JP2008018508A - Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed intermittently cutting high-hardness steel - Google Patents

Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed intermittently cutting high-hardness steel Download PDF

Info

Publication number
JP2008018508A
JP2008018508A JP2006193498A JP2006193498A JP2008018508A JP 2008018508 A JP2008018508 A JP 2008018508A JP 2006193498 A JP2006193498 A JP 2006193498A JP 2006193498 A JP2006193498 A JP 2006193498A JP 2008018508 A JP2008018508 A JP 2008018508A
Authority
JP
Japan
Prior art keywords
layer
cutting
nitride
hard coating
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006193498A
Other languages
Japanese (ja)
Other versions
JP4883479B2 (en
Inventor
Hidemitsu Takaoka
秀充 高岡
Itsuro Tajima
逸郎 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006193498A priority Critical patent/JP4883479B2/en
Publication of JP2008018508A publication Critical patent/JP2008018508A/en
Application granted granted Critical
Publication of JP4883479B2 publication Critical patent/JP4883479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed intermittently cutting high-hardness steel. <P>SOLUTION: In the cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material, a hard coated layer is deposited on the surface of an insert body having texture in which a very high pressure sintered reaction product is interposed in the interface between a cubic boron nitride boron phase forming a dispersed phase and a titanium nitride phase forming a continuous phase. (a) A hard coating layer includes: a lower layer having an average layer thickness ranging from 1-3 μm; and an upper layer having an average layer thickness ranging from 0.3-3 μm, (b) the lower layer is formed of a compound nitride layer of Cr, Al and Si satisfying a specified composition formula, and (c) the upper layer has an alternately stacking layer structure of a thin layer A and a thin layer B which respectively have an average layer thickness ranging from 0.05-0.3 μm, the thin layer A is formed of a compound nitride layer of Cr, Al and Si satisfying a specified composition formula, and the thin layer B is formed of a Ti nitride (TiN) layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、合金鋼、クロム鋼などのような高硬度鋼を高速断続切削加工した場合でも、硬質被覆層がすぐれた耐欠損性を有し、長期にわたって安定した切削性能を発揮することができる、立方晶窒化ほう素基超高圧焼結材料で構成された切削工具基体の表面に硬質被覆層を形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(以下、被覆cBN基焼結工具という)に関するものである。   Even when high hardness steel such as alloy steel, chrome steel, etc. is subjected to high-speed intermittent cutting, this invention has excellent fracture resistance with a hard coating layer and can exhibit stable cutting performance over a long period of time. A cutting tool made of a surface-coated cubic boron nitride-based super-high pressure sintered material (hereinafter referred to as a coated cBN group) in which a hard coating layer is formed on the surface of a cutting tool base composed of a cubic boron nitride-based ultra-high pressure sintered material. (Referred to as a sintered tool).

一般に、被覆cBN基焼結工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, a coated cBN-based sintered tool has an insert that can be attached to the tip of a cutting tool for turning of a work material such as various types of steel and cast iron, An insert-type end mill that performs cutting work in the same manner as a solid type end mill used for machining, grooving, and shoulder machining is known.

また、被覆cBN基焼結工具としては、各種の立方晶窒化ほう素基超高圧焼結材料(以下、cBN基焼結材料という)で構成された工具本体の表面に硬質被覆層を形成しているが、硬質被覆層の一つとして、CrとAlとSiの複合窒化物((Cr,Al,Si)N)層を蒸着形成することが知られている。   Further, as a coated cBN-based sintered tool, a hard coating layer is formed on the surface of a tool body composed of various cubic boron nitride-based ultrahigh pressure sintered materials (hereinafter referred to as cBN-based sintered materials). However, it is known to form a composite nitride ((Cr, Al, Si) N) layer of Cr, Al, and Si as one of the hard coating layers.

そして、上記(Cr,Al,Si)N層からなる硬質被覆層を被覆した被覆cBN基焼結工具は、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃に加熱した状態で、Cr−Al−Si合金からなるカソード電極(蒸発源)と、アノード電極との間に、例えば90Aの電流を印加してアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方前記工具基体には、たとえば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、(Cr,Al,Si)N層を蒸着形成することにより製造されることも知られている。
特開2003−321764号公報 特開2004−106183号公報
The coated cBN-based sintered tool coated with the hard coating layer made of the (Cr, Al, Si) N layer is, for example, arc ion plating which is a kind of physical vapor deposition apparatus shown in a schematic explanatory view in FIG. The above tool base is inserted into the apparatus, and the inside of the apparatus is heated to, for example, 500 ° C. with a heater, for example, between a cathode electrode (evaporation source) made of a Cr—Al—Si alloy and an anode electrode, for example A 90 A current was applied to generate an arc discharge, and at the same time, nitrogen gas was introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example, while a bias voltage of, for example, −100 V was applied to the tool base. It is also known that a (Cr, Al, Si) N layer is deposited on the surface of the tool base under conditions.
Japanese Patent Laid-Open No. 2003-321764 JP 2004-106183 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件下での切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じない。しかし、これを、高硬度鋼の高速断続切削に用いた場合には、切刃部に発生する高熱と、切刃部に加わる断続的かつ衝撃的な負荷により、切刃の刃先の境界部分には異常損傷(以下、境界異常損傷という)、欠損が生じ、これが原因で、比較的短時間で使用寿命に至るのが現状である。   In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. Although there is a tendency to require lower cutting, the above-described conventional coated tool does not cause any particular problem when various types of steel and cast iron are cut under normal conditions. However, when this is used for high-speed intermittent cutting of high-hardness steel, due to the high heat generated at the cutting edge and the intermittent and impact load applied to the cutting edge, the boundary of the cutting edge of the cutting edge In the present situation, abnormal damage (hereinafter referred to as abnormal boundary damage) and loss occur, and this causes the service life in a relatively short time.

そこで、本発明者等は、上述のような観点から、高硬度鋼の高速断続切削加工で、硬質被覆層がすぐれた耐欠損性を発揮する被覆cBN基焼結工具を開発すべく研究を行った結果、
(a) 硬質被覆層を構成するCrとAlとSiの複合窒化物(以下、(Cr1−X−YAlSi)Nで示す)層は、Alの含有割合X(原子比)の値が、0.4〜0.7の範囲内において所定の高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性を有し、通常の切削加工条件下において必要とされる耐摩耗性は具備しているが、高硬度鋼の高速断続切削加工においては、切刃部には高熱が発生するとともに、切刃部には断続的かつ衝撃的な負荷が加わり、一方、(Cr1−X−YAlSi)N層からなる硬質被覆層は高温強度が不十分であるために、切刃の境界部分には境界異常損傷が生じ、そして、これが欠損の原因となること。
In view of the above, the present inventors have conducted research to develop a coated cBN-based sintered tool that exhibits high fracture resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel from the above viewpoint. As a result,
(a) The composite nitride of Cr, Al, and Si (hereinafter referred to as (Cr 1-XY Al X Si Y ) N) constituting the hard coating layer has an Al content ratio X (atomic ratio). Abrasion resistance required under normal cutting conditions, with specified high-temperature hardness, heat resistance, high-temperature oxidation resistance, and heat-resistant plastic deformation within a range of 0.4 to 0.7 While comprises, in the high-speed intermittent cutting work of hardened steels, with high heat is generated in the cutting edge, applied intermittently and shocking loads the cutting edge portion, whereas, (Cr 1- X-Y Al X Si Y) consisting of N layer hard coating layer in order high-temperature strength is insufficient, edge notching occurs at the boundary portion of the cutting edge, and this may cause a defect.

(b)一方、Ti窒化物(以下、TiNで示す)層は、高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性は十分ではないが、すぐれた高温強度を有しているために、大きな発熱を伴う高硬度鋼の高速断続切削加工においても切刃の境界部分に境界異常損傷が発生するのを防止し得ること。 (B) On the other hand, the Ti nitride (hereinafter referred to as TiN) layer is not sufficient in high temperature hardness, heat resistance, high temperature oxidation resistance, and heat plastic deformation, but has excellent high temperature strength. In addition, it is possible to prevent abnormal boundary damage from occurring at the boundary portion of the cutting edge even in high-speed intermittent cutting of high hardness steel with large heat generation.

(c)上記(a)のAlの含有割合Xが40〜70原子%の所定の高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性を有する(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)層(以下、薄層Aという)と、前記薄層Aに比べて高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性は劣るものの、その一方で、すぐれた高温強度を有するTi窒化物(TiN)層(以下、薄層Bという)を、それぞれの一層平均層厚を0.05〜0.3μmの薄層とした状態で交互積層して硬質被覆層の上部層を構成すると、この交互積層構造の硬質被覆層は、薄層Aのもつすぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性とともに、薄層Bのもつすぐれた高温強度を相兼ね備えるようになり、その結果、高硬度鋼の高速断続切削加工においても、境界異常損傷の発生が防止され、耐欠損性が向上すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) Al content ratio X in the above (a) having a predetermined high temperature hardness, heat resistance, high temperature oxidation resistance, and heat plastic deformation resistance of 40 to 70 atomic% (Cr 1-XY Al X Si Y ) N (however, in terms of atomic ratio, X is 0.4 to 0.7, Y is 0.02 to 0.10) layer (hereinafter referred to as thin layer A) and the thin layer A While high-temperature hardness, heat resistance, high-temperature oxidation resistance, and heat-resistant plastic deformability are inferior, on the other hand, a Ti nitride (TiN) layer (hereinafter referred to as a thin layer B) having excellent high-temperature strength is formed in each layer. When the upper layer of the hard coating layer is formed by alternately laminating with the average layer thickness being a thin layer of 0.05 to 0.3 μm, the hard coating layer of this alternate laminar structure has the excellent high temperature of the thin layer A. Combines hardness, heat resistance, high temperature oxidation resistance, and heat plastic deformation with excellent high temperature strength of thin layer B Uninari a result, even in high-speed intermittent cutting work of hardened steels, the border abnormal damage is prevented, the chipping resistance is improved.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
窒化チタン13〜30%、アルミニウムおよび/または酸化アルミニウム6〜18%、残部窒化ほう素(以上、%は、いずれも質量%を示す)からなる配合組成を有する圧粉体の超高圧焼結材料で構成され、かつ、走査型電子顕微鏡による組織観察で、分散相を形成する立方晶窒化ほう素相と連続相を形成する窒化チタン相との界面に超高圧焼結反応生成物が介在した組織を有するインサート本体の表面に硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)硬質被覆層は、1〜3μmの平均層厚を有する下部層と0.3〜3μmの平均層厚を有する上部層とからなり、
(b)硬質被覆層の下部層は、蒸着形成された、
組成式:(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)を満足するCrとAlとSiの複合窒化物層、
(c)硬質被覆層の上部層は、下部層の表面に蒸着形成された、いずれも一層平均層厚がそれぞれ0.05〜0.3μmの薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)を満足するCrとAlとSiの複合窒化物層、
上記薄層Bは、Ti窒化物(TiN)層、
からなる硬質被覆層を蒸着形成した、合金鋼やクロム鋼などの高硬度鋼の高速断続切削加工ですぐれた耐欠損性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(被覆cBN基焼結工具)に特徴を有するものである。
This invention was made based on the above research results,
Ultra-high pressure sintered material of green compact having a compounding composition comprising titanium nitride 13 to 30%, aluminum and / or aluminum oxide 6 to 18%, and remaining boron nitride (wherein,% indicates mass%) And a structure in which an ultrahigh pressure sintered reaction product is interposed at the interface between a cubic boron nitride phase forming a dispersed phase and a titanium nitride phase forming a continuous phase, as observed by a scanning electron microscope. In a cutting tool made of a surface-coated cubic boron nitride-based ultra-high pressure sintered material in which a hard coating layer is vapor-deposited on the surface of the insert body having
(A) The hard coating layer is composed of a lower layer having an average layer thickness of 1 to 3 μm and an upper layer having an average layer thickness of 0.3 to 3 μm,
(B) The lower layer of the hard coating layer was formed by vapor deposition.
Cr satisfying the composition formula: (Cr 1-XY Al X Si Y ) N (wherein X is 0.4 to 0.7 and Y is 0.02 to 0.10 in atomic ratio) A composite nitride layer of Al and Si;
(C) The upper layer of the hard coating layer is formed by vapor deposition on the surface of the lower layer, and each has an alternately laminated structure of thin layers A and B each having an average layer thickness of 0.05 to 0.3 μm. And
The thin layer A is
Cr satisfying the composition formula: (Cr 1-XY Al X Si Y ) N (wherein X is 0.4 to 0.7 and Y is 0.02 to 0.10 in atomic ratio) A composite nitride layer of Al and Si;
The thin layer B is a Ti nitride (TiN) layer,
Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel such as alloy steel and chromium steel with a hard coating layer made of (Coated cBN-based sintered tool).

