JP4748446B2 - Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials - Google Patents
Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials Download PDFInfo
- Publication number
- JP4748446B2 JP4748446B2 JP2005348880A JP2005348880A JP4748446B2 JP 4748446 B2 JP4748446 B2 JP 4748446B2 JP 2005348880 A JP2005348880 A JP 2005348880A JP 2005348880 A JP2005348880 A JP 2005348880A JP 4748446 B2 JP4748446 B2 JP 4748446B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting
- hard coating
- nitride
- hard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
この発明は、硬質被覆層がすぐれた耐熱性、高温硬さ、高温強度および潤滑性を具備し、したがって、軸受鋼やマンガン鋼の焼入れ材などの硬質難削材の切削加工に用いた場合にも、すぐれた耐チッピング性を発揮する、立方晶窒化ほう素基超高圧焼結材料で構成された切削工具基体の表面に硬質被覆層を形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(以下、被覆cBN基焼結工具という)に関するものである。 The present invention provides a hard coating layer having excellent heat resistance, high temperature hardness, high temperature strength and lubricity, and therefore when used for cutting hard difficult-to-cut materials such as hardened materials of bearing steel and manganese steel. Surface-coated cubic boron nitride-based ultra-high pressure sintering with a hard coating layer on the surface of a cutting tool base made of cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance The present invention relates to a material cutting tool (hereinafter referred to as a coated cBN-based sintered tool).
一般に、被覆cBN基焼結工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップや、前記スローアウエイチップを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミルなどが知られている。 In general, a coated cBN-based sintered tool can be attached to a throwaway tip that is detachably attached to the tip of a cutting tool for turning various work materials such as steel and cast iron, and the throwaway tip can be detachably attached. There are known slow-away end mills that are attached and cut in the same manner as solid type end mills used for chamfering, grooving, and shoulder machining.
また、被覆cBN基焼結工具としては、各種の立方晶窒化ほう素基超高圧焼結材料(以下、cBN基焼結材料という)で構成された工具本体の表面に、Ti窒化物(TiN)層、TiとAlの複合窒化物層、CrとSiの複合窒化物層、TiとCrとSiの複合窒化物層などの表面被覆層を蒸着形成してなる被覆cBN基焼結工具が知られており、これらが例えば各種の鋼や鋳鉄などの切削加工に用いられていることも知られている。 In addition, as a coated cBN-based sintered tool, Ti nitride (TiN) is formed on the surface of a tool body made of various cubic boron nitride-based ultrahigh pressure sintered materials (hereinafter referred to as cBN-based sintered materials). A coated cBN-based sintered tool is known in which a surface coating layer such as a layer, a Ti / Al composite nitride layer, a Cr / Si composite nitride layer, or a Ti / Cr / Si composite nitride layer is deposited. It is also known that these are used for cutting various steels and cast irons, for example.
さらに、上記の被覆cBN基焼結工具が、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃に加熱した状態で、金属Tiや、それぞれ所定の組成を有するTi−Al合金、Cr−Si合金、Ti−Cr−Si合金などからなるカソード電極(蒸発源)と、アノード電極との間に、例えば90Aの電流を印加してアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方前記工具基体には、たとえば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、TiN層や、(Ti,Al)N層、(Cr,Si)N層あるいは(Ti,Cr,Si)N層など、所望の成分組成の層を蒸着形成することにより製造されることも知られている。
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は高まる傾向にあるが、上記の各種の従来被覆cBN基焼結工具においては、これを、各種の炭素鋼や低合金鋼、さらに鋳鉄などの通常の切削加工に用いた場合には、特に問題はない。しかし、これを、軸受鋼やマンガン鋼の焼入れ材などのビッカース硬さ(Cスケール)で50以上の高い硬さを有し、しかも、粘性の高い被削材(硬質難削材)の切削加工に用いた場合には、硬質被覆層の潤滑性不足のため切粉が切刃部に溶着しやすくなり、これが原因で、切刃部にチッピング(微少欠け)が発生したりする結果、比較的短時間で使用寿命に至るのが現状である。 In recent years, there has been a remarkable increase in the performance of cutting devices. On the other hand, there is a tendency for labor-saving and energy-saving and further cost reduction for cutting, but in the above-mentioned various conventional coated cBN-based sintered tools, There is no particular problem when this is used for normal cutting of various carbon steels, low alloy steels, and cast iron. However, it has a Vickers hardness (C scale) such as a hardened material of bearing steel and manganese steel, and has a hardness of 50 or more, and it also cuts a highly viscous work material (hard hard-to-cut material). When used, the chip is likely to be welded to the cutting edge due to insufficient lubricity of the hard coating layer. This may cause chipping (small chipping) at the cutting edge. The current situation is that the service life is reached in a short time.
そこで、本発明者等は、上述のような観点から、特に軸受鋼の焼入れ材などの高硬度かつ高粘性の硬質難削材の切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する被覆cBN基焼結工具を開発すべく研究を行った結果、
(a) 硬質被覆層を構成するTiとCrとSiの複合窒化物([Ti1−X−YCrXSiY]N)層は、Crの含有割合X(原子比)の値が、0.03〜0.30、Siの含有割合Y(原子比)の値が、0.01〜0.05の範囲内において所定の耐熱性、高温硬さ及び高温強度を有し、通常の切削加工条件下において必要とされる耐摩耗性は具備しているが、高熱の発生を伴う硬質難削材の高速切削加工においては、TiとCrとSiの複合窒化物([Ti1−X−YCrXSiY]N)層からなる硬質被覆層は潤滑性(耐溶着性)が不足するために、溶着、チッピングを発生しやすいこと。
In view of the above, the present inventors, from the above viewpoint, exhibit excellent chipping resistance with a hard coating layer particularly in cutting hard and highly viscous hard difficult-to-cut materials such as hardened materials of bearing steel. As a result of research to develop a coated cBN-based sintered tool,
(a) a composite nitride of Ti, Cr, and Si constituting the hard layer ([Ti 1-X-Y Cr X Si Y] N) layer, the value of the content X (atomic ratio) of Cr is 0 0.03 to 0.30, and the content ratio Y (atomic ratio) of Si is within a range of 0.01 to 0.05, and has predetermined heat resistance, high temperature hardness, and high temperature strength. Although it has the wear resistance required under the conditions, in high-speed cutting of hard hard-to-cut materials accompanied by generation of high heat, a composite nitride of Ti, Cr and Si ([Ti 1-XY The hard coating layer composed of the (Cr X Si Y ] N) layer is insufficient in lubricity (welding resistance), and is likely to cause welding and chipping.
