JP2009160692A - Coated tool - Google Patents

Coated tool Download PDF

Info

Publication number
JP2009160692A
JP2009160692A JP2008000854A JP2008000854A JP2009160692A JP 2009160692 A JP2009160692 A JP 2009160692A JP 2008000854 A JP2008000854 A JP 2008000854A JP 2008000854 A JP2008000854 A JP 2008000854A JP 2009160692 A JP2009160692 A JP 2009160692A
Authority
JP
Japan
Prior art keywords
layer
film
coated
tool
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008000854A
Other languages
Japanese (ja)
Other versions
JP4850189B2 (en
Inventor
Takashi Ishikawa
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2008000854A priority Critical patent/JP4850189B2/en
Publication of JP2009160692A publication Critical patent/JP2009160692A/en
Application granted granted Critical
Publication of JP4850189B2 publication Critical patent/JP4850189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated tool having such a high hardness, a high oxidation-resistance and a high wear-resistance as to restrain the occurrence of accidental chipping or abnormal wear. <P>SOLUTION: The substrate of a tool is coated with a film by physical vapor deposition so that the film comprises A layers and B layers wherein the A layers include oxide of Cr as a main base and nitride and boride as a sub-base while the B layers include Al and oxide of Cr as a main base, and nitride and boride as a sub-base, and the film forms a lamination of the A layer and the B layer superimposed on top of each other, wherein when the thickness (nm) of the A layer is TA, and the thickness (nm) of the B layer is TB, the TA and TB values become TA≤50, and TB≤50 respectively, and when the film thickness ratio is TA/TB, the value becomes 1≤TA/TB≤5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、工具基体に物理蒸着法により酸化物を主体、窒化物、硼化物を副体とする皮膜を被覆し、耐摩耗性と耐酸化性を兼ね備えた被覆工具に関する。特に、切削工具、金型等の耐摩耗工具等の被覆工具に関する。   The present invention relates to a coated tool having both wear resistance and oxidation resistance by coating a tool base with a film mainly composed of oxide, nitride and boride by physical vapor deposition. In particular, the present invention relates to a coated tool such as a cutting tool and a wear-resistant tool such as a mold.

物理蒸着法により酸化物皮膜を被覆した被覆工具に関する技術が、特許文献1から3に開示されている。また、2種類の化合物薄膜を積層した被覆工具に関する技術が、特許文献4に開示されている。   Patent Documents 1 to 3 disclose techniques related to a coated tool in which an oxide film is coated by a physical vapor deposition method. Further, Patent Document 4 discloses a technique related to a coated tool in which two types of compound thin films are laminated.

特開2002−53946号公報JP 2002-53946 A 特開2006−28600号公報JP 2006-28600 A 特開平5−208326号公報JP-A-5-208326 特許第3460287号公報Japanese Patent No. 3460287

本願発明の皮膜は、高硬度と優れた耐酸化性を兼ね備え、工具に被覆することにより突発的なチッピングや異常摩耗の発生が抑制され、耐摩耗性に優れた被覆工具を提供することである。   The film of the present invention has both high hardness and excellent oxidation resistance, and by covering the tool, sudden chipping and abnormal wear are suppressed, thereby providing a coated tool with excellent wear resistance. .

本願発明は、工具基体に物理蒸着により皮膜を被覆し、該皮膜はA層とB層とを有し、該A層は周期律表4a、5a、6a族元素、Si、Y、硼素の酸化物、窒化物、硼化物から選択される1種以上、該B層は周期律表4a、5a、6a族元素、Al、Si、Y、硼素の酸化物、窒化物、硼化物から選択される2種以上を有し、該A層と該B層とを被覆した被覆工具において、該A層はCrの酸化物を主体、窒化物、硼化物を副体とし、該B層はAl、Crの酸化物を主体、窒化物、硼化物を副体とし、該皮膜は該A層と該B層との交互積層構造を有し、該A層の層厚(nm)をTA、該B層の層厚(nm)をTBとしたとき、該TA値、該TB値が夫々TA≦50、TB≦50、膜厚比をTA/TBとしたとき、1≦TA/TB≦5、であることを特徴とする被覆工具である。上記の構成を採用することによって、本願発明の皮膜は高硬度と優れた耐酸化性を兼ね備え、工具に被覆することにより突発的なチッピングや異常摩耗の発生が抑制され、耐摩耗性に優れた被覆工具が得られる。   In the present invention, a tool substrate is coated with a film by physical vapor deposition, and the film has an A layer and a B layer, and the A layer is an oxidation of elements of Group 4a, 5a, 6a of the periodic table, Si, Y, boron. One or more selected from oxides, nitrides and borides, the B layer is selected from Group 4a, 5a and 6a elements of the periodic table, Al, Si, Y, boron oxides, nitrides and borides In a coated tool having two or more types and coated with the A layer and the B layer, the A layer is mainly composed of an oxide of Cr, nitride and boride as sub-substances, and the B layer is composed of Al, Cr The oxide is mainly composed of nitride and boride as sub-substances, and the film has an alternate layer structure of the A layer and the B layer, the layer thickness (nm) of the A layer is TA, and the B layer When the layer thickness (nm) is TB, the TA value and the TB value are TA ≦ 50 and TB ≦ 50, respectively, and when the film thickness ratio is TA / TB, 1 ≦ TA / TB ≦ 5. It is coated tool according to claim. By adopting the above configuration, the coating of the present invention has both high hardness and excellent oxidation resistance, and by covering the tool, the occurrence of sudden chipping and abnormal wear is suppressed, and the wear resistance is excellent. A coated tool is obtained.

本願発明の被覆工具は、TA値、TB値が夫々TA≦30、TB≦30、であることが好ましい。A層は、Crの1部をSi、W、硼素から選択される1種以上で置換、B層は、Al、Crの1部をNb、Si、W、Y、硼素から選択される1種以上で置換することが好ましい。また、工具基体と皮膜との間には窒化物を含有する中間層、最表面は窒化物を含有する最表層を被覆し、更に、B層は工具基体側、A層は表面側に被覆することが好ましい。   The coated tool of the present invention preferably has a TA value and a TB value of TA ≦ 30 and TB ≦ 30, respectively. In the A layer, one part of Cr is replaced with one or more selected from Si, W, and boron, and in the B layer, one part of Al and Cr is selected from Nb, Si, W, Y, and boron. It is preferable to substitute as described above. Further, an intermediate layer containing nitride is coated between the tool substrate and the coating, the outermost surface is coated with the outermost layer containing nitride, the B layer is coated on the tool substrate side, and the A layer is coated on the surface side. It is preferable.

本願発明の皮膜は、高硬度と優れた耐酸化性を兼ね備え、工具に被覆することにより突発的なチッピングや異常摩耗の発生が抑制され、耐摩耗性に優れた被覆工具を提供することができた。   The coating of the present invention has high hardness and excellent oxidation resistance, and by covering the tool, sudden chipping and abnormal wear are suppressed, and a coated tool with excellent wear resistance can be provided. It was.

本願発明の皮膜は、高硬度と優れた耐酸化性と熱安定性や平滑性とを兼ね備え、工具の突発的なチッピングや異常摩耗の発生を抑制し、耐摩耗性を改善した。工具基体にPVD法により被覆した被覆工具において、本願発明の皮膜は、A層とB層を夫々交互に50nm以下の層厚とした積層構造を有する被覆工具である。B層の結晶構造はコランダム構造を有する。
本願発明の皮膜は、A層とB層との交互積層構造を有し、かつ、酸化物を主体、窒化物、硼化物を副体とし、例えば、酸化アルミニウム膜よりも高硬度である。A層とB層を交互積層することにより、B層がコランダム構造を維持したまま成長し、同時にA層とB層が略同一結晶構造で個々に面間隔の異なる結晶が積層されることとなり、両層間で格子歪が発生するためである。この格子歪は、両層間の界面近傍で夫々略同一の面間隔を保ち、成長に従いA層とB層の個々の面間隔となる。両層間の界面が高い密着強度を維持し、格子歪により1GPa以上の高い残留圧縮応力を有するため、皮膜の高硬度化が達成される。この格子歪は粒成長を抑制する効果もあり、A層とB層の結晶粒子が微細化され、その結果、皮膜表面の平滑性が向上する作用をも有する。
本願発明の皮膜は交互積層構造を有し、TA値、TB値が夫々TA≦50、TB≦50、であることが、高硬度化には重要であり、工具の耐摩耗性の改善により効果的である。TA>50の場合、皮膜全体の硬度が低下するため、耐摩耗性を改善することができない。また、TB>50の場合、B層がコランダム構造を維持できないことから、皮膜全体の硬度が低下し、また皮膜の結晶粒径が粗大化するため、耐摩耗性を改善することができない。また、本願発明の皮膜が、1≦TA/TB≦5、であることが特に皮膜の高硬度化の観点から重要であり、工具の耐摩耗性の改善により効果的である。TA/TB<1、となる場合、皮膜の結晶性が低下し、皮膜硬度も低下する傾向にある。一方、TA/TB>5、の場合も同様に皮膜硬度が低下する傾向にある。TA/TB>5、の場合の硬度低下の理由は、皮膜全体に占めるA層の比率が多過ぎるからである。TA値、TB値の制御は、A層、B層の成膜用の金属ターゲットにおける蒸発量調整の他に、基体の回転速度の調整により行う。
The coating of the present invention combines high hardness, excellent oxidation resistance, thermal stability and smoothness, and suppresses sudden chipping and abnormal wear of the tool, thereby improving the wear resistance. In the coated tool in which the tool base is coated by the PVD method, the coating of the present invention is a coated tool having a laminated structure in which the A layer and the B layer are alternately formed to have a layer thickness of 50 nm or less. The crystal structure of the B layer has a corundum structure.
The coating of the present invention has an alternating layer structure of A layers and B layers, and has oxide as a main component, nitride and boride as sub-substances, and has higher hardness than, for example, an aluminum oxide film. By alternately laminating the A layer and the B layer, the B layer grows while maintaining a corundum structure, and at the same time, the A layer and the B layer are laminated with crystals having substantially the same crystal structure and different face spacings, This is because lattice strain occurs between the two layers. This lattice strain maintains substantially the same plane spacing in the vicinity of the interface between the two layers, and becomes the individual plane spacing of the A layer and the B layer as it grows. Since the interface between the two layers maintains high adhesion strength and has a high residual compressive stress of 1 GPa or more due to lattice strain, a high hardness of the coating is achieved. This lattice strain also has an effect of suppressing grain growth, and the crystal grains of the A layer and the B layer are made finer. As a result, the smoothness of the coating surface is improved.
The coating of the present invention has an alternating laminated structure, and TA values and TB values of TA ≦ 50 and TB ≦ 50 are important for increasing the hardness and are effective by improving the wear resistance of the tool. Is. In the case of TA> 50, the hardness of the entire film is lowered, so that the wear resistance cannot be improved. Further, when TB> 50, the B layer cannot maintain the corundum structure, so that the hardness of the entire film is lowered and the crystal grain size of the film is coarsened, so that the wear resistance cannot be improved. Further, it is particularly important that the film of the present invention satisfies 1 ≦ TA / TB ≦ 5 from the viewpoint of increasing the hardness of the film, and is effective for improving the wear resistance of the tool. When TA / TB <1, the crystallinity of the film tends to decrease and the film hardness tends to decrease. On the other hand, when TA / TB> 5, the film hardness tends to decrease in the same manner. The reason for the decrease in hardness in the case of TA / TB> 5 is that the ratio of the A layer in the entire film is too large. The TA value and the TB value are controlled by adjusting the rotation speed of the substrate in addition to adjusting the evaporation amount in the metal targets for forming the A and B layers.

本願発明の皮膜は交互積層構造を有し、TA値、TB値が夫々TA≦30、TB≦30、であるとき、皮膜の結晶性向上による高硬度化、結晶粒子の微細化、平滑化とA層とB層の結晶成長の連続性による密着強度改善効果が得られ、工具の耐摩耗性の改善により効果的であり、好ましい。   The coating of the present invention has an alternating laminated structure, and when the TA value and TB value are TA ≦ 30 and TB ≦ 30, respectively, the hardness is increased by improving the crystallinity of the coating, the crystal particles are refined and smoothed. The effect of improving the adhesion strength due to the continuity of the crystal growth of the A layer and the B layer is obtained, and it is more effective and effective for improving the wear resistance of the tool.

本願発明の皮膜を構成するA層は、Crの1部をSi、W、硼素から選択される1種以上で置換すること、またB層は、Al、Crの1部をNb、Si、W、Y、硼素から選択される1種以上で置換することが好ましい。ここで、Nb、Si、W、Y、硼素から選択される1種以上の元素をM元素とする。また、Al含有量をx、Cr含有量をy、M元素の含有量をz、但し、数値は原子比率でx+y+z=100としたとき、M元素の効果と本願発明を達成する上で最適な含有量を示す。B層におけるAl又はCrの1部をSiで置換することにより皮膜の結晶粒子が微細化し、高硬度化することによって工具の耐摩耗性が向上する。この場合の最適な組成は、50≦x≦90、10≦y≦50、0.1≦z≦10、但し、zはSi量である。更に、(x+z)値が70を超えると皮膜が非晶質化し、硬度が急激に低下し耐摩耗性が低下するため、50≦(x+z)≦70が最適である。B層のCrの1部をNb、W、Y、硼素で置換することにより、コランダム構造の結晶性が向上することから、Al含有量を高めることができる。その結果、耐酸化性、耐熱性を高めて、耐摩耗性が向上する。この場合の最適な組成は、50≦x≦90、10≦y≦50、0.1≦z≦10、但し、z値はM元素の含有量である。またAlCrターゲットにWを添加することにより、ドロップレットが低減して皮膜の平滑性が向上する。更に、Cr、Alの1部をNb、Si、W、Y、硼素から選択される2種又は3種で置換することも同様な効果が得られ、好ましい。   In the A layer constituting the film of the present invention, one part of Cr is replaced with one or more selected from Si, W, and boron, and in the B layer, one part of Al and Cr is replaced with Nb, Si, W Substitution with one or more selected from Y, Y and boron is preferred. Here, one or more elements selected from Nb, Si, W, Y, and boron are M elements. Also, when the Al content is x, the Cr content is y, and the M element content is z, where the numerical value is x + y + z = 100 in terms of atomic ratio, it is optimal for achieving the effect of the M element and the present invention. Indicates the content. By replacing a part of Al or Cr in the B layer with Si, the crystal grains of the film are refined and the hardness is increased, so that the wear resistance of the tool is improved. The optimum composition in this case is 50 ≦ x ≦ 90, 10 ≦ y ≦ 50, 0.1 ≦ z ≦ 10, where z is the amount of Si. Further, when the (x + z) value exceeds 70, the film becomes amorphous, the hardness is drastically lowered and the wear resistance is lowered, so 50 ≦ (x + z) ≦ 70 is optimal. By substituting one part of Cr in the B layer with Nb, W, Y, boron, the crystallinity of the corundum structure is improved, so that the Al content can be increased. As a result, the oxidation resistance and heat resistance are improved and the wear resistance is improved. The optimum composition in this case is 50 ≦ x ≦ 90, 10 ≦ y ≦ 50, 0.1 ≦ z ≦ 10, where the z value is the content of the M element. Moreover, by adding W to the AlCr target, droplets are reduced and the smoothness of the film is improved. Further, it is preferable that one part of Cr and Al is substituted with two or three kinds selected from Nb, Si, W, Y, and boron because the same effect is obtained.

本願発明の皮膜と工具基体との間に窒化物を含有する中間層を被覆し、最表面に窒化物を含有する最表層を被覆することが好ましい。ここで中間層や最表層の窒化物を含有する皮膜は、90%以上が窒化物であり、残部が炭化物、酸化物、硼化物、硫化物を含んでも良い。この中間層は工具基体との密着性向上の役割と機械的な摩耗に対する耐摩耗効果を発揮する。中間層は、Al、Ti、Cr、W、Nb、Siから選択される1種以上の窒化物を含有した層を1層以上被覆することが好ましく、中間層の層厚は1〜12μmの範囲が最適である。最表層を被覆する効果は、本願発明の皮膜が干渉色を呈する場合のあることから、外観色の安定化、成膜装置内の冶具や蒸発源周辺の導電性を確保することによる生産性向上である。また、工具表面の導電性を確保させ、電気的に工具寸法の測定を行うセンサー等を使用することができる。最表層は、Al、Ti、Cr、W、Nb、Siから選択される1種以上の窒化物を含有とした層を1層以上被覆することがより好ましく、最表層の層厚は0.01〜3μmの範囲が最適である。中間層、最表層と本願発明の皮膜界面は夫々の層の密着強度を向上させるために、組成混合層の形成、組成傾斜層形成も好ましい。   It is preferable to coat an intermediate layer containing nitride between the coating of the present invention and the tool substrate, and to coat the outermost layer containing nitride on the outermost surface. Here, 90% or more of the film containing the nitride of the intermediate layer or outermost layer is nitride, and the balance may include carbide, oxide, boride, or sulfide. This intermediate layer exhibits the role of improving adhesion to the tool base and the wear resistance effect against mechanical wear. The intermediate layer preferably covers one or more layers containing one or more nitrides selected from Al, Ti, Cr, W, Nb, and Si, and the intermediate layer has a thickness of 1 to 12 μm. Is the best. The effect of covering the outermost layer is that the coating of the present invention may exhibit an interference color, so the appearance color is stabilized, and the productivity is improved by ensuring the conductivity around the jigs and evaporation sources in the film forming apparatus. It is. Moreover, the sensor etc. which ensure the electroconductivity of a tool surface and measure a tool dimension electrically can be used. More preferably, the outermost layer covers one or more layers containing one or more nitrides selected from Al, Ti, Cr, W, Nb, and Si, and the outermost layer has a layer thickness of 0.01. A range of ˜3 μm is optimal. In order to improve the adhesion strength between the intermediate layer, the outermost layer, and the coating film of the present invention, formation of a composition mixed layer and formation of a composition gradient layer are also preferable.

本願発明の皮膜の積層構造におけるB層は工具基体側、A層は表面側に被覆することが好ましい。B層が工具基体側であることによって、密着強化層としての作用効果を得ることができ、また、A層が表面側であることによって、耐酸化性、耐熱性を高める作用効果を得ることができるため、好ましい。   In the laminated structure of the coating of the present invention, the B layer is preferably coated on the tool base side and the A layer is coated on the surface side. When the B layer is on the tool base side, it is possible to obtain an effect as an adhesion strengthening layer, and when the A layer is on the surface side, it is possible to obtain an effect of enhancing oxidation resistance and heat resistance. This is preferable because it is possible.

本願発明の皮膜のX線回折における2θのピークずれは格子定数のずれにより、例えばA、B層の(116)面において、{2θ(B)/2θ(A)}の値が1を超え、1.0475以下の範囲では、A、B層の格子が連続して成長し高い密着強度を有した状態で格子歪を有し、1GPa以上の高い残留圧縮応力が付与され、皮膜の高硬度化と平滑化が同時に達成される。この高硬度化は工具の耐摩耗性の改善に効果的である。結晶格子の連続は透過型電子顕微鏡による断面の格子像を観察により確認できる。本願発明の残留圧縮応力は1〜6GPaの範囲が最適である。1GPa未満の場合、切削加工時に熱クラックからの欠損が発生し易くなる。一方、6GPaを超えて高いと、工具エッジ部の皮膜が自己破壊を起こし、エッジ部に凝着物が堆積し易くなり、耐欠損性が低下する傾向にある。皮膜の残留圧縮応力の制御は、成膜パラメータのうち、基体に印可するバイアス電圧、TA、TB値、反応圧力等により制御することができる。本願発明の被覆工具は、最表面の凸部を機械的処理による平滑化により、切屑排出性、切れ刃のチッピング抑制に効果的であり、切削寿命を改善できる。本願発明の被覆工具は、特に高硬度鋼、ステンレス鋼、耐熱鋼、鋳鋼、炭素鋼の切削加工用に用いる切削工具が特に好ましく、例えばボールエンドミル、多刃エンドミル、インサート、ドリル、カッター、ブローチ、リーマ、ホブ、ルーター、等が挙げられる。また、金型、パンチ等においても優れた耐摩耗性を発揮し、工具の長寿命化がはかれる。工具基体は、超硬合金、サーメット、高速度鋼、立方晶窒化硼素焼結体、ダイス鋼等が好ましい。超硬合金は、Co含有量3〜12重量%未満であり、3%未満では、突発的なチッピングや切れ刃の欠損が生じてしまい、一方、12%を超えると被覆効果が薄れ好ましくない。   The peak shift of 2θ in the X-ray diffraction of the film of the present invention is caused by the shift of the lattice constant. For example, the value of {2θ (B) / 2θ (A)} exceeds 1 on the (116) plane of the A and B layers, In the range of 1.0475 or less, the lattices of the A and B layers continuously grow and have a lattice strain in a state with high adhesion strength, and a high residual compressive stress of 1 GPa or more is given, and the hardness of the coating is increased. And smoothing is achieved simultaneously. This increase in hardness is effective in improving the wear resistance of the tool. The continuity of the crystal lattice can be confirmed by observing a cross-sectional lattice image with a transmission electron microscope. The range of 1 to 6 GPa is optimal for the residual compressive stress of the present invention. If it is less than 1 GPa, defects from thermal cracks are likely to occur during cutting. On the other hand, if it is higher than 6 GPa, the film on the tool edge part is self-destructed, and an adherent tends to be deposited on the edge part, and the fracture resistance tends to be lowered. The residual compressive stress of the film can be controlled by the bias voltage, TA, TB value, reaction pressure, etc. applied to the substrate among the film forming parameters. The coated tool of the present invention is effective for chip dischargeability and chipping suppression of the cutting edge by smoothing the convex portion on the outermost surface by mechanical treatment, and can improve the cutting life. The coated tool of the present invention is particularly preferably a cutting tool used for cutting high hardness steel, stainless steel, heat resistant steel, cast steel, carbon steel, for example, a ball end mill, a multi-blade end mill, an insert, a drill, a cutter, a broach, Reamers, hobs, routers, etc. In addition, excellent wear resistance is exhibited even in molds, punches, etc., and the tool life is extended. The tool base is preferably cemented carbide, cermet, high speed steel, cubic boron nitride sintered body, die steel or the like. The cemented carbide has a Co content of 3 to less than 12% by weight. If it is less than 3%, sudden chipping or chipping of the cutting edge occurs. On the other hand, if it exceeds 12%, the coating effect is reduced, which is not preferable.

