えるとそれぞれの点がもつ欠点、すなわちZrおよび窒素の最高含有点であれば高温硬さ不足、Tiおよび炭素の最高含有点であれば高温強度不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.2μmと定めた。
【0013】
(d)下側層の平均層厚
その平均層厚が1μm未満では、硬質被覆層に上記下側層のもつ一段とすぐれた高温強度および高温硬さを十分に具備せしめることができず、この結果上側層であるAl層が存在しても、硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮することができず、一方その平均層厚が15μmを越えると切刃部にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0014】
(e)上側層の平均層厚
硬質被覆層は、上記の通り下側層のもつすぐれた高温強度および高温硬さと、上側層であるAl層のもつすぐれた高温耐酸化性とによって、各種の鋼や鋳鉄などの切削加工を高い発熱を伴なう高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐摩耗性および耐チッピング性を発揮するようになるものであるが、その平均層厚が0.5μm未満では、硬質被覆層にAl層のもつすぐれた高温耐酸化性を十分に具備せしめることができず、この結果硬質被覆層の摩耗抑制効果が十分に発揮されず、一方その平均層厚が15μmを越えると切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜15μmと定めた。
【0015】
【発明の実施の形態】
つぎに、この発明の被覆チップを実施例により具体的に説明する。
原料粉末として、平均粒径:6.5μmを有する粗粒WC粉末、同3.5μmを有する中粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.0μmの(Ti,W)CN(質量比で、TiC/TiN/WC=24/20/56)粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、ボールミルで72時間混合し、減圧乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を、表面部にCo富化層を形成するものについては13.3Pa、そして全体に亘って均一組織を有するものについては6.7Paの真空中、温度:1430℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.08のホーニング加工を施してISO規格・CNMG160612のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。
【0016】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.10のホーニング加工を施してISO規格・CNMG160612のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。
【0017】
つぎに、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される超硬基体支持パレットの位置決め穴に載置した状態で装入し、まず、装置内をヒーターで900℃に加熱したところで、TiCl4:4.2%、N2:30%、H2:残りからなる組成を有する反応ガスを反応ガス吹き出し管を通して導入して、装置内の反応雰囲気圧力を30kPaとし、この状態で30分間保持して前記超硬基体表面に、下地密着層として0.3μmの平均層厚をもった窒化チタン(TiN)層を形成し、ついで、同じく装置内の雰囲気温度をヒーターにて加熱して1020℃とした後、図3に示される反応ガス組成自動制御システムの反応ガス組成および流量中央制御装置に、過去の実績にデータにしたがって、表3に示されるZrおよび窒素の最高含有点の目標組成、さらにTiおよび炭素の最高含有点の目標組成に対応する反応ガス組成、前記Zrおよび窒素の最高含有点とTiおよび炭素の最高含有点間のZrとTiおよび窒素と炭素の含有割合の連続変化に対応する反応ガス組成、さらに表4,6に示される前記両点間の目標間隔および下側層の目標層厚をインプットし、この反応ガス組成および流量中央制御装置からの信号にしたがって作動するコントロールバルブ内蔵の原料ガス流量自動制御装置を通して、原料ガスであるH2ガス、N2ガス、CH4ガス、TiCl4ガス、およびZrCl4ガス(この場合、前記TiCl4ガスは図示の通り流量制御されたH2ガスをキャリアガスとしてTiCl4ガス気化器に送り、ここで液体から気化されたTiCl4と共に原料ガス流量自動制御装置に送られ、また前記ZrCl4ガスは、ZrCl4発生器で金属Zrと流量制御されたHClガスを反応させることにより形成される)を、それぞれのガス流量を自動制御しながら、図1の化学蒸着装置の反応ガス吹き出し管から装置内に導入し(装置内の反応雰囲気圧力は常に7kPaに保持される)、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成のZrおよび窒素の最高含有点と、目標組成のTiおよび炭素の最高含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Zrおよび窒素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Zrおよび窒素の最高含有点へZrとTiおよび窒素と炭素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚の(Zr,Ti)CN層からなる下側層を蒸着形成し、引き続いて装置内の雰囲気温度を1050℃に昇温し、容量%で、:AlCl:4.2%、CO:12%、HCl:3.5%、H2:残り、からなる反応ガスを導入し、雰囲気圧力を7kPaに保持した状態で、同じく表3,4に示される目標層厚のAl層からなる上側層を蒸着形成することにより、本発明被覆チップ1〜16をそれぞれ製造した。
【0018】
また、比較の目的で、上記の超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される化学蒸着装置に装入し、上記したTiN層形成条件と同じ条件で下地密着層として0.3μmの平均層厚を有するTiN層を形成し、ついで反応雰囲気温度を1020℃に昇温した後、それぞれ表5に示される目標組成の(Zr,Ti)CN層の形成に対応するようにZrCl4、TiCl4、CH4、N2、およびH2をそれぞれ所定割合に配合してなる反応ガスを反応ガス吹き出し管から導入し、反応雰囲気圧力を7kPaに一定とした条件で、前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、表5に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Zr,Ti)CN層からなる下側層を蒸着形成し、引き続いて上記したAl層形成条件と同じ条件で表5に示される目標層厚のAl層からなる上側層を蒸着形成することにより、比較被覆チップ1〜16をそれぞれ製造した。