(b)一方、Cr窒化物(CrN)層はすぐれた潤滑性(耐溶着性)を有しているが、耐熱性、高温硬さ、高温強度が十分とはいえないことから、高い発熱を伴う硬質難削材の切削加工においては、硬質被覆層を、Cr窒化物(CrN)層のみで構成しても十分な耐摩耗性を具備するとはいえないこと。 (B) On the other hand, the Cr nitride (CrN) layer has excellent lubricity (welding resistance), but heat resistance, high temperature hardness, and high temperature strength are not sufficient. In the cutting of hard difficult-to-cut materials, it cannot be said that even if the hard coating layer is composed only of a Cr nitride (CrN) layer, it does not have sufficient wear resistance.
(c)上記(a)のCrの含有割合Xが3〜30原子%、Siの含有割合Yが1〜5原子%の耐熱性、高温硬さ及び高温強度を有する[Ti1−X−YCrXSiY]N(ただし、それぞれ原子比で、Xは0.03〜0.30、Yは0.01〜0.05)層(以下、薄層Aという)と、前記薄層Aに比べれば耐熱性、高温硬さ及び高温強度は劣るものの、その一方で、すぐれた潤滑性(耐溶着性)を有するCr窒化物(CrN)層(以下、薄層Bという)を、それぞれの一層平均層厚を0.01〜0.3μmの薄層とした状態で交互積層して硬質被覆層の上部層を構成すると、この交互積層構造の硬質被覆層は、薄層Aのもつすぐれた耐熱性、高温硬さとともに、薄層Bのもつすぐれた潤滑性(耐溶着性)とを相兼ね備えるようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) [Ti1 -XY] having heat resistance, high temperature hardness and high temperature strength in which the Cr content ratio X in the above (a) is 3 to 30 atomic% and the Si content ratio Y is 1 to 5 atomic%. Cr X Si Y ] N (wherein atomic ratios, X is 0.03 to 0.30, Y is 0.01 to 0.05) respectively (hereinafter referred to as thin layer A) and the thin layer A On the other hand, although it is inferior in heat resistance, high-temperature hardness and high-temperature strength, a Cr nitride (CrN) layer (hereinafter referred to as a thin layer B) having excellent lubricity (welding resistance) When the upper layer of the hard coating layer is formed by alternately laminating with the average layer thickness being a thin layer of 0.01 to 0.3 μm, the hard coating layer of this alternate laminated structure has excellent heat resistance of the thin layer A. In addition to high temperature and hardness, the thin layer B has excellent lubricity (welding resistance). .
The research results shown in (a) to (c) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、
窒化ほう素を30〜95質量%含有する超高圧焼結材料製インサートの表面に、硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)硬質被覆層は、1.5〜6μmの平均層厚を有する下部層と0.3〜3μmの平均層厚を有する上部層とからなり、
(b)硬質被覆層の下部層は、蒸着形成された、
組成式:[Ti1−X−YCrXSiY]N(ただし、いずれも原子比で、Xは0.03〜0.30、Yは0.01〜0.05を示す)を満足するTiとCrとSiの複合窒化物層、
(c)硬質被覆層の上部層は、下部層の表面に蒸着形成された、いずれも一層平均層厚がそれぞれ0.01〜0.3μmの薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1−X−YCrXSiY]N(ただし、いずれも原子比で、Xは0.03〜0.30、Yは0.01〜0.05を示す)を満足するTiとCrとSiの複合窒化物層、
上記薄層Bは、Cr窒化物(CrN)層、
からなる硬質被覆層を蒸着形成してなる、軸受鋼やマンガン鋼の焼入れ材などのように高硬度かつ高粘性の硬質難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(被覆cBN基焼結工具)に特徴を有するものである。
This invention was made based on the above research results,
In the surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool in which a hard coating layer is vapor-deposited on the surface of the insert made of ultra-high pressure sintered material containing 30 to 95% by mass of boron nitride,
(A) The hard coating layer consists of a lower layer having an average layer thickness of 1.5 to 6 μm and an upper layer having an average layer thickness of 0.3 to 3 μm,
(B) The lower layer of the hard coating layer was formed by vapor deposition.
Formula: [Ti 1-X-Y Cr X Si Y] N ( provided that both atomic ratio, X is 0.03 to 0.30, Y represents a 0.01-0.05) satisfies A composite nitride layer of Ti, Cr and Si;
(C) The upper layer of the hard coating layer is formed by vapor deposition on the surface of the lower layer, and each has an alternately laminated structure of thin layers A and B each having an average layer thickness of 0.01 to 0.3 μm. And
The thin layer A is
Formula: [Ti 1-X-Y Cr X Si Y] N ( provided that both atomic ratio, X is 0.03 to 0.30, Y represents a 0.01-0.05) satisfies A composite nitride layer of Ti, Cr and Si;
The thin layer B is a Cr nitride (CrN) layer,
Demonstrates excellent chipping resistance when cutting hard and highly viscous hard difficult-to-cut materials, such as hardened bearing steel and manganese steel, formed by vapor-depositing a hard coating layer consisting of It is characterized by a cutting tool (coated cBN-based sintered tool) made of surface-coated cubic boron nitride-based ultra-high pressure sintered material.