つぎに、この発明の被覆cBN基焼結工具において、これを構成するインサート本体のcBN基焼結材料の配合組成および硬質被覆層の組成、層厚を限定した理由を説明する。
(a)インサート本体のcBN基焼結材料の配合組成
(イ)TiN
焼結材料中のTiN成分は、焼結性を向上させるとともに焼結体中で連続相を形成して強度を向上させる作用があるが、その配合割合が13質量%未満では所望の強度を確保することができず、一方その配合割合が30質量%を超えると相対的にcBNの含有量が少なくなり、すくい面摩耗などが生じやすくなることから、その配合割合を13〜30質量%と定めた。
Next, in the coated cBN-based sintered tool of the present invention, the reason why the composition of the cBN-based sintered material of the insert main body, the composition of the hard coating layer, and the layer thickness are limited will be described.
(A) Composition of the cBN-based sintered material of the insert body (A) TiN
The TiN component in the sintered material has the effect of improving the sinterability and improving the strength by forming a continuous phase in the sintered body, but if the blending ratio is less than 13% by mass, the desired strength is ensured. On the other hand, if the blending ratio exceeds 30% by mass, the content of cBN is relatively reduced, and rake face wear is likely to occur. Therefore, the blending ratio is set to 13 to 30% by mass. It was.

(ロ)アルミニウムおよび/または酸化アルミニウム
これらの成分は焼結時に優先的にcBN粉末の表面に凝集し、反応して反応生成物を形成し、焼結後のcBN基材料中で、連続相を形成するTiN相と硬質分散相を形成するcBN相の間に介在するようになり、この反応生成物は前記連続相を形成するTiN相と硬質分散相を形成するcBN相のいずれとも強固に密着接合する性質をもつことから、前記cBN相の連続結合相であるTiN相に対する密着性が著しく向上し、この結果切刃の耐チッピング性が向上するようになるが、アルミニウムおよび/または酸化アルミニウムの配合割合が6〜18質量%の範囲からはずれると、中間密着層として前記硬質分散相と連続相の間に強固な密着性を確保することができないので、アルミニウムおよび/または酸化アルミニウムの配合割合を6〜18質量%と定めた。
(B) Aluminum and / or aluminum oxide These components aggregate preferentially on the surface of the cBN powder during the sintering and react to form a reaction product. In the sintered cBN-based material, a continuous phase is formed. The reaction product is tightly adhered to both the TiN phase forming the continuous phase and the cBN phase forming the hard dispersed phase, and is interposed between the TiN phase forming and the cBN phase forming the hard dispersed phase. Since it has the property of bonding, the adhesion of the cBN phase to the TiN phase, which is a continuous bonding phase, is remarkably improved. As a result, the chipping resistance of the cutting blade is improved. When the blending ratio is out of the range of 6 to 18% by mass, it is not possible to ensure strong adhesion between the hard dispersed phase and the continuous phase as an intermediate adhesion layer. The mixing ratio of um and / or aluminum oxide was determined to be 6 to 18% by mass.

(ハ)窒化ほう素(cBN)
超高圧焼結材料製工具基体中の窒化ほう素(cBN)は、きわめて硬質で、焼結材料中で分散相を形成し、そしてこの分散相によって耐摩耗性の向上が図れるが、その配合割合が少なすぎると所望のすぐれた耐摩耗性を確保することができず、一方その配合割合が多くなりすぎると、窒化ほう素(cBN)基材料自体の焼結性が低下し、この結果切刃に欠損が生じやすくなる。窒化ほう素(cBN)の配合割合は、焼結材料の構成成分であるTiN、アルミニウムおよび酸化アルミニウムの残部、即ち、52〜81質量%となる。
(C) Boron nitride (cBN)
Boron nitride (cBN) in the tool base made of ultra-high pressure sintered material is extremely hard and forms a dispersed phase in the sintered material, and this dispersed phase can improve wear resistance. If the amount is too small, the desired excellent wear resistance cannot be ensured. On the other hand, if the blending ratio is too large, the sinterability of the boron nitride (cBN) base material itself decreases, resulting in a cutting edge. Deficiency is likely to occur. The mixing ratio of boron nitride (cBN) is the balance of TiN, aluminum, and aluminum oxide, which are constituents of the sintered material, that is, 52 to 81 mass%.

(b)硬質被覆層の下部層
硬質被覆層の下部層を構成する(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)層におけるCr成分は所定の高温強度の維持、Al成分は高温硬さ、耐熱性、耐高温酸化性の向上、また、Si成分は耐熱塑性変形性に寄与することから、硬質被覆層の下部層を構成する(Cr1−X−YAlSi)N層は、所定の高温強度とすぐれた高温硬さ、耐熱性、耐高温酸化性および耐熱塑性変形性を具備する層であって、合金鋼、クロム鋼などのような高硬度鋼の高速断続切削加工時における切刃部の耐摩耗性を確保する役割を基本的に担う。ただ、Alの含有割合Xが70原子%を超えると下部層の耐熱性、耐高温酸化性は向上するものの、Cr含有割合の相対的な減少によってB1結晶構造を保つことが困難となり、耐摩耗性が著しく低下し、一方、Alの含有割合Xが40原子%未満になると、高温硬さ、耐熱性が低下し、その結果、耐摩耗性の低下がみられるようになり、さらに、Siの含有割合Yが10原子%を超えると、相対的にCrの含有割合、Alの含有割合が減少することによって、耐欠損性、耐摩耗性が低下し、一方、Siの含有割合Yが2原子%未満になると耐熱塑性変形性の向上を期待できなくなることから、Alの含有割合Xの値を0.4〜0.7、また、Siの含有割合Yの値を、0.02〜0.10と定めた。
また、下部層の平均層厚が1μm未満では、自身のもつ高温硬さ、耐熱性、耐高温酸化性および耐熱塑性変形性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が3μmを越えると、欠損が生じ易くなることから、その平均層厚を1〜3μmと定めた。
(B) Lower layer of hard coating layer (Cr 1-XY Al X Si Y ) N (wherein atomic ratio, X is 0.4 to 0.7, Y is the lower layer of the hard coating layer) 0.02 to 0.10) Cr component in the layer maintains a predetermined high temperature strength, Al component improves high temperature hardness, heat resistance, high temperature oxidation resistance, and Si component contributes to heat plastic deformation since the, constituting the lower layer of the hard coating layer (Cr 1-X-Y Al X Si Y) N layer, a predetermined high-temperature strength and excellent high-temperature hardness, heat resistance, high-temperature oxidation resistance and heat plastic It is a layer having deformability and basically plays a role of ensuring the wear resistance of the cutting edge portion during high-speed intermittent cutting of high hardness steel such as alloy steel and chromium steel. However, if the Al content ratio X exceeds 70 atomic%, the heat resistance and high-temperature oxidation resistance of the lower layer will improve, but it will be difficult to maintain the B1 crystal structure due to the relative decrease in the Cr content ratio, resulting in wear resistance. On the other hand, when the Al content ratio X is less than 40 atomic%, the high-temperature hardness and heat resistance are lowered, and as a result, wear resistance is lowered. When the content ratio Y exceeds 10 atomic%, the content ratio of Cr and the content ratio of Al are relatively decreased, so that the fracture resistance and wear resistance are lowered. On the other hand, the Si content ratio Y is 2 atoms. Since the improvement of the heat-resistant plastic deformability cannot be expected if it is less than 0.5%, the value of the Al content ratio X is 0.4 to 0.7, and the value of the Si content ratio Y is 0.02 to 0.00. 10 was determined.
Moreover, if the average layer thickness of the lower layer is less than 1 μm, the high temperature hardness, heat resistance, high temperature oxidation resistance and heat plastic deformation that it has cannot be imparted to the hard coating layer over a long period of time, resulting in short tool life. On the other hand, if the average layer thickness exceeds 3 μm, defects tend to occur, so the average layer thickness was set to 1 to 3 μm.