【0019】
つぎに、上記本発明被覆チップ1〜16および比較被覆チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の丸棒、
切削速度:500m/min.、
切り込み:3mm、
送り:0.5mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式連続高速高送り切削加工試験(通常の切削速度は250m/min.、同送り量は0.3mm/rev.)、
被削材:JIS・S25Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min.、
切り込み:5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式断続高速高切り込み切削加工試験(通常の切削速度は200m/min.、同切り込み量は3mm)、さらに、
被削材:JIS・FC300の丸棒、
切削速度:550m/min.、
切り込み:5mm、
送り:0.25mm/rev.、
切削時間:5分、
の条件での鋳鉄の乾式連続高速高切り込み切削加工試験(通常の切削速度は250m/min.、同切り込み量は3mm)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0020】
【表1】

Figure 0004224782
【0021】
【表2】
Figure 0004224782
【0022】
【表3】
Figure 0004224782
【0023】
【表4】
Figure 0004224782
【0024】
【表5】
Figure 0004224782
【0025】
【表6】
Figure 0004224782
【0026】
この結果得られた本発明被覆チップ1〜16および比較被覆チップ1〜16を構成する硬質被覆層について、厚さ方向に沿ってZr、Ti、窒素、および炭素の含有量をオージェ分光分析装置を用いて測定したところ、本発明被覆チップ1〜16の硬質被覆層では、Zrおよび窒素の最高含有点と、Tiおよび炭素の最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつZrおよび窒素の最高含有点からTiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点からZrおよび窒素の最高含有点へZrとTiおよび窒素と炭素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有することが確認され、また、硬質被覆層の下側層および上側層の平均層厚も目標層厚と実質的に同じ値を示した。一方前記比較被覆チップ1〜16の硬質被覆層を構成する(Zr,Ti)CN層からなる下側層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標層厚と実質的に同じ平均層厚を示し、また上側層のAl層でも同じ結果を示すことが確認された。
【0027】
【発明の効果】
表3〜6に示される結果から、硬質被覆層の下側層である(Zr,Ti)CN層が層厚方向に、すぐれた高温強度を有するZrおよび窒素の最高含有点とすぐれた高温硬さを有するTiおよび炭素の最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Zrおよび窒素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Zrおよび窒素の最高含有点へZrとTiおよび窒素と炭素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有する本発明被覆チップ1〜16は、いずれも同上側層であるAl層の有するすぐれた高温耐酸化性と相俟って、各種の鋼や鋳鉄などの切削加工を、高熱発生を伴う高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性と耐チッピング性を発揮するのに対して、硬質被覆層を構成する下側層の(Zr,Ti)CN層が層厚方向に沿って実質的に組成変化のない比較被覆チップ1〜16においては、高い発熱および機械的衝撃を伴う高速重切削条件では、特に高温強度不足が原因でチッピングが発生し、十分な高温硬さを具備しないことと相俟って、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆チップは、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐摩耗性と耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】 被覆チップを構成する硬質被覆層を形成するのに用いられている化学蒸着装置を例示する概略縦断面図である。
【図2】 化学蒸着装置の構造部材である超硬基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。
【図3】 この発明の被覆チップの硬質被覆層を構成する下側層の形成に用いられる反応ガス組成自動制御システムである。[0001]
BACKGROUND OF THE INVENTION
The present invention has a high temperature strength and high hardness with a hard coating layer, and also has an excellent high temperature oxidation resistance. Therefore, cutting of various types of steel and cast iron can be performed at a particularly high speed and with a high machine. Surface-coated throwaway tip (hereinafter referred to as “hard-coated”) that exhibits excellent wear resistance without the occurrence of chipping ( microchips ) when subjected to heavy cutting conditions such as high cutting with high impact and high feed. (Referred to as a coated chip ).