つぎに、この発明の被覆cBN基焼結工具の硬質被覆層に関し、上記のとおりに数値限定した理由を説明する。
(a)窒化ほう素(cBN)の含有量
超高圧焼結材料製インサート中の窒化ほう素(cBN)含有量が30質量%より少なくなると、cBN焼結材料の硬さが低下し、超高圧焼結材料製インサートを用いて高硬度かつ高粘性の硬質難削材の切削加工を行うに際し、最小限必要とされる硬さを備えることができなくなり、耐摩耗性が低下し、一方、窒化ほう素(cBN)含有量が95質量%より多くなると、cBN焼結材料と硬質被覆層の密着強度を確保しにくくなり、その結果硬質被覆層の剥離が生じやすくなるため、この発明では、窒化ほう素(cBN)含有量を30〜95質量%と定めた。
Next, the reason why the hard coating layer of the coated cBN-based sintered tool of the present invention is numerically limited as described above will be described.
(A) Content of boron nitride (cBN) When the boron nitride (cBN) content in the insert made of ultrahigh pressure sintered material is less than 30% by mass, the hardness of the cBN sintered material is reduced, and the ultrahigh pressure is increased. When cutting hard, highly viscous hard difficult-to-cut materials using sintered material inserts, it becomes impossible to provide the minimum required hardness and wear resistance decreases, while nitriding When the boron (cBN) content is more than 95% by mass, it becomes difficult to ensure the adhesion strength between the cBN sintered material and the hard coating layer, and as a result, the hard coating layer is easily peeled off. The boron (cBN) content was determined to be 30 to 95% by mass.
(b)下部層を構成する硬質被覆層
下部層を構成するTiとCrとSiの複合窒化物([Ti1−X−YCrXSiY]N)層におけるTi成分は耐熱性の保持、Cr成分は高温強度の維持、また、Si成分は高温硬さの向上にそれぞれ寄与することから、硬質被覆層の下部層を構成するTiとCrとSiの複合窒化物([Ti1−X−YCrXSiY]N)層は、所定の耐熱性、高温強度と高温硬さを具備する層であって、硬質難削材の切削加工時における切刃部の耐摩耗性を確保する役割を基本的に担う。ただ、Crの含有割合Xが30原子%を超えると下部層の高温強度は向上するものの、Ti含有割合の相対的な減少によって、耐熱性が低下し、一方、Crの含有割合Xが3原子%未満になると、高温強度が低下しチッピングを発生しやすくなるので、Crの含有割合Xの値を0.03〜0.30と定めた。また、Siの含有割合Yが5原子%を超えると、下部層の高温硬さが大となり耐摩耗性は向上するものの、Tiの含有割合の相対的な減少によって、耐熱性が低下し、一方、Siの含有割合Yが1原子%未満になると、高温硬さが低下し、硬質難削材の切削加工時における切刃部の摩耗進行が急激に促進するようになり、耐摩耗性を十分に確保できなくなることから、Siの含有割合Yの値を0.01〜0.05と定めた。
また、下部層の平均層厚が1.5μm未満では、自身のもつ耐熱性、高温硬さおよび高温強度を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が6μmを越えると、チッピングが発生し易くなることから、その平均層厚を1.5〜6μmと定めた。
なお、超高圧焼結材料製インサート基体と下部層との十分な密着性を確保するために、基体と下部層との間にチタン窒化物(TiN)の薄層を介在させることができる。該TiNの薄層は、その層厚が0.01μm未満では密着性改善の効果が少なく、一方、0.5μmを超えた層厚としても密着性の更なる向上が期待できるわけではないことから、基体と下部層との間に介在させるTiN層の層厚は0.01μm以上0.5μm以下とすることが望ましい。
(B) a composite nitride of Ti, Cr, and Si constituting the hard layer lower layer constituting the lower layer Ti component in ([Ti 1-X-Y Cr X Si Y] N) layer holds the heat resistance, Since the Cr component contributes to maintaining the high temperature strength and the Si component contributes to the improvement of the high temperature hardness, the composite nitride of Ti, Cr and Si constituting the lower layer of the hard coating layer ([Ti 1-X- Y Cr X Si Y] N) layer has a predetermined heat resistance, a layer having a high-temperature strength and high-temperature hardness, the role of ensuring wear resistance of the cutting edge during cutting of hard flame cut materials Is basically responsible. However, although the high temperature strength of the lower layer is improved when the Cr content ratio X exceeds 30 atomic%, the heat resistance is reduced due to the relative decrease in the Ti content ratio, while the Cr content ratio X is 3 atoms. If it is less than%, the high-temperature strength is reduced and chipping is likely to occur. On the other hand, if the Si content ratio Y exceeds 5 atomic%, the high temperature hardness of the lower layer is increased and the wear resistance is improved, but the heat resistance is reduced due to the relative decrease in the Ti content ratio. When the Si content Y is less than 1 atomic%, the high-temperature hardness decreases, and the progress of wear of the cutting edge during the cutting of hard difficult-to-cut materials is rapidly promoted, so that the wear resistance is sufficient. Therefore, the Si content ratio Y was determined to be 0.01 to 0.05.
Moreover, if the average layer thickness of the lower layer is less than 1.5 μm, the heat resistance, high temperature hardness and high temperature strength possessed by itself cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. When the layer thickness exceeds 6 μm, chipping is likely to occur. Therefore, the average layer thickness is set to 1.5 to 6 μm.
Note that a thin layer of titanium nitride (TiN) can be interposed between the base and the lower layer in order to ensure sufficient adhesion between the insert base made of the ultra-high pressure sintered material and the lower layer. The thin layer of TiN has little effect of improving the adhesion when the layer thickness is less than 0.01 μm, and on the other hand, even if the layer thickness exceeds 0.5 μm, further improvement in adhesion cannot be expected. The thickness of the TiN layer interposed between the substrate and the lower layer is preferably 0.01 μm or more and 0.5 μm or less.
(c)上部層の薄層A
上部層の薄層Aを構成するTiとCrとSiの複合窒化物([Ti1−X−YCrXSiY]N)層(ただし、それぞれ原子比で、Xは0.03〜0.30、Yは0.01〜0.05を示す)は、下部層と実質同様の層であって、所定の耐熱性、高温硬さおよび高温強度を具備し、硬質難削材の切削加工時における切刃部の耐摩耗性を確保する作用を有する。
(C) Upper layer thin layer A
Composite nitride of Ti, Cr, and Si constituting a thin layer A of the upper layer ([Ti 1-X-Y Cr X Si Y] N) layer (where each atomic ratio, X is from 0.03 to 0. 30 and Y are 0.01 to 0.05), which is substantially the same layer as the lower layer, and has a predetermined heat resistance, high temperature hardness and high temperature strength, and is used when cutting hard difficult-to-cut materials. It has the effect | action which ensures the abrasion resistance of the cutting blade part.
(d)上部層の薄層B
Cr窒化物(CrN)層からなる薄層Bは、薄層Aと薄層Bの交互積層構造からなる上部層において、云わば、薄層Aに不足する特性(潤滑性,耐溶着性)を補うことを主たる目的とするものである。
すでに述べたように、上部層の薄層Aは、所定の耐熱性、高温硬さと高温強度を有する層であるが、高硬度かつ高粘性の硬質難削材の高い発熱を伴う切削加工条件下では、その潤滑性が十分とはいえない。
そこで、すぐれた潤滑性を有するCr窒化物(CrN)層からなる薄層Bを、薄層Aと交互に配し交互積層構造を構成することで、隣接する薄層Aの潤滑性不足を補い、上部層全体として、前記薄層Aのもつすぐれた耐熱性、高温硬さを何ら損なうことなく、前記薄層Bのもつすぐれた潤滑性(耐溶着性)を備えた上部層を形成する。
Cr窒化物(CrN)層は、すぐれた潤滑性(耐溶着性)を備え、硬質難削材の切削加工時における切刃部への切粉の溶着を防止し、ピッチングの発生を防止する作用を有する。
(D) Upper layer thin layer B
The thin layer B composed of a Cr nitride (CrN) layer has characteristics (lubricity, welding resistance) that are insufficient for the thin layer A in the upper layer composed of an alternating laminated structure of the thin layer A and the thin layer B. The main purpose is to supplement.
As described above, the upper layer thin layer A is a layer having predetermined heat resistance, high temperature hardness and high temperature strength, but is a cutting condition with high heat generation of a hard hard material having high hardness and high viscosity. The lubricity is not sufficient.
Therefore, the thin layer B made of Cr nitride (CrN) layer having excellent lubricity is arranged alternately with the thin layer A to form an alternate laminated structure, thereby compensating for the lack of lubricity of the adjacent thin layer A. As the entire upper layer, the upper layer having the excellent lubricity (welding resistance) of the thin layer B is formed without impairing the excellent heat resistance and high-temperature hardness of the thin layer A.
The Cr nitride (CrN) layer has excellent lubricity (welding resistance), prevents chip adhesion to the cutting edge when cutting hard difficult-to-cut materials, and prevents pitting. Have
(e)上部層の薄層Aと薄層Bの一層平均層厚、上部層の平均層厚
上部層の薄層Aと薄層B、それぞれの一層平均層厚が0.01μm未満ではそれぞれの薄層の備えるすぐれた特性を発揮することができず、この結果、上部層にすぐれた耐熱性、高温硬さ、高温強度および潤滑性(耐溶着性)を確保することができなくなり、またそれぞれの一層平均層厚が0.3μmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば潤滑性の不足、薄層Bであれば耐熱性、高温硬さおよび高温強度の不足が層内に局部的に現れるようになり、これが原因でチッピングが発生したり、摩耗が急速に進行するようになることから、それぞれの一層平均層厚は0.01〜0.3μmと定めた。
すなわち、薄層Bは、上部層に潤滑性(耐溶着性)を付与するために設けられたものであるが、薄層A、薄層Bそれぞれの一層平均層厚が0.01〜0.3μmの範囲内であれば、薄層Aと薄層Bの交互積層構造からなる上部層は、すぐれた耐熱性、高温硬さ、高温強度に加えて、すぐれた潤滑性(耐溶着性)を具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bそれぞれの一層平均層厚が0.3μmを越えると、薄層Aの潤滑性不足、あるいは、薄層Bの耐熱性、高温硬さおよび高温強度不足が層内に局部的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、薄層A、薄層Bそれぞれの一層平均層厚を0.01〜0.3μmと定めた。
薄層Aと薄層Bの一層平均層厚を0.01〜0.3μmの範囲内とした交互積層構造からなる上部層を下部層表面に形成することにより、優れた耐熱性、高温硬さ、高温強度とともに優れた潤滑性(耐溶着性)を兼ね備えた硬質被覆層が得られる。
また、上部層の合計平均層厚(即ち、交互積層構造を構成する薄層Aと薄層Bの各層の平均層厚を合計した層厚)は、0.3μm未満では、硬質難削材の切削加工で必要とされる十分な耐熱性、高温硬さ、高温強度および潤滑性(耐溶着性)を上部層に付与することができず、工具寿命短命の原因となり、一方その平均層厚が3μmを越えると、チッピングが発生し易くなることから、その平均層厚は0.3〜3μmと定めた。
(E) Upper layer thin layer A and thin layer B one layer average layer thickness, upper layer average layer thickness Upper layer thin layer A and thin layer B, each layer average layer thickness is less than 0.01 μm, respectively The superior properties of the thin layer cannot be exhibited, and as a result, it is impossible to ensure excellent heat resistance, high temperature hardness, high temperature strength and lubricity (welding resistance) in the upper layer, If the average layer thickness of the layer exceeds 0.3 μm, the disadvantages of each thin layer, that is, if the thin layer A is insufficient in lubricity, if the thin layer B is insufficient in heat resistance, high temperature hardness and high temperature strength. Since it appears locally in the layer and this causes chipping and wear proceeds rapidly, the average layer thickness of each layer was determined to be 0.01 to 0.3 μm.
That is, the thin layer B is provided to provide lubricity (welding resistance) to the upper layer, but the average layer thickness of each of the thin layer A and the thin layer B is 0.01 to 0.00. If it is within the range of 3 μm, the upper layer composed of the alternating laminated structure of thin layer A and thin layer B has excellent heat resistance, high temperature hardness, high temperature strength, and excellent lubricity (welding resistance). It acts as if it were a single layer, but if the average layer thickness of each of the thin layer A and the thin layer B exceeds 0.3 μm, the lubricity of the thin layer A is insufficient, or the thin layer B The heat resistance, the high temperature hardness and the insufficient high temperature strength of the steel layer appear locally in the layer, and the upper layer as a whole cannot exhibit good characteristics as a single layer. The average layer thickness of each B was determined to be 0.01 to 0.3 μm.
Excellent heat resistance and high temperature hardness by forming on the lower layer surface an upper layer composed of an alternating laminated structure in which the average layer thickness of the thin layers A and B is in the range of 0.01 to 0.3 μm. In addition, a hard coating layer having excellent lubricity (welding resistance) as well as high temperature strength can be obtained.
Further, if the total average layer thickness of the upper layer (that is, the total layer thickness of the thin layers A and B constituting the alternating laminated structure) is less than 0.3 μm, the hard difficult-to-cut material Sufficient heat resistance, high temperature hardness, high temperature strength, and lubricity (welding resistance) required for cutting cannot be imparted to the upper layer, resulting in a short tool life, while the average layer thickness is If it exceeds 3 μm, chipping is likely to occur. Therefore, the average layer thickness is determined to be 0.3 to 3 μm.
なお、この発明の被覆cBN基焼結工具では、最外表面の被覆層の層厚のちがいによって、それぞれ微妙に異なる干渉色を生じ、工具外観が不揃いとなることがある。このような場合には、最外表面に、Ti窒化物(TiN)層またはTiとSiの複合窒化物(TiSiN)層を厚く蒸着形成することによって、工具外観の不揃いを防止することができる。その際、TiN層またはTiSiN層の平均層厚が0.2μm未満では外観の不揃いを防止することはできず、また、2μmまでの平均層厚があれば外観の不揃いを十分防止できることから、Ti窒化物(TiN)層またはTiとSiの複合窒化物(TiSiN)層の平均層厚は0.2〜2μmとすればよい。
また、この発明の被覆cBN基焼結工具基体の表面粗度は、Raで0.05以上1.0以下であることが望ましい。表面粗度Raが0.05以上であれば、アンカー効果による基体と硬質被覆層との付着強度の向上が期待でき、一方、Raが1.0を超えるようになると、被削材の仕上げ面精度に悪影響を及ぼすようになるためである。
In the coated cBN-based sintered tool of the present invention, a slightly different interference color may be generated depending on the thickness of the coating layer on the outermost surface, and the tool appearance may be uneven. In such a case, unevenness of the appearance of the tool can be prevented by thickly depositing a Ti nitride (TiN) layer or a Ti / Si composite nitride (TiSiN) layer on the outermost surface. At that time, if the average layer thickness of the TiN layer or TiSiN layer is less than 0.2 μm, uneven appearance cannot be prevented, and if the average layer thickness is up to 2 μm, uneven appearance can be sufficiently prevented. The average layer thickness of the nitride (TiN) layer or the composite nitride of Ti and Si (TiSiN) layer may be 0.2 to 2 μm.
In addition, the surface roughness of the coated cBN-based sintered tool base of the present invention is desirably 0.05 to 1.0 in terms of Ra. If the surface roughness Ra is 0.05 or more, an improvement in adhesion strength between the substrate and the hard coating layer due to the anchor effect can be expected. On the other hand, if Ra exceeds 1.0, the finished surface of the work material This is because the accuracy is adversely affected.
この発明の被覆cBN基焼結工具は、硬質被覆層が上部層と下部層からなり、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによってすぐれた耐熱性、高温硬さ、高温強度とともにすぐれた潤滑性(耐溶着性)をも兼ね備えることから、特に軸受鋼やマンガン鋼の焼入れ材などのように高硬度かつ高粘性の硬質難削材の高熱発生を伴う切削加工でも、前記硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated cBN-based sintered tool of the present invention, the hard coating layer is composed of an upper layer and a lower layer, and the upper layer of the hard coating layer has excellent heat resistance by having an alternating laminated structure of thin layers A and thin layers B. High heat hardness and high temperature strength together with excellent lubricity (welding resistance), especially accompanied by high heat generation of hard, highly viscous hard difficult-to-cut materials such as hardened materials of bearing steel and manganese steel Even in cutting, the hard coating layer exhibits excellent wear resistance over a long period of time without occurrence of chipping.
つぎに、この発明の被覆cBN基焼結工具を実施例により具体的に説明する。 Next, the coated cBN-based sintered tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、炭化チタン(TiC)粉末、窒化チタン(TiN)粉末、炭窒化チタン(TiCN)粉末、炭化タングステン(WC)粉末、Al粉末、Co粉末、TiとAlの金属間化合物粉末であるTi3Al粉末、TiAl粉末、およびTiAl3粉末、さらに組成式:Ti2AlNを有する複合金属窒化物粉末、TiB2粉末、窒化アルミニウム(AlN)粉末、硼化アルミニウム(AlB2)粉末、酸化アルミニウム(Al2O3)粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正三角形)をもったWC基超硬合金製チップ本体のろう付け部(コーナー部)に、質量%で、Cu:30%、Zn:28%、Ni:2%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.15mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のチップ形状をもった工具基体A〜Jをそれぞれ製造した。 As raw material powders, cubic boron nitride (cBN) powder, titanium carbide (TiC) powder, titanium nitride (TiN) powder, titanium carbonitride (TiCN) powder each having an average particle size in the range of 0.5 to 4 μm , Tungsten carbide (WC) powder, Al powder, Co powder, Ti 3 Al powder that is an intermetallic compound powder of Ti and Al, TiAl powder, and TiAl 3 powder, and a composite metal nitride having a composition formula: Ti 2 AlN Prepare powder, TiB 2 powder, aluminum nitride (AlN) powder, aluminum boride (AlB 2 ) powder, aluminum oxide (Al 2 O 3 ) powder, and blend these raw material powders into the composition shown in Table 1, After wet mixing with a ball mill for 80 hours and drying, a green compact having a diameter of 50 mm × thickness of 1.5 mm was preliminarily formed at a pressure of 120 MPa. Then, the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting blade piece. This pre-sintered body is overlaid with a separately prepared WC-based cemented carbide support piece having dimensions of Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm. In an ordinary ultra high pressure sintering apparatus, the normal pressure is 5 GPa, the temperature is 1200 ° C. within a predetermined temperature range of 1200 to 1400 ° C., and the holding time is 0.8 hours. After sintering, the upper and lower surfaces are polished with a diamond grindstone and divided into a regular triangle shape with a side of 3 mm by a wire electric discharge machine, and Co: 5% by mass, TaC: 5% by mass, WC: remaining composition And CIS standard SNGA12041 shape (thickness: 4 In the brazed part (corner part) of the WC-based cemented carbide chip body having a 76 mm × one side length: 12.7 mm regular triangle), by mass%, Cu: 30%, Zn: 28%, Ni: After brazing using a brazing material of Ag alloy having a composition of 2%, Ag: remaining, and processing the outer periphery to a predetermined dimension, the cutting edge is subjected to a honing process of width: 0.15 mm, angle: 25 ° Further, by performing finish polishing, tool bases A to J each having a chip shape of ISO standard SNGA12041 were manufactured.
(a)ついで、上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、上部層の薄層B形成用金属Crを、また、他方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層Aおよび下部層形成用Ti−Cr−Si合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Aおよび下部層形成用Ti−Cr−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表2に示される目標組成および目標層厚の(Ti,Cr,Si)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−100Vの範囲内の所定の直流バイアス電圧を印加した状態で、前記薄層B形成用金属Crのカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の薄層Bを形成し、前記薄層B形成後、アーク放電を停止し、代って前記薄層Aおよび下部層形成用Ti−Cr−Si合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Aを形成した後、アーク放電を停止し、再び前記薄層B形成用金属Crのカソード電極とアノード電極間のアーク放電による薄層Bの形成と、前記薄層Aおよび下部層形成用Ti−Cr−Si合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成を交互に繰り返し行い、もって前記工具基体の表面に、層厚方向に沿って表2に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表2に示される合計層厚(平均層厚)で蒸着形成することにより、本発明被覆cBN基焼結工具1〜9をそれぞれ製造した。
(A) Next, each of the tool bases A to J is ultrasonically cleaned in acetone and dried, and then in a radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. Are mounted along the outer periphery at a predetermined distance, and the upper layer thin layer B forming metal Cr is used as the cathode electrode (evaporation source) on one side, and the cathode electrode (evaporation source) on the other side. The upper layer thin layer A and the lower layer forming Ti—Cr—Si alloy each having a component composition corresponding to the target composition shown in Table 2 are arranged opposite to each other with the rotary table interposed therebetween,
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. A DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions.
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the tool base rotating while rotating on the rotary table, and the thin layer A current of 100 A is passed between A and the lower layer forming Ti—Cr—Si alloy and the anode electrode to generate an arc discharge, and the target composition and target layer thickness shown in Table 2 are formed on the surface of the tool base. The (Ti, Cr, Si) N layer is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and within a range of −10 to −100 V on the tool base that rotates while rotating on the rotary table. In a state where a predetermined DC bias voltage is applied, a predetermined current in a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the thin layer B forming metal Cr to generate an arc discharge, A thin layer B having a predetermined layer thickness is formed on the surface of the tool base, and after the thin layer B is formed, the arc discharge is stopped. Instead, the cathode of the thin layer A and the lower layer forming Ti—Cr—Si alloy is formed. Similarly, a predetermined current in the range of 50 to 200 A is passed between the electrode and the anode electrode to generate arc discharge to form a thin layer A having a predetermined layer thickness. Then, the arc discharge is stopped and the thin layer B is again formed. Of forming metal Cr The formation of the thin layer B by arc discharge between the sword electrode and the anode electrode and the formation of the thin layer A by arc discharge between the cathode electrode and the anode electrode of the thin layer A and the lower layer forming Ti—Cr—Si alloy are alternately performed. Table 2 shows the upper layer composed of the alternate lamination of the thin layer A and the thin layer B having the target composition and the single target layer thickness along the layer thickness direction on the surface of the tool base. The present invention-coated cBN-based sintered tools 1 to 9 were produced by vapor deposition with the total layer thickness (average layer thickness) shown.
また、比較の目的で、上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったTi−Cr−Si合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Cr−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A〜Jのそれぞれの表面に、表3に示される目標組成および目標層厚の(Ti,Cr,Si)N層からなる硬質被覆層を蒸着形成することにより、従来被覆cBN基焼結工具1〜9をそれぞれ製造した。 For comparison purposes, each of the tool bases A to J described above is ultrasonically cleaned in acetone and dried, and then charged into a normal arc ion plating apparatus shown in FIG. As the (evaporation source), a Ti—Cr—Si alloy having a component composition corresponding to the target composition shown in Table 3 is mounted, and the apparatus is first evacuated and kept at a vacuum of 0.1 Pa or less. After heating the interior of the apparatus to 500 ° C. with a heater, Ar gas was introduced to create an atmosphere of 0.7 Pa, and a DC bias voltage of −200 V was applied to the tool base rotating while rotating on the table. Then, the surface of the tool base is bombarded with argon ions, and then nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 3 Pa and applied to the tool base. The bias voltage is lowered to −100 V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti—Cr—Si alloy, and the surface of each of the tool bases A to J is shown in Table 3. Conventionally coated cBN-based sintered tools 1 to 9 were manufactured by vapor-depositing a hard coating layer composed of a (Ti, Cr, Si) N layer having a target composition and a target layer thickness.
つぎに、上記の各種の被覆cBN基焼結工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆cBN基焼結工具1〜9および従来被覆cBN基焼結工具1〜9について、
被削材:JIS・SMn443(硬さ:HRC61)の丸棒、
切削速度: 210 m/min.、
切り込み: 0.15 mm、
送り: 0.10 mm/rev.、
切削時間: 10 分、
の条件(切削条件Aという)でのマンガン鋼の乾式連続高速切削加工試験、
被削材:JIS・SUJ2の焼入れ材(硬さ:HRC62)の丸棒、
切削速度: 190 m/min.、
切り込み: 0.15 mm、
送り: 0.10 mm/rev.、
切削時間: 10 分、
の条件(切削条件Bという)での軸受鋼の乾式連続高速切削加工試験、
被削材:JIS・SNC631(硬さ:HRC56)の丸棒、
切削速度: 280 m/min.、
切り込み: 0.15 mm、
送り: 0.10 mm/rev.、
切削時間: 10 分、
の条件(切削条件Cという)でのニッケルクロム鋼の乾式連続高速切削加工試験
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表4に示した。
Next, according to the present invention, the coated cBN-based sintered tools 1 to 9 and the conventional coated cBN-based sintered tools, in a state where all of the above-mentioned coated cBN-based sintered tools are screwed to the tip of the tool steel tool with a fixing jig. For cBN-based sintered tools 1-9,
Work material: JIS / SMn443 (hardness: HRC61) round bar,
Cutting speed: 210 m / min. ,
Cutting depth: 0.15 mm,
Feed: 0.10 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of manganese steel under the following conditions (referred to as cutting condition A),
Work material: JIS / SUJ2 hardened material (hardness: HRC62) round bar,
Cutting speed: 190 m / min. ,
Cutting depth: 0.15 mm,
Feed: 0.10 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of bearing steel under the following conditions (referred to as cutting condition B),
Work material: JIS / SNC631 (Hardness: HRC56) round bar,
Cutting speed: 280 m / min. ,
Cutting depth: 0.15 mm,
Feed: 0.10 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous high-speed cutting test of nickel chrome steel under the above conditions (referred to as cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any of the cutting tests. The measurement results are shown in Table 4.
この結果得られた本発明被覆cBN基焼結工具1〜9および従来被覆cBN基焼結工具1〜9の硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 As a result, the composition of the hard coating layers of the present coated cBN-based sintered tools 1 to 9 and the conventional coated cBN-based sintered tools 1 to 9 are analyzed by energy dispersive X-ray analysis using a transmission electron microscope. As a result of measurement, each showed substantially the same composition as the target composition.
また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.
表2〜4に示される結果から、本発明被覆cBN基焼結工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ0.01〜0.3μmの薄層Aと薄層Bの交互積層構造を有する平均層厚(合計層厚)0.3〜3μmの上部層と、1.5〜6μmの平均層厚を有する下部層とからなり、前記下部層がすぐれた耐熱性、高温強度とすぐれた高温硬さを備え、さらに、前記上部層がすぐれた耐熱性、高温強度、高温硬さと潤滑性(耐溶着性)を備えているので、軸受鋼やマンガン鋼の焼入れ材等の高硬度かつ高粘性の硬質難削材の高熱発生を伴う切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一の(Ti,Cr,Si)N層からなる従来被覆cBN基焼結工具は、特に硬質被覆層の潤滑性(耐溶着性)不足が原因でチッピングが発生するため、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 2 to 4, all of the coated cBN-based sintered tools of the present invention have a hard coating layer, and alternate layers of thin layer A and thin layer B each having an average layer thickness of 0.01 to 0.3 μm. It consists of an upper layer having an average layer thickness (total layer thickness) of 0.3 to 3 μm and a lower layer having an average layer thickness of 1.5 to 6 μm, and the lower layer has excellent heat resistance and high temperature strength. It has excellent high-temperature hardness, and the upper layer has excellent heat resistance, high-temperature strength, high-temperature hardness and lubricity (welding resistance). Even when cutting hard and highly viscous hard difficult-to-cut materials with high heat generation, chipping does not occur and excellent wear resistance is exhibited, whereas a single hard coating layer (Ti, Cr, Si) Conventional coated cBN-based sintered tools consisting of N layers, especially the lubricity of hard coating layers (welding resistance) ) Because the lack of chipping is caused, it is clear that lead to a relatively short time service life.
上述のように、この発明の被覆cBN基焼結工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に軸受鋼やマンガン鋼の焼入れ材等のように高硬度かつ高粘性の硬質難削材の高熱発生を伴う切削加工でも、長期に亘ってすぐれた耐チッピング性、耐摩耗性を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cBN-based sintered tool of the present invention is not only used for cutting under normal cutting conditions such as various types of steel and cast iron, but particularly high in the case of hardened materials such as bearing steel and manganese steel. Even when cutting hard and highly viscous hard difficult-to-cut materials with high heat generation, it shows excellent chipping resistance and wear resistance over a long period of time. It can be used satisfactorily for labor saving, energy saving, and cost reduction.
Claims (1)
(a)硬質被覆層は、1.5〜6μmの平均層厚を有する下部層と0.3〜3μmの平均層厚を有する上部層とからなり、
(b)硬質被覆層の下部層は、蒸着形成された、
組成式:[Ti1−X−YCrXSiY]N(ただし、いずれも原子比で、Xは0.03〜0.30、Yは0.01〜0.05を示す)を満足するTiとCrとSiの複合窒化物層、
(c)硬質被覆層の上部層は、下部層の表面に蒸着形成された、いずれも一層平均層厚がそれぞれ0.01〜0.3μmの薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1−X−YCrXSiY]N(ただし、X、Yは、いずれも原子比で、Xは0.03〜0.30、Yは0.01〜0.05を示す)を満足するTiとCrとSiの複合窒化物層、
上記薄層Bは、Cr窒化物(CrN)層、
からなる硬質被覆層を蒸着形成した、硬質難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
In the surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool in which a hard coating layer is vapor-deposited on the surface of the insert made of ultra-high pressure sintered material containing 30 to 95% by mass of boron nitride,
(A) The hard coating layer consists of a lower layer having an average layer thickness of 1.5 to 6 μm and an upper layer having an average layer thickness of 0.3 to 3 μm,
(B) The lower layer of the hard coating layer was formed by vapor deposition.
Formula: [Ti 1-X-Y Cr X Si Y] N ( provided that both atomic ratio, X is 0.03 to 0.30, Y represents a 0.01-0.05) satisfies A composite nitride layer of Ti, Cr and Si;
(C) The upper layer of the hard coating layer is formed by vapor deposition on the surface of the lower layer, and each has an alternately laminated structure of thin layers A and B each having an average layer thickness of 0.01 to 0.3 μm. And
The thin layer A is
Formula: [Ti 1-X-Y Cr X Si Y] N ( provided that, X, Y are both atomic ratio, X is 0.03 to 0.30, Y is a 0.01-0.05 Ti, Cr and Si composite nitride layer satisfying
The thin layer B is a Cr nitride (CrN) layer,
A surface-coated cubic boron nitride based ultra-high pressure sintered material cutting tool that exhibits excellent chipping resistance in the cutting of hard difficult-to-cut materials with a hard coating layer made of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005348880A JP4748446B2 (en) | 2005-12-02 | 2005-12-02 | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005348880A JP4748446B2 (en) | 2005-12-02 | 2005-12-02 | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007152463A JP2007152463A (en) | 2007-06-21 |
JP4748446B2 true JP4748446B2 (en) | 2011-08-17 |
Family
ID=38237457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005348880A Expired - Fee Related JP4748446B2 (en) | 2005-12-02 | 2005-12-02 | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4748446B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013153640A1 (en) * | 2012-04-11 | 2013-10-17 | オーエスジー株式会社 | Hard coating for cutting tool, and cutting tool coated with hard coating |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000218407A (en) * | 1999-01-28 | 2000-08-08 | Hitachi Tool Engineering Ltd | Hard coating covering tool |
JP3985227B2 (en) * | 2003-05-14 | 2007-10-03 | 三菱マテリアル神戸ツールズ株式会社 | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions |
JP3853757B2 (en) * | 2003-05-30 | 2006-12-06 | ユニオンツール株式会社 | Hard coating for cutting tools |
-
2005
- 2005-12-02 JP JP2005348880A patent/JP4748446B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007152463A (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5005262B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent surface finish accuracy over a long period of time in high-speed cutting of hardened steel | |
JP4985919B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that provides excellent long-term surface accuracy in high-speed cutting of hardened steel | |
JP5418833B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP4883475B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel | |
JP4284503B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting | |
JP4807575B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel | |
JP4883473B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel | |
JP2008254159A (en) | Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material | |
JP4883480B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials | |
JP4985914B2 (en) | Cutting tool made of super-high pressure sintered material with surface-coated cubic boron nitride based on excellent finish surface accuracy | |
JP4883472B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel | |
JP4284509B2 (en) | Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting | |
JP4883478B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent finished surface accuracy over a long period of time in high-speed continuous cutting of hard difficult-to-cut materials | |
JP4883471B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel | |
JP4748446B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials | |
JP2008302439A (en) | Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material | |
JP5402155B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP2008018505A (en) | Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut | |
JP4883477B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel | |
JP4748445B2 (en) | Cutting tool made of super-high-pressure sintered material with surface-coated cubic boron nitride that exhibits excellent chipping resistance with a hard coating layer in intermittent cutting of high-hardness steel | |
JP4748447B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in high-speed cutting of hard difficult-to-cut materials | |
JP4883474B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel | |
JP5246596B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP2008018508A (en) | Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed intermittently cutting high-hardness steel | |
JP4284510B2 (en) | Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071226 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4748446 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110508 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |