JP3922132B2 - Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions. - Google Patents

Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions. Download PDF

Info

Publication number
JP3922132B2
JP3922132B2 JP2002231238A JP2002231238A JP3922132B2 JP 3922132 B2 JP3922132 B2 JP 3922132B2 JP 2002231238 A JP2002231238 A JP 2002231238A JP 2002231238 A JP2002231238 A JP 2002231238A JP 3922132 B2 JP3922132 B2 JP 3922132B2
Authority
JP
Japan
Prior art keywords
oxygen
carbon
highest content
content point
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002231238A
Other languages
Japanese (ja)
Other versions
JP2004066421A (en
Inventor
哲彦 本間
西田  真
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002231238A priority Critical patent/JP3922132B2/en
Publication of JP2004066421A publication Critical patent/JP2004066421A/en
Application granted granted Critical
Publication of JP3922132B2 publication Critical patent/JP3922132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高強度を有し、かつ高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼や鋳鉄などの高速切削加工を、高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、個々の層厚が1μm以下のAl酸化物(以下、Al23で示す)層とTi炭化物(以下、TiCで示す)層とを交互積層して、2〜20μmの全体平均層厚で蒸着してなる被覆超硬工具が提案され、前記硬質被覆層を構成するAl23−TiC交互積層が、Al23層による高温硬さおよび耐熱性と、TiC層による強度を具備することから、かかる被覆超硬工具を各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製の超硬基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、超硬基体を前記超硬基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、ヒータで装置内を、例えば800〜1100℃の範囲内の所定の温度に加熱した後、Al23層形成には、反応ガスとして、容量%で(以下、反応ガスの%は容量%を示す)、
AlCl3:2〜7%、
CO2:2〜10%、
HCl:3〜7%、
2:残り、
からなる組成を有する反応ガスを用い、また、TiC層形成には、
TiCl4:1〜3%、
CH4: 〜 %、
2:残り、
からなる組成を有する反応ガスを用い、これらの反応ガスを予め真空排気された装置内に前記反応ガス吹き出し管を通して、装置内の反応ガス圧力を7〜40kPaの範囲内の所定の圧力に保持しながら、交互に導入することによりAl23−TiC交互積層からなる硬質被覆層を形成することにより製造されることも知られている(例えば特許文献1参照)。
【0005】
【特許文献1】
特開昭52−105396号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向を強め、かつ高切り込みや高送りなどの重切削条件での切削加工を余儀なくされる傾向にあるが、上記の従来被覆超硬工具においては、これを高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削を高速で行なうのに用いると、特にAl23−TiC交互積層からなる硬質被覆層のAl23層はすぐれた高温硬さおよび耐熱性を有するものの強度が不十分であるために、高速重切削ではこれが破壊の起点となることから、チッピング(微小割れ)発生の原因となり、また同じくTiC層は高強度を有するものの高温硬さおよび耐熱性の低いものであることから、高速重切削では摩耗進行が急速に促進されるようになり、この結果比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速重切削加工で硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する被覆超硬工具を開発すべく、研究を行った結果、
(a)上記の図1,2に示される化学蒸着装置を用いて、上記の従来被覆超硬工具の硬質被覆層の構成成分であるAl23とTiCの複合化合物、すなわちAlとTiの複合炭酸化物(以下、Al−Ti炭酸化物という)層を形成するに際して、例えば図3に反応ガス組成自動制御システムが概略チャート図で示される通り、反応ガス組成および流量中央制御装置に、前記Al−Ti炭酸化物層からなる硬質被覆層に層厚方向にそってAlおよび酸素の最高含有点とTiおよび炭素の最高含有点とを所定間隔をおいて交互に繰り返し形成させる目的で、前記Alおよび酸素の最高含有点並びにTiおよび炭素の最高含有点に対応した反応ガス組成、並びに前記両点間のAlと酸素およびTiと炭素の連続変化に対応した反応ガス組成、さらに前記両点間の間隔を、過去の実績データに基づいてインプットし、この反応ガス組成および流量中央制御装置からの制御信号にしたがって、原料ガスボンベからのH2ガス、CO2ガス、CH4ガス、およびHClガスの流量、さらにAlCl3ガスおよびTiCl4ガスの流量をそれぞれの原料ガス流量自動制御装置にて制御しながら、化学蒸着装置の反応ガス吹き出し管に導入すると、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびTiと炭素の含有量が連続的に変化する成分濃度分布構造をもつたAl−Ti炭酸化物層からなる硬質被覆層が形成されるようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造のAl−Ti炭酸化物層において、
上記Alおよび酸素の最高含有点におけるAlとTiおよび酸素と炭素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+炭素)を、それぞれ原子比で、
Al/(Al+Ti):0.80〜0.98、
酸素/(酸素+炭素):0.80〜0.98、
上記Tiおよび炭素の最高含有点におけるTiとAlおよび炭素と酸素の相互含有割合を示すTi/(Ti+Al)および炭素/(炭素+酸素)を、それぞれ原子比で、
Ti/(Ti+Al):0.80〜0.98、
炭素/(炭素+酸素):0.80〜0.98、
