JP2006206960A - Sliding member coated with hard film - Google Patents
Sliding member coated with hard film Download PDFInfo
- Publication number
- JP2006206960A JP2006206960A JP2005020495A JP2005020495A JP2006206960A JP 2006206960 A JP2006206960 A JP 2006206960A JP 2005020495 A JP2005020495 A JP 2005020495A JP 2005020495 A JP2005020495 A JP 2005020495A JP 2006206960 A JP2006206960 A JP 2006206960A
- Authority
- JP
- Japan
- Prior art keywords
- hard film
- sliding member
- film
- hard
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
本願発明は、冷間加工、引き抜き加工、押し出し加工、冷間鍛造、圧縮加工、曲げ加工、絞り加工、せん断加工等に使用される金型や内燃機関に使用されるエンジン部品であるカム、ピストンリング、内燃機関の過給圧制御用部品等の硬質皮膜被覆摺動部材に関する。 The present invention relates to a mold or a engine used for an internal combustion engine or a die used for cold working, drawing, extrusion, cold forging, compression, bending, drawing, shearing, etc. The present invention relates to a hard film-coated sliding member such as a ring and a supercharging pressure control component for an internal combustion engine.
自動車のエンジン部品、各種機械部品などの摺動部には摺動特性にすぐれた表面処理を形成し、部材の長寿命化が図られている。物理的蒸着法によりTiN、TiC、CrN等の硬質皮膜を被覆することにより、耐摩耗性及び耐焼付性を改善する検討が行われ、これに関する技術が以下の特許文献1、2に開示されている。
特許文献1は、Cr−N系、Cr−N−O系、Cr−B−N系、Cr−B−N−O系、Ti−N系の硬質皮膜を被覆したピストンリングの技術が開示されている。
特許文献2は、構成元素の原子比でクロム:珪素:窒素=1:0.05〜1.2:0.1〜1.2の範囲から成る組成を有し、かつ少なくとも窒化クロムと窒化珪素が存在する皮膜を基体に被覆したことを特徴とする摺動材料が開示されている。Cr系皮膜に珪素を添加することにより、高硬度化が達成され、耐摩耗性の改善に貢献する。しかし、硬質皮膜が脆くなってしまうことに加え、潤滑性の改善が十分ではなく、焼き付きが発生する場合や相手材の攻撃性が高くなってしまう等の課題を有する。
Surface treatments with excellent sliding characteristics are formed on sliding parts such as automobile engine parts and various machine parts in order to extend the life of the members. Studies have been made to improve wear resistance and seizure resistance by coating a hard film such as TiN, TiC, CrN, etc. by physical vapor deposition, and techniques related thereto are disclosed in the following Patent Documents 1 and 2. Yes.
Patent Document 1 discloses the technology of a piston ring coated with a hard coating of Cr—N, Cr—N—O, Cr—B—N, Cr—B—N—O, or Ti—N. ing.
Patent Document 2 has a composition of chromium: silicon: nitrogen = 1: 0.05 to 1.2: 0.1 to 1.2 in terms of atomic ratio of constituent elements, and at least chromium nitride and silicon nitride. There is disclosed a sliding material characterized in that a substrate is coated with a film in which is present. By adding silicon to the Cr-based film, high hardness is achieved, which contributes to improvement of wear resistance. However, in addition to the hard film becoming brittle, the lubricity is not sufficiently improved, and there are problems such as occurrence of seizure and increased attack of the counterpart material.
本願発明は硬質皮膜被覆摺動部材において、耐摩耗性、潤滑特性に優れ、更に硬質皮膜内の残留圧縮応力が低減させて硬質皮膜の厚膜化を可能にし、過酷な摺動環境下においても部材の摩耗、焼き付き、相手材の攻撃性を低減させることのできる硬質皮膜被覆部材を提供することである。 The invention of the present application is a hard coating coated sliding member, which has excellent wear resistance and lubrication characteristics, and further reduces the residual compressive stress in the hard coating, enabling a thick coating of the hard coating, even under severe sliding environments It is an object of the present invention to provide a hard coating member that can reduce the wear, seizure, and aggressiveness of a mating member.
本願発明は、硬質皮膜が被覆された硬質皮膜被覆摺動部材において、該硬質皮膜の少なくとも1層は(Cr(100−α)Siα)(N(100−γ−η)BγGη)で示され、但し、α、γ、ηは原子%を表し、金属成分のみの原子%を100及び非金属成分の原子%を100としたとき、0.5≦α≦20、0<γ<45、0≦η≦55を満たし、GはC、O、Sから選択される少なくとも1種以上を有し、該硬質皮膜は岩塩構造型の(200)面にX線回折ピーク強度を有し、該X線回折ピーク強度の半価幅が0.5度以上、2.0度以下であり、少なくともSi及び/又はBの窒化物相、酸化物相、金属相から選択される少なくとも1種以上を有し、該硬質皮膜はSi含有量の濃度変調を有し、該硬質皮膜の膜厚は1μm以上、60μm未満であることを特徴とする硬質皮膜被覆摺動部材である。上記の構成を採用することにより、耐摩耗性、潤滑特性に優れ、更に硬質皮膜内の残留圧縮応力が低減させて硬質皮膜の厚膜化を可能にし、過酷な摺動環境下においても部材の摩耗、焼き付き、相手材の攻撃性を低減させることを可能とする硬質皮膜被覆部材を提供することが可能となる。 The present invention relates to a hard film-coated sliding member coated with a hard film, wherein at least one layer of the hard film is (Cr (100-α) Si α ) (N (100-γ-η) B γ G η ). Where α, γ, and η represent atomic percent, where 0.5% α ≦ 20, 0 <γ <, where atomic percent of the metal component alone is 100 and atomic percent of the nonmetallic component is 100. 45, 0 ≦ η ≦ 55, G has at least one selected from C, O, and S, and the hard coating has an X-ray diffraction peak intensity on the (200) plane of the rock salt structure type The half width of the X-ray diffraction peak intensity is not less than 0.5 degrees and not more than 2.0 degrees, and at least one selected from the nitride phase, oxide phase, and metal phase of at least Si and / or B The hard coating has a concentration modulation of the Si content, and the thickness of the hard coating is 1 μm or more, 60 μm. A hard-coated sliding member and less than. By adopting the above configuration, it has excellent wear resistance and lubrication characteristics, and further reduces the residual compressive stress in the hard coating, enabling thick coating of the hard coating, and even in severe sliding environments It is possible to provide a hard coating member that can reduce wear, seizure, and aggressiveness of the counterpart material.
本願発明の硬質皮膜被覆摺動部材は、該CrSi系皮膜の他に別の硬質皮膜との積層構造になっていることが好ましい。ここで他の硬質皮膜とは、4a、5a、6a及びAl、Siから選ばれる1種以上と、C、N、O、B、Sから選ばれる1種以上とを有することが好ましい。該硬質皮膜の最上層は、硬質炭素膜及び/又は硬質炭素膜を含む積層皮膜であることが好ましい。或いは該硬質皮膜の最上層は、硫化物を主体とした硬質皮膜及び/又は硫化物を主体とした硬質皮膜を含む積層皮膜であることが好ましい。積層皮膜を採用する場合、該硬質皮膜の積層周期は100nm以上、500nm未満であることが好ましく、積層周期が0.5nm以上、30nm未満とすることが更に好ましい。積層皮膜を採用することにより、摺動部材の寿命を大幅に改善することができる。該硬質皮膜は層厚方向に残留圧縮応力の勾配若しくは周期性を有することが好ましい。この場合、耐剥離性に有効であり硬質皮膜の厚膜化を可能にする。該硬質皮膜の最上層から膜厚方向に200nm未満の領域で、少なくともC、O、S、Bから選ばれる1種の元素濃度が最大となることが好ましい。この場合、摺動特性を高めることができる。該硬質皮膜は、摺動部材の基体との界面に窒化層を有することが好ましい。この場合、更に部材寿命を高めることができる。該硬質皮膜は、摺動部材の基体との界面を機械的に平滑化することが好ましい。この場合、局部摩耗を低減させ、硬質皮膜を有効に活用することができる。本願発明の硬質皮膜被覆摺動部材は、金型、ピストンリング又は、内燃機関の過給圧制御用部品に適用することが好ましい。この場合、摺動部材としての寿命を大幅に向上させることができる。ここで内燃機関の過給圧制御用部品としては、例えば内燃機関のターボチャージャーの制御装置用部品であるコンプレッサ、タービン及びウエイストゲート等がある。本願発明の硬質皮膜は、物理的蒸着法を適用して被覆することが好ましい。特にイオンプレーティング法やスパッタ法による被覆方法が有効である。 The hard film-coated sliding member of the present invention preferably has a laminated structure with another hard film in addition to the CrSi-based film. Here, the other hard coating preferably has at least one selected from 4a, 5a, 6a and Al, Si and at least one selected from C, N, O, B, S. The uppermost layer of the hard film is preferably a hard film and / or a laminated film including a hard carbon film. Alternatively, the uppermost layer of the hard film is preferably a laminated film including a hard film mainly composed of sulfide and / or a hard film mainly composed of sulfide. When a laminated film is employed, the lamination period of the hard film is preferably 100 nm or more and less than 500 nm, and the lamination period is more preferably 0.5 nm or more and less than 30 nm. By adopting the laminated film, the life of the sliding member can be greatly improved. The hard coating preferably has a residual compressive stress gradient or periodicity in the layer thickness direction. In this case, it is effective for peeling resistance and enables the hard film to be thickened. It is preferable that the concentration of at least one element selected from C, O, S, and B is maximized in a region less than 200 nm in the film thickness direction from the uppermost layer of the hard coating. In this case, sliding characteristics can be improved. The hard coating preferably has a nitride layer at the interface between the sliding member and the substrate. In this case, the member life can be further increased. It is preferable that the hard coating mechanically smoothes the interface between the sliding member and the substrate. In this case, local wear can be reduced and the hard coating can be effectively utilized. The hard film-coated sliding member of the present invention is preferably applied to a mold, a piston ring, or a supercharging pressure control part for an internal combustion engine. In this case, the lifetime as a sliding member can be significantly improved. Here, the components for controlling the boost pressure of the internal combustion engine include, for example, a compressor, a turbine, a wastegate, etc., which are components for a turbocharger control device of the internal combustion engine. The hard coating of the present invention is preferably coated by applying a physical vapor deposition method. In particular, a coating method using an ion plating method or a sputtering method is effective.
本願発明の硬質皮膜被覆摺動部材を適用することにより、過酷な摺動環境下においても部材の摩耗、焼き付き、相手材の攻撃性を低減させることが可能となり、長寿命な硬質皮膜被覆摺動部材を提供することができた。 By applying the hard film coated sliding member of the present invention, it becomes possible to reduce the wear, seizure of the member, and the aggressiveness of the mating material even under severe sliding environment, and the long life hard film coated sliding A member could be provided.
本願発明の硬質皮膜は、硬質皮膜を最適な組成、積層構造、組織構造、機械的特性に制御することにより、課題を解決することができる。従って、本願発明の硬質皮膜の少なくとも1層は、(Cr(100−α)Siα)(N(100−γ−η)BγGη)で示され、但し、α、γ、ηは原子%を表し、0.5≦α≦20、0≦β<60、0<γ<45、0≦η≦55を満たし、GはC、O、Sから選択される少なくとも1種以上を有する皮膜組成とする。ここで、皮膜組成式の(Cr(100−α)Siα)は金属成分元素であり、(N(100−γ−η)BγGη)は非金属成分元素である。硬質皮膜の組成は金属成分に対する非金属成分の原子比率が必ずしも1対1であることを示すものではなく、金属成分と非金属成分を分けて記載したものである。α値が原子%で0.5%未満の場合、Siによる硬質皮膜の硬化が十分ではなく、耐摩耗性に乏しい。一方、20%を超えて多い場合、硬質皮膜の脆化が著しく、耐剥離性が低下する。また摺動部材として機能する時の相手材への攻撃性が極めて高くなる。従って、上記範囲に限定する。ここで、相手材への攻撃性とは、例えば摺動により相手材が摩耗により擦り減る現象のことである。
γ値は0<γ<45とする。B元素を必須成分とすることにより、硬度と潤滑性を同時に高めることができ、摺動部材の寿命向上に有効である。また、Siと同時に添加することにより、Siを単独で添加する場合よりも、さらに硬質皮膜の高硬度化に有効であることも確認されている。B元素に起因する硬度の向上は、少量の場合、例えばγ<5%においては、硬質皮膜の結晶化を促進することによる高硬度化が期待できる。それ以上の場合、例えばγ≧5%の添加においては、成膜過程もしくは摩耗環境下において、h−BN相の形成による潤滑効果が期待できる。しかし、γ≧45%の場合は皮膜硬度が低下し、耐摩耗性が急激に低下する場合が確認されているため不都合である。γ値の適正化によって硬度と潤滑性を同時に高めることができ、摺動部材の寿命向上に有効である。B元素に起因する硬度の向上はc−BN相による。また潤滑性の向上はh−BN相による。両者の含有比率を最適化することによって、硬度と潤滑性を同時に高めることが可能である。c−BN相とh−BN相の含有比率は、成膜時に印加するバイアス電圧値によって制御可能である。
GはC、O、Sから選択される少なくとも1種以上を含有することによって優れた部材寿命が得られる。Cは、硬度と潤滑性を同時に高めることができる。Oは、適量であれば硬質皮膜内の残留圧縮応力低減に有効に作用する。Oの好ましい含有量は、25%未満である。Sは、特に潤滑性を高めることができ、摺動時の相手材の摩耗を低減させる効果がある。Sの添加方法は、イオンプレーティング法、スパッタ法によっても添加することができる。η値は0≦η≦55とする。η値が55%を超えて多いい場合、耐摩耗性が急激に低下するため不都合である。
本願発明の硬質皮膜は岩塩構造型の(200)面にX線回折ピーク強度を有し、X線回折ピーク強度の半価幅が、0.5度以上、2.0度以下とする必要がある。ピーク強度はθ−2θ法によるX線回折測定により得られる。(200)面にX線回折ピーク強度得られ、半価幅が0.5度以上、2.0度以下の範囲内に結晶構造を制御することにより、残留圧縮応力のバランスと結晶粒径に依存する皮膜硬度のバランスが最適となる。
本願発明の硬質皮膜は、少なくともSi及び/又はBの窒化物相、酸化物相、金属相から選択される少なくとも1種以上を有することが必要である。窒化物相、酸化物相、金属相の有無は、例えばX線光電子分光分析において確認することができる。硬質皮膜中のSi及び/又はBが窒化物相として存在する場合、硬度と潤滑性を同時に改善させることができる。また窒化物相に加えて、酸化物相としても存在する場合、特に潤滑性の低減に有効である。窒化物相と酸化物相とが共存する場合が特に好ましい。これに加えて金属相も共存する場合、硬質皮膜内の残留圧縮応力の低減に特に有効である。
本願発明の硬質皮膜はSi含有量の濃度変調の存在が必要である。濃度変調の存在により、硬質皮膜の硬度と潤滑性を同時に改善することができる。SiがCrと固溶体相として存在する場合、皮膜硬度の上昇に伴い、潤滑特性が劣化する。しかし、濃度変調が存在することで、両特性を同時に改善することができる。具体的には、硬質皮膜の同一結晶粒内においてSi濃度変調が存在する場合と、結晶粒子間でSi濃度が異なる場合が存在する。特に後者の方が摺動部材の寿命改善に有効である。
本願発明の硬質皮膜の膜厚は1μm以上、60μm未満被覆されていることを必要とする。該硬質皮膜をイオンプレーティング法やスパッタ法により被覆することで、硬質皮膜組成の制御を容易にするとともに、耐摩耗性に優れ、摺動部材の長寿命化が可能となる。
The hard film of the present invention can solve the problem by controlling the hard film to an optimal composition, laminated structure, structure, and mechanical properties. Accordingly, at least one layer of the hard coating of the present invention is represented by (Cr (100-α) Si α ) (N (100-γ-η) B γ G η ), where α, γ, and η are atoms. %, 0.5 ≦ α ≦ 20, 0 ≦ β <60, 0 <γ <45, 0 ≦ η ≦ 55, and G is a film having at least one selected from C, O, and S The composition. Here, (Cr (100-α) Siα) in the film composition formula is a metal component element, and (N (100-γ-η) B γ G η ) is a non-metal component element. The composition of the hard coating does not necessarily indicate that the atomic ratio of the nonmetallic component to the metallic component is 1: 1, but describes the metallic component and the nonmetallic component separately. When the α value is less than 0.5% in atomic%, the hard film is not sufficiently cured by Si and the wear resistance is poor. On the other hand, when the content exceeds 20%, the hard coating is significantly embrittled and the peel resistance is lowered. Moreover, the aggression property to the counterpart material when functioning as a sliding member becomes extremely high. Therefore, it is limited to the above range. Here, the aggressiveness to the mating material is a phenomenon in which the mating material is worn away due to wear, for example, by sliding.
The γ value is 0 <γ <45. By using B element as an essential component, hardness and lubricity can be improved at the same time, which is effective for improving the life of the sliding member. It has also been confirmed that the addition of Si at the same time is more effective in increasing the hardness of the hard coating than when adding Si alone. In the case of a small amount, for example, γ <5%, an improvement in hardness due to the B element can be expected to increase the hardness by promoting the crystallization of the hard film. In the case of more than that, for example, when γ ≧ 5% is added, a lubrication effect due to the formation of the h-BN phase can be expected in the film forming process or in a wear environment. However, in the case of γ ≧ 45%, it is inconvenient because it is confirmed that the film hardness is lowered and the wear resistance is rapidly lowered. By optimizing the γ value, the hardness and lubricity can be increased at the same time, which is effective for improving the life of the sliding member. The improvement in hardness due to the B element is due to the c-BN phase. The improvement in lubricity is due to the h-BN phase. By optimizing the content ratio of both, it is possible to simultaneously increase the hardness and lubricity. The content ratio of the c-BN phase and the h-BN phase can be controlled by the bias voltage value applied during film formation.
When G contains at least one selected from C, O, and S, an excellent member life can be obtained. C can simultaneously increase hardness and lubricity. If O is an appropriate amount, it effectively acts to reduce the residual compressive stress in the hard coating. The preferable content of O is less than 25%. S can improve lubricity in particular and has an effect of reducing wear of the mating member during sliding. The addition method of S can also be added by an ion plating method or a sputtering method. The η value is 0 ≦ η ≦ 55. If the η value exceeds 55%, it is inconvenient because the wear resistance decreases rapidly.
The hard coating of the present invention has an X-ray diffraction peak intensity on the (200) plane of the rock salt structure type, and the half width of the X-ray diffraction peak intensity needs to be 0.5 degrees or more and 2.0 degrees or less. is there. The peak intensity is obtained by X-ray diffraction measurement by the θ-2θ method. The X-ray diffraction peak intensity is obtained on the (200) plane, and the balance of the residual compressive stress and the crystal grain size are controlled by controlling the crystal structure within a range where the half width is not less than 0.5 degrees and not more than 2.0 degrees. The balance of the film hardness that depends is optimal.
The hard film of the present invention needs to have at least one selected from a nitride phase, an oxide phase, and a metal phase of at least Si and / or B. The presence or absence of a nitride phase, an oxide phase, or a metal phase can be confirmed, for example, by X-ray photoelectron spectroscopy. When Si and / or B in the hard coating exists as a nitride phase, hardness and lubricity can be improved at the same time. Further, when it is present as an oxide phase in addition to the nitride phase, it is particularly effective for reducing lubricity. The case where the nitride phase and the oxide phase coexist is particularly preferable. In addition to this, when a metal phase coexists, it is particularly effective for reducing the residual compressive stress in the hard coating.
The hard coating of the present invention requires the presence of Si content concentration modulation. Due to the presence of concentration modulation, the hardness and lubricity of the hard coating can be improved simultaneously. When Si exists as a solid solution phase with Cr, the lubrication characteristics deteriorate as the film hardness increases. However, the presence of density modulation can improve both characteristics simultaneously. Specifically, there is a case where Si concentration modulation exists in the same crystal grain of the hard coating and a case where the Si concentration differs between crystal grains. In particular, the latter is more effective for improving the life of the sliding member.
The film thickness of the hard coating of the present invention needs to be 1 μm or more and less than 60 μm. By coating the hard film by an ion plating method or a sputtering method, the control of the hard film composition is facilitated, the wear resistance is excellent, and the life of the sliding member can be extended.
本願発明の硬質皮膜の金属成分は、Cr、Siの他にM成分が含有量βとして含有され、M成分はV、Mo、W、Alから選択される少なくとも1種以上を有し、β値は原子%で0≦β<60を満たすことが好ましい。Mは、V、Mo、W、Alから選択される少なくとも1種以上を含有することによって優れた部材寿命が得られる。特にV、Mo、Wを含有した場合、摺動特性のうち、潤滑特性を高めることができるため好ましい。またAlを含有した場合は、耐摩耗性、耐熱性の改善に有効であるため好ましい。β値は原子%で60%未満とする。この理由は、60%以上含有した場合、硬質皮膜の優れた摺動性、潤滑性や耐摩耗性の特性が大きく異なり、劣るからである。これにより摺動部材としての寿命が大幅に低下してしまう。一方、β値が0%の場合であっても、摺動性、潤滑性や耐摩耗性の特性には満足のいく効果が得られる。 The metal component of the hard coating of the present invention contains M component in addition to Cr and Si as a content β, and the M component has at least one selected from V, Mo, W, and Al, and has a β value. Preferably satisfies 0 ≦ β <60 in atomic percent. When M contains at least one selected from V, Mo, W, and Al, an excellent member life can be obtained. In particular, when V, Mo, and W are contained, the lubrication characteristics can be enhanced among the sliding characteristics, which is preferable. Further, when Al is contained, it is preferable because it is effective in improving wear resistance and heat resistance. The β value is less than 60% in atomic%. This is because when the content is 60% or more, the excellent slidability, lubricity and wear resistance characteristics of the hard coating are greatly different and inferior. Thereby, the lifetime as a sliding member will fall significantly. On the other hand, even when the β value is 0%, a satisfactory effect can be obtained in terms of slidability, lubricity and wear resistance.
本願発明の硬質皮膜は組成の異なる硬質皮膜を積層することにより、更に特性を向上させることができる。他の硬質皮膜は、金属成分として4a、5a、6a及びAl、Siから選ばれる1種以上と、C、N、O、B、Sから選ばれる1種以上とを有する。ここでの特性の向上とは、例えば基体と硬質皮膜との密着強度を高めることである。これには、CrやTi等の窒化物皮膜を採用し、比較的硬度の高いSi含有皮膜との積層構造によって実現することができる。耐摩耗性を改善する場合は、Ti、Al、Cr、Zr、Si、Nb、Mo、Hf、W等の窒化物、又は炭窒化物と比較的硬度の高いSi含有皮膜との積層構造によって実現することができる。硬質皮膜全体の残留圧縮応力を低減する場合には、金属リッチ層を用いることが有効である。 The characteristics of the hard coating of the present invention can be further improved by laminating hard coatings having different compositions. Another hard film has 1 or more types chosen from 4a, 5a, 6a and Al, Si as a metal component, and 1 or more types chosen from C, N, O, B, and S. The improvement of the characteristics here means, for example, increasing the adhesion strength between the substrate and the hard film. This can be realized by adopting a nitride film such as Cr or Ti and a laminated structure with a relatively hard Si-containing film. Abrasion resistance is improved by a laminated structure of nitrides such as Ti, Al, Cr, Zr, Si, Nb, Mo, Hf, and W, or carbonitrides and a relatively hard Si-containing coating. can do. In order to reduce the residual compressive stress of the entire hard coating, it is effective to use a metal rich layer.
本願発明の硬質皮膜の最上層に硬質炭素皮膜を被覆すること及び/又は硬質炭素皮膜を含んだ積層皮膜とすることが、摺層部材の長寿命化に有効である。硬質炭素皮膜は摩擦係数が低く結晶粒径が微細であり、本願発明の硬質皮膜との密着強度にも優れている。最上層において硬質炭素皮膜及び/又は硬質炭素皮膜を含む積層皮膜とすることが、潤滑特性を高めることに有効であり、摺動時の相手材の摩耗量低減に有効に作用するため好ましい。 Covering the hard carbon film on the uppermost layer of the hard film of the present invention and / or forming a laminated film containing the hard carbon film is effective for extending the life of the sliding layer member. The hard carbon film has a low coefficient of friction and a fine crystal grain size, and is excellent in adhesion strength with the hard film of the present invention. It is preferable to use a hard carbon film and / or a laminated film containing a hard carbon film in the uppermost layer because it is effective for improving the lubrication characteristics and effectively acts to reduce the wear amount of the counterpart material during sliding.
本願発明の硬質皮膜の最上層に硫化物を主体とした硬質皮膜を被覆すること及び/又は硫化物を主体とした硬質皮膜を含む積層皮膜とすることも、摺動部材の長寿命化に有効である。硫化物を主体とした硬質皮膜は、摩擦係数が低く結晶粒径が微細であり、本願発明の硬質皮膜との密着強度にも優れている。最上層において硫化物を主体とした硬質皮膜を含む積層皮膜とすることが、潤滑特性を高めることに有効であり、摺動時の相手材の摩耗量低減に有効に作用するため、好ましい。 It is also effective to extend the life of the sliding member by covering the uppermost layer of the hard film of the present invention with a hard film mainly composed of sulfide and / or a laminated film including a hard film mainly composed of sulfide. It is. A hard film mainly composed of sulfide has a low friction coefficient and a fine crystal grain size, and is excellent in adhesion strength with the hard film of the present invention. A laminated film including a hard film mainly composed of sulfide in the uppermost layer is preferable because it is effective in improving the lubrication characteristics and effectively acts in reducing the wear amount of the counterpart material during sliding.
本願発明の硬質皮膜の積層周期を100nm以上、500nm未満とすることにより、硬質皮膜全体の残留圧縮低減し、硬質皮膜の厚膜化において密着性を確保すること及び摺動部材の長寿命化に有効であり好ましい。 By setting the laminating cycle of the hard coating of the present invention to 100 nm or more and less than 500 nm, the residual compression of the entire hard coating is reduced, ensuring adhesion in thickening the hard coating and extending the life of the sliding member. Effective and preferred.
本願発明の硬質皮膜の積層周期を0.5nm以上、30nm未満とすることにより、特に硬質皮膜全体の高硬度化に有効であり、耐摩耗性の改善に有効であり、より好ましい形態である。 By setting the laminating cycle of the hard coating of the present invention to 0.5 nm or more and less than 30 nm, it is particularly effective in increasing the hardness of the entire hard coating and effective in improving the wear resistance, which is a more preferable embodiment.
本願発明の硬質皮膜において、層厚方向に残留圧縮応力の勾配若しくは周期性を有した形態とすることにより、硬質皮膜の厚膜化が可能であり好ましい。残留圧縮応力が硬質皮膜の表面側ほど大きくなる様に勾配を付与した場合、硬質皮膜の耐摩耗性を改善することができる。また、層厚方向に交互に残留圧縮応力の大きい層と小さい層となるように、周期性を有した積層構造にすると、特に厚膜化したときの密着性の確保に有効である。 In the hard coating of the present invention, it is preferable to make the hard coating thicker by adopting a form having a gradient or periodicity of residual compressive stress in the layer thickness direction. When the gradient is applied so that the residual compressive stress increases toward the surface of the hard coating, the wear resistance of the hard coating can be improved. In addition, a laminated structure having periodicity so that a layer having a large residual compressive stress and a layer having a small residual compressive stress alternately in the layer thickness direction is effective in securing adhesion particularly when the film is thickened.
本願発明の硬質皮膜の最上層から膜厚方向に200nm未満の領域で、少なくともC、O、S、Bから選ばれる1種の元素濃度が最大となることが好ましい。これにより潤滑性を高めると同時に、摺動時に相手材の攻撃性を低減させることができる。特にC及びBの濃度が最大となる場合、耐摩耗性と潤滑性を高めることができる。O及びSの濃度が最大となる場合、相手材への攻撃性を低減させることが可能である。 It is preferable that the concentration of at least one element selected from C, O, S, and B is maximized in the region of less than 200 nm in the film thickness direction from the uppermost layer of the hard coating of the present invention. As a result, the lubricity can be improved, and at the same time, the aggressiveness of the mating material can be reduced during sliding. In particular, when the concentrations of C and B are maximized, wear resistance and lubricity can be improved. When the concentrations of O and S are maximized, it is possible to reduce the aggression on the counterpart material.
本願発明の硬質皮膜と該摺動部材の基体との界面に窒化層を有する場合、該硬質皮膜の効果が発揮され易く好ましい。 When a nitride layer is provided at the interface between the hard coating of the present invention and the substrate of the sliding member, it is preferable that the effect of the hard coating is easily exhibited.
本願発明の硬質皮膜と摺動部材の基体との界面が機械的に平滑化処理されたことが好ましい。これにより摺動部材が均一に摩耗する傾向にあり、硬質皮膜の効果が発揮され易く好ましい。 The interface between the hard coating of the present invention and the base of the sliding member is preferably mechanically smoothed. As a result, the sliding member tends to wear uniformly, which is preferable because the effect of the hard coating is easily exhibited.
本願発明の硬質皮膜被覆摺動部材が金型、ピストンリング又は内燃機関の過給圧制御用部品として適用される場合、本願発明の硬質皮膜の効果が発揮される。これらは何れも摺動特性が極めて重要であり、これらの用途において最適である。 When the hard film-coated sliding member of the present invention is applied as a mold, a piston ring or a supercharging pressure control part for an internal combustion engine, the effect of the hard film of the present invention is exhibited. In any of these, sliding characteristics are extremely important, and are optimal in these applications.
本願発明の硬質皮膜について組成定量分析には、電子プローブX線マイクロアナリシス、オージェ電子分光法、又はX線光電子分光分析により決定した。硬質皮膜の結合状態の解析には、X線光電子分光分析によって行った。分析装置は、PHI社製1600S型X線光電子分光分析装置を用い、分析条件として、X線源はMgKαを用い400Wとし、分析領域は直径0.4mmの円内部を分析した。試料準備は、十分に脱脂洗浄した後、真空装置内で5分間Arイオンガンを用いて表面をエッチングした。処理した試料はワイドスペクトルを測定し、30秒間エッチングした後、ナロースペクトルを測定した。ArイオンガンによるエッチングレートはSiO2換算で1.9nm/分であった。半価幅の測定は、θ−2θ法によるX線回折によって行った。以下、実施例に基づき、本願発明を具体的に説明する。 The composition quantitative analysis of the hard coating of the present invention was determined by electron probe X-ray microanalysis, Auger electron spectroscopy, or X-ray photoelectron spectroscopy. The analysis of the bonding state of the hard film was performed by X-ray photoelectron spectroscopy. The analysis apparatus used was a 1600S type X-ray photoelectron spectroscopic analyzer manufactured by PHI, and the analysis conditions were such that the X-ray source was 400 K using MgKα, and the analysis region was analyzed inside a circle having a diameter of 0.4 mm. For sample preparation, the surface was etched using an Ar ion gun for 5 minutes in a vacuum apparatus after thoroughly degreasing and cleaning. The treated sample was measured for a wide spectrum, etched for 30 seconds, and then measured for a narrow spectrum. The etching rate by Ar ion gun was 1.9 nm / min in terms of SiO 2 . The half width was measured by X-ray diffraction by the θ-2θ method. Hereinafter, based on an Example, this invention is demonstrated concretely.
(実施例1)
CrSi系皮膜におけるSi含有量とその摩耗特性を評価するために、ディスク材としてサイズ直径がφ20mm、厚さ10mm、材質がSKD61相当を準備した。ディスク材の凹凸が摩擦特性に及ぼす影響を無視するために、アルミナペーストにより鏡面研摩加工し、その後520℃で10時間のガス窒化処理を行った。その後、表面に形成された脆い窒化物相を除去するために、表面を約10μm除去した。そして各種Si含有量が異なるCrSi系皮膜を被覆した。被覆方法は、脱脂洗浄を十分に行い、アーク放電式イオンプレーティング(以下、AIPと記す。)装置の容器内に固定した。
容器内の被覆基体を450℃に保持しながら、容器内の圧力が5×10−4Paになるまで排気を行った。容器内にArガスを導入し、容器内の圧力を5×10−1Paとした。容器内の基体ホルダーに固定された被覆基体は、少なくとも2軸以上の回転機構を有している。容器内に設置された電極でArのイオン化を行い、被覆基体に負バイアス電圧を印加して、被覆基体表面の活性化と酸化物等を除去した。AIP蒸発源に設置したCr金属ターゲットに電流を供給し、更に被覆基体のクリーニング処理を実施した。Arの供給を止め容器内に窒素を導入し、容器内の圧力を9×10−1Paに設定し、AIP蒸発源に設置されたCrSi系金属ターゲットに電流を供給し、放電を開始した。この時、被覆基体には負に印加したバイアス電圧が付与し、被覆基体にCrSi系皮膜を成膜した。被覆膜厚は5μmに設定した。被覆したCrSi系皮膜は何れもSi含有量以外の構成は、本願請求項1の構成要素を満たしていた。CrSi系皮膜の摩耗特性を評価するために、ボールオンディスク型の摩耗試験を実施した。摩耗試験条件を以下に示す。評価は、摺動時間4時間後の摩擦係数、ディスク材の摩耗深さ、ボール材の摩耗深さ測定を行った。
(摩耗試験条件)
ディスク材:SKD61相当(直径:φ20mm、厚さ:10mm)
ボール材:FC250(JISねずみ鋳鉄)
荷重:50N
ボール径:φ6mm
回転半径:8mm
回転数:100回転/分
環境設定:大気中、200℃、潤滑無し
Example 1
In order to evaluate the Si content in the CrSi-based film and its wear characteristics, a disk material having a diameter of φ20 mm, a thickness of 10 mm, and a material equivalent to SKD61 was prepared. In order to ignore the influence of the irregularities of the disk material on the friction characteristics, mirror polishing was performed with alumina paste, and then gas nitriding treatment was performed at 520 ° C. for 10 hours. Thereafter, in order to remove the brittle nitride phase formed on the surface, the surface was removed by about 10 μm. And the CrSi type | system | group film | membrane from which various Si content differs was coat | covered. As a coating method, degreasing and washing were sufficiently performed, and fixed in an arc discharge ion plating (hereinafter referred to as AIP) apparatus container.
While maintaining the coated substrate in the container at 450 ° C., evacuation was performed until the pressure in the container reached 5 × 10 −4 Pa. Ar gas was introduced into the container, and the pressure in the container was set to 5 × 10 −1 Pa. The coated substrate fixed to the substrate holder in the container has a rotation mechanism having at least two axes. Ar ionization was performed with an electrode placed in the container, and a negative bias voltage was applied to the coated substrate to remove the activated surface of the coated substrate and oxides. A current was supplied to the Cr metal target installed in the AIP evaporation source, and the coated substrate was further cleaned. The supply of Ar was stopped, nitrogen was introduced into the container, the pressure in the container was set to 9 × 10 −1 Pa, current was supplied to the CrSi-based metal target installed in the AIP evaporation source, and discharge was started. At this time, a negatively applied bias voltage was applied to the coated substrate, and a CrSi-based film was formed on the coated substrate. The coating thickness was set to 5 μm. All of the coated CrSi-based films satisfied the constituent elements of claim 1 except for the Si content. In order to evaluate the wear characteristics of the CrSi-based film, a ball-on-disk wear test was performed. The abrasion test conditions are shown below. Evaluation was made by measuring the friction coefficient after 4 hours of sliding, the wear depth of the disk material, and the wear depth of the ball material.
(Wear test conditions)
Disk material: Equivalent to SKD61 (diameter: φ20mm, thickness: 10mm)
Ball material: FC250 (JIS gray cast iron)
Load: 50N
Ball diameter: φ6mm
Turning radius: 8mm
Rotation speed: 100 rev / min Environmental setting: In air, 200 ° C, no lubrication
摩擦係数の評価結果を図1、ディスク材の摩耗深さの関係を図2、ボール材の摩耗深さの関係を図3に示す。被覆した硬質皮膜を表1、2に示す。 The evaluation result of the friction coefficient is shown in FIG. 1, the relationship between the wear depth of the disk material is shown in FIG. 2, and the relationship between the wear depth of the ball material is shown in FIG. The coated hard coating is shown in Tables 1 and 2.
図1よりSi含有量が及ぼす摩擦係数の影響は、Siを含有しない従来例23よりも、本願発明例1から5の様にSiを適量含有した方が低い摩擦係数を示した。しかし、Si含有量が20原子%以上の比較例19、20は、摩擦係数が従来例23よりも高い値を示した。図2より、Si含有量が及ぼすディスク材の摩耗深さの影響は、Siを含有しない従来例23よりも何れも低い値を示した。最も低い値を示した本願発明例5のSi含有量が5原子%の場合は、従来例23に比べ、約1/3の摩耗深さであった。このことから、最適なSi含有量とすることによって耐摩耗性が優れるといえる。図3より、Si含有量が及ぼすボール材の摩耗深さの影響は、本願発明例2から4のSiを適量含有したものは従来例23に比べ、約1/2の摩耗量であった。このことから、Siを適量含有したCrSi系皮膜は、相手材の攻撃性に対しても良好であることが確認できた。以上の結果からSi含有量は、0.5原子%以上、20原子%以下が好ましい。 From FIG. 1, the influence of the friction coefficient exerted by the Si content showed a lower friction coefficient when Si was contained in an appropriate amount as in Invention Examples 1 to 5 than in Conventional Example 23 not containing Si. However, Comparative Examples 19 and 20 having a Si content of 20 atomic% or more showed a higher friction coefficient than that of Conventional Example 23. From FIG. 2, the influence of the wear depth of the disk material on the Si content was lower than that of the conventional example 23 not containing Si. When the Si content of Invention Example 5 showing the lowest value was 5 atomic%, the wear depth was about 1/3 of that of Conventional Example 23. From this, it can be said that the wear resistance is excellent by setting the optimum Si content. From FIG. 3, the influence of the wear depth of the ball material on the Si content was about ½ of the wear amount of the present invention examples 2 to 4 containing the appropriate amount of Si compared to the conventional example 23. From this, it was confirmed that the CrSi-based film containing an appropriate amount of Si is good against the aggressiveness of the counterpart material. From the above results, the Si content is preferably 0.5 atomic% or more and 20 atomic% or less.
(実施例2)
本願発明の硬質皮膜の耐焼き付き性を評価するために、表1、2に示す本願発明例6から16、比較例21、22、従来例24の試験片を製作した。試験片の基体は、5mm角のSKD61相当のものを製作し、520℃で10時間のガス窒化処理を行った。表面に形成された脆い窒化物相を除去するために、試験片の表面を約10μm除去した。そして各種組成が異なるCrSi系皮膜を被覆した。被覆方法は断りの無い限り、実施例1と同様である。硬質皮膜は、必要に応じてスパッタリング蒸発源又は他の組成系ターゲットを固定したAIP蒸発源を用いた。硬質皮膜の組成、下地膜、最上層については表1、2に記載した。また何れの試験片に対しても膜厚が30±2μmになるようにした。得られた試験片の摩耗特性を評価するために超高圧摩擦摩耗試験機を用い、耐焼き付き性の評価を実施した。試験条件を以下に示す。
(摩擦摩耗試験条件)
摩擦速度:8m/秒
摩擦面圧力:初期圧力、2MPa、3分毎に1MPaづつ上昇
潤滑油:モーターオイル#30
油温:80℃
相手材:FC250
評価方法の概略を述べる。試験片は円盤Aの面上に摺動自在にとりつけ、ピン突起状の摺動面とした。円盤Aは駆動装置によって所定の速度で回転させることができる。一方、ホルダーには摺動の相手材となる円盤Bを着脱自在に取り付けた。円盤Bの表面は研磨仕上げを施した。ホルダーは、注油可能な機構を有している。またホルダーは油圧装置によって円盤面と垂直方向に押し圧力も印加可能な機構を有している。ここで、試験片の円盤Aと、摺動相手材の円盤Bとを相対向させた状態に設定し、この状態でホルダーに圧力を印加した。従ってこの時、試験片のピン突起状摺動面と相手材の円盤Bの面は圧力により接触した。この状態を初期状態として、注油を行いながら円盤Aを所定速度で回転させた。回転によって試験片と相手材との間に発生する摩擦によってトルクが変化した。この状況をロードセル及び動歪計にて検出した。そして、トルクが急激に上昇した時点を焼き付き発生時点とみなし、評価した。また、注油はホルターの中心より400ml/分とした。
評価結果を表3に示す。表3の数値は、従来例24の焼付き時点の測定値、摩耗量を基準とした場合の比率として夫々耐焼付き比、耐摩耗比として示した。
(Example 2)
In order to evaluate the seizure resistance of the hard coating of the present invention, test pieces of Invention Examples 6 to 16, Comparative Examples 21 and 22, and Conventional Example 24 shown in Tables 1 and 2 were manufactured. A test piece base corresponding to 5 mm square SKD61 was manufactured, and gas nitriding treatment was performed at 520 ° C. for 10 hours. In order to remove the brittle nitride phase formed on the surface, the surface of the test piece was removed by about 10 μm. And the CrSi-type film | membrane from which various compositions differ was coat | covered. The coating method is the same as in Example 1 unless otherwise noted. As the hard coating, an AIP evaporation source in which a sputtering evaporation source or another composition target was fixed as required was used. The composition of the hard film, the base film, and the uppermost layer are shown in Tables 1 and 2. In addition, the film thickness was set to 30 ± 2 μm for any test piece. In order to evaluate the wear characteristics of the obtained specimens, an anti-seizure resistance was evaluated using an ultra-high pressure frictional wear tester. Test conditions are shown below.
(Friction and wear test conditions)
Friction speed: 8 m / sec Frictional surface pressure: Initial pressure, 2 MPa, increase by 1 MPa every 3 minutes Lubricating oil:
Oil temperature: 80 ° C
Opponent material: FC250
An outline of the evaluation method will be described. The test piece was slidably mounted on the surface of the disk A to form a pin-projection sliding surface. The disk A can be rotated at a predetermined speed by a driving device. On the other hand, a disc B serving as a sliding counterpart material was detachably attached to the holder. The surface of the disk B was polished. The holder has a mechanism capable of lubricating. The holder also has a mechanism that can apply a pressing force in a direction perpendicular to the disk surface by a hydraulic device. Here, the disk A of the test piece and the disk B of the sliding partner material were set to face each other, and pressure was applied to the holder in this state. Therefore, at this time, the pin-projection sliding surface of the test piece and the surface of the counterpart disk B were brought into contact with each other by pressure. With this state as the initial state, the disk A was rotated at a predetermined speed while lubricating. The torque was changed by the friction generated between the test piece and the counterpart material due to the rotation. This situation was detected with a load cell and a dynamic strain meter. Then, the time at which the torque increased rapidly was regarded as the time of occurrence of seizure and evaluated. Lubricating was 400 ml / min from the center of the halter.
The evaluation results are shown in Table 3. The numerical values in Table 3 are shown as the seizure resistance ratio and the wear resistance ratio, respectively, as the ratios based on the measured value and the wear amount at the time of seizure in Conventional Example 24.
表3に示す様に、本願発明例6から16の硬質皮膜は従来例24に比べ耐焼付き比が1.22倍から1.55倍も優れていた。耐摩耗比も本願発明例は従来例に比べ0.28から0.58に低減し、優れた耐摩耗性を示した。本願発明例6は、CrSi系皮膜単層の場合である。耐焼付き性及び耐摩耗性に優れていた。本願発明例7は、CrSi系皮膜単層に酸素を含有させた場合を示す。酸素を含有することにより、更に耐焼付き性が向上した。本願発明例8は、最上層に硬質炭素膜を被覆した場合を示す。同様に優れた特性を示した。本願発明例9は、AIP蒸発源によるCrSi系皮膜の被覆と、スパッタ法による二硫化モリブデンの被覆とを同時に行い、被覆基体の回転機構により一定の積層周期を構成しながら成膜した。更に最上層は二硫化モリブデンを被覆した。この構成によって、特に耐焼付き比を大幅に向上させることができた。本願発明例10は、CrSi系皮膜とCr系皮膜との積層皮膜の場合を示す。本願発明例10においては、CrSi系ターゲットとCrターゲットを装着した2種類のAIP蒸発源を同時に放電させ、回転機構を有する被覆基体において一定の積層周期を構成しながら成膜した。これにより優れた耐焼付き性を示した。本願発明例11は、CrSi系皮膜とCr系皮膜の積層皮膜であって、その積層周期を200nmとした場合を示す。この場合も同様に優れた特性を示した。本願発明例12は、CrSi系ターゲットとCr系ターゲットを装着した2種類のAIP蒸発源と、CrB2セラミックス製のターゲットを装着したスパッタ蒸発源を使用し、これらを組合せて被覆した場合である。例えばCrSi系皮膜とCr系皮膜、CrSi系皮膜とCrB2系皮膜を同時に被覆し、一定の積層周期を構成しながら成膜した。この場合、特に優れた耐焼付き性と耐摩耗性を示した。本願発明例13は、下地層としてCr系皮膜を被覆した場合を示す。この場合も耐摩耗性に優れていた。本願発明例14は、硬質皮膜最表面において酸素濃度が最大となるよう構成した場合を示す。この場合も耐摩耗性に優れていた。本願発明例15は、下地層としてCr系皮膜を用い、積層皮膜はCr系皮膜とCrSi系皮膜を用いた。この場合も耐摩耗性に優れていた。本願発明例16は、下地層としてCr系皮膜を用い、積層皮膜はCrAlSi系皮膜とCr系皮膜を用いた。この場合、耐焼付き性と同時に特に耐摩耗性に優れた特性を示した。
一方、比較例21は、CrSi系皮膜の場合を示す。Si含有量は金属元素の原子%で30%とした。この場合、耐焼付き性並びに耐摩耗性について、有効な改善は確認されなかった。比較例22は、CrSi系皮膜にSi濃度変調が存在しないように構成した場合を示す。この場合、耐焼付き性並びに耐摩耗性について、有効な改善は確認されなかった。このことは、CrSi系皮膜内のSiの存在状態が重要であることを示している。CrSi系皮膜にSi濃度変調を存在させるには、成膜工程におけるガス圧力、バイアス電圧、成膜温度、ターゲット供給電流により制御が可能である。
As shown in Table 3, the hard coatings of Invention Examples 6 to 16 were excellent in seizure resistance ratio by 1.22 to 1.55 times compared to Conventional Example 24. The wear resistance ratio of the present invention example was also reduced from 0.28 to 0.58 compared to the conventional example, indicating excellent wear resistance. Invention Example 6 is a case of a CrSi-based coating single layer. Excellent seizure resistance and wear resistance. Invention Example 7 shows a case where oxygen is contained in a CrSi-based coating single layer. By containing oxygen, the seizure resistance was further improved. Invention Example 8 shows a case where a hard carbon film is coated on the uppermost layer. Similarly, excellent characteristics were exhibited. In Invention Example 9, the CrSi-based film was coated with an AIP evaporation source and the molybdenum disulfide was coated with a sputtering method at the same time, and the film was formed while forming a constant lamination cycle by the rotating mechanism of the coated substrate. Furthermore, the uppermost layer was coated with molybdenum disulfide. With this configuration, the seizure resistance ratio can be significantly improved. Invention Example 10 shows a case of a laminated film of a CrSi film and a Cr film. In Invention Example 10, two types of AIP evaporation sources equipped with a CrSi-based target and a Cr target were discharged at the same time, and a film was formed while forming a constant lamination period on a coated substrate having a rotating mechanism. This showed excellent seizure resistance. Invention Example 11 is a laminated film of a CrSi-type film and a Cr-type film, and shows a case where the lamination period is 200 nm. In this case as well, excellent characteristics were exhibited. Invention Example 12 is a case where two types of AIP evaporation sources equipped with a CrSi-based target and a Cr-based target and a sputter evaporation source equipped with a CrB2 ceramic target are used and coated in combination. For example, a CrSi-based film and a Cr-based film, a CrSi-based film and a CrB2-based film were coated at the same time, and the films were formed while constituting a constant lamination cycle. In this case, particularly excellent seizure resistance and wear resistance were exhibited. Invention Example 13 shows a case where a Cr-based film is coated as an underlayer. Also in this case, the wear resistance was excellent. Invention Example 14 shows a case where the oxygen concentration is maximized on the hard coating outermost surface. Also in this case, the wear resistance was excellent. In Invention Example 15, a Cr-based film was used as the underlayer, and a Cr-based film and a CrSi-based film were used as the laminated film. Also in this case, the wear resistance was excellent. Invention Example 16 used a Cr-based film as the underlayer, and used a CrAlSi-based film and a Cr-based film as the laminated film. In this case, the seizure resistance and the particularly excellent wear resistance were exhibited.
On the other hand, Comparative Example 21 shows the case of a CrSi-based film. The Si content was 30% in terms of atomic percent of the metal element. In this case, effective improvement was not confirmed about seizure resistance and abrasion resistance. Comparative Example 22 shows a case where the CrSi-based film is configured so that there is no Si concentration modulation. In this case, effective improvement was not confirmed about seizure resistance and abrasion resistance. This indicates that the presence state of Si in the CrSi-based film is important. In order for Si concentration modulation to be present in the CrSi-based film, it can be controlled by gas pressure, bias voltage, film forming temperature, and target supply current in the film forming process.
(実施例3)
実施例3は、表1、2に示す本願発明例17、本願発明例18及び従来例25の硬質皮膜を合金工具鋼製パンチ加工金型に被覆した場合である。被覆方法は、実施例2と同様な方法を採用し、膜厚は6μmとした。パンチ加工金型の先端形状はリードフレームの打ち抜き加工を想定して幅60μm、長さ10mmとした。評価には下記の加工条件で試験を行い、パンチ加工金型が規定回数の50k回のショットを打ち抜けるかどうかを評価した。
(加工条件)
加工方法:スリット打ち抜き加工
被加工材:42Ni、板厚150μm
本願発明例17、本願発明例18は硬質皮膜の損傷が無く、規定回数の50k回のショットを打ち抜く加工が可能であった。一方、従来例25は8k回のショットを打ち抜くパンチ加工後に、被加工材の精度が大幅に劣化したため、寿命に至った。
(Example 3)
Example 3 is a case where the hard coatings of Invention Example 17, Application Example 18 and Conventional Example 25 shown in Tables 1 and 2 were coated on a punching mold made of alloy tool steel. The coating method was the same as in Example 2 and the film thickness was 6 μm. The tip shape of the punching die was 60 μm wide and 10 mm long assuming punching of the lead frame. For the evaluation, a test was performed under the following processing conditions, and it was evaluated whether the punching die could pass through the specified number of 50k shots.
(Processing conditions)
Processing method: Slit punching Work material: 42Ni, plate thickness 150μm
Invention Example 17 and Invention Example 18 were not damaged by the hard coating, and could be processed by punching a predetermined number of 50k shots. On the other hand, the conventional example 25 has reached the end of its service life because the accuracy of the workpiece is greatly deteriorated after punching for punching 8k shots.
Claims (14)
A hard film-coated sliding member according to any one of claims 1 to 11, wherein the hard film-coated sliding member is a supercharging pressure control component for an internal combustion engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005020495A JP2006206960A (en) | 2005-01-28 | 2005-01-28 | Sliding member coated with hard film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005020495A JP2006206960A (en) | 2005-01-28 | 2005-01-28 | Sliding member coated with hard film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006206960A true JP2006206960A (en) | 2006-08-10 |
Family
ID=36964132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005020495A Pending JP2006206960A (en) | 2005-01-28 | 2005-01-28 | Sliding member coated with hard film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006206960A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008284642A (en) * | 2007-05-17 | 2008-11-27 | Hitachi Tool Engineering Ltd | Coated cutting tool |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126786A (en) * | 1984-07-02 | 1986-02-06 | ダイヤモンド・ブラツク・テクノロジーズ・インコーポレイテツド | Multilayer coating and method |
JPH08134629A (en) * | 1994-09-16 | 1996-05-28 | Sumitomo Electric Ind Ltd | Hyperfine particle laminated film and laminated high hardness material for tool with same |
JP2002018606A (en) * | 2000-06-30 | 2002-01-22 | Hitachi Tool Engineering Ltd | Coated cutting tool |
JP2004298972A (en) * | 2003-03-28 | 2004-10-28 | Hitachi Tool Engineering Ltd | Coated insert |
JP2006152321A (en) * | 2004-11-25 | 2006-06-15 | Hitachi Tool Engineering Ltd | Coated member with hard film and coating method therefor |
-
2005
- 2005-01-28 JP JP2005020495A patent/JP2006206960A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126786A (en) * | 1984-07-02 | 1986-02-06 | ダイヤモンド・ブラツク・テクノロジーズ・インコーポレイテツド | Multilayer coating and method |
JPH08134629A (en) * | 1994-09-16 | 1996-05-28 | Sumitomo Electric Ind Ltd | Hyperfine particle laminated film and laminated high hardness material for tool with same |
JP2002018606A (en) * | 2000-06-30 | 2002-01-22 | Hitachi Tool Engineering Ltd | Coated cutting tool |
JP2004298972A (en) * | 2003-03-28 | 2004-10-28 | Hitachi Tool Engineering Ltd | Coated insert |
JP2006152321A (en) * | 2004-11-25 | 2006-06-15 | Hitachi Tool Engineering Ltd | Coated member with hard film and coating method therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008284642A (en) * | 2007-05-17 | 2008-11-27 | Hitachi Tool Engineering Ltd | Coated cutting tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5452734B2 (en) | Process for manufacturing slide elements with a coating, in particular piston rings, and slide elements | |
JP5920681B2 (en) | Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof | |
US8202615B2 (en) | Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member | |
US11293548B2 (en) | Sliding member and coating film | |
EP1905863A2 (en) | Slide member | |
JP6015663B2 (en) | Covering material with excellent sliding characteristics | |
JP2000120870A (en) | Piston ring | |
JPH11172413A (en) | Piston ring | |
WO2014103940A1 (en) | Cylinder and piston ring assembly | |
JP2008241032A (en) | Piston ring and its manufacturing method | |
JP2730571B2 (en) | Sliding material and piston ring | |
JP2007170467A (en) | Piston ring | |
WO2015052761A1 (en) | Piston ring and seal ring for turbocharger | |
JP2006207691A (en) | Hard film coated sliding member | |
WO2022203052A1 (en) | Sliding member, manufacturing method thereof, and coating film | |
JP6756641B2 (en) | piston ring | |
JP4462077B2 (en) | Combination sliding member | |
JP2006206960A (en) | Sliding member coated with hard film | |
WO2020189717A1 (en) | Coated mold, method for manufacturing coated mold, and hard coat-forming target | |
JP3404003B2 (en) | Coated cutting tool | |
JP5207116B2 (en) | Hard coating with excellent lubrication characteristics and metal plastic working tools | |
JP4374160B2 (en) | piston ring | |
WO2015052762A1 (en) | Piston ring and seal ring for turbocharger | |
WO2023053380A1 (en) | Sliding member | |
JP2004346366A (en) | High temperature lubricating film, and coated cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081110 |
|
A521 | Written amendment |
Effective date: 20081225 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090217 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20090306 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20091006 Free format text: JAPANESE INTERMEDIATE CODE: A02 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091126 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100113 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20100423 Free format text: JAPANESE INTERMEDIATE CODE: A912 |