なお、超高圧焼結材料製切削工具基体と下部層との十分な密着性を確保するために、基体と下部層との間にチタン窒化物(TiN)の薄層を介在させることができる。該TiNの薄層は、その層厚が0.01μm未満では密着性改善の効果が少なく、一方、0.5μmを超えた層厚としても密着性の更なる向上が期待できるわけではないことから、基体と下部層との間に介在させるTiN層の層厚は0.01μm以上0.5μm以下とすることが望ましい。   A thin layer of titanium nitride (TiN) can be interposed between the base and the lower layer in order to ensure sufficient adhesion between the cutting tool base made of the ultra-high pressure sintered material and the lower layer. The thin layer of TiN has little effect of improving the adhesion when the layer thickness is less than 0.01 μm, and on the other hand, even if the layer thickness exceeds 0.5 μm, further improvement in adhesion cannot be expected. The thickness of the TiN layer interposed between the substrate and the lower layer is preferably 0.01 μm or more and 0.5 μm or less.

(c)硬質被覆層の上部層
(イ)上部層の薄層A
上部層の薄層Aを構成する(Cr1−X−YAlSi)N層(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)は、下部層と実質同様の層であって、所定の高温強度と、すぐれた高温硬さ、耐熱性、耐高温酸化性および耐熱塑性変形性を具備し、高硬度鋼の高速断続切削加工時における切刃部の耐摩耗性を確保する作用を有する。
(C) Upper layer of hard coating layer (b) Thin layer A of upper layer
(Cr 1-XY Al X Si Y ) N layer (however, in atomic ratio, X is 0.4 to 0.7, Y is 0.02 to 0.10) constituting the thin layer A of the upper layer Is a layer substantially similar to the lower layer, having a predetermined high-temperature strength, excellent high-temperature hardness, heat resistance, high-temperature oxidation resistance, and heat-resistant plastic deformation, and high-speed intermittent cutting of high-hardness steel. It has the effect | action which ensures the abrasion resistance of the cutting blade part at the time of a process.

(ロ)上部層の薄層B
TiN層からなる薄層Bは、薄層Aと薄層Bの交互積層構造からなる上部層において、云わば、薄層Aに不足する特性(高温強度)を補うことを主たる目的とするものである。
すでに述べたように、上部層の薄層Aは、すぐれた高温硬さ、耐熱性、耐高温酸化性および耐熱塑性変形性を有する層であるが、高い熱発生を伴い、かつ、切刃部に断続的・衝撃的な機械的負荷が加わる高硬度鋼の高速断続切削加工では、高温強度が十分であるとはいえないため、高温強度不足が原因となって境界異常損傷、欠損を生じることになる。
そこで、すぐれた高温強度を有するTiN層からなる薄層Bを、薄層Aと交互に配し交互積層構造を構成することで、隣接する薄層Aの高温強度不足を補い、上部層全体として、前記薄層Aのもつすぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性を何ら損なうことなく、前記薄層Bのもつすぐれた高温強度を兼ね備えた上部層を形成する。
TiN層は、すぐれた高温強度を備え、高熱発生を伴い、かつ、切刃部に断続的・衝撃的な機械的負荷が加わる高硬度鋼の高速断続切削加工において、切刃の刃先の境界部分に境界異常損傷、欠損が発生することを防止する作用を有する。
(B) Thin layer B of the upper layer
The thin layer B composed of the TiN layer is mainly intended to supplement the characteristics (high temperature strength) that the thin layer A lacks in the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B. is there.
As described above, the thin layer A of the upper layer is a layer having excellent high-temperature hardness, heat resistance, high-temperature oxidation resistance, and heat-resistant plastic deformation, but is accompanied by high heat generation and the cutting edge portion. In high-speed intermittent cutting of high-hardness steel, which is subjected to intermittent and impact mechanical loads, the high-temperature strength cannot be said to be sufficient, leading to abnormal boundary damage and defects due to insufficient high-temperature strength. become.
Therefore, the thin layer B composed of the TiN layer having excellent high temperature strength is arranged alternately with the thin layer A to constitute an alternate laminated structure, thereby compensating for the lack of high temperature strength of the adjacent thin layer A, and as a whole upper layer. The upper layer having the excellent high-temperature strength of the thin layer B is formed without impairing the excellent high-temperature hardness, heat resistance, high-temperature oxidation resistance, and heat-resistant plastic deformation property of the thin layer A.
The TiN layer has excellent high-temperature strength, high heat generation, and high-speed intermittent cutting of high-hardness steel with intermittent and impact mechanical loads on the cutting edge. Has the effect of preventing the occurrence of abnormal boundary damage and defects.

(ハ)上部層の薄層Aと薄層Bの一層平均層厚、上部層の平均層厚
上部層の薄層Aと薄層B、それぞれの一層平均層厚が0.05μm未満ではそれぞれの薄層の備えるすぐれた特性を発揮することができず、この結果、上部層にすぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性と高温強度を確保することができなくなり、またそれぞれの一層平均層厚が0.3μmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温強度の不足、薄層Bであれば高温硬さ、耐熱性、耐高温酸化性の不足が層内に局部的に現れるようになり、これが原因で、切刃刃先の境界異常損傷、欠損が発生したり、摩耗が急速に進行するようになることから、それぞれの一層平均層厚は0.05〜0.3μmと定めた。
すなわち、薄層Bは、上部層に高温強度を付与するために設けたものであるが、薄層A、薄層Bそれぞれの一層平均層厚が0.05〜0.3μmの範囲内であれば、薄層Aと薄層Bの交互積層構造からなる上部層は、すぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性と、すぐれた高温強度を具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bそれぞれの一層平均層厚が0.3μmを越えると、薄層Aの高温強度の不足、あるいは、薄層Bの高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性の不足が層内に局部的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、薄層A、薄層Bそれぞれの一層平均層厚を0.05〜0.3μmと定めた。
薄層Aと薄層Bの一層平均層厚を0.05〜0.3μmの範囲内とした交互積層構造からなる上部層を下部層表面に形成することにより、優れた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性とともに、すぐれた高温強度を兼ね備えた硬質被覆層が得られ、その結果、合金鋼、クロム鋼などのような高硬度鋼の高速断続切削加工において、切刃の刃先の境界部分に生じる異常損傷の発生を防止することができる。
また、上部層の合計平均層厚(即ち、交互積層構造を構成する薄層Aと薄層Bの各層の平均層厚を合計した層厚)は、0.3μm未満では、高硬度鋼の高速断続切削加工で必要とされる十分な高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性および高温強度を上部層に付与することができず、工具寿命短命の原因となり、一方その平均層厚が3μmを越えると、欠損が発生し易くなることから、その平均層厚は0.3〜3μmと定めた。
(C) The average layer thickness of the upper layer, the thin layer A and the thin layer B, the average layer thickness of the upper layer. The excellent properties of the thin layer cannot be demonstrated, and as a result, it is impossible to ensure the high temperature hardness, heat resistance, high temperature oxidation resistance, heat plastic deformation and high temperature strength of the upper layer, In addition, if the average layer thickness of each layer exceeds 0.3 μm, the disadvantages of each thin layer, that is, if the thin layer A is insufficient in high temperature strength, if the thin layer B is high temperature hardness, heat resistance, high temperature oxidation resistance Insufficiency appears locally in the layer, which causes abnormal cutting edge boundary damage, chipping, and rapid wear. The thickness was determined to be 0.05 to 0.3 μm.
That is, the thin layer B is provided for imparting high temperature strength to the upper layer, but the average layer thickness of each of the thin layer A and the thin layer B is in the range of 0.05 to 0.3 μm. For example, the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B is a single layer having excellent high temperature hardness, heat resistance, high temperature oxidation resistance, heat plastic deformation, and excellent high temperature strength. However, if the average layer thickness of each of the thin layer A and the thin layer B exceeds 0.3 μm, the high temperature strength of the thin layer A is insufficient, or the high temperature hardness of the thin layer B, Insufficient heat resistance, high temperature oxidation resistance, and heat plastic deformation properties appear locally in the layer, and the upper layer cannot exhibit good characteristics as a single layer as a whole. The average layer thickness of each thin layer B was determined to be 0.05 to 0.3 μm.
Excellent high temperature hardness and heat resistance by forming on the lower layer surface an upper layer composed of an alternating laminate structure in which the average layer thickness of the thin layers A and B is in the range of 0.05 to 0.3 μm. In addition to high-temperature oxidation resistance and heat-resistant plastic deformation, a hard coating layer with excellent high-temperature strength is obtained. As a result, in high-speed intermittent cutting of high-hardness steel such as alloy steel and chromium steel, the cutting edge Occurrence of abnormal damage occurring at the boundary portion of the blade edge can be prevented.
In addition, when the total average layer thickness of the upper layer (that is, the total layer thickness of the thin layers A and B constituting the alternate laminated structure) is less than 0.3 μm, the high-speed steel has a high speed. Sufficient high-temperature hardness, heat resistance, high-temperature oxidation resistance, high-temperature plastic deformation and high-temperature strength required for interrupted cutting cannot be imparted to the upper layer, causing short tool life, while the average When the layer thickness exceeds 3 μm, defects are likely to occur. Therefore, the average layer thickness was determined to be 0.3 to 3 μm.

なお、この発明の被覆cBN基焼結工具では、最外表面の被覆層の層厚のちがいによって、それぞれ微妙に異なる干渉色を生じ、工具外観が不揃いとなることがある。このような場合には、最外表面に、(Cr,Al,Si)N層あるいはTiN層を厚く蒸着形成することによって、工具外観の不揃いを防止することができる。その際、(Cr,Al,Si)N層あるいはTiN層の平均層厚が0.2μm未満では外観の不揃いを防止することはできず、また、2μmまでの平均層厚があれば外観の不揃いを十分防止できることから、(Cr,Al,Si)N層あるいはTiN層の平均層厚は0.2〜2μmとすればよい。
また、この発明の被覆cBN基焼結工具基体の表面粗度は、Raで0.05以上1.0以下であることが望ましい。表面粗度Raが0.05以上であれば、アンカー効果による基体と硬質被覆層との付着強度の向上が期待でき、一方、Raが1.0を超えるようになると、被削材の仕上げ面精度に悪影響を及ぼすようになるためである。
In the coated cBN-based sintered tool of the present invention, a slightly different interference color may be generated depending on the thickness of the coating layer on the outermost surface, and the tool appearance may be uneven. In such a case, unevenness of the tool appearance can be prevented by forming a thick (Cr, Al, Si) N layer or TiN layer on the outermost surface. At that time, if the average layer thickness of the (Cr, Al, Si) N layer or TiN layer is less than 0.2 μm, the appearance irregularity cannot be prevented, and if the average layer thickness is up to 2 μm, the appearance irregularity is not achieved. Therefore, the average layer thickness of the (Cr, Al, Si) N layer or TiN layer may be 0.2 to 2 μm.
In addition, the surface roughness of the coated cBN-based sintered tool base of the present invention is desirably 0.05 to 1.0 in terms of Ra. If the surface roughness Ra is 0.05 or more, an improvement in adhesion strength between the substrate and the hard coating layer due to the anchor effect can be expected. On the other hand, if Ra exceeds 1.0, the finished surface of the work material This is because the accuracy is adversely affected.

この発明の被覆cBN基焼結工具は、硬質被覆層が上部層と下部層からなり、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによってすぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性およびすぐれた高温強度を兼ね備えることから、合金鋼、クロム鋼などのような高硬度鋼の、高熱発生を伴い、切刃部に断続的にかつ衝撃的な機械的負荷が加わる高速断続切削という厳しい条件下の切削加工であっても、硬質被覆層に境界異常損傷、欠損が発生することはなく、長期に亘って、すぐれた耐摩耗性を発揮することができる。   In the coated cBN-based sintered tool of the present invention, the hard coating layer is composed of an upper layer and a lower layer, and the upper layer of the hard coating layer has an excellent laminated structure of thin layers A and thin layers B. Because it combines heat resistance, high-temperature oxidation resistance, heat-resistant plastic deformation and excellent high-temperature strength, high-hardness steels such as alloy steels and chrome steels are accompanied by high heat generation. Even under severe conditions such as high-speed interrupted cutting with impact mechanical load, the hard coating layer will not cause abnormal boundary damage or chipping and will have excellent wear resistance over a long period of time. It can be demonstrated.

つぎに、この発明の被覆cBN基焼結工具を実施例により具体的に説明する。   Next, the coated cBN-based sintered tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、窒化チタン(TiN)粉末、Al粉末、酸化アルミニウム(Al)粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもった工具基体A〜Jをそれぞれ製造した。 As raw material powders, cubic boron nitride (cBN) powder, titanium nitride (TiN) powder, Al powder, and aluminum oxide (Al 2 O 3 ) powder each having an average particle size in the range of 0.5 to 4 μm are prepared. These raw material powders were blended in the composition shown in Table 1, wet mixed with a ball mill for 80 hours, dried, and then compacted with a diameter of 50 mm × thickness: 1.5 mm at a pressure of 120 MPa. The green compact is then press-molded, and then the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes and pre-sintered for a cutting edge piece. This pre-sintered body was superposed on a separately prepared support piece made of WC-based cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm. Normal ultra high pressure sintering It is charged into the apparatus, and is sintered under ultra-high pressure at a predetermined temperature within the range of pressure: 5 GPa and temperature: 1200 to 1400 ° C., which is a normal condition under the condition of holding time: 0.8 hour. Polishing with a diamond grindstone, dividing into 3 mm regular triangles with a wire electric discharge machine, Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and shape of CIS standard SNGA12041 (thickness) The brazing part (corner part) of the insert body made of a WC-based cemented carbide having a length of 4.76 mm and a side length of 12.7 mm is 26% by mass and Ti is 5%. , Ni: 2.5%, Ag: Brazing using a brazing material of an Ag alloy having the composition consisting of the rest, and after outer periphery processing to a predetermined dimension, the width of the cutting edge is 0.13 mm, angle: 25 ° Finished with honing The tool substrate A~J having the insert shape of ISO standard SNGA120412 by applying an abrasive was prepared, respectively.

(a)ついで、上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、上部層の薄層B形成用金属Tiを、また、他方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層Aおよび下部層形成用Cr−Al−Si合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Aおよび下部層形成用Cr−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表2に示される目標組成および目標層厚の(Cr,Al,Si)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−100Vの範囲内の所定の直流バイアス電圧を印加した状態で、前記薄層B形成用金属Tiのカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の薄層Bを形成し、前記薄層B形成後、アーク放電を停止し、代って前記薄層Aおよび下部層形成用Cr−Al−Si合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Aを形成した後、アーク放電を停止し、再び前記薄層B形成用金属Tiのカソード電極とアノード電極間のアーク放電による薄層Bの形成と、前記薄層Aおよび下部層形成用Cr−Al−Si合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成を交互に繰り返し行い、もって前記工具基体の表面に、層厚方向に沿って表2に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表2に示される合計層厚(平均層厚)で蒸着形成することにより、本発明被覆cBN基焼結工具1〜10をそれぞれ製造した。
(A) Next, each of the tool bases A to J is ultrasonically cleaned in acetone and dried, and then in a radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. Are mounted along the outer periphery at a predetermined distance, and the upper layer thin layer B forming metal Ti is used as the cathode electrode (evaporation source) on one side, and the cathode electrode (evaporation source) on the other side. The upper layer thin layer A and the lower layer forming Cr—Al—Si alloy, each having a component composition corresponding to the target composition shown in Table 2, are placed opposite to each other across the rotary table,
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. A DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions.
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the tool base rotating while rotating on the rotary table, and the thin layer A current of 100 A is passed between A and the lower layer forming Cr—Al—Si alloy and the anode electrode to generate an arc discharge, and the target composition and target layer thickness shown in Table 2 are formed on the surface of the tool base. (Cr, Al, Si) N layer is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and within a range of −10 to −100 V on the tool base that rotates while rotating on the rotary table. In a state where a predetermined DC bias voltage is applied, a predetermined current within a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the thin layer B forming metal Ti to generate arc discharge, A thin layer B having a predetermined layer thickness is formed on the surface of the tool base, and after the thin layer B is formed, arc discharge is stopped. Instead, a cathode of Cr-Al-Si alloy for forming the thin layer A and the lower layer Similarly, a predetermined current in the range of 50 to 200 A is passed between the electrode and the anode electrode to generate arc discharge to form a thin layer A having a predetermined layer thickness. Then, the arc discharge is stopped and the thin layer B is again formed. Forming metal Ti The formation of the thin layer B by arc discharge between the sword electrode and the anode electrode and the formation of the thin layer A by arc discharge between the cathode electrode and the anode electrode of the Cr-Al-Si alloy for forming the thin layer A and the lower layer are alternately performed. Table 2 shows the upper layer composed of the alternate lamination of the thin layer A and the thin layer B having the target composition and the single target layer thickness along the layer thickness direction on the surface of the tool base. The coated cBN-based sintered tools 1 to 10 of the present invention were manufactured by vapor deposition with the total layer thickness (average layer thickness) shown.

また、比較の目的で、上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったCr−Al−Si合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Cr−Al−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A〜Jのそれぞれの表面に、表3に示される目標組成および目標層厚の(Cr,Al,Si)N層からなる硬質被覆層を蒸着形成することにより、従来被覆cBN基焼結工具1〜10をそれぞれ製造した。   For comparison purposes, each of the tool bases A to J described above is ultrasonically cleaned in acetone and dried, and then charged into a normal arc ion plating apparatus shown in FIG. As the (evaporation source), a Cr—Al—Si alloy having a component composition corresponding to the target composition shown in Table 3 is mounted, and first, the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less. After heating the interior of the apparatus to 500 ° C. with a heater, Ar gas was introduced to create an atmosphere of 0.7 Pa, and a DC bias voltage of −200 V was applied to the tool base rotating while rotating on the table. Then, the surface of the tool base is bombarded with argon ions, and then nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 3 Pa and applied to the tool base. The bias voltage is lowered to −100 V to generate an arc discharge between the cathode electrode and the anode electrode of the Cr—Al—Si alloy, and the surface of each of the tool bases A to J is shown in Table 3. Conventionally coated cBN-based sintered tools 1 to 10 were respectively produced by vapor-depositing a hard coating layer composed of a (Cr, Al, Si) N layer having a target composition and a target layer thickness.

この結果得られた各種の被覆cBN基焼結工具のインサート本体を構成するcBN基焼結材料について、その組織を走査型電子顕微鏡を用いて観察したところ、いずれのインサート本体も、実質的に分散相を形成するcBN相と連続相を形成するTiN相との界面に超高圧焼結反応生成物が介在した組織を示した。   Regarding the cBN-based sintered material constituting the insert body of various coated cBN-based sintered tools obtained as a result, the structure was observed using a scanning electron microscope, and all the insert bodies were substantially dispersed. A structure in which an ultrahigh-pressure sintered reaction product is present at the interface between the cBN phase forming the phase and the TiN phase forming the continuous phase is shown.

さらに、同表面被覆層について、その組成を透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示し、また、その平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the composition of the surface coating layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, the composition showed substantially the same composition as the target composition, and the average layer thickness was When the cross section was measured using a transmission electron microscope, all showed the average value (average value of five places) substantially the same as the target layer thickness.

つぎに、上記の各種の被覆cBN基焼結工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆cBN基焼結工具1〜10および従来被覆cBN基焼結工具1〜10について、以下に示す切削条件A〜Cで高速断続切削試験を実施した。
[切削条件A]
被削材:JIS・SCM420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 255 m/min.、
切り込み: 0.09 mm、
送り: 0.06 mm/rev.、
切削時間: 8 分、
の条件での合金鋼の乾式断続高速切削加工試験(通常の切削速度は150m/min.)、
[切削条件B]
被削材:JIS・SCr420(硬さ:HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 240 m/min.、
切り込み: 0.12 mm、
送り: 0.10 mm/rev.、
切削時間: 8 分、
の条件でのクロム鋼の乾式断続高速切削加工試験(通常の切削速度は120m/min.)、
[切削条件C]
被削材:JIS・S45C(硬さ:HRC58)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 270 m/min.、
切り込み: 0.15 mm、
送り: 0.11 mm/rev.、
切削時間: 8 分、
の条件での炭素鋼の乾式断続高速切削加工試験(通常の切削速度は180m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅(mm)と被削材の仕上げ面精度(JIS B0601−2001による算術平均高さ(Ra(μm))を測定した。この測定結果を表4に示した。
Next, according to the present invention, the coated cBN-based sintered tools 1 to 10 and the conventional coated cBN-based sintered tool, in a state where all the above-mentioned coated cBN-based sintered tools are screwed to the tip of the tool steel tool with a fixing jig. About the cBN base sintered tools 1-10, the high-speed intermittent cutting test was implemented on the cutting conditions AC shown below.
[Cutting conditions A]
Work material: JIS / SCM420 (Hardness: HRC62) lengthwise equidistant four round bars with vertical grooves,
Cutting speed: 255 m / min. ,
Cutting depth: 0.09 mm,
Feed: 0.06 mm / rev. ,
Cutting time: 8 minutes,
Dry interrupted high-speed cutting test of alloy steel under the conditions of (normal cutting speed is 150 m / min.),
[Cutting conditions B]
Work material: JIS · SCr420 (Hardness: HRC60) lengthwise equidistant four round grooved round bars,
Cutting speed: 240 m / min. ,
Cutting depth: 0.12 mm,
Feed: 0.10 mm / rev. ,
Cutting time: 8 minutes,
A dry intermittent high-speed cutting test of chromium steel under the conditions of (normal cutting speed is 120 m / min.),
[Cutting conditions C]
Work material: JIS · S45C (Hardness: HRC58) lengthwise equidistant four round grooved round bars,
Cutting speed: 270 m / min. ,
Cutting depth: 0.15 mm,
Feed: 0.11 mm / rev. ,
Cutting time: 8 minutes,
Carbon steel dry interrupted high-speed cutting test under normal conditions (normal cutting speed is 180 m / min.),
In each cutting test, the flank wear width (mm) of the cutting edge and the finished surface accuracy of the work material (arithmetic average height (Ra (μm)) according to JIS B0601-2001) were measured. Are shown in Table 4.

Figure 2008018508
Figure 2008018508

Figure 2008018508
Figure 2008018508

Figure 2008018508
Figure 2008018508

Figure 2008018508
Figure 2008018508

表2〜4に示される結果から、本発明被覆cBN基焼結工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ0.05〜0.3μmの薄層Aと薄層Bの交互積層構造を有する平均層厚(合計層厚)0.3〜3μmの上部層と、1〜3μmの平均層厚を有する下部層とからなり、前記下部層がすぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性と所定の高温強度を備え、さらに、前記上部層がすぐれた高温硬さ、耐熱性、耐高温酸化性、耐熱塑性変形性に加えてすぐれた高温強度を備えているので、合金鋼、クロム鋼などのような高硬度鋼の高速断続切削であっても、前記硬質被覆層に境界異常損傷、欠損の発生はなく、長期に亘って、すぐれた耐摩耗性を発揮するとともに、被削材のすぐれた仕上げ面精度を確保することができるのに対して、硬質被覆層が単一の(Cr,Al,Si)N層からなる従来被覆cBN基焼結工具は、特に硬質被覆層の高温強度不足が原因で、刃先に境界異常損傷や欠損が発生し、被削材の仕上げ面精度を維持することができないばかりか、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 2 to 4, the coated cBN-based sintered tool of the present invention has a hard coating layer and alternating layers of thin layers A and B each having an average layer thickness of 0.05 to 0.3 μm. An upper layer having an average layer thickness (total layer thickness) of 0.3 to 3 μm having a laminated structure and a lower layer having an average layer thickness of 1 to 3 μm. The lower layer has excellent high-temperature hardness, heat resistance, High-temperature oxidation resistance, heat-resistant plastic deformation and predetermined high-temperature strength, and the upper layer has excellent high-temperature strength in addition to excellent high-temperature hardness, heat resistance, high-temperature oxidation resistance, and heat-resistant plastic deformation Therefore, even in high-speed intermittent cutting of high-hardness steel such as alloy steel and chrome steel, there is no abnormal boundary damage or chipping in the hard coating layer, and excellent wear resistance over a long period of time. As well as excellent finished surface accuracy of the work material. On the other hand, the conventional coated cBN-based sintered tool in which the hard coating layer is a single (Cr, Al, Si) N layer, especially due to insufficient high-temperature strength of the hard coating layer, causes abnormal boundary damage or chipping at the cutting edge. It is obvious that the finished surface accuracy of the work material cannot be maintained and the service life is reached in a relatively short time.

上述のように、この発明の被覆cBN基焼結工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に合金鋼、クロム鋼などのような高硬度鋼の高速断続切削であっても、前記硬質被覆層がすぐれた耐境界異常損傷性、耐欠損性を発揮し、すぐれた被削材仕上げ面精度を長期に亘って維持するとともにすぐれた耐摩耗性をも示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cBN-based sintered tool of the present invention is not limited to cutting under normal cutting conditions such as various steels and cast irons, particularly high hardness steels such as alloy steels and chrome steels. Even in high-speed interrupted cutting, the hard coating layer exhibits excellent boundary abnormal damage resistance and fracture resistance, maintaining excellent work surface finish accuracy over a long period of time and excellent wear resistance. Therefore, it is possible to satisfactorily cope with high performance of the cutting device, labor saving and energy saving of the cutting, and cost reduction.

本発明の被覆cBN基焼結工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the coated cBN group sintered tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

窒化チタン13〜30%、アルミニウムおよび/または酸化アルミニウム6〜18%、残部窒化ほう素(以上、%は、いずれも質量%を示す)からなる配合組成を有する圧粉体の超高圧焼結材料で構成され、かつ、走査型電子顕微鏡による組織観察で、分散相を形成する立方晶窒化ほう素相と連続相を形成する窒化チタン相との界面に超高圧焼結反応生成物が介在した組織を有するインサート本体の表面に硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)硬質被覆層は、1〜3μmの平均層厚を有する下部層と0.3〜3μmの平均層厚を有する上部層とからなり、
(b)硬質被覆層の下部層は、蒸着形成された、
組成式:(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)を満足するCrとAlとSiの複合窒化物層、
(c)硬質被覆層の上部層は、下部層の表面に蒸着形成された、いずれも一層平均層厚がそれぞれ0.05〜0.3μmの薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:(Cr1−X−YAlSi)N(ただし、原子比で、Xは0.4〜0.7、Yは0.02〜0.10を示す)を満足するCrとAlとSiの複合窒化物層、
上記薄層Bは、Ti窒化物(TiN)層、
からなる硬質被覆層を蒸着形成した、高硬度鋼の高速断続切削加工ですぐれた耐欠損性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。

Ultra-high pressure sintered material of green compact having a compounding composition comprising titanium nitride 13 to 30%, aluminum and / or aluminum oxide 6 to 18%, and remaining boron nitride (wherein,% indicates mass%) And a structure in which an ultrahigh pressure sintered reaction product is interposed at the interface between a cubic boron nitride phase forming a dispersed phase and a titanium nitride phase forming a continuous phase, as observed by a scanning electron microscope. In a cutting tool made of a surface-coated cubic boron nitride-based ultra-high pressure sintered material in which a hard coating layer is vapor-deposited on the surface of the insert body having
(A) The hard coating layer is composed of a lower layer having an average layer thickness of 1 to 3 μm and an upper layer having an average layer thickness of 0.3 to 3 μm,
(B) The lower layer of the hard coating layer was formed by vapor deposition.
Cr satisfying the composition formula: (Cr 1-XY Al X Si Y ) N (wherein X is 0.4 to 0.7 and Y is 0.02 to 0.10 in atomic ratio) A composite nitride layer of Al and Si;
(C) The upper layer of the hard coating layer is formed by vapor deposition on the surface of the lower layer, and each has an alternately laminated structure of thin layers A and B each having an average layer thickness of 0.05 to 0.3 μm. And
The thin layer A is
Cr satisfying the composition formula: (Cr 1-XY Al X Si Y ) N (wherein X is 0.4 to 0.7 and Y is 0.02 to 0.10 in atomic ratio) A composite nitride layer of Al and Si;
The thin layer B is a Ti nitride (TiN) layer,
A surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel with a hard coating layer made of

JP2006193498A 2006-07-14 2006-07-14 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel Expired - Fee Related JP4883479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193498A JP4883479B2 (en) 2006-07-14 2006-07-14 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193498A JP4883479B2 (en) 2006-07-14 2006-07-14 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel

Publications (2)

Publication Number Publication Date
JP2008018508A true JP2008018508A (en) 2008-01-31
JP4883479B2 JP4883479B2 (en) 2012-02-22

Family

ID=39074866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193498A Expired - Fee Related JP4883479B2 (en) 2006-07-14 2006-07-14 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel

Country Status (1)

Country Link
JP (1) JP4883479B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021516A (en) * 2009-09-02 2011-04-20 三菱综合材料株式会社 Surface-coated cutting tool
JP2015127093A (en) * 2015-02-13 2015-07-09 住友電工ハードメタル株式会社 Surface coat boron nitride sintered body tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136514A (en) * 1992-10-26 1994-05-17 Kobe Steel Ltd Wear resistant multilayered hard coating film structure
JPH08104583A (en) * 1994-08-01 1996-04-23 Sumitomo Electric Ind Ltd Composite high hardness material for tool
JPH1025566A (en) * 1996-07-12 1998-01-27 Yamaguchi Pref Gov Formation of composite hard film excellent in high temperature oxidation resistance by ion plating
JP2002337007A (en) * 2001-05-11 2002-11-26 Hitachi Tool Engineering Ltd Hard-coating coated tool
WO2006070730A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136514A (en) * 1992-10-26 1994-05-17 Kobe Steel Ltd Wear resistant multilayered hard coating film structure
JPH08104583A (en) * 1994-08-01 1996-04-23 Sumitomo Electric Ind Ltd Composite high hardness material for tool
JPH1025566A (en) * 1996-07-12 1998-01-27 Yamaguchi Pref Gov Formation of composite hard film excellent in high temperature oxidation resistance by ion plating
JP2002337007A (en) * 2001-05-11 2002-11-26 Hitachi Tool Engineering Ltd Hard-coating coated tool
WO2006070730A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021516A (en) * 2009-09-02 2011-04-20 三菱综合材料株式会社 Surface-coated cutting tool
CN102021516B (en) * 2009-09-02 2014-09-03 三菱综合材料株式会社 Surface-coated cutting tool
JP2015127093A (en) * 2015-02-13 2015-07-09 住友電工ハードメタル株式会社 Surface coat boron nitride sintered body tool

Also Published As

Publication number Publication date
JP4883479B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP5005262B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent surface finish accuracy over a long period of time in high-speed cutting of hardened steel
JP4985919B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that provides excellent long-term surface accuracy in high-speed cutting of hardened steel
JP5574277B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance
JP5418833B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5686253B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance
JP4883480B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP2007152544A (en) Surface coated cutting tool which is made of cubic boron nitride base ultra high pressure sintered material and has hard coated layer showing excellent wear resistance in high speed cutting of high hardness steel
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4985914B2 (en) Cutting tool made of super-high pressure sintered material with surface-coated cubic boron nitride based on excellent finish surface accuracy
JP4883478B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent finished surface accuracy over a long period of time in high-speed continuous cutting of hard difficult-to-cut materials
JP4883479B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP4883477B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP4883472B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP2008302439A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP4284509B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP2008018505A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP4883471B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP4748445B2 (en) Cutting tool made of super-high-pressure sintered material with surface-coated cubic boron nitride that exhibits excellent chipping resistance with a hard coating layer in intermittent cutting of high-hardness steel
JP2010284759A (en) Surface coated cutting tool
JP2008018504A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP2008302438A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP4883474B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111127

LAPS Cancellation because of no payment of annual fees