とし、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび炭素の最高含有点の厚さ方向の間隔を0.01〜0.2μmとすると、
上記Alおよび酸素の最高含有点部分では、Al23のもつ高温硬さと耐熱性に相当するすぐれた高温硬さと耐熱性を示し、一方上記Tiおよび炭素の最高含有点部分では、TiCのもつ強度に相当する高強度が確保され、かつこれらAlおよび酸素の最高含有点と上記Tiおよび炭素の最高含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温硬さと耐熱性、および高強度を具備するようになり、さらに前記両点間でAlと酸素およびTiと炭素の含有量が連続的に変化(成分濃度分布構造)することにより、破壊の起点が存在しないことになり、したがって、硬質被覆層がかかる構成のAl−Ti炭酸化物層からなる被覆超硬工具は、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、Al−Ti炭酸化物層からなる硬質被覆層を2〜20μmの全体平均層厚で蒸着してなる被覆超硬工具において、
上記硬質被覆層が、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとTiおよび炭素と酸素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Alおよび酸素の最高含有点におけるAlとTiおよび酸素と炭素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+炭素)が、それぞれ原子比で、
Al/(Al+Ti):0.80〜0.98、
酸素/(酸素+炭素):0.80〜0.98、
上記Tiおよび炭素の最高含有点におけるTiとAlおよび炭素と酸素の相互含有割合を示すTi/(Ti+Al)および炭素/(炭素+酸素)が、それぞれ原子比で、
Ti/(Ti+Al):0.80〜0.98、
炭素/(炭素+酸素):0.80〜0.98、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび炭素の最高含有点の間隔が、0.01〜0.2μmである、
高速重切削条件で硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Alおよび酸素の最高含有点
Al−Ti炭酸化物層のTiおよび炭素成分には強度を向上させ、同Alおよび酸素成分には高温硬さおよび耐熱性を向上させる作用があり、したがってAlおよび酸素の最高含有点ではAlおよび酸素の含有割合を相対的に高くして高温硬さおよび耐熱性を向上させることにより、高熱発生を伴う高速切削に適合するものとするが、この場合AlとTiおよび酸素と炭素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+炭素)がいずれも原子比で(以下、同じ)0.98を越えると、実質的にAl酸化物で構成されるようになることから、高強度を有するTiと炭素の最高含有点が隣接して存在しても層自体の強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方同値が0.80未満になると高温硬さおよび耐熱性が急激に低下し、摩耗促進の原因となることから、Al/(Al+Ti)および酸素/(酸素+炭素)の値をいずれも0.80〜0.98と定めた。
【0011】
(b)Tiおよび炭素の最高含有点
上記の通りAlおよび酸素の最高含有点は相対的にすぐれた高温硬さおよび耐熱性を有するが、反面相対的に強度が不十分であるため、このAlおよび酸素の最高含有点の強度不足を補う目的で、高強度を有するTiおよび炭素の最高含有点を厚さ方向に交互に介在させるものである。しかし、TiとAlおよび炭素と酸素の相互含有割合を示すTi/(Ti+Al)および炭素/(炭素+酸素)が、それぞれ0.98を越えると、実質的にTi炭化物で構成されるようになることから、Tiおよび炭素の最高含有点に所定の高温硬さおよび耐熱性を確保することができず、これが摩耗促進の原因となり、一方同値が0.80未満になると、所望のすぐれた強度を確保することができず、この結果チッピングが発生し易くなることから、Ti/(Ti+Al)および炭素/(炭素+酸素)の値をいずれも0.80〜0.98と定めた。
【0012】
(c)Alおよび酸素の最高含有点とTiおよび炭素の最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温硬さおよび耐熱性、さらに高強度を確保することができなくなり、またその間隔が0.2μmを越えるとそれぞれの点がもつ欠点、すなわちAlおよび酸素の最高含有点であれば強度不足、Tiおよび炭素の最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.2μmと定めた。
【0013】
(d)硬質被覆層の全体平均層厚
その層厚が2μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が20μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜20μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG160608のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。
【0015】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの炭素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG160612のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。
【0016】
つぎに、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される超硬基体支持パレットの位置決め穴に載置した状態で装入し、まず、装置内をヒーターで900℃に加熱したところで、TiCl4:4.2%、N2:30%、H2:残りからなる組成を有する反応ガスを反応ガス吹き出し管を通して導入して、装置内の反応雰囲気圧力を30kPaとし、この状態で30分間保持して下地密着層として0.3μmの平均層厚をもった窒化チタン(TiN)層を形成し、ついで、同じく装置内の雰囲気温度をヒーターにて加熱して1020℃とした後、図3に示される反応ガス組成自動制御システムの反応ガス組成および流量中央制御装置に、過去の実績にデータにしたがって、表3に示されるAlおよび酸素の最高含有点の目標Al/(Al+Ti)および酸素/(酸素+炭素)、さらにTiおよび炭素の最高含有点の目標Ti/(Ti+Al)および炭素/(炭素+酸素)に対応する反応ガス組成、前記Alおよび酸素の最高含有点とTiおよび炭素の最高含有点間のAlとTiおよび酸素と炭素の含有量の連続変化に対応する反応ガス組成、さらに表4、5に示される前記両点間の目標間隔および硬質被覆層の目標全体層厚をインプットし、この反応ガス組成および流量中央制御装置からの信号にしたがって作動するコントロールバルブ内蔵の原料ガス流量自動制御装置を通して、原料ガスであるH2ガス、CH4ガス、CO2ガス、およびHClガス、さらにAlCl3ガスおよびTiCl4ガス(この場合、AlCl3ガスは、AlCl3ガス発生器で金属Alと流量制御されたHClガスを反応させることにより形成され、また、TiCl4ガスは、図示の通り流量制御されたH2ガスをキャリアガスとしてTiCl4ガス発生器に送り、ここで液体から気化されたTiCl4ガスと共に原料ガス流量自動制御装置に送られる)を、それぞれのガス流量を制御しながら、図1の化学蒸着装置の反応ガス吹き出し管から装置内に導入し(装置内の反応雰囲気圧力は常に7kPaに保持される)、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標Al/(Al+Ti)および酸素/(酸素+炭素)のAlおよび酸素の最高含有点と、目標Ti/(Ti+Al)および炭素/(炭素+酸素)のTiおよび炭素の最高含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとTiおよび酸素と炭素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0017】
また、比較の目的で、これら超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、Al23層の形成条件を、
反応ガス組成:AlCl3:3%、CO2:7%、HCl:3%、H2:残り、
反応雰囲気温度:1000℃、
反応雰囲気圧力:7kPa、
とし、また、TiC層の形成条件を、
反応ガス組成:TiCl4:4.5%、CH4:14%、H2:残り、
反応雰囲気温度:1000℃、
反応雰囲気圧力:7kPa、
として、それぞれ表6,7に示される目標層厚のAl23層およびTiC層の交互積層からなる硬質被覆層を、前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、同じく表6,7に示される目標全体層厚で蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0018】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM415の丸棒、
切削速度:330m/min.、
切り込み:4.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式連続高速高切り込み切削加工試験、
被削材:JIS・S20Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:370m/min.、
切り込み:1.5mm、
送り:0.4mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式断続高速高送り切削加工試験、さらに、
被削材:JIS・FC250の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min.、
切り込み:5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での鋳鉄の乾式断続高速高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
【0019】
【表1】

Figure 0003922132
【0020】
【表2】
Figure 0003922132
【0021】
【表3】
Figure 0003922132
【0022】
【表4】
Figure 0003922132
【0023】
【表5】
Figure 0003922132
【0024】
【表6】
Figure 0003922132
【0025】
【表7】
Figure 0003922132
【0026】
この結果得られた本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16を構成する硬質被覆層について、厚さ方向に沿ってAl、Ti、酸素、および炭素の含有量をオージェ分光分析装置を用いて測定し、この測定結果から各測定点におけるAl/(Al+Ti)および酸素/(酸素+炭素)値、さらにTi/(Ti+Al)および炭素/(炭素+酸素)値を算出したところ、本発明被覆超硬チップ1〜16の硬質被覆層では、Alおよび酸素の最高含有点と、Tiおよび炭素の最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつAlおよび酸素の最高含有点からTiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点からAlおよび酸素の最高含有点へAlとTiおよび酸素と炭素の含有量が連続的に変化する成分濃度分布構造を有することが確認され、硬質被覆層の平均層厚も目標全体層厚と実質的に同じ値を示した。また、従来被覆超硬チップ1〜16の硬質被覆層においても目標層厚と実質的に同じ平均層厚のAl23層とTiC層とが交互に、かつ目標全体層厚と実質的に同じ平均層厚で形成されていることが確認された。
【0027】
【発明の効果】
表3〜7に示される結果から、硬質被覆層が層厚方向に、相対的にすぐれた高温硬さと耐熱性を有するAlおよび酸素の最高含有点と相対的に高強度を有するTiおよび炭素の最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとTiおよび酸素と炭素の含有量が連続的に変化する成分濃度分布構造を有する本発明被覆超硬チップ1〜16は、いずれも各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮するのに対して、硬質被覆層がAl23層とTiC層の交互積層からなる従来被覆超硬チップ1〜16においては、前記硬質被覆層のAl23層が特に高速重切削条件ではチッピング発生の起点となり、また前記TiC層の摩耗進行が切削時の高熱発熱により促進されることから、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性と耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】被覆超硬工具を構成する硬質被覆層を形成するのに用いた化学蒸着装置を例示する概略縦断面図である。
【図2】化学蒸着装置の構造部材である超硬基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。
【図3】この発明の被覆超硬工具を構成する硬質被覆層の形成に用いられる反応ガス組成自動制御システムの概略チャート図である。[0001]
BACKGROUND OF THE INVENTION
In the present invention, the hard coating layer has high strength and is excellent in high-temperature hardness and heat resistance. Therefore, high-speed cutting such as various types of steel and cast iron is particularly suitable for high cutting and high cutting with high thermal mechanical impact. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated carbide tool) that exhibits excellent chipping resistance and wear resistance even when performed under heavy cutting conditions such as feeding. .
[0002]
[Prior art]
In general, coated carbide tools are used for throwaway inserts that are detachably attached to the tip of a cutting tool for drilling and cutting of various materials such as steel and cast iron, and for flat cutting. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. Also, the throwaway tip is detachably attached and cutting is performed in the same way as the solid type end mill Throwaway end mill tools are known.
[0003]
Further, as a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). ), An Al oxide (hereinafter referred to as Al 2 O 3 ) layer and a Ti carbide (hereinafter referred to as TiC) layer each having a thickness of 1 μm or less are alternately laminated to form a total thickness of 2 to 20 μm. A coated carbide tool formed by vapor deposition with an average layer thickness has been proposed, and Al 2 O 3 —TiC alternating lamination constituting the hard coating layer is composed of high temperature hardness and heat resistance by the Al 2 O 3 layer, and by the TiC layer. Since it has strength, it is also known that this coated carbide tool exhibits excellent cutting performance when used for continuous cutting and intermittent cutting of various steels and cast irons (see, for example, Patent Document 1). ).
[0004]
Furthermore, as shown in the schematic longitudinal sectional view of FIG. 1, for example, the coated carbide tool has a stainless steel reaction gas blowing pipe standing at the center thereof. A graphite cemented carbide substrate support pallet illustrated in a schematic perspective view in (a) and a schematic plan view in (b) is skewered and laminated, and these are heated by a heater through a stainless steel cover. A chemical vapor deposition apparatus having a structure is used, and the cemented carbide substrate is mounted on the chemical vapor deposition apparatus in a state where the carbide substrate is placed as illustrated in a number of reaction gas passage hole positions formed on the bottom surface of the carbide substrate support pallet. Then, after heating the inside of the apparatus to a predetermined temperature within a range of 800 to 1100 ° C. with a heater, for the formation of the Al 2 O 3 layer, the reaction gas is in volume% (hereinafter,% of reaction gas is Capacity%),
AlCl 3 : 2 to 7%,
CO 2 : 2 to 10%
HCl: 3-7%
H 2 : Remaining
For forming a TiC layer, a reaction gas having a composition consisting of:
TiCl 4: 1~3%,
CH 4: ~%,
H 2 : Remaining
The reaction gas pressure in the apparatus is maintained at a predetermined pressure within a range of 7 to 40 kPa through the reaction gas blowing pipe into the apparatus that has been evacuated in advance. However, it is also known that it is produced by forming a hard coating layer composed of Al 2 O 3 —TiC alternating layers by introducing them alternately (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 52-105396 [0006]
[Problems to be solved by the invention]
In recent years, there has been a remarkable increase in the performance of cutting equipment, while there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. Although there is a tendency to be forced to perform cutting under heavy cutting conditions such as high feed, the above-mentioned conventional coated carbide tools are used for heavy cutting such as high cutting and high feed with high thermal mechanical impact. When used for high-speed operation, the Al 2 O 3 layer, which is a hard coating layer composed of Al 2 O 3 -TiC alternating layers, has excellent high-temperature hardness and heat resistance, but has insufficient strength, so In heavy cutting, this becomes the starting point of fracture, causing chipping (microcracking). Similarly, the TiC layer has high strength but low high temperature hardness and low heat resistance. Now wear progress in heavy cutting is rapidly promoted, to reach this result relatively short time service life at present.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors conducted research in order to develop a coated carbide tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer particularly excellent in high speed heavy cutting. result,
(A) Using the chemical vapor deposition apparatus shown in FIGS. 1 and 2 above, a composite compound of Al 2 O 3 and TiC, which is a constituent component of the hard coating layer of the conventional coated carbide tool, that is, Al and Ti When forming a composite carbonate (hereinafter referred to as Al-Ti carbonate) layer, for example, the reaction gas composition automatic control system is schematically shown in FIG. -For the purpose of alternately forming the highest content point of Al and oxygen and the highest content point of Ti and carbon along the thickness direction in the hard coating layer comprising a Ti carbonate layer alternately with a predetermined interval, A reaction gas composition corresponding to the highest oxygen content point and the highest Ti and carbon content points, and a reaction gas composition corresponding to the continuous change of Al and oxygen and Ti and carbon between the two points; Wherein the distance between two points, and inputs based on historical data, according to a control signal from the reaction gas composition and flow rates central controller, H 2 gas from the raw material gas cylinder, CO 2 gas, CH 4 gas, And the flow rate of HCl gas, and further, the flow rate of AlCl 3 gas and TiCl 4 gas are controlled by the respective raw material gas flow rate automatic control devices, and introduced into the reaction gas blowing pipe of the chemical vapor deposition device, along the layer thickness direction, The highest content point of Al and oxygen and the highest content point of Ti and carbon are alternately present at predetermined intervals, and from the highest content point of Al and oxygen, the highest content point of Ti and carbon, Ti and carbon Component concentration distribution structure in which the content of Al, oxygen, Ti, and carbon continuously changes from the highest content point of carbon to the highest content point of Al and oxygen The hard coating layer made of Al-Ti carbonate layer has become to be formed.
[0008]
(B) In the Al-Ti carbonate layer having the repeated continuous change component concentration distribution structure of (a) above,
Al / (Al + Ti) and oxygen / (oxygen + carbon) indicating the mutual content ratio of Al and Ti and oxygen and carbon at the highest content point of Al and oxygen, respectively, in atomic ratios,
Al / (Al + Ti): 0.80 to 0.98,
Oxygen / (oxygen + carbon): 0.80 to 0.98,
Ti / (Ti + Al) and carbon / (carbon + oxygen) indicating the mutual content ratio of Ti and Al and carbon and oxygen at the highest content point of Ti and carbon, respectively, in atomic ratios,
Ti / (Ti + Al): 0.80 to 0.98,
Carbon / (carbon + oxygen): 0.80 to 0.98,
And the distance in the thickness direction between the highest content point of Al and oxygen adjacent to each other and the highest content point of Ti and carbon is 0.01 to 0.2 μm,
The highest content point of Al and oxygen shows excellent high temperature hardness and heat resistance corresponding to the high temperature hardness and heat resistance of Al 2 O 3 , while the highest content point of Ti and carbon has TiC. High strength corresponding to the strength is secured, and the interval between the highest content point of Al and oxygen and the highest content point of Ti and carbon is extremely small. In addition, since the contents of Al and oxygen and Ti and carbon continuously change between the two points (component concentration distribution structure), there is no origin of destruction. Therefore, coated carbide tools composed of an Al-Ti carbonate layer with a hard coating layer are particularly suitable for cutting various steels and cast irons at high speed and with high thermal mechanical impact. Even when conducted in heavy cutting conditions such as high cut and high feed with, be chipping resistance of the hard coating layer has excellent and as to exhibit wear resistance.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made based on the above research results, and is obtained by vapor-depositing a hard coating layer made of an Al-Ti carbonate layer on the surface of a cemented carbide substrate with an overall average layer thickness of 2 to 20 μm. In coated carbide tools,
In the hard coating layer, the highest content point of Al and oxygen and the highest content point of Ti and carbon are alternately present at predetermined intervals along the layer thickness direction, and the highest content point of Al and oxygen Has a component concentration distribution structure in which the content of Al, Ti, carbon and oxygen continuously changes from the highest content point of Ti and carbon to the highest content point of Ti and carbon to the highest content point of Al and oxygen. And
Further, Al / (Al + Ti) and oxygen / (oxygen + carbon) indicating the mutual content ratio of Al and Ti and oxygen and carbon at the highest content point of Al and oxygen are respectively in atomic ratios.
Al / (Al + Ti): 0.80 to 0.98,
Oxygen / (oxygen + carbon): 0.80 to 0.98,
Ti / (Ti + Al) and carbon / (carbon + oxygen) indicating the mutual content ratio of Ti and Al and carbon and oxygen at the highest content point of Ti and carbon are respectively atomic ratios.
Ti / (Ti + Al): 0.80 to 0.98,
Carbon / (carbon + oxygen): 0.80 to 0.98,
And the interval between the highest content point of Al and oxygen adjacent to each other and the highest content point of Ti and carbon is 0.01 to 0.2 μm.
This is characterized by a coated carbide tool that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
[0010]
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(A) Maximum content point of Al and oxygen The Ti and carbon components of the Al-Ti carbonate layer have the effect of improving the strength, and the Al and oxygen components have the effect of improving the high temperature hardness and heat resistance. At the highest content point of oxygen and oxygen, the content ratio of Al and oxygen is relatively increased to improve high-temperature hardness and heat resistance, so that it is suitable for high-speed cutting with high heat generation. When Al / (Al + Ti) and oxygen / (oxygen + carbon) indicating the mutual content ratio of Ti and oxygen and carbon both exceed 0.98 in atomic ratio (hereinafter the same), it is substantially composed of Al oxide. Therefore, even if the highest content points of Ti and carbon having high strength exist adjacently, a decrease in strength of the layer itself is unavoidable, and as a result, chipping and the like are likely to occur. When the value is less than 0.80, the high-temperature hardness and heat resistance are drastically reduced, which causes accelerated wear. Therefore, the values of Al / (Al + Ti) and oxygen / (oxygen + carbon) are both 0.80. It was set to ˜0.98.
[0011]
(B) The highest content point of Ti and carbon As described above, the highest content point of Al and oxygen has relatively high temperature hardness and heat resistance, but on the other hand, the strength is relatively insufficient, so this Al In order to make up for the lack of strength at the highest content point of oxygen and oxygen, the highest content points of Ti and carbon having high strength are alternately interposed in the thickness direction. However, when Ti / (Ti + Al) and carbon / (carbon + oxygen) indicating the mutual content ratios of Ti and Al and carbon and oxygen exceed 0.98, respectively, they are substantially composed of Ti carbide. Therefore, it is impossible to ensure the predetermined high-temperature hardness and heat resistance at the highest content point of Ti and carbon, which causes wear promotion. On the other hand, if the same value is less than 0.80, the desired excellent strength is obtained. Since it cannot be ensured and as a result, chipping is likely to occur, the values of Ti / (Ti + Al) and carbon / (carbon + oxygen) are both set to 0.80 to 0.98.
[0012]
(C) Interval between the highest content point of Al and oxygen and the highest content point of Ti and carbon If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. In addition, it is impossible to ensure the desired excellent high-temperature hardness and heat resistance and further high strength, and if the distance exceeds 0.2 μm, each point has a defect, that is, the highest content point of Al and oxygen. Insufficient strength, if it is the highest content point of Ti and carbon, high temperature hardness and insufficient heat resistance will appear locally in the layer, which makes it easier for chipping to occur and promotes the progress of wear Therefore, the interval was determined to be 0.01 to 0.2 μm.
[0013]
(D) Overall average layer thickness of hard coating layer If the layer thickness is less than 2 μm, desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 20 μm, chipping tends to occur. Therefore, the average layer thickness was determined to be 2 to 20 μm.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under the holding conditions, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, and the carbide bases A1 to A10 made of WC-based cemented carbide having a chip shape of ISO standard CNMG160608 Formed.
[0015]
In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a carbon atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 and ISO standard / CNMG160612. TiCN-based cermet carbide substrates B1 to B6 having the following chip shape were formed.
[0016]
Next, each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and then the carbide shown in FIG. 2 is placed in the chemical vapor deposition apparatus shown in FIG. First, when the inside of the apparatus was heated to 900 ° C. with a heater, it was loaded with TiCl 4 : 4.2%, N 2 : 30%, H 2 : remaining. A reactive gas having a composition is introduced through a reactive gas blowing tube, the reaction atmosphere pressure in the apparatus is set to 30 kPa, and this state is maintained for 30 minutes, and the titanium nitride having an average layer thickness of 0.3 μm as a base adhesion layer ( TiN) layer is formed, and the atmospheric temperature in the apparatus is then heated to 1020 ° C. with a heater, and then the reaction gas composition and flow rate central control apparatus of the reaction gas composition automatic control system shown in FIG. According to the data of the past results, the target Al / (Al + Ti) and oxygen / (oxygen + carbon) of the maximum content point of Al and oxygen shown in Table 3, and the target Ti / (Ti + Al of the maximum content point of Ti and carbon) ) And carbon / (carbon + oxygen), corresponding to the continuous change in the content of Al, Ti, oxygen and carbon between the highest content point of Al and oxygen and the highest content point of Ti and carbon A control valve that operates in accordance with the reaction gas composition and the signal from the central controller of the flow rate by inputting the target gas distance between the two points shown in Tables 4 and 5 and the target total thickness of the hard coating layer. Through the built-in raw material gas flow automatic control device, H 2 gas, CH 4 gas, CO 2 gas, HCl gas, and AlCl 3 gas, which are raw material gases, are added. TiCl 4 gas (in this case, AlCl 3 gas is formed by reacting metal Al and HCl gas whose flow rate is controlled by an AlCl 3 gas generator, and TiCl 4 gas is flow-controlled as shown in the figure. The H 2 gas is sent to the TiCl 4 gas generator as a carrier gas, and is sent to the raw material gas flow automatic control device together with the TiCl 4 gas vaporized from the liquid) while controlling the respective gas flow rates, as shown in FIG. It is introduced into the apparatus from the reaction gas blowing pipe of the chemical vapor deposition apparatus (the reaction atmosphere pressure in the apparatus is always maintained at 7 kPa), and accordingly, on the surface of the cemented carbide substrate, in Tables 3 and 4 along the layer thickness direction. The target Al / (Al + Ti) and oxygen / (oxygen + carbon) maximum Al and oxygen content points, and the target Ti / (Ti + Al) and carbon / (carbon + oxygen) Ti and The highest content point of carbon alternately repeats at the target intervals shown in Tables 3 and 4, and the highest content point of Ti and carbon from the highest content point of Al and oxygen, and the highest content of Ti and carbon From the point to the maximum content point of Al and oxygen, the content of Al, Ti, and oxygen and carbon has a component concentration distribution structure that continuously changes, and the target total layer thickness shown in Tables 3 and 4 is also obtained. By vapor-depositing the hard coating layer, throwaway tips (hereinafter referred to as the present invention coated carbide tips) 1 to 16 made of the present surface coated cemented carbide as the present invention coated carbide tools were produced.
[0017]
For comparison purposes, these carbide substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and then charged into the normal chemical vapor deposition apparatus shown in FIGS. The conditions for forming the Al 2 O 3 layer are as follows:
Reaction gas composition: AlCl 3 : 3%, CO 2 : 7%, HCl: 3%, H 2 : remaining,
Reaction atmosphere temperature: 1000 ° C.
Reaction atmosphere pressure: 7 kPa,
And the formation conditions of the TiC layer are
Reaction gas composition: TiCl 4 : 4.5%, CH 4 : 14%, H 2 : remaining,
Reaction atmosphere temperature: 1000 ° C.
Reaction atmosphere pressure: 7 kPa,
As shown in Tables 6 and 7, hard coating layers composed of alternating layers of Al 2 O 3 layers and TiC layers having the target layer thicknesses are respectively applied to the surfaces of the superhard substrates A1 to A10 and B1 to B6. By depositing at the target total layer thickness shown in Tables 6 and 7, conventional surface-coated cemented carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 16 as conventional coated carbide tools, respectively. Manufactured.
[0018]
Next, with the present invention coated carbide tips 1-16 and conventional coated carbide tips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SCM415 round bar,
Cutting speed: 330 m / min. ,
Cutting depth: 4.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Dry-type continuous high-speed high-cut cutting test of alloy steel under the conditions of
Work material: JIS / S20C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 370 m / min. ,
Incision: 1.5mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes
Dry intermittent high-speed high-feed cutting test of carbon steel under the conditions of
Work material: JIS · FC250 lengthwise equal length 4 round bar with round groove,
Cutting speed: 350 m / min. ,
Cutting depth: 5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
A dry interrupted high-speed high-cut cutting test of cast iron was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.
[0019]
[Table 1]
Figure 0003922132
[0020]
[Table 2]
Figure 0003922132
[0021]
[Table 3]
Figure 0003922132
[0022]
[Table 4]
Figure 0003922132
[0023]
[Table 5]
Figure 0003922132
[0024]
[Table 6]
Figure 0003922132
[0025]
[Table 7]
Figure 0003922132
[0026]
For the hard coating layers constituting the coated carbide chips 1 to 16 of the present invention and the conventional coated carbide chips 1 to 16 obtained as a result, the contents of Al, Ti, oxygen, and carbon are Augered along the thickness direction. Measurement was performed using a spectroscopic analyzer, and Al / (Al + Ti) and oxygen / (oxygen + carbon) values at each measurement point, and further Ti / (Ti + Al) and carbon / (carbon + oxygen) values were calculated from the measurement results. However, in the hard coating layers of the coated carbide chips 1 to 16 of the present invention, the highest content points of Al and oxygen and the highest content points of Ti and carbon are alternately repeated at substantially the same composition and interval as the target values, respectively. Al, Ti, and oxygen from the highest content point of Al and oxygen to the highest content point of Ti and carbon, from the highest content point of Ti and carbon to the highest content point of Al and oxygen It was confirmed to have a component concentration distribution structure content changes continuously carbon, the average layer thickness of the hard layer showed a target total layer thickness substantially the same value. Further, in the hard coating layers of the conventional coated carbide chips 1 to 16, Al 2 O 3 layers and TiC layers having an average layer thickness substantially the same as the target layer thickness are alternately arranged and substantially the target total layer thickness. It was confirmed that they were formed with the same average layer thickness.
[0027]
【The invention's effect】
From the results shown in Tables 3 to 7, the hard coating layer is composed of Ti and carbon having the highest content points of Al and oxygen having relatively high temperature hardness and heat resistance and relatively high strength in the layer thickness direction. The highest content point is alternately present at predetermined intervals, and the highest content point of Ti and carbon from the highest content point of Al and oxygen, and the highest content of Al and oxygen from the highest content point of Ti and carbon. The coated carbide chips 1 to 16 of the present invention having a component concentration distribution structure in which the contents of Al and Ti and oxygen and carbon continuously change to the content point are all high-speed cutting processes such as various steels and cast iron. In addition, the hard coating layer exhibits excellent chipping resistance and wear resistance even when heavy cutting conditions such as high cutting and high feed with high thermal mechanical impact are performed. Coating layer In the conventional coated cemented carbide chips 1-16 of alternating lamination of l 2 O 3 layer and TiC layer, Al 2 O 3 layer of the hard coating layer becomes a starting point of chipping, especially in high-speed heavy cutting conditions and the TiC It is clear that the wear life of the layer is accelerated by high heat generation during cutting, so that the service life is reached in a relatively short time.
As described above, the coated cemented carbide tool of the present invention is not only for cutting under normal conditions, but particularly for cutting of various steels and cast irons at high speed and with high thermal mechanical impact. Even under heavy cutting conditions such as high depth of cut and high feed, it exhibits excellent chipping resistance and wear resistance, and exhibits excellent cutting performance over a long period of time. And it can cope with energy saving and cost reduction sufficiently satisfactorily.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view illustrating a chemical vapor deposition apparatus used for forming a hard coating layer constituting a coated carbide tool.
2A and 2B show a cemented carbide substrate support pallet that is a structural member of a chemical vapor deposition apparatus, in which FIG. 2A is a schematic perspective view, and FIG. 2B is a schematic plan view.
FIG. 3 is a schematic chart of a reaction gas composition automatic control system used for forming a hard coating layer constituting the coated carbide tool of the present invention.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、AlとTiの複合炭酸化物層からなる硬質被覆層を2〜20μmの全体平均層厚で蒸着してなる表面被覆超硬合金製切削工具において、
上記硬質被覆層が、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび炭素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび炭素の最高含有点、前記Tiおよび炭素の最高含有点から前記Alおよび酸素の最高含有点へAlとTiおよび酸素と炭素の含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Alおよび酸素の最高含有点におけるAlとTiおよび酸素と炭素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+炭素)が、それぞれ原子比で、
Al/(Al+Ti):0.80〜0.98、
酸素/(酸素+炭素):0.80〜0.98、
上記Tiおよび炭素の最高含有点におけるTiとAlおよび炭素と酸素の相互含有割合を示すTi/(Ti+Al)および炭素/(炭素+酸素)が、それぞれ原子比で、
Ti/(Ti+Al):0.80〜0.98、
炭素/(炭素+酸素):0.80〜0.98、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび炭素の最高含有点の間隔が、0.01〜0.2μmであること、
を特徴とする高速重切削条件で硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆超硬合金製切削工具。
Surface-coated cemented carbide obtained by vapor-depositing a hard coating layer composed of a composite carbonate layer of Al and Ti on the surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride cermet substrate with an overall average layer thickness of 2 to 20 μm In cutting tool made,
In the hard coating layer, the highest content point of Al and oxygen and the highest content point of Ti and carbon are alternately present at predetermined intervals along the layer thickness direction, and the highest content point of Al and oxygen Has a component concentration distribution structure in which the content of Al, Ti, oxygen and carbon continuously changes from the highest content point of Ti and carbon to the highest content point of Ti and carbon to the highest content point of Al and oxygen. And
Further, Al / (Al + Ti) and oxygen / (oxygen + carbon) indicating the mutual content ratio of Al and Ti and oxygen and carbon at the highest content point of Al and oxygen are respectively in atomic ratios.
Al / (Al + Ti): 0.80 to 0.98,
Oxygen / (oxygen + carbon): 0.80 to 0.98,
Ti / (Ti + Al) and carbon / (carbon + oxygen) indicating the mutual content ratio of Ti and Al and carbon and oxygen at the highest content point of Ti and carbon are respectively atomic ratios.
Ti / (Ti + Al): 0.80 to 0.98,
Carbon / (carbon + oxygen): 0.80 to 0.98,
And the interval between the highest content point of Al and oxygen adjacent to each other and the highest content point of Ti and carbon is 0.01 to 0.2 μm,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2002231238A 2002-08-08 2002-08-08 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions. Expired - Fee Related JP3922132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231238A JP3922132B2 (en) 2002-08-08 2002-08-08 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231238A JP3922132B2 (en) 2002-08-08 2002-08-08 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.

Publications (2)

Publication Number Publication Date
JP2004066421A JP2004066421A (en) 2004-03-04
JP3922132B2 true JP3922132B2 (en) 2007-05-30

Family

ID=32017063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231238A Expired - Fee Related JP3922132B2 (en) 2002-08-08 2002-08-08 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.

Country Status (1)

Country Link
JP (1) JP3922132B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090063B2 (en) * 2012-08-28 2017-03-08 三菱マテリアル株式会社 Surface coated cutting tool

Also Published As

Publication number Publication date
JP2004066421A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP2007168032A (en) Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition
JP4048364B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3922132B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900521B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP4224782B2 (en) Surface-coated throw-away tip with excellent wear resistance and chipping resistance under high-speed heavy cutting conditions
JP3922128B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3900520B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3900523B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3963136B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP3963149B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3900517B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance with hard coating layer under high-speed cutting conditions
JP3948020B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2007075968A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP4770387B2 (en) Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting
JP3900516B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900528B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900527B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900526B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4075052B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under heavy cutting conditions.
JP3948019B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance under heavy cutting conditions
JP3903483B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3900519B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2004174615A (en) Surface covering cemented carbide cutting tool having hard covering layer exhibiting excellent chipping resistance under high speed multiple cutting conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees