JP4883472B2 - Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel - Google Patents

Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel Download PDF

Info

Publication number
JP4883472B2
JP4883472B2 JP2006161677A JP2006161677A JP4883472B2 JP 4883472 B2 JP4883472 B2 JP 4883472B2 JP 2006161677 A JP2006161677 A JP 2006161677A JP 2006161677 A JP2006161677 A JP 2006161677A JP 4883472 B2 JP4883472 B2 JP 4883472B2
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
thin layer
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006161677A
Other languages
Japanese (ja)
Other versions
JP2007136654A (en
Inventor
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006161677A priority Critical patent/JP4883472B2/en
Publication of JP2007136654A publication Critical patent/JP2007136654A/en
Application granted granted Critical
Publication of JP4883472B2 publication Critical patent/JP4883472B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、硬質被覆層が所定の高温強度を有するとともに、すぐれた高温硬さと潤滑性を具備し、したがって、高熱発生を伴うと同時に切刃部に高負荷がかかる合金工具鋼や軸受け鋼の焼入れ材などの高硬度鋼の重切削加工に用いた場合にも、すぐれた耐チッピング性を発揮する、立方晶窒化ほう素基超高圧焼結材料で構成された切削工具基体の表面に硬質被覆層を形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(以下、被覆cBN基焼結工具という)に関するものである。   The present invention provides a hard coating layer having a predetermined high-temperature strength, excellent high-temperature hardness and lubricity, and therefore, an alloy tool steel or bearing steel that generates high heat and at the same time places a high load on the cutting edge. Hard coating on the surface of the cutting tool base made of cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance even when used for heavy cutting of hardened steel such as hardened materials The present invention relates to a cutting tool made of a surface-coated cubic boron nitride-based ultrahigh pressure sintered material (hereinafter referred to as a coated cBN-based sintered tool) in which a layer is formed.

一般に、被覆cBN基焼結工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップや、前記スローアウエイチップを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミルなどが知られている。   In general, a coated cBN-based sintered tool can be attached to a throwaway tip that is detachably attached to the tip of a cutting tool for turning various work materials such as steel and cast iron, and the throwaway tip can be detachably attached. There are known slow-away end mills that are attached and cut in the same manner as solid type end mills used for chamfering, grooving, and shoulder machining.

また、被覆cBN基焼結工具としては、各種の立方晶窒化ほう素基超高圧焼結材料(以下、cBN基焼結材料という)で構成された工具本体の表面に、チタン窒化物(TiN)層、TiとSiとB(ボロン)の複合窒化物層、TiとAlの複合窒化物層、さらに、CrとSiの複合窒化物層などの表面被覆層を蒸着形成してなる被覆cBN基焼結工具が知られており、これらが例えば各種の鋼や鋳鉄などの切削加工に用いられていることも知られている。   In addition, as the coated cBN-based sintered tool, titanium nitride (TiN) is formed on the surface of a tool body made of various cubic boron nitride-based ultrahigh pressure sintered materials (hereinafter referred to as cBN-based sintered materials). A coated cBN-based firing layer formed by vapor deposition of a surface coating layer such as a composite nitride layer of Ti, Si and B (boron), a composite nitride layer of Ti and Al, and a composite nitride layer of Cr and Si It is also known that knotting tools are known, and these are used for cutting various steels and cast irons, for example.

さらに、上記の被覆cBN基焼結工具が、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃に加熱した状態で、金属Tiや、それぞれ所定の組成を有するTi−Al合金、Ti−Si−B合金、Cr−Si合金などからなるカソード電極(蒸発源)と、アノード電極との間に、例えば90Aの電流を印加してアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方前記工具基体には、たとえば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、TiN層や、(Ti,Al)N層、(Ti,Si,B)N層あるいは(Cr,Si)N層など、所望の成分組成の層を蒸着形成することにより製造されることも知られている。
特開平7−300649号公報 特開平8−119774号公報 特開2003−340603号公報 特開2003−340605号公報
Further, the above-mentioned coated cBN-based sintered tool is loaded with the above-mentioned tool base in an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in a state heated to 500 ° C., a cathode electrode (evaporation source) made of metal Ti, Ti—Al alloy, Ti—Si—B alloy, Cr—Si alloy having a predetermined composition, and an anode electrode, During this time, for example, a current of 90 A is applied to generate arc discharge, and at the same time, nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of, for example, 2 Pa, while the tool base has, for example, −100 V A desired component such as a TiN layer, a (Ti, Al) N layer, a (Ti, Si, B) N layer, or a (Cr, Si) N layer is formed on the surface of the tool base under a condition where a bias voltage is applied. It is also known that are prepared by depositing a layer of growth.
JP-A-7-300649 JP-A-8-119774 JP 2003-340603 A JP 2003-340605 A

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の各種の従来被覆cBN基焼結工具においては、これを、各種の炭素鋼や低合金鋼、さらに鋳鉄などの通常の切削加工に用いた場合には、特に問題はない。しかし、これを、合金工具鋼や軸受鋼の焼入れ材などのビッカース硬さ(Cスケール)で50以上の高い硬さを有する高硬度鋼などの切削加工に用いた場合、特に、高熱発生を伴うと同時に切刃部への高負荷がかかる重切削加工条件下で用いた場合には、特に硬質被覆層の高温強度不足、潤滑性不足が原因で、切刃部にチッピング(微少欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. In the conventional coated cBN-based sintered tool, there is no particular problem when this is used for normal cutting of various carbon steels, low alloy steels, and cast iron. However, when this is used for cutting of high hardness steel having a hardness of 50 or higher, such as hardened material of alloy tool steel or bearing steel, particularly with high heat generation. At the same time, when used under heavy cutting conditions where a heavy load is applied to the cutting edge, chipping (slight chipping) occurs at the cutting edge due to insufficient high-temperature strength and lubricity of the hard coating layer. As a result, the service life is reached in a relatively short time.

そこで、本発明者は、上述のような観点から、特に合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆cBN基焼結工具を開発すべく、研究を行った結果、
(a) 硬質被覆層を構成するCrとSiの複合窒化物([Cr1−XSi]N)層は、Siの含有割合X(原子比)の値が、0.02〜0.1の範囲内において、所定の高温強度とともにすぐれた高温硬さと潤滑性を有し、通常の切削加工条件下において必要とされる耐摩耗性は具備しているが、より過酷な切削加工条件、つまり、高熱の発生を伴うと同時に、切刃部に高負荷のかかる高硬度鋼の重切削加工においては、高温強度および潤滑性が十分に満足できるものでないために、チッピングを発生しやすいこと。
In view of the above, the inventor of the present invention has a coated cBN-based firing that exhibits excellent chipping resistance with a hard coating layer particularly in heavy cutting of high hardness steel such as a hardened material of alloy tool steel and bearing steel. As a result of research to develop a knot,
(a) composite nitride of Cr and Si constituting the hard layer ([Cr 1-X Si X ] N) layer, the value of the content X (atomic ratio) of Si, 0.02 to 0.1 Within the range of the above, it has excellent high-temperature hardness and lubricity with a predetermined high-temperature strength, and has the wear resistance required under normal cutting conditions, but more severe cutting conditions, At the same time as the generation of high heat, high-strength steel with heavy load on the cutting edge portion is not sufficiently satisfactory in high-temperature strength and lubricity, and chipping is likely to occur.

(b)一方、クロム窒化物(CrN)層は、所定の高温強度を有するとともに潤滑性に優れることからチッピングの発生防止という点からは硬質被覆層を構成する蒸着層として適しているが、CrとSiの複合窒化物[Cr1−XSi]N(ただし、原子比でXは0.02〜0.1)層に比して高温硬さが劣るために、特に、高硬度鋼の重切削加工という厳しい切削加工条件下では十分な耐摩耗性を備えるとはいえない。 (B) On the other hand, the chromium nitride (CrN) layer has a predetermined high-temperature strength and is excellent in lubricity, so that it is suitable as a vapor deposition layer constituting a hard coating layer from the viewpoint of preventing occurrence of chipping. And Si complex nitride [Cr 1-X Si X ] N (wherein X is 0.02 to 0.1 in atomic ratio), the high temperature hardness is inferior. Under severe cutting conditions such as heavy cutting, it cannot be said to have sufficient wear resistance.

(c)上記(a)のSi含有割合が2〜10原子%であるすぐれた高温硬さ、潤滑性および所定の高温強度を有する[Cr1−XSi]N(ただし、原子比でXは0.02〜0.1)層(以下、薄層Aという)と、前記薄層Aに比して高温硬さは低いものの、その一方薄層Aよりすぐれた高温強度と潤滑性を有するクロム窒化物(CrN)層(以下、薄層Bという)を、それぞれの一層平均層厚を0.01〜0.3μmの薄層とした状態で交互積層すると、この交互積層構造の硬質被覆層は、薄層Aのもつすぐれた高温硬さ、潤滑性を具備するとともに、薄層Bのもつ優れた高温強度とより優れた潤滑性とを相兼ね備えるようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) above (a) Si content is 2 to 10 atomic% and is excellent high-temperature hardness of, lubricity and having a predetermined high-temperature strength [Cr 1-X Si X] N ( provided that, X atomic ratio Has a high temperature strength and lubricity superior to those of the thin layer A, although the high-temperature hardness is lower than that of the thin layer A. When a chromium nitride (CrN) layer (hereinafter referred to as a thin layer B) is alternately laminated in a state where each layer has an average layer thickness of 0.01 to 0.3 μm, a hard coating layer having this alternately laminated structure Has the excellent high-temperature hardness and lubricity of the thin layer A, and combines the excellent high-temperature strength of the thin layer B with the superior lubricity.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
窒化ほう素を30〜95質量%含有する超高圧焼結材料製インサートの表面に、硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)硬質被覆層は、1.5〜6μmの平均層厚を有する下部層と0.3〜3μmの平均層厚を有する上部層とからなり、
(b)硬質被覆層の下部層は、蒸着形成された、組成式:[Cr1−XSi]N(ただし、Xは、原子比で、0.02〜0.1を示す)を満足するCrとSiの複合窒化物層、
(c)硬質被覆層の上部層は、下部層の表面に蒸着形成された、いずれも一層平均層厚がそれぞれ0.01〜0.3μmの薄層Aと薄層Bの各2〜10層の交互積層構造を有し、
上記薄層Aは、組成式:[Cr1−XSi]N(ただし、Xは、原子比で、0.02〜0.1を示す)を満足するCrとSiの複合窒化物層、
上記薄層Bは、クロム窒化物(CrN)層、
からなる硬質被覆層を蒸着形成してなる、高硬度鋼の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(被覆cBN基焼結工具)に特徴を有するものである。
This invention was made based on the above research results,
In the surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool in which a hard coating layer is vapor-deposited on the surface of the insert made of ultra-high pressure sintered material containing 30 to 95% by mass of boron nitride,
(A) The hard coating layer consists of a lower layer having an average layer thickness of 1.5 to 6 μm and an upper layer having an average layer thickness of 0.3 to 3 μm,
(B) a lower layer of the hard coating layer was vapor deposited, the composition formula: [Cr 1-X Si X ] N ( provided that, X is atomic ratio shows 0.02) satisfies A composite nitride layer of Cr and Si,
(C) The upper layer of the hard coating layer is formed by vapor deposition on the surface of the lower layer, and each layer has 2 to 10 layers each of a thin layer A and a thin layer B each having an average layer thickness of 0.01 to 0.3 μm. Having an alternate laminated structure of
The thin layer A is a composite nitride layer of Cr and Si that satisfies the composition formula: [Cr 1-X Si X ] N (wherein X represents an atomic ratio of 0.02 to 0.1),
The thin layer B is a chromium nitride (CrN) layer,
A surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool that exhibits excellent chipping resistance in heavy cutting of high-hardness steel by vapor deposition of a hard coating layer made of cBN-based sintering tool).