(実施例1)
本願発明の皮膜の被覆方法は、PVD法の中でも特にアークイオンプレーティング(以下、AIPと記す。)法を用いた。AIP法を用いた理由は、比較的低温で結晶粒径の粗大化を抑制し、皮膜の結晶粒子が微細化して高い残留圧縮応力を導入できるからである。本願発明では、成膜中にArを用いず、窒素と酸素の混合ガス雰囲気下で、3〜15Paの比較的高いガス圧を採用し、TA、TB値が夫々50nm以下の交互積層構造をもつ皮膜を成膜することが特徴である。使用した小型AIP成膜装置の真空容器内は、ターゲット表面に垂直方向の磁束密度が最大で5mT以上の磁場を有したアーク蒸発源を2基搭載している。夫々アーク蒸発源をC1、C2と称す。C1にCrターゲット、C2にAlCr合金ターゲットを装填した。AlCr合金ターゲットは、原子比でAl:50〜90%、Cr:10〜50%の範囲として安定した放電を継続させた。AlCrSiの合金ターゲットを使用する場合は、Al:50〜80%、Cr:20〜50%、Si:1〜10%の範囲であれば安定放電を継続することができる。
本願発明では以下に示す成膜条件を採用することによって、窒素ガスが反応して窒化物を形成することは殆どなく、90%以上を酸化物として存在させることができ、酸化物を主体、窒化物を副体とした。また窒素ガスの導入により、成膜時のガス圧力を高めて皮膜に混入するドロップレット量を低減した。酸素と窒素の好ましい流量比率として、酸素:窒素は、1:100から20:100の範囲とした。成膜温度は400〜700℃の範囲とした。またバイアス電源は基体に接続され、独立して基体に負のDCバイアス電圧を印加した。工具基体に印可する負バイアス電圧は40〜250Vの範囲、アーク電流は80〜180Aの範囲とした。また、工具基体の回転数はアーク電流にもよるが、毎分2〜9回転の範囲として、TA値、TB値を夫々50nm以下に制御した。本願発明の皮膜の硬度、表面粗さ、結晶構造、積層構造を評価する基体として、表面粗さをRa<10nm、Ry<100nmとなるように鏡面加工を施したCo含有量10重量%の超微粒子超硬合金製SNMN120408形状の試験片を用いた。皮膜の耐久性を評価には、Co:8重量%の超微粒子超硬合金製刃先交換型ボールエンドミルを用いた。切削工具は夫々脱脂洗浄を十分に実施して真空容器に設置した。成膜前処理は、Arイオンによる基体のクリーニング処理を行った。基体を所定温度で保持し、容器内圧力が5×10−3Paに達した後、Arガスを導入し、−200Vのバイアス電圧を印加して基体クリーニングを30分間実施した。中間層の被覆には、クリーニング後、窒素を1000sccm導入し、圧力5〜7PaとしてC2に150Aの電力を供給して、窒化物皮膜を略3μm被覆した。引き続き、窒素ガス流量を保持したまま、C1に150Aの電力を供給し、C1の窒化物層とC2の窒化物層の混合層を0.1μm被覆した。最表層の被覆も略同様な条件とした。中間層の次に、流量制御した反応ガスを導入した状態でバイアス電圧を−100Vとして本願発明の皮膜を略2μm被覆した。容器内の温度を200℃以下まで冷却した後、試料を取り出した。成膜パラメータは、皮膜形成時の酸素、Ar、窒素の各流量、成膜温度、基体回転数、アーク蒸発源への電力供給及びそのパターンである。成膜パラメータを表1に示す。
Example 1
As the coating method of the present invention, an arc ion plating (hereinafter referred to as AIP) method was used among the PVD methods. The reason for using the AIP method is that coarsening of the crystal grain size can be suppressed at a relatively low temperature, and the crystal grains of the coating can be refined to introduce high residual compressive stress. In the present invention, Ar is not used during film formation, a relatively high gas pressure of 3 to 15 Pa is employed in a mixed gas atmosphere of nitrogen and oxygen, and TA and TB values have an alternately laminated structure of 50 nm or less, respectively. It is characterized by forming a film. In the vacuum container of the used small AIP film forming apparatus, two arc evaporation sources having a magnetic field with a maximum magnetic flux density of 5 mT or more in the vertical direction are mounted on the target surface. The arc evaporation sources are referred to as C1 and C2, respectively. C1 was loaded with a Cr target, and C2 was loaded with an AlCr alloy target. The AlCr alloy target maintained stable discharge with atomic ratios of Al: 50 to 90% and Cr: 10 to 50%. When using an AlCrSi alloy target, stable discharge can be continued in the range of Al: 50 to 80%, Cr: 20 to 50%, and Si: 1 to 10%.
In the present invention, by adopting the following film formation conditions, nitrogen gas reacts to hardly form a nitride, and 90% or more can be present as an oxide. The product was a sub-body. Also, by introducing nitrogen gas, the gas pressure during film formation was increased to reduce the amount of droplets mixed into the film. As a preferred flow rate ratio of oxygen and nitrogen, oxygen: nitrogen was in the range of 1: 100 to 20: 100. The film forming temperature was in the range of 400 to 700 ° C. The bias power source was connected to the substrate, and a negative DC bias voltage was independently applied to the substrate. The negative bias voltage applied to the tool base was in the range of 40 to 250 V, and the arc current was in the range of 80 to 180A. Moreover, although the rotation speed of the tool base depends on the arc current, the TA value and the TB value were controlled to 50 nm or less, respectively, in the range of 2 to 9 rotations per minute. As a substrate for evaluating the hardness, surface roughness, crystal structure, and laminated structure of the coating of the present invention, the Co content is more than 10% by weight, which is mirror-finished so that the surface roughness Ra <10 nm and Ry <100 nm. A test piece of SNMN120408 shape made of a fine particle cemented carbide was used. To evaluate the durability of the coating, a blade end replaceable ball end mill made of an ultrafine particle cemented carbide of Co: 8% by weight was used. Each of the cutting tools was sufficiently degreased and cleaned and placed in a vacuum vessel. In the pre-deposition process, the substrate was cleaned with Ar ions. The substrate was held at a predetermined temperature, and after the internal pressure of the container reached 5 × 10 −3 Pa, Ar gas was introduced, and a bias voltage of −200 V was applied to perform substrate cleaning for 30 minutes. For the coating of the intermediate layer, after cleaning, 1000 sccm of nitrogen was introduced, 150 A power was supplied to C2 at a pressure of 5 to 7 Pa, and the nitride film was coated with about 3 μm. Subsequently, while maintaining the nitrogen gas flow rate, 150 A of electric power was supplied to C1, and a mixed layer of the C1 nitride layer and the C2 nitride layer was coated by 0.1 μm. The outermost layer was coated under substantially the same conditions. Next to the intermediate layer, the film of the present invention was coated at approximately 2 μm with a bias voltage of −100 V in a state where the flow rate-controlled reaction gas was introduced. After cooling the temperature in the container to 200 ° C. or lower, the sample was taken out. The film formation parameters are oxygen, Ar, and nitrogen flow rates during film formation, film formation temperature, substrate rotation speed, power supply to the arc evaporation source, and patterns thereof. Deposition parameters are shown in Table 1.

TA、TB値、皮膜組成、格子連続性、結晶構造などの積層構造を解析するために、電界放射型透過型電子顕微鏡(以下、FE−TEMと記す。)による断面観察を行った。加速電圧200kVで観察し、皮膜の組成分析はエネルギー分散型分析(EDS)による直径1nmの面積を分析した。皮膜の結晶構造の解析は直径1250nmの制限視野回折像の撮影をカメラ長50cmで行った。TA、TB値はFE−TEMの断面写真から実測した。積層数が10層未満のときは全ての層の平均値とし、10層以上のときは測定対象の層数の平均値とした。値は10nm以下を四捨五入した。皮膜の平滑性を評価は、接触式面粗さ測定器でRa値、Rz値を測定した。皮膜の破断面観察は、電界放射型走査型電子顕微鏡(以下、FE−SEMと記す。)で行った。ノッチ加工を行った後に強制的に破断して、倍率10k倍で観察した。皮膜の硬度測定は、ナノインデンテーション装置を用いた。試験片を5度傾け鏡面研磨後、皮膜の研磨面内で最大押し込み深さが膜厚の略1/10未満となる所を選定した。このとき略1/5でも基体の影響はなかった。押込み荷重49mN、最大荷重保持時間1秒、荷重負荷後の除去速度0.49mN/秒の測定条件で10点測定し、平均値を求めた。本測定方法の皮膜硬さは、圧子の微細形状、測定時の温度、湿度、試料の表面状態に左右され易く、測定値は必ずしもビッカース硬さと一致しない。そこで、単結晶Siとの相対比較を行った。単結晶Siの皮膜硬さは12GPaであった。皮膜の結晶構造の解析は、X線回折(XRD)装置を用いた。管電圧120kV、管電流40μm、X線源Cukα、X線入射角5度、X線入射スリット0.4mm、2θを20〜70度とした。測定結果を表2に示した。   In order to analyze the laminated structure such as TA, TB value, film composition, lattice continuity, and crystal structure, cross-sectional observation was performed with a field emission transmission electron microscope (hereinafter referred to as FE-TEM). The film was observed at an acceleration voltage of 200 kV, and the composition of the film was analyzed for an area of 1 nm in diameter by energy dispersive analysis (EDS). For analysis of the crystal structure of the film, a limited-field diffraction image having a diameter of 1250 nm was taken with a camera length of 50 cm. TA and TB values were measured from a cross-sectional photograph of FE-TEM. When the number of layers was less than 10 layers, the average value of all layers was used, and when the number of layers was 10 layers or more, the average value of the number of layers to be measured was used. The value was rounded off to the nearest 10 nm. The smoothness of the film was evaluated by measuring Ra and Rz values with a contact-type surface roughness measuring instrument. Observation of the fracture surface of the film was performed with a field emission scanning electron microscope (hereinafter referred to as FE-SEM). After notching, the sample was forcibly broken and observed at a magnification of 10k. The film hardness was measured using a nanoindentation device. After the specimen was mirror-polished by tilting 5 degrees, a place where the maximum indentation depth was less than about 1/10 of the film thickness within the polished surface of the film was selected. At this time, there was no influence of the substrate even at about 1/5. Ten points were measured under the measurement conditions of an indentation load of 49 mN, a maximum load holding time of 1 second, and a removal speed after loading of 0.49 mN / second, and an average value was obtained. The film hardness of this measurement method is easily influenced by the fine shape of the indenter, the temperature and humidity at the time of measurement, and the surface state of the sample, and the measured value does not necessarily match the Vickers hardness. Therefore, a relative comparison with single crystal Si was performed. The film hardness of single crystal Si was 12 GPa. An X-ray diffraction (XRD) apparatus was used for analysis of the crystal structure of the film. The tube voltage was 120 kV, the tube current was 40 μm, the X-ray source Cukα, the X-ray incident angle was 5 degrees, the X-ray incident slit was 0.4 mm, and 2θ was 20 to 70 degrees. The measurement results are shown in Table 2.

図1に本発明例6、図2に従来例38の皮膜膜断面のFE−SEM像を示す。両者の膜断面組織とを比較すると、本発明例6の膜断面組織は結晶粒子が微細化し、膜表面の平滑性も従来例38に対して優れていた。従来例38は粒子が粗大であり、粒子間に隙間が存在し低硬度であった。また、表面粗さを比較すると、本発明例6のRa値は12nm、従来例38は34nmと凹凸が存在した。従来例39も表面が粗く低硬度であった。図3に本発明例1のXRD回折結果を示す。A層に対応したピークとB層に対応したピークを認めた。2種の格子定数の異なるコランダム型の結晶構造を有した皮膜を層厚方向に交互積層することにより、層界面で格子歪が発生し高硬度化が達成された。図4、5に本発明例6の断面構造解析結果を示す。図4は皮膜断面のFE−TEM像、図5は1250nmφの制限視野回折像を示す。図4から交互の積層構造の存在が確認できた。図5の制限視野回折像の回折パターンから、コランダム構造を確認できた。図6は、図4の符号1に示す粒子の高倍率TEM像、図7は、図4の符号1に示す粒子の140nmφの制限視野回折像を示す。図7から、積層構造を有する粒子は同一の結晶構造を有して成長していた。図8は図6に示す粒子の高倍率TEM像であり、図8に分析スポット1、2を示す。図9は分析スポット1の、図10は分析スポット2の1nmφの極微電子線回折写真を示す。EDS分析結果から分析スポット1はB層、分析スポット2はA層であった。図8、9、10から、B層とA層は略同一の結晶構造、方位関係を保ちエピタキシャルに成長し、界面の格子連続性を有し、良い密着状態を確認した。図11に図8の粒子の暗視野STEM像を示し、図11の分析スポット1〜4のEDS分析による皮膜組成を表3に示す。   FIG. 1 shows an FE-SEM image of the cross section of the coating film of Example 6 of the present invention and FIG. Comparing the two film cross-sectional structures, the film cross-sectional structure of Example 6 of the present invention was finer in crystal grains, and the smoothness of the film surface was superior to that of Conventional Example 38. In Conventional Example 38, the particles were coarse and there was a gap between the particles, resulting in low hardness. Further, when the surface roughness was compared, the Ra value of Invention Example 6 was 12 nm, and the Conventional Example 38 was 34 nm. Conventional Example 39 also had a rough surface and low hardness. FIG. 3 shows the XRD diffraction results of Example 1 of the present invention. A peak corresponding to the A layer and a peak corresponding to the B layer were observed. By alternately laminating two types of films having corundum type crystal structures having different lattice constants in the layer thickness direction, lattice strain was generated at the layer interface, and high hardness was achieved. 4 and 5 show the sectional structure analysis results of Example 6 of the present invention. FIG. 4 shows an FE-TEM image of the film cross section, and FIG. 5 shows a limited field diffraction image of 1250 nmφ. From FIG. 4, the existence of an alternate laminated structure was confirmed. The corundum structure was confirmed from the diffraction pattern of the limited field diffraction image of FIG. 6 shows a high-magnification TEM image of the particle indicated by reference numeral 1 in FIG. 4, and FIG. 7 shows a 140 nmφ limited-field diffraction image of the particle indicated by reference numeral 1 in FIG. From FIG. 7, the particles having a stacked structure grew with the same crystal structure. FIG. 8 is a high-magnification TEM image of the particles shown in FIG. 6, and analysis spots 1 and 2 are shown in FIG. 9 shows an analysis spot 1 and FIG. 10 shows a 1 nmφ micro electron diffraction photograph of the analysis spot 2. From the EDS analysis results, analysis spot 1 was layer B and analysis spot 2 was layer A. 8, 9, and 10 confirm that the B layer and the A layer grew epitaxially while maintaining substantially the same crystal structure and orientation, had lattice continuity at the interface, and confirmed good adhesion. FIG. 11 shows a dark field STEM image of the particles of FIG. 8, and Table 3 shows the film composition of the analysis spots 1 to 4 of FIG.

表3に分析した面積が1μm×1μmと、1nmφのときの値を示す。図11と図8の分析スポット1、2は対応している。図11、表3から、分析スポット1、3はB層、分析スポット2、4はA層、であった。FE−TEM解析結果から、A層、B層の存在とTA、TA値、結晶構造、格子連続性が明確に示され、本願発明の皮膜が高硬度と優れた耐酸化性を兼ね備え、優れた耐摩耗性を示すことを確認した。   Table 3 shows values when the analyzed area is 1 μm × 1 μm and 1 nmφ. The analysis spots 1 and 2 in FIGS. 11 and 8 correspond to each other. From FIG. 11 and Table 3, analysis spots 1 and 3 were the B layer, and analysis spots 2 and 4 were the A layer. From the FE-TEM analysis results, the presence of the A layer and the B layer and the TA, TA value, crystal structure, and lattice continuity are clearly shown, and the film of the present invention has high hardness and excellent oxidation resistance, and is excellent. It was confirmed to show wear resistance.

(実施例2)
本願発明の皮膜の耐久性評価は、刃先交換式ボールエンドミルによる耐摩耗性を下記の試験条件で実施した。使用した工具は、日立ツール製の超硬合金製インサート、直径32mmである。耐摩耗性の評価は、2300m加工後の逃げ面摩耗幅で評価した。逃げ面摩耗幅が0.15mm未満のものは効果有りと判断した。評価結果を表2に併記した。
(試験条件)
切削方法:10度傾斜面の等高線切削
被削材 :FCD540
切り込み:軸方向、0.3mm、径方向、0.3mm
主軸回転数:毎分12000回転
テーブル送り:10800mm/min
1刃送り量:0.45mm/刃
切削油 :なし、エアブロー
(Example 2)
For the durability evaluation of the coating of the present invention, the wear resistance by a blade end replaceable ball end mill was performed under the following test conditions. The tool used is a cemented carbide insert made by Hitachi Tool, a diameter of 32 mm. The wear resistance was evaluated by the flank wear width after 2300 m processing. A flank wear width of less than 0.15 mm was judged to be effective. The evaluation results are also shown in Table 2.
(Test conditions)
Cutting method: Contour cutting of 10 ° inclined surface Work material: FCD540
Cutting depth: axial direction, 0.3 mm, radial direction, 0.3 mm
Spindle speed: 12,000 revolutions per minute Table feed: 10800 mm / min
1-blade feed amount: 0.45 mm / blade Cutting oil: None, air blow

本発明例1、2と比較例24、25は、C1、C2を同時稼動し、基体回転数を変化させることによりTA、TB値と積層構造が耐酸化性、耐摩耗性に及ぼす影響を比較した。TA、TB値が50nm以下の本発明例1、2はコランダム構造の酸化物が得られ、27GPa以上の高硬度を示した。比較例24、25は22GPa以下であった。本発明例3、比較例26〜33は、TA、TB値の特性に及ぼす影響を比較のため、C1とC2ターゲットを交互稼動し、周期を変化させて積層構造を変化させた。本発明例3は、B層を工具基体側、A層を表面側に被覆した。TA、TB値が50nm以下の本発明例3はコランダム構造を示した。TA、TB値の少なくとも一方が50nmを超える比較例26〜33はγ型の結晶構造であり、皮膜は低硬度で耐摩耗性の改善には至らなかった。本発明例4〜8は、C1とC2を同時に稼動し、アーク電流を変化させ積層構造を変化させて成膜して積層構造の影響を比較した。本発明例4〜8はTA、TB値が50nm以下、コランダム構造が得られた。本発明例6のRa値は12nm、従来例38は34nmと凹凸が存在した。これより被削材が凝着して耐摩耗性は改善しなかった。従来例39も表面が粗く低硬度であり、突起状の粒子に被削材が凝着し、皮膜の脱落、剥離が起こり摩耗進行を早める欠点を有していた。本発明例は高硬度で平滑化され、切削工具の摩耗幅は従来例に比べ半分以下であった。C1はアーク電流を100A以上、C2は100A以下とすることにより、TA/TB値が1以上となり、皮膜硬度が向上して切削工具の摩耗幅が減少して耐摩耗性の改善効果が顕著だった。本発明例4〜8と積層構造を持たない比較例34、35、36を比較した。比較例34、35はγ型結晶構造、比較例36は非晶質構造であり切削工具の耐摩耗性改善はできなかった。比較例37は、B層にCrを含まず非晶質構造で、本発明例1に比べ耐摩耗性が劣った。また、AIP法でCrNを被覆し酸化処理の後に、スパッタ法により2.8kWでAl酸化物を被覆した従来例38と、同様にAlCr酸化物を被覆した従来例39は、TA、TB値が大きく表面が粗く低硬度のため、突起状の酸化物粒子に被削材が凝着して皮膜が脱落剥離し、摩耗進行が早かった。更に、夫々(TiAl)Nと(AlCr)Nとを被覆した従来例40と41は、耐摩耗性の改善は得られなかった。
TA、TB値が30nm以下の本発明例6、7と、30nmを超え50nm以下の本発明例1から5、8を比較した。本発明例6、7は逃げ面摩耗幅が0.1mm以下、摩耗状態も均一であり、突発的なチッピングや異常摩耗の発生が抑制され耐酸化性、耐摩耗性に優れた。TA、TB値を30nm以下とすることにより、皮膜の結晶性が向上し、A層、B層はエピタキシャルに成長しながら、界面が増加する。その結果、高硬度化した。TA/TB値が1の本発明例1〜3、5と、1より大きい本発明例4、6〜8とを比較した。本発明例4、6〜8は逃げ面摩耗幅が0.11mm以下、摩耗状態も均一で突発的なチッピングや異常摩耗の発生が抑制され、耐酸化性、耐摩耗性に優れた。TA/TB値が大きいときTB層の結晶性が向上し、耐酸化性、耐熱安定性が向上した。A層、B層の格子が連続成長した本発明例4、6〜8と、連続成長の無い本発明例1〜3、5を比較した。連続成長が存在することにより、刃先の摩耗状態の均一性が向上し、突発的なチッピングや異常摩耗の発生が抑制され、耐酸化性、耐摩耗性に優れた。連続成長の条件は、TB値を20nm以下とすることにより達成できた。
Inventive Examples 1 and 2 and Comparative Examples 24 and 25 compare the effects of TA, TB values and laminated structure on oxidation resistance and wear resistance by simultaneously operating C1 and C2 and changing the number of rotations of the substrate. did. Invention Examples 1 and 2 having TA and TB values of 50 nm or less gave oxides having a corundum structure, and showed high hardness of 27 GPa or more. The comparative examples 24 and 25 were 22 GPa or less. In Invention Example 3 and Comparative Examples 26 to 33, for comparison of the effects on the characteristics of TA and TB values, C1 and C2 targets were alternately operated, and the laminated structure was changed by changing the period. In Invention Example 3, the B layer was coated on the tool base side and the A layer was coated on the surface side. Invention Example 3 having a TA and TB value of 50 nm or less showed a corundum structure. Comparative Examples 26 to 33 in which at least one of the TA and TB values exceeded 50 nm had a γ-type crystal structure, and the coating film had low hardness and did not improve the wear resistance. In Invention Examples 4 to 8, C1 and C2 were simultaneously operated, the arc current was changed to change the laminated structure, and the effects of the laminated structure were compared. In Invention Examples 4 to 8, a TA and TB value of 50 nm or less and a corundum structure were obtained. The Ra value of Invention Example 6 was 12 nm, and Conventional Example 38 was 34 nm. As a result, the work material adhered and the wear resistance did not improve. Conventional Example 39 also has the disadvantage that the surface is rough and has low hardness, and the work material adheres to the protruding particles, causing the film to fall off and peel off, thereby accelerating the progress of wear. The inventive example was smoothed with high hardness, and the wear width of the cutting tool was less than half that of the conventional example. C1 has an arc current of 100 A or more, and C2 is 100 A or less, so that the TA / TB value becomes 1 or more, the coating hardness increases, the wear width of the cutting tool decreases, and the effect of improving wear resistance is remarkable. It was. Inventive Examples 4 to 8 and Comparative Examples 34, 35 and 36 having no laminated structure were compared. Since Comparative Examples 34 and 35 had a γ-type crystal structure and Comparative Example 36 had an amorphous structure, the wear resistance of the cutting tool could not be improved. In Comparative Example 37, the B layer did not contain Cr and had an amorphous structure, and the wear resistance was inferior to that of Inventive Example 1. In addition, the conventional example 38 in which AlN is coated at 2.8 kW by sputtering after coating with CrN by the AIP method and the conventional example 39 in which the AlCr oxide is coated in the same manner have TA and TB values. Due to the large and rough surface and low hardness, the work material adhered to the protruding oxide particles, and the coating peeled off and the progress of wear was rapid. Furthermore, the conventional examples 40 and 41 coated with (TiAl) N and (AlCr) N, respectively, did not improve the wear resistance.
Invention Examples 6 and 7 having TA and TB values of 30 nm or less were compared with Invention Examples 1 to 5, and 8 of more than 30 nm and 50 nm or less. In Invention Examples 6 and 7, the flank wear width was 0.1 mm or less, the wear state was uniform, sudden chipping and abnormal wear were suppressed, and the oxidation resistance and wear resistance were excellent. By setting the TA and TB values to 30 nm or less, the crystallinity of the coating is improved, and the interface increases while the A and B layers grow epitaxially. As a result, the hardness was increased. Invention Examples 1 to 3 and 5 having a TA / TB value of 1 were compared with Invention Examples 4 and 6 to 8 which were greater than 1. In Invention Examples 4 and 6 to 8, the flank wear width was 0.11 mm or less, the wear state was uniform, the occurrence of sudden chipping and abnormal wear was suppressed, and the oxidation resistance and wear resistance were excellent. When the TA / TB value was large, the crystallinity of the TB layer was improved, and the oxidation resistance and heat stability were improved. Inventive Examples 4 and 6 to 8 in which the lattices of the A layer and the B layer were continuously grown were compared with Inventive Examples 1 to 3 and 5 having no continuous growth. The presence of continuous growth improves the uniformity of the wear state of the cutting edge, suppresses sudden chipping and abnormal wear, and has excellent oxidation resistance and wear resistance. The conditions for continuous growth could be achieved by setting the TB value to 20 nm or less.

一方、比較例9〜13はC2のみを稼動し、Arと酸素の流量比率を変化させて成膜した。Arのみのときはγ型の酸化物皮膜であり、皮膜表面は粗く低硬度でドロップレットが多く見られた。比較例14〜20もC2のみを稼動し、酸素と窒素の流量比率を変化させてガス種と流量比の影響を比較した。Arに比べ皮膜表面のドロップレットが低減し平滑性は優れたが、γ型の酸化物皮膜となり低硬度であった。窒素と酸素の混合ガスを用いて成膜することにより、皮膜の窒素含有量が低く、金属:酸素の比が2:3の酸化物皮膜が得られた。特に窒素:酸素の比が、7〜11:1〜5の条件では、窒素含有量が3%以下の平滑性に優れた酸化物皮膜が得られた。比較例17、21〜23は、成膜温度の影響を比較した。400〜700℃の範囲では何れもγ型酸化物皮膜であった。AIP法による皮膜の結晶構造は温度に無関係であり、600℃以下でもコランダム型の酸化物皮膜が得られた。A層上にB層を被覆した比較例26は、γ型酸化物皮膜であった。摩耗状態が不安定で複数のチッピングが確認され、耐酸化性と耐摩耗性の改善はできなかった。   On the other hand, Comparative Examples 9-13 operated only C2, and changed the flow rate ratio of Ar and oxygen to form films. When only Ar was used, it was a γ-type oxide film, and the film surface was rough and low in hardness, and many droplets were observed. In Comparative Examples 14 to 20, only C2 was operated, and the influence of the gas type and the flow rate ratio was compared by changing the flow rate ratio of oxygen and nitrogen. Compared to Ar, the droplets on the surface of the film were reduced and the smoothness was excellent, but it became a γ-type oxide film and had a low hardness. By forming a film using a mixed gas of nitrogen and oxygen, an oxide film having a low nitrogen content and a metal: oxygen ratio of 2: 3 was obtained. In particular, when the nitrogen: oxygen ratio was 7 to 11: 1 to 5, an oxide film excellent in smoothness with a nitrogen content of 3% or less was obtained. In Comparative Examples 17, 21 to 23, the influence of the film formation temperature was compared. In the range of 400 to 700 ° C., all were γ-type oxide films. The crystal structure of the film by the AIP method is independent of temperature, and a corundum type oxide film was obtained even at 600 ° C. or lower. Comparative Example 26 in which the B layer was coated on the A layer was a γ-type oxide film. The wear state was unstable and multiple chippings were confirmed, and the oxidation resistance and wear resistance could not be improved.

(実施例3)
本発明例6と同一成膜条件を用い、本発明例42〜50、比較例51、52を作成した。ここではA層が、Crの1部をSi、W、硼素から選択される1種以上で置換し、B層が、Al、Crの1部をNb、Si、W、Y、硼素から選択される1種以上で置換する効果を確認した。本発明例42〜50のTA、TB値は本発明例6と略同一とした。本発明例42〜50、比較例51、52は全てC2の組成を有する窒化物を中間層として2μm、また最表層も窒化物を0.05〜0.2μmの範囲で被覆した。中間層の被覆条件は実施例1と同一とした。表4に使用したターゲット組成を示す。
(Example 3)
Using the same film forming conditions as in Invention Example 6, Invention Examples 42 to 50 and Comparative Examples 51 and 52 were prepared. Here, the A layer replaces one part of Cr with one or more selected from Si, W, and boron, and the B layer selects one part of Al and Cr from Nb, Si, W, Y, and boron. The effect of substituting with one or more was confirmed. The TA and TB values of Invention Examples 42 to 50 were substantially the same as those of Invention Example 6. Inventive Examples 42 to 50 and Comparative Examples 51 and 52 were all coated with nitride having a C2 composition as an intermediate layer of 2 μm, and the outermost layer was coated with nitride in a range of 0.05 to 0.2 μm. The coating conditions for the intermediate layer were the same as in Example 1. Table 4 shows the target composition used.

本願発明の皮膜は、切削工具の耐酸化性と耐摩耗性を改善できた。本発明例42のAlCrNb系は、Al含有量を75%まで高めてもコランダム構造の皮膜が得られた。Nbは皮膜のコランダム化を助長し、高硬度化に貢献した。本発明例43と比較例51を比較すると、AlとSiの含有量の和を70%以下とすることが好ましい。特にSiは皮膜の結晶粒が微細化し、高硬度化と平滑性が得られ、耐摩耗性が改善した。本発明例45は、結晶粒子が微細化し平滑性が向上した。W、Yは耐酸化性向上に有効であり、耐摩耗性改善に有効であった。硼素は皮膜のコランダム化の助長に加え、潤滑性の改善にも有効であり、耐摩耗性の改善に有効であった。一方、比較例51、52のTA/TB値は本願発明規定の範囲よりも大きく、B層がAlCrSi系の比較例51は、非晶質構造で低硬度を示し、AlCrTi系の比較例52は、コランダム構造とγ型の2種を確認したが、Ti添加の場合、皮膜は低硬度を示した。これは粗大なTi酸化物が形成され、結晶粒子径が大きくなったからである。何れも、耐摩耗性の改善効果が得られなかった。   The coating of the present invention was able to improve the oxidation resistance and wear resistance of the cutting tool. With the AlCrNb system of Invention Example 42, a film having a corundum structure was obtained even when the Al content was increased to 75%. Nb contributed to the increase in hardness by promoting corundum formation of the film. Comparing the inventive example 43 and the comparative example 51, it is preferable that the sum of the contents of Al and Si is 70% or less. In particular, with Si, the crystal grains of the film became finer, higher hardness and smoothness were obtained, and wear resistance was improved. In Invention Example 45, the crystal grains became fine and the smoothness improved. W and Y were effective in improving oxidation resistance and effective in improving wear resistance. Boron was effective in improving the lubricity as well as promoting the corundum formation of the film, and was effective in improving the wear resistance. On the other hand, the TA / TB value of Comparative Examples 51 and 52 is larger than the range specified in the present invention, and Comparative Example 51 in which the B layer is an AlCrSi type shows an amorphous structure and low hardness, and the Comparative Example 52 of AlCrTi type is Two types of corundum structure and γ type were confirmed. When Ti was added, the film showed low hardness. This is because coarse Ti oxide is formed and the crystal grain size is increased. In any case, the effect of improving the wear resistance was not obtained.

(実施例4)
本願発明の皮膜をソリッドドリルに適用し工具寿命を評価した。ソリッドドリルは日立ツール製、直径6mm、基体はCo:10%の超微粒超硬合金製、硬度がHRA92.3である。被覆方法は実施例1と同一とした。中間層の(TiAl)Nを略3μm被覆した後、本発明例6、従来例38、39の皮膜を略2μm被覆し、これらを夫々本発明例53、従来例54、55とした。また、従来例40、41被覆したものを従来例56、57とした。これらを下記の試験条件で工具寿命を評価した。評価は、コーナー部の逃げ面摩耗幅が0.2mmに達した時点の加工穴数又は加工を継続することが出来ない欠損、チッピング等が生じた加工穴数とした。加工穴数は100穴未満を切捨て、3本の平均寿命とした。評価結果を表5に示す。
(試験条件)
切削方法:止まり穴加工、穴深さ6mm
クーラント:MQL内部給油
被削材:FCD700
主軸回転数:毎分12k回転
送り:0.2mm/回転
Example 4
The coating life of the present invention was applied to a solid drill to evaluate the tool life. The solid drill is made by Hitachi Tool, the diameter is 6 mm, the base is made of ultrafine cemented carbide with Co: 10%, and the hardness is HRA92.3. The coating method was the same as in Example 1. After coating about 3 μm of (TiAl) N of the intermediate layer, coatings of Example 6 and Conventional Examples 38 and 39 were coated with approximately 2 μm, which were referred to as Inventive Example 53 and Conventional Examples 54 and 55, respectively. Conventional examples 40 and 41 were coated as conventional examples 56 and 57, respectively. These were evaluated for tool life under the following test conditions. Evaluation was made into the number of the processing holes when the flank wear width of the corner part reached 0.2 mm, or the number of processing holes in which the chipping, chipping or the like that could not be continued. The number of processed holes was cut off less than 100 holes, and the average life of the three holes was determined. The evaluation results are shown in Table 5.
(Test conditions)
Cutting method: blind hole processing, hole depth 6mm
Coolant: MQL internal lubrication Work material: FCD700
Spindle speed: 12k / min Feed: 0.2mm / rotation

本発明例53は従来例に比べ3倍以上の加工穴数という長寿命を示し、本願発明の被覆ドリルが優れた耐酸化性と耐摩耗性を有することを確認した。   Invention Example 53 showed a long service life of three times or more the number of processed holes as compared with the conventional example, and it was confirmed that the coated drill of the present invention has excellent oxidation resistance and wear resistance.

図1は、本発明例6の皮膜断面のFE−SEM像を示す。FIG. 1 shows an FE-SEM image of the film cross section of Example 6 of the present invention. 図2は、従来例38の皮膜断面のFE−SEM像を示す。FIG. 2 shows an FE-SEM image of the cross section of the film of Conventional Example 38. 図3は、本発明例1のXRD回折結果を示す。FIG. 3 shows the XRD diffraction result of Example 1 of the present invention. 図4は、本発明例6の皮膜断面のTEM像を示す。FIG. 4 shows a TEM image of a cross section of the film of Example 6 of the present invention. 図5は、本発明例6の1250nmφの制限視野回折像を示す。FIG. 5 shows a 1250 nmφ restricted field diffraction image of Example 6 of the present invention. 図6は、図4の符号1に示す粒子の高倍率TEM像を示す。FIG. 6 shows a high-magnification TEM image of the particle indicated by reference numeral 1 in FIG. 図7は、図4の符号1に示す粒子の140nmφの制限視野回折像を示す。FIG. 7 shows a 140 nmφ limited-field diffraction image of the particle indicated by reference numeral 1 in FIG. 図8は、図4の符号1に示す粒子の高倍率TEM像を示す。FIG. 8 shows a high-magnification TEM image of the particle indicated by reference numeral 1 in FIG. 図9は、図8中の分析スポット1の極微電子線回折写真を示す。FIG. 9 shows a microscopic electron diffraction photograph of analysis spot 1 in FIG. 図10は、図8中の分析スポット2の極微電子線回折写真を示す。FIG. 10 shows a microscopic electron diffraction photograph of the analysis spot 2 in FIG. 図11は、図8の粒子の暗視野STEM像を示す。FIG. 11 shows a dark field STEM image of the particles of FIG.

符号の説明Explanation of symbols

1:粒子   1: Particle

Claims (5)

工具基体に物理蒸着により皮膜を被覆し、該皮膜はA層とB層とを有し、該A層は周期律表4a、5a、6a族元素、Si、Y、硼素の酸化物、窒化物、硼化物から選択される1種以上、該B層は周期律表4a、5a、6a族元素、Al、Si、Y、硼素の酸化物、窒化物、硼化物から選択される2種以上を有し、該A層と該B層とを被覆した被覆工具において、該A層はCrの酸化物を主体、窒化物、硼化物を副体とし、該B層はAl、Crの酸化物を主体、窒化物、硼化物を副体とし、該皮膜は該A層と該B層との交互積層構造を有し、該A層の層厚(nm)をTA、該B層の層厚(nm)をTBとしたとき、該TA値、該TB値が夫々TA≦50、TB≦50、膜厚比をTA/TBとしたとき、1≦TA/TB≦5、であることを特徴とする被覆工具。 A tool substrate is coated with a film by physical vapor deposition, and the film has an A layer and a B layer, and the A layer is a periodic table 4a, 5a, 6a group element, Si, Y, boron oxide, nitride One or more selected from borides, and the B layer contains two or more selected from Periodic Table 4a, 5a and 6a group elements, Al, Si, Y, boron oxides, nitrides and borides. In the coated tool in which the A layer and the B layer are coated, the A layer is mainly composed of an oxide of Cr, nitride and boride are sub-substances, and the B layer is composed of an oxide of Al and Cr. The main body, nitride, and boride are used as sub-substances, and the film has an alternately laminated structure of the A layer and the B layer, the layer thickness (nm) of the A layer is TA, and the layer thickness of the B layer ( nm) when TB is TA, the TB value is TA ≦ 50 and TB ≦ 50, and when the film thickness ratio is TA / TB, 1 ≦ TA / TB ≦ 5 Coated tools to be. 請求項1記載の被覆工具において、該TA値、該TB値が夫々TA≦30、TB≦30、であることを特徴とする被覆工具。 The coated tool according to claim 1, wherein the TA value and the TB value are TA ≦ 30 and TB ≦ 30, respectively. 請求項1又は2記載の被覆工具において、該A層は、Crの1部をSi、W、硼素から選択される1種以上で置換、該B層は、Al、Crの1部をNb、Si、W、Y、硼素から選択される1種以上で置換したことを特徴とする被覆工具。 3. The coated tool according to claim 1, wherein in the layer A, a part of Cr is replaced with one or more selected from Si, W, and boron, and the layer B is formed by replacing a part of Al and Cr with Nb, A coated tool substituted with one or more selected from Si, W, Y, and boron. 請求項1から請求項3何れかに記載の被覆工具において、該工具基体と該皮膜との間には窒化物を含有する中間層、最表面は窒化物を含有する最表層を被覆したことを特徴とする被覆工具。 4. The coated tool according to claim 1, wherein an intermediate layer containing nitride is coated between the tool base and the coating, and an outermost layer containing nitride is coated on the outermost surface. Feature coated tool. 請求項1から請求項3何れかに記載の被覆工具において、該B層は該工具基体側、該A層は表面側に被覆したことを特徴とする被覆工具。 4. The coated tool according to claim 1, wherein the B layer is coated on the tool base side, and the A layer is coated on the surface side.
JP2008000854A 2008-01-08 2008-01-08 Coated tool Active JP4850189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000854A JP4850189B2 (en) 2008-01-08 2008-01-08 Coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000854A JP4850189B2 (en) 2008-01-08 2008-01-08 Coated tool

Publications (2)

Publication Number Publication Date
JP2009160692A true JP2009160692A (en) 2009-07-23
JP4850189B2 JP4850189B2 (en) 2012-01-11

Family

ID=40963882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000854A Active JP4850189B2 (en) 2008-01-08 2008-01-08 Coated tool

Country Status (1)

Country Link
JP (1) JP4850189B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280853A (en) * 2008-05-21 2009-12-03 Osg Corp Hard coating film and tool coated with the hard coating film
JP2012149332A (en) * 2011-01-19 2012-08-09 Hitachi Tool Engineering Ltd Hard film-coated die and method for manufacturing the same
JP2015518522A (en) * 2012-04-22 2015-07-02 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,トリュープバッハ Arc-deposited Al-Cr-O coating using Si with enhanced coating properties
WO2019044714A1 (en) * 2017-08-29 2019-03-07 京セラ株式会社 Coated tool and cutting tool provided with same
WO2019044715A1 (en) * 2017-08-29 2019-03-07 京セラ株式会社 Coated tool and cutting tool provided with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332004A (en) * 2003-04-30 2004-11-25 Kobe Steel Ltd Alumina protective film, and its production method
JP2007130708A (en) * 2005-11-09 2007-05-31 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance in heavy cutting
JP2007168032A (en) * 2005-12-22 2007-07-05 Mitsubishi Materials Corp Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition
JP2010506049A (en) * 2006-10-10 2010-02-25 エーリコン・トレイディング・アーゲー・トリューバッハ Coating system having at least one mixed oxide mixed crystal coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332004A (en) * 2003-04-30 2004-11-25 Kobe Steel Ltd Alumina protective film, and its production method
JP2007130708A (en) * 2005-11-09 2007-05-31 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance in heavy cutting
JP2007168032A (en) * 2005-12-22 2007-07-05 Mitsubishi Materials Corp Surface-coated cutting tool with hard covered layer displaying excellent abrasion resistance and chipping resistance under high speed heavy cutting condition
JP2010506049A (en) * 2006-10-10 2010-02-25 エーリコン・トレイディング・アーゲー・トリューバッハ Coating system having at least one mixed oxide mixed crystal coating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280853A (en) * 2008-05-21 2009-12-03 Osg Corp Hard coating film and tool coated with the hard coating film
JP2012149332A (en) * 2011-01-19 2012-08-09 Hitachi Tool Engineering Ltd Hard film-coated die and method for manufacturing the same
JP2015518522A (en) * 2012-04-22 2015-07-02 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,トリュープバッハ Arc-deposited Al-Cr-O coating using Si with enhanced coating properties
WO2019044714A1 (en) * 2017-08-29 2019-03-07 京セラ株式会社 Coated tool and cutting tool provided with same
WO2019044715A1 (en) * 2017-08-29 2019-03-07 京セラ株式会社 Coated tool and cutting tool provided with same
JPWO2019044714A1 (en) * 2017-08-29 2020-09-17 京セラ株式会社 Covering tool and cutting tool equipped with it
JPWO2019044715A1 (en) * 2017-08-29 2020-09-17 京セラ株式会社 Covering tool and cutting tool equipped with it

Also Published As

Publication number Publication date
JP4850189B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
KR101170943B1 (en) Hard coating and its forming method, and hard-coated tool
KR101170396B1 (en) Hard coating and its production method
JP2006281363A (en) Surface coated member and surface coated cutting tool
KR20130098861A (en) Cutting tool
WO2017174801A1 (en) Coated cutting tool
KR20170059421A (en) Coated cutting tool
JP3963354B2 (en) Coated cutting tool
JPWO2019098363A1 (en) Coated cutting tools
JP4850189B2 (en) Coated tool
JP2008264971A (en) Hard coat cutting tool
WO2017010374A1 (en) Coating
JP2012228735A (en) Coated tool excellent in wear resistance and method for manufacturing the same
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP4958134B2 (en) Hard coating tool
JP4975682B2 (en) Method for manufacturing coated cutting tool
JP2007291471A (en) Oxidation-resistant coating film, and member coated by the coating film
JP2007119810A (en) Coated member
KR102172454B1 (en) Multi-layer coated cutting tool material, method of manufacturing the same, and cutting tool insert for mechanical work having the same
JP2004136430A (en) Coated tool
JP4850204B2 (en) Coated tool
JP2006118051A (en) Method for producing hard film
JP6759536B2 (en) Cover cutting tool
KR102480241B1 (en) cloth cutting tool
JP6743350B2 (en) Cutting tools
JP6743349B2 (en) Cutting tools

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4850189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350