[0002]
[Prior art]
In general, the surface of a tungsten carbide (hereinafter referred to as WC) base cemented carbide base or titanium carbonitride (hereinafter referred to as TiCN) base cermet base (hereinafter these bases are collectively referred to as a carbide base) as a coated chip In addition,
Composition formula: (Zr 1-E Ti E ) C 1-F N F (however, in atomic ratio, E is 0.40 to 0.60, F is 0.40 to 0.60),
There is known a coated chip formed by chemical vapor deposition of a hard coating layer composed of a composite carbonitride of Zr and Ti [hereinafter referred to as (Zr, Ti) CN] layer satisfying the following conditions with an average layer thickness of 1 to 15 μm. It is also known to exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of various steels and cast iron (see, for example, Patent Document 1).
[0003]
Further, as shown in the schematic longitudinal sectional view of FIG. 1, for example, the above-mentioned coated chip is provided with a stainless steel reactive gas blowing pipe at the center, and the reactive gas blowing pipe has a structure shown in FIG. FIG. 2 is a schematic perspective view of a graphite cemented carbide substrate support pallet exemplified in FIG. 2B in a schematic plan view, and the structure is heated by a heater through a stainless steel cover. The carbide vapor deposition apparatus is used, and the cemented carbide substrate is loaded into the chemical vapor deposition apparatus in a state where it is mounted as shown in the positions of a number of reaction gas passage holes formed on the bottom surface of the carbide substrate support pallet. ,
Reaction gas composition (by volume%): ZrCl 4: 0.05~5% , TiCl 4: 0.1~6%, CH 4: 0.1~10%, N 2: 0.5~40%, H 2 : the rest,
Reaction atmosphere temperature: 900-1050 ° C.
Reaction atmosphere pressure: 5 to 50 kPa,
It is also known that it is manufactured by forming a hard coating layer made of (Zr, Ti) CN under the following conditions.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 62-56564
[Problems to be solved by the invention]
In recent years, there has been a remarkable increase in performance of cutting devices. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing. Although there is a tendency to require cutting under heavy cutting conditions such as high feed, there is no problem with the above-mentioned conventional coated tip when used under normal cutting conditions. Hard coating due to the high-temperature strength and high-temperature hardness of the hard coating layer when performed at high speed with high heat generation and heavy cutting conditions such as high cutting and high feed with high mechanical impact Since the progress of wear of the layer is further promoted and chipping is likely to occur, the service life is reached in a relatively short time.
[0006]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated chip in order to develop a coated chip that exhibits excellent wear resistance and chipping resistance with a hard coating layer particularly under high-speed heavy cutting conditions. As a result of conducting research focusing on the hard coating layer that composes
(A) The (Zr, Ti) CN layer constituting the conventional coated chip formed using the chemical vapor deposition apparatus shown in FIGS. 1 and 2 has a substantially uniform composition throughout the thickness. Therefore, in forming a (Zr, Ti) CN layer, which has a uniform high-temperature strength and high-temperature hardness, for example, as shown in FIG. In the central flow rate control device, the highest content point of Zr and nitrogen and the highest content point of Ti and carbon are alternately arranged at predetermined intervals along the layer thickness direction in the hard coating layer made of the (Zr, Ti) CN layer. For the purpose of repeated formation, the reaction gas composition corresponding to the highest content point of Zr and nitrogen and the highest content point of Ti and carbon, and the reaction corresponding to the continuous change of Zr and nitrogen and Ti and carbon between the two points Scan composition, further wherein the thickness of the spacing and the hard coating layer between the two points, and inputs based on historical data, according to a control signal from the reaction gas composition and flow rates central controller, H from the raw material gas cylinder When the flow rates of 2 gas, CH 4 gas, N 2 gas, and HCl gas, as well as the flow rates of ZrCl 4 and TiCl 4 are controlled by the respective raw material flow rate automatic control devices, they are introduced into the reaction gas blowing pipe of the chemical vapor deposition device. In addition, along the layer thickness direction, the highest content point of Zr and nitrogen and the highest content point of Ti and carbon are alternately present at predetermined intervals, and from the highest content point of Zr and nitrogen, the Ti and carbon From the highest content point of Ti, the highest content point of Ti and carbon to the highest content point of Zr and nitrogen, the content ratios of Zr and nitrogen and Ti and carbon are respectively And with continued varying component concentration distribution structure (Zr, Ti) to become that as hard coating layer consisting of CN layer is formed.
[0007]
(B) In the (Zr, Ti) CN layer having the repeated continuous change component concentration distribution structure of (a) above,
The maximum content point of Zr and nitrogen is
Composition formula: (Zr 1-X Ti X ) N 1-Y C Y (wherein, X is 0.02 to 0.20, Y is 0.02 to 0.20 in atomic ratio),
The highest content point of Ti and carbon is
Composition formula: (Ti 1-A Zr A ) C 1-B N B (where A is 0.02 to 0.20 and B is 0.02 to 0.20 in atomic ratio),
When the distance in the thickness direction between the highest content point of Zr and nitrogen adjacent to each other and the highest content point of Ti and carbon is 0.01 to 0.2 μm,
In the highest content point portion of Zr and nitrogen, Zr and nitrogen mainly occupy and extremely high temperature strength is exhibited by the action of both components, while in the highest content point portion of Ti and carbon, Ti and carbon are predominant. As a result of the action of these two components, high temperature hardness is exhibited, and the distance between the highest content point of Zr and nitrogen and the highest content point of Ti and carbon is extremely small. To have excellent high temperature strength and high temperature hardness.
[0008]
(C) Further, the (Zr, Ti) CN layer having the repeated continuous change component concentration distribution structure of the above (a) and (b) is deposited and formed as a lower layer with an average layer thickness of 1 to 15 μm. 1, 2 using the chemical vapor deposition apparatus shown in FIG.
Reaction gas composition (by volume%): AlCl 3: 1~6% , CO 2: 5~15%, HCl: 1~5%, H 2: remainder,
Reaction atmosphere temperature: 800 to 1070 ° C.
Reaction atmosphere pressure: 5 to 10 kPa,
When an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer is deposited on the (Zr, Ti) CN layer as an upper layer with an average layer thickness of 0.5 to 15 μm under the conditions of The coating layer has a high-temperature strength and hardness that are superior to the conventional (Zr, Ti) CN layer by the (Zr, Ti) CN layer having the repeated continuous change component concentration distribution structure. Since the 2 O 3 layer also has excellent high-temperature oxidation resistance, the coated chip formed by vapor deposition of such a hard coating layer is capable of cutting various types of steel and cast iron at high speed with high heat generation. In addition, even when performed under heavy cutting conditions such as high cutting and high feed with high mechanical impact, the chip edge is free of chipping (small chipping) and exhibits excellent wear resistance over a long period of time. Like It.
The research results shown in (a) to (c) above were obtained.
[0009]
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) As an upper layer, an Al 2 O 3 layer having an average layer thickness of 0.5 to 15 μm,
(B) (Zr, Ti) CN layer having an average layer thickness of 1 to 15 μm as the lower layer,
A coated chip formed by chemical vapor deposition of the hard coating layer comprising the above (a) and (b),
In the lower layer, the highest content point of Zr and nitrogen and the highest content point of Ti and carbon are alternately present at predetermined intervals along the thickness direction, and the highest content point of Zr and nitrogen Has a component concentration distribution structure in which the content of Zr, Ti, nitrogen and carbon continuously changes from the highest content point of Ti and carbon to the highest content point of Zr and nitrogen from the highest content point of Ti and carbon. And
Further, the highest content point of Zr and nitrogen is
Composition formula: (Zr 1-X Ti X ) N 1-Y C Y (wherein, X is 0.02 to 0.20, Y is 0.02 to 0.20 in atomic ratio),
The highest content point of Ti and carbon is
Composition formula: (Ti 1-A Zr A ) C 1-B N B (where A is 0.02 to 0.20 and B is 0.02 to 0.20 in atomic ratio),
And the interval between the highest content point of Zr and nitrogen adjacent to each other and the highest content point of Ti and carbon is 0.01 to 0.2 μm.
It is characterized by a coated chip that exhibits excellent wear resistance and chipping resistance under high-speed heavy cutting conditions.
[0010]
Next, the reason why the structure of the hard coating layer constituting the coated chip of the present invention is limited as described above will be described.
(A) Maximum content point of Zr and nitrogen in the lower layer In the (Zr, Ti) CN layer constituting the lower layer of the hard coating layer as described above, the maximum content point of Zr and nitrogen along the thickness direction Is repeatedly formed to improve the high-temperature strength of the layer itself, and similarly the highest content point of Ti and carbon is repeatedly formed to improve the high-temperature hardness of the layer itself. Therefore, the highest content point of Zr and nitrogen is high. Since the strength is remarkably improved, the effect of suppressing the occurrence of chipping in heavy cutting with high mechanical impact will be sufficiently exerted. In this case, the X value indicating the content ratio of Ti and carbon When the Y value is less than 0.02 in terms of atomic ratio (hereinafter the same), since it is substantially composed of Zr and nitrogen, the predetermined high-temperature hardness cannot be ensured and is high. High Even when the highest content points of Ti and carbon having thermal hardness are adjacent to each other, wear of the layer itself is promoted. On the other hand, when the X value and Y value exceed 0.20, the high temperature strength rapidly increases. Therefore, both the X value and the Y value were determined to be 0.02 to 0.20.
[0011]
(B) The highest content point of Ti and carbon in the lower layer As described above, the highest content point of Zr and nitrogen has relatively high high-temperature strength, but on the other hand, because it has relatively low high-temperature hardness, In order to compensate for the lack of high-temperature hardness at the highest content point of Zr and nitrogen, the highest content points of Ti and carbon having high high-temperature hardness are alternately interposed in the thickness direction. However, when the A value and B value indicating the content ratio of Zr and nitrogen are less than 0.02, respectively, the predetermined high-temperature strength cannot be ensured, and the maximum content point of Zr and nitrogen having excellent high-temperature strength is Chipping is likely to occur even if they are adjacent to each other. On the other hand, if the A value and B value exceed 0.20, the high temperature hardness cannot be kept high, and the wear of the layer itself is promoted. Therefore, both the A value and the B value were set to 0.02 to 0.20.
[0012]
(C) Interval between the highest content point of Zr and nitrogen and the highest content point of Ti and carbon in the lower layer If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. As a result, the desired high-temperature strength and high-temperature hardness cannot be secured in the layer, and if the distance exceeds 0.2 μm, each point has a defect, that is, the highest content point of Zr and nitrogen. Insufficient high-temperature hardness, if the highest content point of Ti and carbon, insufficient high-temperature strength will appear locally in the layer, which is likely to cause chipping and promote wear progress The interval was determined to be 0.01 to 0.2 μm.
[0013]
(D) Average layer thickness of the lower layer If the average layer thickness is less than 1 μm, the hard coating layer cannot be provided with the high-temperature strength and the high-temperature hardness which are superior to those of the lower layer. Even if Al 2 O 3 layer as the upper layer is present, the hard coating layer cannot exhibit excellent wear resistance and chipping resistance. On the other hand, if the average layer thickness exceeds 15 μm, Since chipping is likely to occur, the average layer thickness was determined to be 1 to 15 μm.
[0014]
(E) Average layer thickness of the upper layer The hard coating layer depends on the superior high-temperature strength and high-temperature hardness of the lower layer as described above, and the superior high-temperature oxidation resistance of the upper layer Al 2 O 3 layer. Even when cutting various steels and cast irons at high speeds with high heat generation and heavy cutting conditions such as high cutting and high feed with high mechanical impact, excellent wear resistance and Although the chipping resistance is exhibited, when the average layer thickness is less than 0.5 μm, the hard coating layer can be sufficiently provided with the excellent high temperature oxidation resistance of the Al 2 O 3 layer. As a result, the wear-inhibiting effect of the hard coating layer is not sufficiently exhibited. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur at the cutting edge portion. It was determined to be 15 μm.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated chip of the present invention will be specifically described with reference to examples.
As raw material powder, a coarse WC powder having an average particle size of 6.5 μm, a medium WC powder having the same 3.5 μm, a fine WC powder having the same 0.8 μm, a TaC powder having the same 1.3 μm, and 1.2 μm being the same. NbC powder, 1.2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, 1.0 μm (Ti, W) CN (by mass ratio, TiC / TiN / WC = 24/20/56) ) Powder and Co powder of 1.8 μm were prepared, and each of these raw material powders was blended in the blending composition shown in Table 1, mixed in a ball mill for 72 hours, dried under reduced pressure, and then compacted at a pressure of 100 MPa. In this case, the green compact is formed into a vacuum at 13.3 Pa for the one having a Co-enriched layer on the surface and 6.7 Pa for one having a uniform structure throughout, and the temperature: 1430 Baked at ℃ for 1 hour And, after sintering, R the cutting edge portion: forming a WC-based cemented carbide superhard substrate A1~A10 having a tip shape of ISO standard · CNMG160612 subjected to honing of 0.08.