つぎに、この発明の被覆cBN基焼結工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)窒化ほう素(cBN)含有量
超高圧焼結材料製インサート中の窒化ほう素(cBN)含有量が30質量%より少なくなると、cBN焼結材料の硬さが低下し、超高圧焼結材料製インサートを用いて高硬度鋼の重切削加工を行うに際し、最小限必要とされる硬さを備えることができなくなり、耐摩耗性が低下し、一方、窒化ほう素(cBN)含有量が95質量%より多くなると、cBN焼結材料と硬質被覆層の密着強度を確保しにくくなり、その結果硬質被覆層の剥離が生じやすくなるため、この発明では、窒化ほう素(cBN)含有量を30〜95質量%と定めた。
Next, the reason why the hard coating layer of the coated cBN-based sintered tool according to the present invention is numerically limited as described above will be described.
(A) Boron nitride (cBN) content When the boron nitride (cBN) content in the insert made of ultra high pressure sintered material is less than 30% by mass, the hardness of the cBN sintered material is reduced, and ultra high pressure sintering is performed. When performing heavy cutting of high-hardness steel using an insert made of binder material, it becomes impossible to provide the minimum required hardness and wear resistance is reduced, while boron nitride (cBN) content Is more than 95% by mass, it becomes difficult to ensure the adhesion strength between the cBN sintered material and the hard coating layer, and as a result, the hard coating layer is easily peeled off. Therefore, in this invention, the boron nitride (cBN) content Was determined to be 30 to 95% by mass.

(b)下部層を構成する硬質被覆層
CrとSiの複合窒化物層[Cr1−XSi]NにおけるCr成分は所定の高温強度の保持と潤滑性の向上に寄与し、また、Si成分は高温硬さの向上に寄与することから、硬質被覆層の下部層を構成するCrとSiの複合窒化物層[Cr1−XSi]N(ただし、Xは、原子比で、0.02〜0.1を示す)は、所定の高温強度とともにすぐれた高温硬さと潤滑性とを具備する層であって、高硬度鋼の重切削加工時における切刃部の耐摩耗性を確保する役割を基本的に担う。ただ、Siの含有割合Xが10原子%を超えると、下部層の高温硬さが大となり耐摩耗性は向上するものの、Crの含有割合の減少によって、高温強度と潤滑性が低下するようになるため、チッピングが発生し易くなり、一方、Siの含有割合Xが2原子%未満になると、高温硬さが低下するために、高硬度鋼の重切削加工時における切刃部の摩耗進行が急激に進行するようになり、耐摩耗性を十分に確保することができなくなることから、Siの含有割合Xの値を0.02〜0.1と定めた。
また、下部層の平均層厚が1.5μm未満では、自身のもつ所定の高温強度とすぐれた高温硬さ、潤滑性とを硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が6μmを越えると、チッピングが発生し易くなることから、その平均層厚を1.5〜6μmと定めた。
なお、超高圧焼結材料製インサート基体と下部層との十分な密着性を確保するために、基体と下部層との間にチタン窒化物(TiN)の薄層を介在させることができる。該TiNの薄層は、その層厚が0.01μm未満では密着性改善の効果が少なく、一方、0.5μmを超えた層厚としても密着性の更なる向上が期待できるわけではないことから、基体と下部層との間に介在させるTiN層の層厚は0.01μm以上0.5μm以下とすることが望ましい。
Cr component in (b) a hard coating layer Cr and Si composite nitride layer of constituting the lower layer [Cr 1-X Si X] N contributes to the improvement of retention and lubricity of predetermined high temperature strength, addition, Si Since the component contributes to the improvement of the high temperature hardness, the Cr and Si composite nitride layer [Cr 1-X Si X ] N (where X is an atomic ratio, 0) constituting the lower layer of the hard coating layer. .02 to 0.1) is a layer having excellent high-temperature hardness and lubricity as well as predetermined high-temperature strength, and ensures the wear resistance of the cutting edge during heavy cutting of high-hardness steel. Basically play a role to do. However, when the Si content ratio X exceeds 10 atomic%, the high temperature hardness of the lower layer is increased and the wear resistance is improved, but the high temperature strength and lubricity are lowered by the decrease of the Cr content ratio. Therefore, chipping is likely to occur. On the other hand, when the Si content ratio X is less than 2 atomic%, the high-temperature hardness decreases, so that the wear of the cutting edge during heavy cutting of high-hardness steel progresses. The value of the Si content ratio X was determined to be 0.02 to 0.1 because it rapidly progressed and the wear resistance could not be sufficiently secured.
In addition, if the average thickness of the lower layer is less than 1.5 μm, the predetermined high-temperature strength possessed by itself and excellent high-temperature hardness and lubricity cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. On the other hand, if the average layer thickness exceeds 6 μm, chipping is likely to occur. Therefore, the average layer thickness was set to 1.5 to 6 μm.
Note that a thin layer of titanium nitride (TiN) can be interposed between the base and the lower layer in order to ensure sufficient adhesion between the insert base made of the ultra-high pressure sintered material and the lower layer. The thin layer of TiN has little effect of improving the adhesion when the layer thickness is less than 0.01 μm, and on the other hand, even if the layer thickness exceeds 0.5 μm, further improvement in adhesion cannot be expected. The thickness of the TiN layer interposed between the substrate and the lower layer is preferably 0.01 μm or more and 0.5 μm or less.

(c)上部層の薄層A
上部層の薄層Aを構成するCrとSiの複合窒化物層[Cr1−XSi]N(ただし、Xは、原子比で、0.02〜0.1を示す)は、下部層と実質同様の層であって、所定の高温強度とともにすぐれた高温硬さ、潤滑性とを具備し、高硬度鋼の重切削加工時における切刃部の耐摩耗性を確保する作用を有する。
(C) Upper layer thin layer A
Composite nitride layer of Cr and Si constituting a thin layer A of the top layer [Cr 1-X Si X] N ( provided that, X is atomic ratio, shows a 0.02 to 0.1), the lower layer The layer has substantially the same high-temperature hardness and lubricity as well as a predetermined high-temperature strength, and has the effect of ensuring the wear resistance of the cutting edge portion during heavy cutting of high-hardness steel.

(d)上部層の薄層B
クロム窒化物(CrN)層からなる薄層Bは、薄層Aと薄層Bの交互積層構造からなる上部層において、云わば、薄層Aに不足する特性(高温強度と潤滑性)を補うことを主たる目的とするものである。
すでに述べたように、上部層の薄層Aは、すぐれた高温硬さと潤滑性を有する層ではあるが、高硬度鋼の重切削加工という過酷な切削条件下では、その高温強度、潤滑性が十分とはいえないためチッピングを発生しやすい。
そこで、上部層の薄層Bとして、薄層Aに比して高温強度に優れた、かつ、一段と潤滑性に優れたクロム窒化物(CrN)層を薄層Aと交互に配し、交互積層構造を構成することで、隣接する薄層Aの高温強度不足、潤滑性不足を補い、もって、前記薄層Aのもつすぐれた高温硬さと潤滑性、前記薄層Bのもつ優れた高温強度、より一段優れた潤滑性を兼ね備えた上部層を形成する。
(D) Upper layer thin layer B
The thin layer B made of a chromium nitride (CrN) layer compensates for the characteristics (high temperature strength and lubricity) that the thin layer A lacks in the upper layer made up of the alternately laminated structure of the thin layer A and the thin layer B. This is the main purpose.
As already described, the upper layer thin layer A is a layer having excellent high-temperature hardness and lubricity, but under severe cutting conditions such as heavy cutting of high-hardness steel, its high-temperature strength and lubricity are low. Since it is not sufficient, chipping is likely to occur.
Therefore, as a thin layer B of the upper layer, a chromium nitride (CrN) layer having excellent high-temperature strength as compared with the thin layer A and further excellent in lubricity is alternately arranged with the thin layer A, and alternately laminated. By constructing the structure, it compensates for the lack of high-temperature strength and lubricity of the adjacent thin layer A, so that the excellent high-temperature hardness and lubricity of the thin layer A, the excellent high-temperature strength of the thin layer B, An upper layer having better lubricity is formed.

(e)上部層の薄層Aと薄層Bの一層平均層厚、上部層の平均層厚
上部層の薄層Aと薄層B、それぞれの一層平均層厚が0.01μm未満ではそれぞれの薄層の備えるすぐれた特性を発揮することができず、この結果、上部層にすぐれた高温硬さ、高温強度と、より一段とすぐれた潤滑性とを確保することができなくなり、またそれぞれの一層平均層厚が0.3μmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温強度、潤滑性の不足、薄層Bであれば高温硬さの不足が層内に局部的に現れるようになり、これが原因でチッピングが発生したり、摩耗が急速に進行するようになることから、それぞれの一層平均層厚は0.01〜0.3μmと定めた。
すなわち、薄層Bは、薄層Aの有する高温強度をより向上させるために設けられたものであるが、薄層A、薄層Bそれぞれの一層平均層厚が0.01〜0.3μmの範囲内であれば、薄層Aと薄層Bの交互積層構造からなる上部層は、すぐれた高温硬さ、高温強度に加え、より一段と優れた潤滑性を具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bそれぞれの一層平均層厚が0.3μmを越えると、薄層Aの高温強度不足、潤滑性不足、あるいは、薄層Bの高温硬さ不足が層内に局部的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、薄層A、薄層Bそれぞれの一層平均層厚を0.01〜0.3μmと定めた。
薄層Aと薄層Bの一層平均層厚を0.01〜0.3μmの範囲内とした交互積層構造からなる上部層を下部層表面に形成することにより、優れた高温硬さ、高温強度およびより一段優れた潤滑性を兼ね備えた硬質被覆層が得られる。
また、上部層の平均層厚(即ち、交互積層構造を構成する薄層Aと薄層Bの各層の平均層厚を合計した層厚)は、0.3μm未満では、高硬度鋼の重切削加工で必要とされる十分な高温硬さ、潤滑性と高温強度を上部層に付与することができず、工具寿命短命の原因となり、一方その平均層厚が3μmを越えると、チッピングが発生し易くなることから、その平均層厚は0.3〜3μmと定めた。
(E) Upper layer thin layer A and thin layer B one layer average layer thickness, upper layer average layer thickness Upper layer thin layer A and thin layer B, each layer average layer thickness is less than 0.01 μm, respectively The excellent properties of the thin layer cannot be exhibited, and as a result, it is impossible to ensure excellent high-temperature hardness, high-temperature strength, and even better lubricity in the upper layer. If the average layer thickness exceeds 0.3 μm, the disadvantages of each thin layer, that is, if it is thin layer A, insufficient high-temperature strength and lubricity, and if thin layer B, insufficient high-temperature hardness is localized in the layer. Therefore, the chipping occurs and the wear progresses rapidly. Therefore, the average layer thickness of each layer was determined to be 0.01 to 0.3 μm.
That is, the thin layer B is provided in order to further improve the high temperature strength of the thin layer A, but the average layer thickness of each of the thin layer A and the thin layer B is 0.01 to 0.3 μm. If it is within the range, the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B is as if it is a single layer having more excellent lubricity in addition to excellent high temperature hardness and high temperature strength. However, if the average layer thickness of each of the thin layer A and the thin layer B exceeds 0.3 μm, the high temperature strength of the thin layer A is insufficient, the lubricity is insufficient, or the high temperature hardness of the thin layer B is insufficient. Appear locally in the layer, and the upper layer as a whole cannot exhibit good characteristics as a single layer, so that the average layer thickness of each of the thin layer A and the thin layer B is 0.01. It was set to -0.3 micrometer.
Excellent high-temperature hardness and high-temperature strength by forming an upper layer consisting of an alternately laminated structure in which the average layer thickness of the thin layers A and B is in the range of 0.01 to 0.3 μm on the lower layer surface. In addition, a hard coating layer having better lubricity can be obtained.
Further, when the average layer thickness of the upper layer (that is, the total layer thickness of the thin layers A and B constituting the alternate laminated structure) is less than 0.3 μm, heavy cutting of high hardness steel is performed. Sufficient high-temperature hardness, lubricity and high-temperature strength required for processing cannot be imparted to the upper layer, resulting in a short tool life. On the other hand, if the average layer thickness exceeds 3 μm, chipping occurs. Since it becomes easy, the average layer thickness was determined to be 0.3 to 3 μm.

なお、この発明の被覆cBN基焼結工具では、最外表面の被覆層の層厚のちがいによって、それぞれ微妙に異なる干渉色を生じ、工具外観が不揃いとなることがある。このような場合には、窒化チタン(TiN)層またはCrとSiの複合窒化物(CrSiN)層を厚く蒸着形成することによって、工具外観の不揃いを防止することができる。その際、TiN層またはCrSiN層の平均層厚が0.2μm未満では外観の不揃いを防止することはできず、また、2μmまでの平均層厚があれば外観の不揃いを十分防止できることから、窒化チタン(TiN)層またはCrとSiの複合窒化物(CrSiN)層の平均層厚は0.2〜2μmとすればよい。
また、この発明の被覆cBN基焼結工具基体の表面粗度は、Raで0.05以上1.0以下であることが望ましい。表面粗度Raが0.05以上であれば、アンカー効果による基体と硬質被覆層との付着強度の向上が期待でき、一方、Raが1.0を超えるようになると、被削材の仕上げ面精度に悪影響を及ぼすようになるためである。
In the coated cBN-based sintered tool of the present invention, a slightly different interference color may be generated depending on the thickness of the coating layer on the outermost surface, and the tool appearance may be uneven. In such a case, unevenness of the appearance of the tool can be prevented by thickly depositing a titanium nitride (TiN) layer or a composite nitride of Cr and Si (CrSiN) layer. At that time, if the average layer thickness of the TiN layer or CrSiN layer is less than 0.2 μm, uneven appearance cannot be prevented, and if the average layer thickness is up to 2 μm, uneven appearance can be sufficiently prevented. The average layer thickness of the titanium (TiN) layer or the composite nitride of Cr and Si (CrSiN) layer may be 0.2-2 μm.
In addition, the surface roughness of the coated cBN-based sintered tool base of the present invention is desirably 0.05 to 1.0 in terms of Ra. If the surface roughness Ra is 0.05 or more, an improvement in adhesion strength between the substrate and the hard coating layer due to the anchor effect can be expected. On the other hand, if Ra exceeds 1.0, the finished surface of the work material This is because the accuracy is adversely affected.

この発明の被覆cBN基焼結工具は、硬質被覆層が上部層と下部層からなり、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによってすぐれた高温硬さ、高温強度ばかりでなく、一段と優れた潤滑性をも兼ね備えることから、特に高熱発生を伴う高硬度鋼の重切削加工でも、前記硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。   In the coated cBN-based sintered tool of the present invention, the hard coating layer is composed of an upper layer and a lower layer, and the upper layer of the hard coating layer has an excellent laminated structure of thin layers A and thin layers B. Because it has not only high-temperature strength but also excellent lubricity, even in heavy cutting of high-hardness steel with high heat generation, there is no chipping in the hard coating layer, and excellent wear resistance is provided for a long time. It is demonstrated over the long term.

つぎに、この発明の被覆cBN基焼結工具を実施例により具体的に説明する。   Next, the coated cBN-based sintered tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、炭化チタン(TiC)粉末、窒化チタン(TiN)粉末、炭窒化チタン(TiCN)粉末、炭化タングステン(WC)粉末、Al粉末、Co粉末、TiとAlの金属間化合物粉末であるTiAl粉末、TiAl粉末、およびTiAl粉末、さらに組成式:TiAlNを有する複合金属窒化物粉末、TiB粉末、窒化アルミニウム(AlN)粉末、硼化アルミニウム(AlB)粉末、酸化アルミニウム(Al)粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正三角形)をもったWC基超硬合金製チップ本体のろう付け部(コーナー部)に、質量%で、Cu:30%、Zn:28%、Ni:2%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.15mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のチップ形状をもった工具基体A〜Hをそれぞれ製造した。 As raw material powders, cubic boron nitride (cBN) powder, titanium carbide (TiC) powder, titanium nitride (TiN) powder, titanium carbonitride (TiCN) powder each having an average particle size in the range of 0.5 to 4 μm , Tungsten carbide (WC) powder, Al powder, Co powder, Ti 3 Al powder that is an intermetallic compound powder of Ti and Al, TiAl powder, and TiAl 3 powder, and a composite metal nitride having a composition formula: Ti 2 AlN Prepare powder, TiB 2 powder, aluminum nitride (AlN) powder, aluminum boride (AlB 2 ) powder, aluminum oxide (Al 2 O 3 ) powder, and blend these raw material powders into the composition shown in Table 1, After wet mixing with a ball mill for 80 hours and drying, a green compact having a diameter of 50 mm × thickness of 1.5 mm was preliminarily formed at a pressure of 120 MPa. Then, the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting blade piece. This pre-sintered body is overlaid with a separately prepared WC-based cemented carbide support piece having dimensions of Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm. In an ordinary ultra high pressure sintering apparatus, the normal pressure is 5 GPa, the temperature is 1200 ° C. within a predetermined temperature range of 1200 to 1400 ° C., and the holding time is 0.8 hours. After sintering, the upper and lower surfaces are polished with a diamond grindstone and divided into a regular triangle shape with a side of 3 mm by a wire electric discharge machine, and Co: 5% by mass, TaC: 5% by mass, WC: remaining composition And CIS standard SNGA12041 shape (thickness: 4 The brazing part (corner part) of the WC-based cemented carbide chip main body having a 76 mm × one side length: 12.7 mm regular triangle) is 30% by mass, Cu: 30%, Zn: 28%, Ni: After brazing using a brazing material of Ag alloy having a composition of 2%, Ag: remaining, and processing the outer periphery to a predetermined dimension, the cutting edge is subjected to a honing process of width: 0.15 mm, angle: 25 ° Further, the tool bases A to H having the chip shape of ISO standard SNGA120212 were manufactured by finishing polishing.

(a)ついで、上記の工具基体A〜Hのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、上部層の薄層B形成用Crを、他方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層Aおよび下部層形成用Cr−Si合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Aおよび下部層形成用Cr−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表2に示される目標組成および目標層厚の(Cr,Si)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−100Vの範囲内の所定の直流バイアス電圧を印加した状態で、前記薄層B形成用Crのカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の薄層Bを形成し、前記薄層B形成後、アーク放電を停止し、代って前記薄層Aおよび下部層形成用Cr−Si合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Aを形成した後、アーク放電を停止し、再び前記薄層B形成用Crのカソード電極とアノード電極間のアーク放電による薄層Bの形成と、前記薄層Aおよび下部層形成用Cr−Si合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成を交互に繰り返し行い、もって前記工具基体の表面に、層厚方向に沿って表2に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表2に示される合計層厚(平均層厚)で蒸着形成することにより、本発明被覆cBN基焼結工具1〜8をそれぞれ製造した。
(A) Next, each of the tool bases A to H is ultrasonically cleaned in acetone and dried, and then in a radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. Are mounted along the outer periphery at a predetermined distance, and the upper layer thin layer B forming Cr is used as the cathode electrode (evaporation source) on one side and the cathode electrode (evaporation source) on the other side. The upper layer thin layer A and the lower layer forming Cr—Si alloy having a component composition corresponding to the target composition shown in FIG.
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. A DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions.
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the tool base rotating while rotating on the rotary table, and the thin layer A current of 100 A is passed between the A and Cr-Si alloy for forming the lower layer and the anode electrode to generate an arc discharge, so that the target composition and target layer thickness shown in Table 2 ( (Cr, Si) N layer is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and within a range of −10 to −100 V on the tool base that rotates while rotating on the rotary table. In a state where a predetermined DC bias voltage is applied, a predetermined current in the range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the thin layer B forming Cr to generate arc discharge, A thin layer B having a predetermined layer thickness is formed on the surface of the tool base, and after the thin layer B is formed, the arc discharge is stopped. Instead, the cathode and anode of the thin layer A and Cr-Si alloy for forming the lower layer Similarly, a predetermined current in the range of 50 to 200 A is passed between the electrodes to generate arc discharge to form a thin layer A having a predetermined thickness. Then, the arc discharge is stopped and the thin layer B forming Cr is again formed. With cathode electrode The formation of the thin layer B by arc discharge between the node electrodes and the formation of the thin layer A by arc discharge between the cathode electrode and the anode electrode of the Cr-Si alloy for forming the thin layer A and the lower layer are alternately repeated. On the surface of the tool base, the total layer thickness shown in Table 2 is also formed on the upper layer composed of alternating layers of the thin layer A and the thin layer B having the target composition shown in Table 2 along the layer thickness direction. The coated cBN-based sintered tools 1 to 8 of the present invention were manufactured by vapor deposition with (average layer thickness).

また、比較の目的で、上記の工具基体A〜Hのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったCr−Si合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Cr−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A〜Hのそれぞれの表面に、表3に示される目標組成および目標層厚の(Cr,Si)N層からなる硬質被覆層を蒸着形成することにより、従来被覆cBN基焼結工具1〜8をそれぞれ製造した。 For comparison purposes, each of the above tool bases A to H is ultrasonically cleaned in acetone and dried, and then charged into the ordinary arc ion plating apparatus shown in FIG. As the (evaporation source), a Cr—Si alloy having a component composition corresponding to the target composition shown in Table 3 was mounted, and first, the heater was evacuated and kept at a vacuum of 0.1 Pa or less. After heating the inside of the apparatus to 500 ° C., Ar gas is introduced to make an atmosphere of 0.7 Pa, and a DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table. The tool substrate surface is bombarded with argon ions, and then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 3 Pa, and a via applied to the tool substrate. Lower the voltage to -100 V, the cause arcing between the cathode electrode and the anode electrode of Cr-Si alloy, on each surface of the tool substrate A~H with a target composition and are shown in Table 3 Conventionally coated cBN-based sintered tools 1 to 8 were respectively produced by vapor-depositing a hard coating layer composed of a target layer thickness (Cr, Si) N layer.

つぎに、上記の各種の被覆cBN基焼結工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆cBN基焼結工具1〜8および従来被覆cBN基焼結工具1〜8について、
被削材:JIS・SCM415(硬さ:HRC60)の丸棒、
切削速度: 160m/min.、
切り込み: 0.42mm、
送り: 0.17mm/rev.、
切削時間: 25分、
の条件(切削条件Aという)での合金工具鋼の乾式連続高切り込み切削加工試験(通常の切り込みは0.2mm)、
被削材:JIS・SUJ2(硬さ:HRC61)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 155m/min.、
切り込み: 0.42mm、
送り: 0.14mm/rev.、
切削時間: 15分、
の条件(切削条件Bという)での軸受鋼の乾式断続高切り込み切削加工試験(通常の切り込み0.2mm)、
被削材:JIS・SKD11の焼入材(硬さ:HRC63)の丸棒、
切削速度: 160m/min.、
切り込み: 0.18mm、
送り: 0.38mm/rev.、
切削時間: 12分、
の条件(切削条件Cという)でのダイス鋼の乾式連続高送り切削加工試験(通常の送りは0.15mm/rev.)
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表4に示した。
Next, the above-mentioned various coated cBN-based sintered tools are screwed to the tip of the tool steel tool with a fixing jig, and the present coated cBN-based sintered tools 1 to 8 and the conventional coated For cBN-based sintered tools 1-8 ,
Work material: JIS / SCM415 (hardness: HRC60) round bar,
Cutting speed: 160 m / min. ,
Cutting depth: 0.42mm,
Feed: 0.17 mm / rev. ,
Cutting time: 25 minutes,
Dry continuous high-cutting cutting test of alloy tool steel under the above conditions (referred to as cutting condition A) (normal cutting is 0.2 mm),
Work material: JIS / SUJ2 (Hardness: HRC61) lengthwise equidistant four round grooved round bars,
Cutting speed: 155 m / min. ,
Cutting depth: 0.42mm,
Feed: 0.14 mm / rev. ,
Cutting time: 15 minutes,
Dry interrupted high cutting test of bearing steel under the conditions (cutting condition B) (normal cutting 0.2 mm),
Work material: JIS · SKD11 hardened material (hardness: HRC63) round bar,
Cutting speed: 160 m / min. ,
Cutting depth: 0.18mm,
Feed: 0.38 mm / rev. ,
Cutting time: 12 minutes,
Dry continuous high-feed cutting test of die steel under the conditions (cutting condition C) (normal feed is 0.15 mm / rev.)
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 4.





この結果得られた本発明被覆cBN基焼結工具1〜8および従来被覆cBN基焼結工具1〜8の硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 As a result, the composition of the hard coating layers of the present coated cBN-based sintered tools 1 to 8 and the conventional coated cBN-based sintered tools 1 to 8 are analyzed by energy dispersive X-ray analysis using a transmission electron microscope. As a result of measurement, each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の構成層の平均層厚を、透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the cross-sectional measurement was carried out using the transmission electron microscope, the average layer thickness of the structure layer of said hard coating layer showed all the average value (average value of five places) substantially the same as target layer thickness. .

表2〜4に示される結果から、本発明被覆cBN基焼結工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ0.01〜0.3μmの薄層Aと薄層Bの各2〜10層の交互積層構造を有する平均層厚(合計層厚)0.3〜3μmの上部層と、1.5〜6μmの平均層厚を有する下部層とからなり、前記上部層がすぐれた高温強度と潤滑性を備え、また、前記下部層が所定の高温強度とすぐれた高温硬さ、潤滑性を備えているので、合金工具鋼や軸受鋼の焼入れ材等の高硬度鋼の高熱発生を伴う重切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一の(Cr,Si)N層からなる従来被覆cBN基焼結工具は、特に硬質被覆層の高温強度不足、潤滑性不足が原因でチッピングが発生するため、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 2 to 4, the coated cBN-based sintered tool of the present invention has a hard coating layer, each of a thin layer A and a thin layer B each having an average layer thickness of 0.01 to 0.3 μm. It consists of an upper layer having an average layer thickness (total layer thickness) of 0.3 to 3 μm having an alternating laminated structure of 2 to 10 layers, and a lower layer having an average layer thickness of 1.5 to 6 μm, and the upper layer is excellent High temperature strength and lubricity, and the lower layer has a predetermined high temperature strength and excellent high temperature hardness and lubricity, so high heat of high hardness steel such as hardened alloy tool steel and bearing steel. The conventional coated cBN-based sintered tool in which the hard coating layer is composed of a single (Cr, Si) N layer, while exhibiting excellent wear resistance without occurrence of chipping even in heavy cutting with generation, In particular, chipping occurs due to insufficient high-temperature strength and lubricity of the hard coating layer. It is clear that lead to comparatively short time service life.

上述のように、この発明の被覆cBN基焼結工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高硬度鋼の高熱発生を伴う重切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性、切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cBN-based sintered tool of the present invention is excellent not only for cutting under normal cutting conditions such as various steels and cast iron, but particularly for heavy cutting with high heat generation of high hardness steel. It exhibits excellent chipping resistance and exhibits excellent wear resistance and cutting performance over a long period of time. Therefore, it is possible to improve the performance of cutting equipment, reduce the labor and energy of cutting, and reduce costs. It can respond satisfactorily.

本発明の被覆cBN基焼結工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the coated cBN group sintered tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

窒化ほう素を30〜95質量%含有する超高圧焼結材料製インサートの表面に、硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)硬質被覆層は、1.5〜6μmの平均層厚を有する下部層と0.3〜3μmの平均層厚を有する上部層とからなり、
(b)硬質被覆層の下部層は、蒸着形成された、組成式:[Cr1−XSi]N(ただし、Xは、原子比で、0.02〜0.1を示す)を満足するCrとSiの複合窒化物層、
(c)硬質被覆層の上部層は、下部層の表面に蒸着形成された、いずれも一層平均層厚がそれぞれ0.01〜0.3μmの薄層Aと薄層Bの各2〜10層の交互積層構造を有し、
上記薄層Aは、組成式:[Cr1−XSi]N(ただし、Xは、原子比で、0.02〜0.1を示す)を満足するCrとSiの複合窒化物層、
上記薄層Bは、クロム窒化物(CrN)層、
からなる硬質被覆層を蒸着形成した、高硬度鋼の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
In the surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool in which a hard coating layer is vapor-deposited on the surface of the insert made of ultra-high pressure sintered material containing 30 to 95% by mass of boron nitride,
(A) The hard coating layer consists of a lower layer having an average layer thickness of 1.5 to 6 μm and an upper layer having an average layer thickness of 0.3 to 3 μm,
(B) a lower layer of the hard coating layer was vapor deposited, the composition formula: [Cr 1-X Si X ] N ( provided that, X is atomic ratio shows 0.02) satisfies A composite nitride layer of Cr and Si,
(C) The upper layer of the hard coating layer is formed by vapor deposition on the surface of the lower layer, and each layer has 2 to 10 layers each of a thin layer A and a thin layer B each having an average layer thickness of 0.01 to 0.3 μm. Having an alternate laminated structure of
The thin layer A is a composite nitride layer of Cr and Si that satisfies the composition formula: [Cr 1-X Si X ] N (wherein X represents an atomic ratio of 0.02 to 0.1),
The thin layer B is a chromium nitride (CrN) layer,
A surface-coated cubic boron nitride-based ultrahigh pressure sintered material cutting tool that exhibits excellent chipping resistance in heavy cutting of high-hardness steel with a hard coating layer made of
JP2006161677A 2005-10-19 2006-06-09 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel Expired - Fee Related JP4883472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161677A JP4883472B2 (en) 2005-10-19 2006-06-09 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005303858 2005-10-19
JP2005303858 2005-10-19
JP2006161677A JP4883472B2 (en) 2005-10-19 2006-06-09 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel

Publications (2)

Publication Number Publication Date
JP2007136654A JP2007136654A (en) 2007-06-07
JP4883472B2 true JP4883472B2 (en) 2012-02-22

Family

ID=38200116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161677A Expired - Fee Related JP4883472B2 (en) 2005-10-19 2006-06-09 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel

Country Status (1)

Country Link
JP (1) JP4883472B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455142B1 (en) 2010-03-31 2014-10-27 히타치 긴조쿠 가부시키가이샤 Process for production of coated article having excellent corrosion resistance, and coated article
DE102011010401A1 (en) * 2011-02-04 2012-08-23 Oerlikon Trading Ag, Trübbach Cr-Si-N coated tools for forming or punching hot metal plates
KR102629996B1 (en) * 2023-07-31 2024-01-29 한국야금 주식회사 A Cutting Tool Having a Hard Coating Composed of a Plurality of Sub-Layers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2638406B2 (en) * 1992-10-26 1997-08-06 神鋼コベルコツール株式会社 Wear resistant multilayer hard film structure
JP3743984B2 (en) * 1994-08-01 2006-02-08 住友電気工業株式会社 Composite high hardness material for tools
JP2005186184A (en) * 2003-12-25 2005-07-14 Ion Engineering Research Institute Corp Tool for dry machining
JP4160921B2 (en) * 2004-03-29 2008-10-08 オーエスジー株式会社 Hard coating tool

Also Published As

Publication number Publication date
JP2007136654A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP5005262B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent surface finish accuracy over a long period of time in high-speed cutting of hardened steel
JP4985919B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that provides excellent long-term surface accuracy in high-speed cutting of hardened steel
JP5418833B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4284503B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4883475B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP4883472B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4985914B2 (en) Cutting tool made of super-high pressure sintered material with surface-coated cubic boron nitride based on excellent finish surface accuracy
JP4284509B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP4883471B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4304438B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP2003245806A (en) Cutting tool made of surface-coated cubic boron nitride based sintered material having hard coating layer exhibiting excellent chipping resistance in intermittent heavy cutting
JP2008302439A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP4883477B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP2008018505A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP4748445B2 (en) Cutting tool made of super-high-pressure sintered material with surface-coated cubic boron nitride that exhibits excellent chipping resistance with a hard coating layer in intermittent cutting of high-hardness steel
JP4883474B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4748447B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in high-speed cutting of hard difficult-to-cut materials
JP4284510B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP2008302438A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP4284506B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP2008018504A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111127

LAPS Cancellation because of no payment of annual fees