[0016]
In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.10, and ISO standard / CNMG160612. TiCN-based cermet carbide substrates B1 to B6 having the following chip shape were formed.
[0017]
Next, each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and then the carbide shown in FIG. 2 is placed in the chemical vapor deposition apparatus shown in FIG. First, when the inside of the apparatus was heated to 900 ° C. with a heater, it was loaded with TiCl 4 : 4.2%, N 2 : 30%, H 2 : remaining. A reaction gas having a composition is introduced through a reaction gas blowing tube, the reaction atmosphere pressure in the apparatus is set to 30 kPa, and this state is maintained for 30 minutes, and an average layer of 0.3 μm is formed on the surface of the cemented carbide substrate as a base adhesion layer. After forming a titanium nitride (TiN) layer having a thickness and then heating the atmospheric temperature in the apparatus to 1020 ° C. with a heater, the reaction gas composition of the reaction gas composition automatic control system shown in FIG. and In accordance with past data, the target composition of the highest content point of Zr and nitrogen shown in Table 3, and the reaction gas composition corresponding to the target composition of the highest content point of Ti and carbon, And the reaction gas composition corresponding to the continuous change in the content ratio of Zr and Ti and nitrogen and carbon between the highest content point of nitrogen and the highest content point of Ti and carbon, and the targets between the two points shown in Tables 4 and 6 The H 2 gas, N, which is a raw material gas, is inputted through an automatic feed gas flow rate control device with a built-in control valve, which inputs the interval and the target layer thickness of the lower layer and operates according to the signal from the reaction gas composition and flow rate central control device. 2 gas, CH 4 gas, TiCl 4 gas, and ZrCl 4 gas (in this case, the TiCl 4 gas is an H 2 gas whose flow rate is controlled as shown in FIG. Then, it is sent to a TiCl 4 gas vaporizer, where it is sent together with TiCl 4 vaporized from the liquid to a raw material gas flow rate automatic control device, and the ZrCl 4 gas is flow-controlled HCl with metal Zr by a ZrCl 4 generator. 1 is introduced into the apparatus from the reaction gas blowing pipe of the chemical vapor deposition apparatus in FIG. 1 (the reaction atmosphere pressure in the apparatus is always 7 kPa). And the highest content point of Zr and nitrogen of the target composition shown in Tables 3 and 4 along the thickness direction, and the highest content point of Ti and carbon of the target composition along the layer thickness direction. Are alternately present at the target intervals shown in Tables 3 and 4, and from the highest content point of Zr and nitrogen to the highest content point of Ti and carbon, the highest content point of Ti and carbon The component concentration distribution structure in which the content ratios of Zr and Ti and nitrogen and carbon continuously change to the highest content point of Zr and nitrogen, respectively, and the target layer thickness (Zr) also shown in Tables 3 and 4 , Ti) The lower layer consisting of CN layer is formed by vapor deposition, and then the atmospheric temperature in the apparatus is raised to 1050 ° C., and by volume%: AlCl 3 : 4.2%, CO 2 : 12%, HCl : Upper layer composed of Al 2 O 3 layers having the target layer thicknesses shown in Tables 3 and 4 in a state where the reaction gas consisting of 3.5% and H 2 : remaining is introduced and the atmospheric pressure is maintained at 7 kPa. The coated chips 1 to 16 of the present invention were produced by vapor deposition.
[0018]
For comparison purposes, the above-mentioned carbide substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and then charged into the chemical vapor deposition apparatus shown in FIGS. A TiN layer having an average layer thickness of 0.3 μm is formed as a base adhesion layer under the same conditions as the TiN layer formation conditions described above, and then the reaction atmosphere temperature is raised to 1020 ° C., and then the target compositions shown in Table 5 are provided. A reaction gas formed by mixing ZrCl 4 , TiCl 4 , CH 4 , N 2 , and H 2 in a predetermined ratio so as to correspond to the formation of the (Zr, Ti) CN layer of Under the condition that the reaction atmosphere pressure is constant at 7 kPa, each of the surfaces of the cemented carbide substrates A1 to A10 and B1 to B6 has the target composition and target layer thickness shown in Table 5 and is along the layer thickness direction. Real Manner without compositional change (Zr, Ti) lower layer is deposited formed consisting of CN layer, the target layer thickness shown in Table 5 under the same conditions as the Al 2 O 3 layer formed under the above-mentioned conditions subsequent Al 2 O Comparative coated chips 1 to 16 were produced by vapor-depositing an upper layer composed of three layers.
[0019]
Next, with the present invention coated chips 1-16 and comparative coated chips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SCM440 round bar,
Cutting speed: 500 m / min. ,
Incision: 3mm,
Feed: 0.5 mm / rev. ,
Cutting time: 5 minutes
Dry continuous high-speed high-feed cutting test of alloy steel under the conditions (normal cutting speed is 250 m / min., The feed amount is 0.3 mm / rev.),
Work material: JIS · S25C lengthwise equidistantly 4 vertical grooved round bars,
Cutting speed: 400 m / min. ,
Cutting depth: 5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
Carbon steel dry-type intermittent high-speed high-cutting cutting test under the conditions (normal cutting speed is 200 m / min., The same cutting amount is 3 mm),
Work material: JIS / FC300 round bar,
Cutting speed: 550 m / min. ,
Cutting depth: 5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes
The dry continuous high-speed, high-cut cutting test of cast iron under the conditions of the above conditions (normal cutting speed is 250 m / min., The cutting depth is 3 mm), and the flank wear width of the cutting blade was measured in any cutting test. . The measurement results are shown in Table 6.
[0020]
[Table 1]
Figure 0004224782
[0021]
[Table 2]
Figure 0004224782
[0022]
[Table 3]
Figure 0004224782
[0023]
[Table 4]
Figure 0004224782
[0024]
[Table 5]
Figure 0004224782
[0025]
[Table 6]
Figure 0004224782
[0026]
For the hard coating layers constituting the inventive coated chips 1 to 16 and comparative coated chips 1 to 16 obtained as a result, the content of Zr, Ti, nitrogen, and carbon along the thickness direction was determined using an Auger spectrometer. In the hard coating layers of the coated chips 1 to 16 of the present invention, the highest content points of Zr and nitrogen and the highest content points of Ti and carbon alternate with the composition and spacing substantially the same as the target values, respectively. And the content ratio of Zr, Ti, and nitrogen and carbon from the highest content point of Zr and nitrogen to the highest content point of Ti and carbon, and from the highest content point of Ti and carbon to the highest content point of Zr and nitrogen. It was confirmed that each had a continuously varying component concentration distribution structure, and the average layer thickness of the lower and upper hard coating layers showed substantially the same value as the target layer thickness. It was. On the other hand, in the lower layer composed of the (Zr, Ti) CN layer constituting the hard coating layer of the comparative coated chips 1 to 16, no composition change is observed along the thickness direction and the composition is substantially the same as the target composition. It was confirmed that the average layer thickness was substantially the same as the target layer thickness, and the same result was obtained with the upper Al 2 O 3 layer.
[0027]
【The invention's effect】
From the results shown in Tables 3 to 6, the (Zr, Ti) CN layer, which is the lower layer of the hard coating layer, has an excellent high temperature hardness in the layer thickness direction and an excellent content of Zr and nitrogen having excellent high temperature strength. And the highest content point of Ti and carbon are alternately present at predetermined intervals, and from the highest content point of Zr and nitrogen, the highest content point of Ti and carbon, and the highest content point of Ti and carbon The coated chips 1 to 16 of the present invention having a component concentration distribution structure in which the content ratios of Zr and Ti and nitrogen and carbon continuously change from the highest content point of Zr and nitrogen to Al are the same upper layers. Combined with the excellent high-temperature oxidation resistance of the 2 O 3 layer, cutting of various steels and cast iron can be performed at high speed with high heat generation and high cutting with high mechanical impact and high feed. Heavy cutting strip The hard coating layer also exhibits excellent wear resistance and chipping resistance, while the lower (Zr, Ti) CN layer constituting the hard coating layer is in the layer thickness direction. In comparison coated chips 1 to 16 having substantially no change in composition, chipping occurs due to insufficient high-temperature strength, especially under high-speed heavy cutting conditions with high heat generation and mechanical impact, and sufficient high-temperature hardness is achieved. It is clear that the service life is reached in a relatively short time, in combination with the absence.
As described above, the coated tip according to the present invention can be used not only for cutting under normal conditions but also for cutting various steels and cast irons at a high speed and with high mechanical impact. Even when performed under heavy cutting conditions such as feeding, it exhibits excellent wear resistance and chipping resistance, and exhibits excellent cutting performance over a long period of time. Furthermore, it can cope with cost reduction sufficiently satisfactorily.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view illustrating a chemical vapor deposition apparatus used to form a hard coating layer constituting a coated chip .
FIG. 2 shows a cemented carbide substrate support pallet that is a structural member of a chemical vapor deposition apparatus, in which (a) is a schematic perspective view and (b) is a schematic plan view.
FIG. 3 is a reaction gas composition automatic control system used for forming the lower layer constituting the hard coating layer of the coated chip of the present invention.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、
(a)上側層として、0.5〜15μmの平均層厚を有する酸化アルミニウム層、
(b)下側層として、1〜15μmの平均層厚を有するZrとTiの複合炭窒化物層、
以上(a)および(b)からなる硬質被覆層を化学蒸着してなる表面被覆スローアウエイチップにして、
上記下側層を、層厚方向にそって、Zrおよび窒素の最高含有点とTiおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Zrおよび窒素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Zrおよび窒素の最高含有点へZrとTiおよび窒素と炭素の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Zrおよび窒素の最高含有点が、
組成式:(Zr1−X Ti)N1−Y(ただし、原子比で、Xは0.02〜0.20、Yは0.02〜0.20を示す)、
上記Tiおよび炭素の最高含有点が、
組成式:(Ti1−A Zr)C1−B (ただし、原子比で、Aは0.02〜0.20、Bは0.02〜0.20を示す)、
を満足し、かつ隣り合う上記Zrおよび窒素の最高含有点と上記Tiおよび炭素の最高含有点の間隔が、0.01〜0.2μmであること、
を特徴とする高速重切削条件で硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆スローアウエイチップ
On the surface of a tungsten carbide base cemented carbide substrate or a titanium carbonitride cermet substrate ,
(A) As an upper layer, an aluminum oxide layer having an average layer thickness of 0.5 to 15 μm,
(B) As a lower layer, a composite carbonitride layer of Zr and Ti having an average layer thickness of 1 to 15 μm,
A surface-coated throwaway chip formed by chemical vapor deposition of the hard coating layer comprising the above (a) and (b),
In the lower layer, the highest content point of Zr and nitrogen and the highest content point of Ti and carbon are alternately present at predetermined intervals along the thickness direction, and the highest content point of Zr and nitrogen From the highest content point of Ti and carbon to the highest content point of Ti and carbon to the highest content point of Zr and nitrogen. Have
Further, the highest content point of Zr and nitrogen is
Composition formula: (Zr 1-X Ti X ) N 1-Y C Y (wherein, X is 0.02 to 0.20, Y is 0.02 to 0.20 in atomic ratio),
The highest content point of Ti and carbon is
Composition formula: (Ti 1-A Zr A ) C 1-B N B (where A is 0.02 to 0.20 and B is 0.02 to 0.20 in atomic ratio),
The distance between the highest content point of Zr and nitrogen adjacent to each other and the highest content point of Ti and carbon is 0.01 to 0.2 μm,
A surface-coated throwaway tip that exhibits excellent wear resistance and chipping resistance under high-speed heavy cutting conditions.
JP2003196842A 2003-07-15 2003-07-15 Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions Expired - Fee Related JP4224782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196842A JP4224782B2 (en) 2003-07-15 2003-07-15 Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196842A JP4224782B2 (en) 2003-07-15 2003-07-15 Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions

Publications (2)

Publication Number Publication Date
JP2005034912A JP2005034912A (en) 2005-02-10
JP4224782B2 true JP4224782B2 (en) 2009-02-18

Family

ID=34207159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196842A Expired - Fee Related JP4224782B2 (en) 2003-07-15 2003-07-15 Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions

Country Status (1)

Country Link
JP (1) JP4224782B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023897B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023898B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP2010137314A (en) * 2008-12-10 2010-06-24 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2010137315A (en) * 2008-12-10 2010-06-24 Sumitomo Electric Hardmetal Corp Surface coated cutting tool

Also Published As

Publication number Publication date
JP2005034912A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP2007168032A (en) Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition
JP4224782B2 (en) Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions
JP4048364B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3900521B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3948020B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900528B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900516B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3948019B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3922132B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP3900523B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4075052B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under heavy cutting conditions.
JP3900527B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3963136B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900518B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3922128B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900519B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900526B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3903483B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3963149B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3948015B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees