WO2015052761A1 - Piston ring and seal ring for turbocharger - Google Patents

Piston ring and seal ring for turbocharger Download PDF

Info

Publication number
WO2015052761A1
WO2015052761A1 PCT/JP2013/077293 JP2013077293W WO2015052761A1 WO 2015052761 A1 WO2015052761 A1 WO 2015052761A1 JP 2013077293 W JP2013077293 W JP 2013077293W WO 2015052761 A1 WO2015052761 A1 WO 2015052761A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coating
seal ring
piston ring
turbocharger
hard
Prior art date
Application number
PCT/JP2013/077293
Other languages
French (fr)
Japanese (ja)
Inventor
清行 川合
田中 昭二
昌幸 大平
Original Assignee
Tpr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpr株式会社 filed Critical Tpr株式会社
Priority to PCT/JP2013/077293 priority Critical patent/WO2015052761A1/en
Priority to JP2015541324A priority patent/JPWO2015052761A1/en
Publication of WO2015052761A1 publication Critical patent/WO2015052761A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Definitions

  • the present invention relates to a piston ring and a turbocharger seal ring used in an internal combustion engine. Snippet
  • a TiN coating is proposed in addition to a CrN coating or a coating Cr (N, O) in which oxygen is dissolved in CrN (Patent Documents 1 and 2).
  • a TiAlN coating having wear resistance superior to conventional hard chromium plating and TiN coating has also been proposed (Patent Document 3).
  • the TiN film and TiAlN film are also used in other fields, for example, a sealing ring of a mechanical seal, a cutting tool, a gear machining tool for dry machining, and the like (Patent Documents 4 to 6).
  • JP 2013-29190 A (Claim 1, paragraph 0001, etc.) JP 2013-29191 A (Claim 1, paragraph 0001, etc.) JP-A-5-141534 (Claim 1, paragraph 0024, etc.) JP-A-11-124665 (Claim 1, paragraph 0001, etc.) JP 2000-233320 A (Claim 1 etc.) JP 2006-281363 A (Claim 1, paragraph 0009, etc.)
  • a turbocharger seal ring used for an internal combustion engine is used in a more severe environment than a piston ring for an internal combustion engine in terms of operating temperature and oxidizing atmosphere.
  • the turbine wheel 4 rotates by the energy of the engine exhaust gas, and the rotational speed of the turbine shaft 5 formed integrally with the turbine wheel 4 reaches 100,000 revolutions per minute.
  • the turbocharger seal ring 6 is mounted in a groove 5G formed on the outer peripheral surface 5S of the turbine shaft 5 made of iron-based material, and is held in a bearing housing 8 that supports the turbine shaft 5 via a bearing 7. Has been.
  • both side surfaces (first side surface 6BS1) of the seal ring base 6B are used.
  • the hard coating 6F is formed on the second side surface 6BS2) to improve the wear resistance of both side surfaces (first side surface 6S1 and second side surface 6S2) of the seal ring.
  • the hard coating mainly used on both side surfaces of the turbocharger seal ring needs to be excellent in crack resistance and peelability similarly to the hard coating mainly used on the outer peripheral surface of the piston ring.
  • the present invention has been made in view of the above problems, and a piston ring and a turbocharger provided with a hard coating excellent in crack resistance and peelability when a counterpart material that slides or contacts is an iron-based material.
  • An object of the present invention is to provide a seal ring for use.
  • the piston ring for an internal combustion engine is a piston ring in which a hard coating is coated on at least one surface selected from the outer peripheral surface, the first side surface, and the second side surface of the piston ring base material.
  • the void area ratio in the cross section of the hard coating is 2.2% or less, and the ratio of the diffraction peak intensity of the (200) plane to the diffraction peak intensity of the (111) plane in the X-ray diffraction measurement of the hard coating (I 200 / I 111 ) is more than 1 and 15 or less.
  • the atomic ratio (Al / (Ti + Al)) is preferably in the range of 0.18 to 0.56.
  • the turbocharger seal ring used in the internal combustion engine of the present invention is a turbo in which a hard coating is coated on at least one surface selected from the outer peripheral surface, the first side surface, and the second side surface of the turbocharger seal ring base material.
  • the hard coating has a NaCl-type crystal structure, contains at least Ti, Al and N, and has an atomic ratio of Al to Ti and Al (Al / (Ti + Al)) of 0.10 to 0
  • the composition has a composition in the range of .63, the void area ratio in the cross section of the hard coating is 2.2% or less, and (200) with respect to the diffraction peak intensity of the (111) plane in the X-ray diffraction measurement of the hard coating.
  • the ratio of the diffraction peak intensity of the surface (I 200 / I 111 ) is more than 1 and 15 or less.
  • the atomic ratio (Al / (Ti + Al)) is preferably in the range of 0.18 to 0.56.
  • FIG. 2 (A) is an overall view showing the structure in the vicinity of the turbine shaft
  • FIG. 2 (B) shows the structure in the vicinity of the seal ring for turbocharger shown in the dotted line in FIG. 2 (A).
  • the piston ring and the turbocharger seal ring of the present embodiment may be simply referred to as “seal member”), the outer peripheral surface of the base material, It is a sealing member in which a hard coating is coated on at least one surface selected from a first side surface and a second side surface (a surface opposite to the first side surface).
  • the hard coating has a NaCl-type crystal structure, contains at least Ti, Al and N, and has an atomic ratio of Al to Ti and Al (Al / (Ti + Al)) of 0.10 to 0.63. Having a composition within the range.
  • the void area ratio in the cross section of the hard coating is 2.2% or less, and the ratio of the diffraction peak intensity of the (200) plane to the diffraction peak intensity of the (111) plane in the X-ray diffraction measurement of the hard coating (I 200 / I 111 ) is more than 1 and 15 or less.
  • Al / (Ti + Al) By setting Al / (Ti + Al) to 0.63 or less, wurtzite AlN can be prevented from crystallizing in the hard coating, and as a result, the hardness and strength of the hard coating are surely lowered. Can be suppressed. Moreover, it can suppress that the crack resistance and peelability of a hard film fall by making Al / (Ti + Al) 0.1 or more. Al / (Ti + Al) is more preferably within the range of 0.18 to 0.56.
  • I 200 / I 111 is more preferably within a range of 3.0 to 13.
  • the hard coating used in the seal member of the present embodiment includes a metal element and a non-metal element in an atomic ratio of approximately 1: 1, where the metal element includes Ti and Al as main elements,
  • the metal element contains N as a main element, and may be a TiAlN film substantially containing only Ti, Al, and N.
  • the hard coating may contain other elements other than Ti, Al, and N as necessary.
  • a part of Ti and Al can be replaced with another metal element, or a part of N can be replaced with another nonmetallic element.
  • Other metal elements X1 other than Ti and Al and other non-metal elements X2 other than N are included in appropriate amounts as long as they do not adversely affect the mechanical properties of the hard coating, particularly crack resistance and peelability.
  • X1 / (Ti + Al + X1) may be 0.1 or less, more preferably 0.05 or less, and even more preferably less than 0.02.
  • X2 / (N + X2) may be less than 0.02.
  • the hard coating used in the seal member of the present embodiment may contain non-metallic elements B, C, O, etc. if necessary, or these elements are not contained at all. May be.
  • C When C is added, it is possible to suppress a decrease in the coefficient of friction due to an improvement in slipperiness and an aggressiveness to the mating material that comes into contact with the seal member of the present embodiment.
  • the atomic ratio (C / (C + N)) of C with respect to N and C may be included more than 0 and less than 0.02.
  • the film composition of the hard coating can be measured by various analysis methods, but the sealing member of this embodiment is measured by fluorescent X-ray analysis (XRF).
  • the micro Vickers hardness (Hv) of the hard coating is preferably 1700 or more, and more preferably 1800 or more.
  • the micro Vickers hardness is preferably 1700 or more, and more preferably 1800 or more.
  • the indentation elastic modulus of the hard coating (to be precise, it means “indentation elastic modulus including Poisson's ratio”), which means a value represented by EIT / (1- ⁇ s 2 ), where EIT is the indentation elastic modulus, ⁇ s Is the Poisson's ratio of the hard coating.) Is preferably 320 GPa or more, and more preferably 350 GPa or more.
  • the upper limit value of the indentation elastic modulus is not particularly limited, but it is preferable that the upper limit is substantially about 390 GPa.
  • the surface of the film formed to have a film thickness of 15 ⁇ m or more is polished flat with emery paper of about # 1000 to # 1500, and further converted into a diamond slurry. And buffed.
  • the same diamond indenter as in the Vickers hardness measurement was used as the indenter, and a nanoindentation tester HM-2000 manufactured by Fisher Instruments was used. In both cases, the measurement load was 100 gf. If the sample is too thin, it is affected by the hardness of the base material, and accurate measurement cannot be performed.
  • the method of forming the hard coating is not particularly limited, and examples thereof include physical vapor deposition methods (PVD methods) such as ion plating methods and sputtering methods, chemical vapor deposition methods (CVD methods), and plasma CVD methods. Although a known film forming method can be used, an arc ion plating method is preferable.
  • PVD methods physical vapor deposition methods
  • CVD methods chemical vapor deposition methods
  • plasma CVD methods plasma CVD methods.
  • a known film forming method can be used, an arc ion plating method is preferable.
  • the hard film is formed by the following procedure. First, the degreased and cleaned substrate is placed in a vacuum chamber, and the inside of the vacuum chamber is depressurized until the pressure reaches about 1.3 ⁇ 10 ⁇ 3 Pa. Next, the substrate is heated to about 573K to 673K. Then, ion bombardment is performed by applying a bias voltage of about ⁇ 600 to ⁇ 800 V to the substrate. Thereafter, the bias voltage is lowered to about ⁇ 5 to ⁇ 50 V, and the process gas is introduced into the vacuum chamber.
  • arc discharge is performed, and at least one selected from the outer peripheral surface, the first side surface, and the second side surface of the base material is a metal component derived from a metal target as a deposition source and a non-metal component derived from a process gas.
  • a nitride-based film is formed by depositing on one surface.
  • a Ti—Al alloy target is used as the metal target, and the ratio of Ti and Al constituting the target is appropriately selected according to the target composition of the hard coating.
  • Al / (Ti + Al) in the hard coating is almost uniquely determined by the metal target composition used.
  • Al / (Ti + Al) in the hard coating can be adjusted by a combination of metal targets having different compositions and respective arc current values when forming a film using them.
  • N 2 gas As the process gas, only N 2 gas is usually used. However, depending on the composition of the hard coating, N 2 gas and CH 4 gas (mixed with C), O 2 gas (mixed with O), TMS, A mixed gas in which various gases such as tetramethylsilane, C and Si are mixed at a predetermined ratio can be used. Thus, the hard film which has a desired composition can be obtained by selecting a composition of a metal target and process gas.
  • I 200 / I 111 can be changed by a bias voltage, an internal pressure during film formation, or the like.
  • the diffraction peak of the (200) plane can be controlled to be relatively higher than the diffraction peak of the (111) plane by increasing the bias voltage or decreasing the internal pressure.
  • the diffraction peak of the (111) plane can be controlled to be relatively higher than the diffraction peak of the (200) plane.
  • unreacted particles called droplets are mixed in the hard film.
  • the unreacted particles are formed in the form of particles taken into the hard film without sufficiently reacting with a gas component such as N 2 gas by releasing a large amount of film forming raw material at once from an arc spot on the metal target. It means a substance.
  • a gas component such as N 2 gas
  • voids are formed in the periphery of the unreacted particles and in the traces of the unreacted particles dropping out in the hard coating.
  • the area ratio (void area ratio) due to the voids in the hard film in the cross section of the hard film Is 2.2% or less.
  • the cross-sectional area ratio of unreacted particles contained in the hard coating is preferably about 1.5% or less.
  • the cross-sectional area ratio of the unreacted particles is more preferably 1.8% or less, and the closer to 0%, the better.
  • the cross-sectional area ratio of unreacted particles is preferably as close to 0%.
  • the particle size of the unreacted particles is preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, and the smaller the particle size, the better. .
  • the method for reducing the number and size of the voids is not particularly limited.
  • the gap may be decreased by increasing the distance between the metal target and the substrate to be deposited and setting the bias voltage higher. It is valid.
  • it is effective to arrange an adhesion preventing plate or the like in the vicinity of the metal target.
  • increasing the frequency of replacement of the metal target is also effective in reducing the number and size of voids and unreacted particles. It is valid.
  • a technique for reducing the number of unreacted particles by strengthening the magnetic field of the evaporation source has been developed.
  • the void area ratio in the cross section of the hard coating and the cross sectional area ratio of the unreacted particles were obtained by the following procedure.
  • the piston ring or turbocharger seal ring is cut to a length of about 1 cm in the circumferential direction, and the hard coating is processed by the ion milling method or the focused ion beam method (FIB method), so that the cross section of the hard coating is obtained.
  • the cross section of the hard film was image
  • the void area ratio was binarized for the void portion and the other portions, and the cross-sectional area ratio was binarized for the unreacted particle portion and the other portions. And about the same measurement sample, the average value of 5 visual fields was calculated
  • the base material used for forming the hard coating can be used without particular limitation as long as it is a known base material used for piston rings or turbocharger seal rings.
  • a base material used for piston rings or turbocharger seal rings For example, stainless steel, spring steel, and high-speed tools can be used.
  • a base material made of steel or heat-resistant steel can be used.
  • the hard coating is formed so as to cover the outer peripheral surface of the piston ring base material. Moreover, the hard film may be formed into the other surface as needed. If a specific example is given, in the sealing member of this embodiment, in addition to providing the hard coating 3F so as to cover the outer peripheral surface 3BS of the piston ring base 3B as illustrated in FIG. That is, you may provide a hard film so that 1st side surface 3B1 and / or 2nd side surface 3B2 may be covered.
  • the seal member of the present embodiment is a turbocharger seal ring, the hard coating is formed to cover the first side surface and / or the second side surface of the turbocharger seal ring base material.
  • the hard film may be formed into the other surface as needed.
  • a hard coating 6F is provided so as to cover the first side surface 6BS1 and the second side surface 6BS2 of the turboring seal ring base material 6B.
  • a hard coating may be provided so as to cover the outer peripheral surface 6BE, which is the surface facing the bearing housing 8.
  • the hard coating 6F provided on one of the first side surface 6BS1 and the second side surface 6BS2 may be omitted.
  • an undercoat layer may be provided between the seal member substrate and the hard coating as necessary in order to improve the adhesion between the seal member substrate and the hard coating.
  • this undercoat layer for example, a thin film mainly composed of Ti, Cr, Ti—Al alloy or the like can be used.
  • the film thickness of the hard coating is not particularly limited, but is preferably 10 ⁇ m or more in the case of a piston ring from the viewpoint of ensuring durability.
  • the upper limit value of the film thickness is not particularly limited, but is preferably 30 ⁇ m or less from the practical viewpoint such as productivity.
  • about 3 ⁇ m is preferable from the viewpoint of durability and practicality.
  • the surface of the hard film after forming the hard film, it is preferable to perform lapping or polishing to make the surface of the hard film have a roughness Ra of 0.2 or less. By reducing the roughness, it becomes easier to suppress the damage of the hard coating by suppressing the wear of the counterpart material and reducing the frictional resistance.
  • a metal target composed of a metal composition corresponding to the composition of the hard film formed in each of the examples and comparative examples shown in Table 1 and Table 2 is used, and as a process gas, N 2 gas or a mixed gas in which N 2 gas and CH 4 gas were mixed at a predetermined ratio was used according to the composition of the hard coating film formed in each example and comparative example.
  • the hard coating Cr (N, O) of Comparative Example 1 is a coating in which O is dissolved in CrN having a NaCl-type crystal structure, and a metallic element and a nonmetallic element are approximately 1: 1 in atomic ratio.
  • the metallic element contains Cr
  • the nonmetallic element contains N as a main element
  • the purpose of adding O to CrN is to strengthen the coating by dissolving O in the hard coating and suppress the occurrence of cracks and peeling.
  • the internal pressure during film formation was appropriately set within a range of 2 Pa to 5 Pa and the bias voltage within a range of ⁇ 10 V to ⁇ 50 V so that a desired value of I 200 / I 111 was obtained. Selected.
  • the distance between the metal target and the substrate, the bias voltage, the presence or absence of the deposition plate, the amount of target material used, the magnetic field distribution near the target surface, etc. was made to fluctuate by changing suitably.
  • the crack resistance / peelability of the hard coating was evaluated by the following procedure using a ring-on-rotor friction tester shown in FIG. First, the outer peripheral surface of the test piece 10 obtained by cutting a piston ring sample in the circumferential direction of the piston ring from about 1 cm to 2 cm is pressed against a steel rotor 12 rotating at a constant speed by applying a load P with a weight. Seizure was generated. In this state, after rotating the rotor 12 for a certain period of time, it was confirmed whether or not the hard coating was cracked or peeled. If no damage was observed, the load P was further increased and retested. By repeating this, the load P at which cracks and peeling began to occur was confirmed.
  • the lubricating oil was supplied using a tubing pump or an air dispenser.
  • the test conditions are as follows. Further, the results shown in Table 1 and Table 2 show the relative value of the load P at which cracks and peeling began to occur in the test piece 10 of Comparative Example 1 as a reference value 1. A larger value means that the hard coating is more excellent in crack resistance and peelability.
  • the evaluation result of crack resistance / peelability is preferably 1.0 or more. ⁇ Initial load P: 40N ⁇ Rotation speed of the rotor 12: 1000 rpm ⁇ Rotation time of the rotor 12 per test: 1 min
  • ⁇ Abrasion resistance and opponent attack> The wear resistance and opponent attack were evaluated using a pin-on-plate reciprocating friction tester shown in FIG.
  • a pin-on-plate reciprocating friction tester shown in FIG.
  • an upper test piece 20 having a hard film formed on the tip of a pin is pressed against a plate-like lower test piece 22 by applying a load P by a spring load, and the lower test piece 22 reciprocates. By doing so, both are configured to slide.
  • the upper test piece 20 is like a piston ring.
  • the lower test piece 22 is like a cylinder bore made of cast iron, and is composed of a cast iron plate. Lubricating oil was supplied using a tubing pump or an air dispenser.
  • the wear amount of the upper test piece 20 and the lower test piece 22 was measured with a surface roughness meter.
  • the wear amount of the upper test piece 20 means the wear amount of the hard coating provided on the tip of the pin
  • the wear amount of the lower test piece 22 means the wear amount (wear depth) of the counterpart material.
  • the test conditions are as follows. Further, the results shown in Tables 1 and 2 show the wear amount of Comparative Example 1 as a reference value 1 and show the relative value. As for the “wear resistance”, the smaller the value, the harder the wear of the hard coating. The smaller the “partner aggression” is, the more the wear of the counterpart material is suppressed.

Abstract

Provided are a piston ring and a seal ring for a turbocharger that are provided with a hard covering film having superior cracking and peeling resistance. In the piston ring and the seal ring for a turbo charger, which are such that at least one surface selected from the outer peripheral surface, a first lateral surface, and a second lateral surface of a substrate is covered by a hard covering film, the hard covering film has an NaCl-type crystal structure, contains at least Ti, Al, and N, has a composition in which the atom ratio (Al/(Ti+Al)) of Al to Ti and Al is in the range of 0.10-0.63, has a void area ratio in a cross section of the hard covering film that is no greater than 2.2%, and has a ratio (I200/I111) of the diffraction peak strength in the (200) plane with respect to the diffraction peak strength in the (111) plane in an X-ray diffraction measurement of the hard covering film that is greater than 1 and no greater than 15.

Description

ピストンリングおよびターボチャージャー用シールリングPiston ring and turbocharger seal ring
 本発明は、内燃機関に用いられるピストンリングおよびターボチャージャー用シールリングに関するものである。                   The present invention relates to a piston ring and a turbocharger seal ring used in an internal combustion engine. Snippet
 ピストンリングの外周面に設けられる硬質被膜としては、CrN被膜やさらにCrNに酸素を固溶させた被膜Cr(N,O)以外にも、TiN被膜が提案されている(特許文献1、2)。さらに、従来の硬質クロムめっきやTiN被膜よりも優れた耐摩耗性を有するTiAlN被膜も提案されている(特許文献3)。なお、TiN被膜やTiAlN被膜は、他の分野でも利用されており、たとえば、メカニカルシールの密封環や、切削工具、乾式加工用歯車加工工具などに利用されている(特許文献4~6)。 As a hard coating provided on the outer peripheral surface of the piston ring, a TiN coating is proposed in addition to a CrN coating or a coating Cr (N, O) in which oxygen is dissolved in CrN (Patent Documents 1 and 2). . Furthermore, a TiAlN coating having wear resistance superior to conventional hard chromium plating and TiN coating has also been proposed (Patent Document 3). The TiN film and TiAlN film are also used in other fields, for example, a sealing ring of a mechanical seal, a cutting tool, a gear machining tool for dry machining, and the like (Patent Documents 4 to 6).
特開2013-29190号公報(請求項1、段落0001等)JP 2013-29190 A (Claim 1, paragraph 0001, etc.) 特開2013-29191号公報(請求項1、段落0001等)JP 2013-29191 A (Claim 1, paragraph 0001, etc.) 特開平5-141534号公報(請求項1、段落0024等)JP-A-5-141534 (Claim 1, paragraph 0024, etc.) 特開平11-124665号公報(請求項1、段落0001等)JP-A-11-124665 (Claim 1, paragraph 0001, etc.) 特開2000-233320号公報(請求項1等)JP 2000-233320 A (Claim 1 etc.) 特開2006-281363号公報(請求項1、段落0009等)JP 2006-281363 A (Claim 1, paragraph 0009, etc.)
 一方、近年の排出ガス規制への適応や燃費改善を目的に、自動車用エンジンにおいては高圧縮比化や燃料の直噴化が進められている。また、燃料中にアルコールが含まれる場合もあり、一部地域ではアルコール100%燃料対応車なども普及している。これらにより、図1に例示するように、シリンダ1内のピストン2の外周面2Sに形成された溝2Gに装着されたピストンリング3への背圧が高まったり、エンジン潤滑油が希釈される。この場合、ピストンリング3の外周面3Sと、シリンダ1の内壁を構成する鉄系材料製のシリンダボア1Sとの摺動抵抗が増すなどの変化が生じている。そのため、実働時にピストンリング3の外周面3Sを構成する従来から多用されているCrN系硬質被膜3Fに軽微なクラックや剥離が生ずる場合があり、耐クラック・剥離性に優れる硬質被膜3Fが設けられたピストンリング3が必要とされている。しかしながら、特許文献1~3等に示す従来の硬質被膜を備えたピストンリングでは、上述した特性を十分に満たすことはできていない。 On the other hand, for the purpose of adapting to recent exhaust gas regulations and improving fuel efficiency, automobile engines are being promoted to have higher compression ratios and direct fuel injection. In some cases, alcohol is contained in the fuel, and in some areas, vehicles that are 100% alcohol fuel are also popular. As a result, as illustrated in FIG. 1, the back pressure to the piston ring 3 mounted in the groove 2G formed in the outer peripheral surface 2S of the piston 2 in the cylinder 1 is increased, or the engine lubricating oil is diluted. In this case, changes such as an increase in sliding resistance between the outer peripheral surface 3S of the piston ring 3 and the cylinder bore 1S made of an iron-based material constituting the inner wall of the cylinder 1 occur. For this reason, a slight crack or peeling may occur in the CrN-based hard coating 3F that has been widely used in the past, which constitutes the outer peripheral surface 3S of the piston ring 3 during actual operation, and a hard coating 3F that is excellent in crack resistance and peeling properties is provided. A piston ring 3 is required. However, the conventional piston rings having hard coatings described in Patent Documents 1 to 3 and the like cannot sufficiently satisfy the above-described characteristics.
 また、内燃機関に用いられるターボチャージャー用シールリングは使用温度や酸化雰囲気という点で、内燃機関用のピストンリングよりもより厳しい環境下で使用される。ターボチャージャーはエンジン排気ガスのエネルギーにより、図2に例示するように、タービンホイール4が回転し、タービンホイール4と一体的に形成されたタービン軸5の回転数は毎分10万回転以上に達する。一方、ターボチャージャー用シールリング6は鉄系材料製のタービン軸5の外周面5Sに形成された溝5Gに装着されると共に、ベアリング7を介してタービン軸5を支持するベアリングハウジング8内に把持されている。そして、タービン軸5の溝5Gとターボチャージャー用シールリング6の側面とは接触する状態で使用されるため、図2に例示しているようにシールリング基材6Bの両側面(第一側面6BS1および第二側面6BS2)に硬質被膜6Fを構成し、シールリングの両側面(第一側面6S1および第二側面6S2)の耐摩耗性を向上している。このためターボチャージャー用シールリングの主に両側面に用いられる硬質被膜も、ピストンリングの主に外周面に用いられる硬質被膜と同様に、耐クラック・剥離性に優れていることが必要である。 Also, a turbocharger seal ring used for an internal combustion engine is used in a more severe environment than a piston ring for an internal combustion engine in terms of operating temperature and oxidizing atmosphere. In the turbocharger, as shown in FIG. 2, the turbine wheel 4 rotates by the energy of the engine exhaust gas, and the rotational speed of the turbine shaft 5 formed integrally with the turbine wheel 4 reaches 100,000 revolutions per minute. . On the other hand, the turbocharger seal ring 6 is mounted in a groove 5G formed on the outer peripheral surface 5S of the turbine shaft 5 made of iron-based material, and is held in a bearing housing 8 that supports the turbine shaft 5 via a bearing 7. Has been. Since the groove 5G of the turbine shaft 5 and the side surface of the turbocharger seal ring 6 are in contact with each other, as shown in FIG. 2, both side surfaces (first side surface 6BS1) of the seal ring base 6B are used. Further, the hard coating 6F is formed on the second side surface 6BS2) to improve the wear resistance of both side surfaces (first side surface 6S1 and second side surface 6S2) of the seal ring. For this reason, the hard coating mainly used on both side surfaces of the turbocharger seal ring needs to be excellent in crack resistance and peelability similarly to the hard coating mainly used on the outer peripheral surface of the piston ring.
 本発明は上記課題に鑑みてなされたものであり、摺動するまたは接触する相手材が鉄系材料である場合に、耐クラック・剥離性に優れた硬質被膜が設けられたピストンリングおよびターボチャージャー用シールリングを提供することを課題とする。 The present invention has been made in view of the above problems, and a piston ring and a turbocharger provided with a hard coating excellent in crack resistance and peelability when a counterpart material that slides or contacts is an iron-based material. An object of the present invention is to provide a seal ring for use.
 本発明の内燃機関用ピストンリングは、ピストンリング基材の外周面、第一側面および第二側面から選択される少なくとも一つの表面上に硬質被膜が被覆されたピストンリングにおいて、硬質被膜が、NaCl型の結晶構造を有し、少なくともTi、AlおよびNを含むと共にTiおよびAlに対するAlの原子比率(Al/(Ti+Al))が、0.10~0.63の範囲内にある組成を有し、前記硬質被膜の断面における空隙面積率が、2.2%以下であり、硬質被膜のX線回折測定における(111)面の回折ピーク強度に対する(200)面の回折ピーク強度の比率
(I200/I111)が、1を超え15以下であることを特徴とする。
The piston ring for an internal combustion engine according to the present invention is a piston ring in which a hard coating is coated on at least one surface selected from the outer peripheral surface, the first side surface, and the second side surface of the piston ring base material. A crystal structure of at least one, including at least Ti, Al and N and having an atomic ratio of Al to Ti and Al (Al / (Ti + Al)) in the range of 0.10 to 0.63 The void area ratio in the cross section of the hard coating is 2.2% or less, and the ratio of the diffraction peak intensity of the (200) plane to the diffraction peak intensity of the (111) plane in the X-ray diffraction measurement of the hard coating (I 200 / I 111 ) is more than 1 and 15 or less.
 本発明のピストンリングの一実施態様は、原子比率(Al/(Ti+Al))が、0.18~0.56の範囲内にあることが好ましい。 In one embodiment of the piston ring of the present invention, the atomic ratio (Al / (Ti + Al)) is preferably in the range of 0.18 to 0.56.
 本発明の内燃機関に用いられるターボチャージャー用シールリングは、ターボチャージャー用シールリング基材の外周面、第一側面および第二側面から選択される少なくとも一つの表面上に硬質被膜が被覆されたターボチャージャー用シールリングにおいて、硬質被膜が、NaCl型の結晶構造を有し、少なくともTi、AlおよびNを含むと共にTiおよびAlに対するAlの原子比率(Al/(Ti+Al))が、0.10~0.63の範囲内にある組成を有し、硬質被膜の断面における空隙面積率が、2.2%以下であり、硬質被膜のX線回折測定における(111)面の回折ピーク強度に対する(200)面の回折ピーク強度の比率
(I200/I111)が、1を超え15以下であることを特徴とする。
The turbocharger seal ring used in the internal combustion engine of the present invention is a turbo in which a hard coating is coated on at least one surface selected from the outer peripheral surface, the first side surface, and the second side surface of the turbocharger seal ring base material. In the seal ring for charger, the hard coating has a NaCl-type crystal structure, contains at least Ti, Al and N, and has an atomic ratio of Al to Ti and Al (Al / (Ti + Al)) of 0.10 to 0 The composition has a composition in the range of .63, the void area ratio in the cross section of the hard coating is 2.2% or less, and (200) with respect to the diffraction peak intensity of the (111) plane in the X-ray diffraction measurement of the hard coating. The ratio of the diffraction peak intensity of the surface (I 200 / I 111 ) is more than 1 and 15 or less.
 本発明のターボチャージャー用シールリングの一実施態様は、原子比率(Al/(Ti+Al))が、0.18~0.56の範囲内にあることが好ましい。 In one embodiment of the seal ring for turbocharger of the present invention, the atomic ratio (Al / (Ti + Al)) is preferably in the range of 0.18 to 0.56.
 本発明によれば、耐クラック・剥離性に優れたピストンリングおよびターボチャージャー用シールリングを提供することができる。 According to the present invention, it is possible to provide a piston ring and a turbocharger seal ring excellent in crack resistance and peelability.
内燃機関用ピストンリングの使用状態の一例を示す模式端面図である。It is a model end view which shows an example of the use condition of the piston ring for internal combustion engines. 内燃機関に用いられるターボチャージャー用シールリングの使用状態の一例を示す模式端面図である。ここで、図2(A)は、タービン軸近傍の構造について示す全体図であり、図2(B)は、図2(A)中の点線内に示すターボチャージャー用シールリング近傍の構造について示す拡大図である。It is a model end view which shows an example of the use condition of the seal ring for turbochargers used for an internal combustion engine. Here, FIG. 2 (A) is an overall view showing the structure in the vicinity of the turbine shaft, and FIG. 2 (B) shows the structure in the vicinity of the seal ring for turbocharger shown in the dotted line in FIG. 2 (A). It is an enlarged view. 耐クラック・剥離性の評価に用いたリングオンローター式摩擦試験機の概略模式図である。It is a schematic diagram of a ring-on-rotor friction tester used for evaluation of crack resistance / peelability. 耐摩耗性および相手攻撃性の評価に用いたピンオンプレート式往復動摩擦試験機の概略模式図である。It is a schematic diagram of a pin-on-plate reciprocating friction tester used for evaluation of wear resistance and opponent attack.
 本実施形態のピストンリングおよびターボチャージャー用シールリング(以下、ピストンリングおよびターボチャージャー用シールリングの双方を指し示す場合は、単に、「シール部材」と称す場合がある)は、基材の外周面、第一側面および第二側面(第一側面とは反対側の面)から選択される少なくとも一つの表面上に硬質被膜が被覆されたシール部材である。ここで、硬質被膜は、NaCl型の結晶構造を有し、少なくともTi、AlおよびNを含むと共にTiおよびAlに対するAlの原子比率(Al/(Ti+Al))が、0.10~0.63の範囲内にある組成を有する。また、硬質被膜の断面における空隙面積率が、2.2%以下であり、硬質被膜のX線回折測定における(111)面の回折ピーク強度に対する(200)面の回折ピーク強度の比率(I200/I111)が、1を超え15以下である。 The piston ring and the turbocharger seal ring of the present embodiment (hereinafter, when both the piston ring and the turbocharger seal ring are referred to may be simply referred to as “seal member”), the outer peripheral surface of the base material, It is a sealing member in which a hard coating is coated on at least one surface selected from a first side surface and a second side surface (a surface opposite to the first side surface). Here, the hard coating has a NaCl-type crystal structure, contains at least Ti, Al and N, and has an atomic ratio of Al to Ti and Al (Al / (Ti + Al)) of 0.10 to 0.63. Having a composition within the range. The void area ratio in the cross section of the hard coating is 2.2% or less, and the ratio of the diffraction peak intensity of the (200) plane to the diffraction peak intensity of the (111) plane in the X-ray diffraction measurement of the hard coating (I 200 / I 111 ) is more than 1 and 15 or less.
 Al/(Ti+Al)を、0.63以下とすることにより、硬質被膜中にウルツ鉱型AlNが晶出するのを抑制でき、結果的に、硬質被膜の硬度や強度が低下するのを確実に抑制することができる。また、Al/(Ti+Al)を、0.1以上とすることにより、硬質被膜の耐クラック・剥離性が低下するのを抑制できる。なお、Al/(Ti+Al)は、0.18~0.56の範囲内であることがより好ましい。 By setting Al / (Ti + Al) to 0.63 or less, wurtzite AlN can be prevented from crystallizing in the hard coating, and as a result, the hardness and strength of the hard coating are surely lowered. Can be suppressed. Moreover, it can suppress that the crack resistance and peelability of a hard film fall by making Al / (Ti + Al) 0.1 or more. Al / (Ti + Al) is more preferably within the range of 0.18 to 0.56.
 また、I200/I111を1.0を超えるものとすることにより、高負荷摺動時における硬質被膜のクラックや剥離の発生を抑制することができる。また、I200/I111を15以下とすることにより、硬質被膜中の残留応力が高くなるのを抑制でき、結果的に剥離が発生するのを抑制できる。なお、I200/I111は3.0~13の範囲内がより好ましい。 Further, by setting in excess of 1.0 I 200 / I 111, it is possible to suppress the occurrence of cracks or peeling of the hard coating at a high load slide. Moreover, by setting I 200 / I 111 to 15 or less, it is possible to suppress the residual stress in the hard coating from being increased, and as a result, it is possible to suppress the occurrence of peeling. I 200 / I 111 is more preferably within a range of 3.0 to 13.
 本実施形態のシール部材に用いられる硬質被膜は、金属元素と非金属元素とを原子比率で略1:1の割合で含み、ここで、金属元素としてはTi、Alを主元素として含み、非金属元素としてはNを主元素として含むものであり、実質的にTi、Al、Nのみを含むTiAlN膜であってもよい。しかしながら、硬質被膜には、必要に応じてTi、Al、N以外のその他の元素が含まれていてもよい。たとえば、TiおよびAlの一部を他の金属元素に固溶置換したり、あるいは、Nの一部を他の非金属元素に固溶置換することができる。Ti、Al以外のその他の金属元素X1、および、N以外のその他の非金属元素X2は、硬質被膜の機械的特性、特に、耐クラック・剥離性に悪影響を与えない範囲であれば適量含まれていてもよく、たとえば、原子比率で、X1/(Ti+Al+X1)については0.1以下含まれていてもよく、0.05以下がより好ましく、0.02未満がさらに好ましい。X2/(N+X2)については0.02未満含んでも良い。 The hard coating used in the seal member of the present embodiment includes a metal element and a non-metal element in an atomic ratio of approximately 1: 1, where the metal element includes Ti and Al as main elements, The metal element contains N as a main element, and may be a TiAlN film substantially containing only Ti, Al, and N. However, the hard coating may contain other elements other than Ti, Al, and N as necessary. For example, a part of Ti and Al can be replaced with another metal element, or a part of N can be replaced with another nonmetallic element. Other metal elements X1 other than Ti and Al and other non-metal elements X2 other than N are included in appropriate amounts as long as they do not adversely affect the mechanical properties of the hard coating, particularly crack resistance and peelability. For example, in terms of atomic ratio, X1 / (Ti + Al + X1) may be 0.1 or less, more preferably 0.05 or less, and even more preferably less than 0.02. X2 / (N + X2) may be less than 0.02.
 また、本実施形態のシール部材に用いられる硬質被膜には、必要であれば非金属元素であるB、C、O等が含まれていてもよく、あるいは、これらの元素は全く含まれていなくてもよい。Cを添加した場合、滑り性の改善による摩擦係数の低下や、本実施形態のシール部材と接触する相手材への攻撃性を抑制することも可能である。また、硬質被膜にCが含まれる場合は、NおよびCに対するCの原子比率(C/(C+N))は、0を超え0.02未満で含んでもよい。なお、硬質被膜の膜組成は、種々の分析法により測定できるが、本実施形態のシール部材については、蛍光X線分析(XRF)により測定される。このとき、TiのLl線がNのKα線に対し、妨害線として作用する可能性があるため、予め純Ti等の分析を行い、TiのKα線に対するTiのLl線の比率を求めておく。また、Cは試料表面に吸着した有機物の量などによって分析値が変動しやすいため、分析直前にスパッタクリーニングを行う。 Further, the hard coating used in the seal member of the present embodiment may contain non-metallic elements B, C, O, etc. if necessary, or these elements are not contained at all. May be. When C is added, it is possible to suppress a decrease in the coefficient of friction due to an improvement in slipperiness and an aggressiveness to the mating material that comes into contact with the seal member of the present embodiment. Moreover, when C is contained in a hard film, the atomic ratio (C / (C + N)) of C with respect to N and C may be included more than 0 and less than 0.02. The film composition of the hard coating can be measured by various analysis methods, but the sealing member of this embodiment is measured by fluorescent X-ray analysis (XRF). At this time, since there is a possibility that the Ti Ll line acts as an interference line with respect to the N Kα line, pure Ti or the like is analyzed in advance to obtain the ratio of the Ti Ll line to the Ti Kα line. . In addition, since the analytical value of C tends to fluctuate depending on the amount of organic matter adsorbed on the sample surface, sputter cleaning is performed immediately before the analysis.
 また、硬質被膜のマイクロビッカース硬さ(Hv)は、1700以上であることが好ましく、1800以上であることがより好ましい。マイクロビッカース硬さを1700以上とすることにより、ピストンリングやターボチャージャー用シールリングの硬質被膜として必要な強度を確保することが容易となる。一方、マイクロビッカース硬さの上限値は高すぎると耐クラック・剥離性が低下するため、実用上は2500以下であることが好ましい。 Further, the micro Vickers hardness (Hv) of the hard coating is preferably 1700 or more, and more preferably 1800 or more. By setting the micro Vickers hardness to 1700 or more, it becomes easy to ensure the strength required as a hard coating for a piston ring or a turbocharger seal ring. On the other hand, if the upper limit value of the micro Vickers hardness is too high, crack resistance and peelability deteriorate, and therefore, practically, it is preferably 2500 or less.
 硬質被膜の押し込み弾性率(正確には「ポアソン比を含む押し込み弾性率」を意味し、EIT/(1-νs)で表される値を意味する。ここで、EITは押し込み弾性率、νsは硬質被膜のポアソン比である。)は320GPa以上であることが好ましく、350GPa以上であることがより好ましい。押し込み弾性率を320GPa以上とすることにより、硬質被膜の剛性の低下を抑制し、これにより、耐クラック・剥離性を確保することが容易となる。一方、押し込み弾性率の上限値は特に限定されるものではないが、実質的にその上限は390GPa程度であることが好ましい。マイクロビッカース硬度および押し込み弾性率測定用の試料は、共に被膜厚さが15μm以上となるように成膜したものの表面を#1000~#1500程度のエメリー紙にて平坦に研磨し、さらにダイヤモンドスラリーにてバフ仕上げを施し作製した。どちらの測定に於いても、圧子にはビッカース硬度測定と同じダイヤモンド圧子を用い、フィッシャーインストルメンツ製のナノインデンテーション試験機・HM-2000を用いた。なお、どちらも測定荷重は100gfとした。試料の膜厚が薄すぎる場合は、母材硬度の影響を受け、正確な測定ができなくなるため注意が必要である。  The indentation elastic modulus of the hard coating (to be precise, it means “indentation elastic modulus including Poisson's ratio”), which means a value represented by EIT / (1-νs 2 ), where EIT is the indentation elastic modulus, νs Is the Poisson's ratio of the hard coating.) Is preferably 320 GPa or more, and more preferably 350 GPa or more. By setting the indentation elastic modulus to be 320 GPa or more, it is possible to suppress a decrease in the rigidity of the hard coating, thereby easily ensuring crack resistance and peelability. On the other hand, the upper limit value of the indentation elastic modulus is not particularly limited, but it is preferable that the upper limit is substantially about 390 GPa. For the samples for micro Vickers hardness and indentation elastic modulus measurement, the surface of the film formed to have a film thickness of 15 μm or more is polished flat with emery paper of about # 1000 to # 1500, and further converted into a diamond slurry. And buffed. In either measurement, the same diamond indenter as in the Vickers hardness measurement was used as the indenter, and a nanoindentation tester HM-2000 manufactured by Fisher Instruments was used. In both cases, the measurement load was 100 gf. If the sample is too thin, it is affected by the hardness of the base material, and accurate measurement cannot be performed.
 硬質被膜の成膜方法としては特に限定されず、たとえば、イオンプレーティング法、スパッタリング法等の物理気相成長法(PVD法)や、化学気相成長法(CVD法)、プラズマCVD法等の公知の成膜方法が利用できるが、アークイオンプレーティング法が好適である。 The method of forming the hard coating is not particularly limited, and examples thereof include physical vapor deposition methods (PVD methods) such as ion plating methods and sputtering methods, chemical vapor deposition methods (CVD methods), and plasma CVD methods. Although a known film forming method can be used, an arc ion plating method is preferable.
 アークイオンプレーティング法により硬質被膜を成膜する場合、たとえば、以下に示す手順にて、硬質被膜を成膜する。まず、脱脂洗浄した基材を真空チャンバー内に設置し、圧力が1.3×10-3Pa程度となるまで、真空チャンバー内を減圧する。次に、基材を573K~673K程度に加熱する。そして、基材に対して、-600~-800V程度のバイアス電圧を印加することでイオンボンバードを行う。その後、-5~-50V程度にバイアス電圧を下げ、真空チャンバー内にプロセスガスを導入する。これによりアーク放電が行われ、蒸着源である金属ターゲットに由来する金属成分と、プロセスガスに由来する非金属成分が、基材の外周面、第一側面および第二側面から選択される少なくとも一つの表面上に堆積することで窒化物系被膜が形成される。 When forming a hard film by the arc ion plating method, for example, the hard film is formed by the following procedure. First, the degreased and cleaned substrate is placed in a vacuum chamber, and the inside of the vacuum chamber is depressurized until the pressure reaches about 1.3 × 10 −3 Pa. Next, the substrate is heated to about 573K to 673K. Then, ion bombardment is performed by applying a bias voltage of about −600 to −800 V to the substrate. Thereafter, the bias voltage is lowered to about −5 to −50 V, and the process gas is introduced into the vacuum chamber. As a result, arc discharge is performed, and at least one selected from the outer peripheral surface, the first side surface, and the second side surface of the base material is a metal component derived from a metal target as a deposition source and a non-metal component derived from a process gas. A nitride-based film is formed by depositing on one surface.
 ここで、金属ターゲットとしては、Ti-Al合金ターゲットが用いられ、このターゲットを構成するTiとAlとの比率は、狙いとする硬質被膜の組成に応じて適宜選択される。単一組成の金属ターゲットのみを用いる場合、硬質被膜中のAl/(Ti+Al)は使用する金属ターゲット組成により、ほぼ一義的に決定される。たとえば、金属ターゲット中のTiとAlの原子比率が3:1で、これを単独で用いたとき、硬質被膜中のAl/(Ti+Al)=1/(3+1)=0.25となる。また、硬質被膜中のAl/(Ti+Al)は、異なる組成の金属ターゲットの組み合わせ、およびそれらを用いて成膜する際のそれぞれのアーク電流値によっても調整することが可能である。たとえば、TiとAlの原子比率が3:1および1:1である金属ターゲットを1枚ずつ用いて同じアーク電流で成膜した場合、硬質被膜中のAl/(Ti+Al)=(1/(3+1)+1/(1+1))/2=0.375となる。さらに、それぞれの金属ターゲットのアーク電流値を上げ下げすることで、金属ターゲットの蒸発量が変化するため、増やしたい成分を多く含む金属ターゲットのアーク電流値を高くすることで、硬質被膜の組成を制御することができる。なお、一般に金属ターゲット材が消耗すると成膜効率が低下するため、硬質被膜の組成を精度良く管理するためには、同程度の消耗量の金属ターゲットを使用するとよい。 Here, a Ti—Al alloy target is used as the metal target, and the ratio of Ti and Al constituting the target is appropriately selected according to the target composition of the hard coating. When only a single composition metal target is used, Al / (Ti + Al) in the hard coating is almost uniquely determined by the metal target composition used. For example, the atomic ratio of Ti and Al in the metal target is 3: 1, and when this is used alone, Al / (Ti + Al) = 1 / (3 + 1) = 0.25 in the hard coating. Further, Al / (Ti + Al) in the hard coating can be adjusted by a combination of metal targets having different compositions and respective arc current values when forming a film using them. For example, when a metal target having an atomic ratio of Ti and Al of 3: 1 and 1: 1 is used to form a film with the same arc current, Al / (Ti + Al) = (1 / (3 + 1) in the hard coating ) + 1 / (1 + 1)) / 2 = 0.375. Furthermore, since the evaporation amount of the metal target changes by raising and lowering the arc current value of each metal target, the composition of the hard coating is controlled by increasing the arc current value of the metal target that contains a large amount of the component to be increased. can do. In general, when the metal target material is consumed, the film formation efficiency is lowered. Therefore, in order to manage the composition of the hard coating with high accuracy, it is preferable to use a metal target having the same amount of consumption.
 また、プロセスガスとしては、通常はNガスのみを用いればよいが、硬質被膜の組成に応じて、NガスとCHガス(Cを混入)、Oガス(Oを混入)、TMS(テトラメチルシラン、CとSiを混入)等の各種ガスとを所定の割合で混合した混合ガスを用いることができる。このように、金属ターゲットやプロセスガスの組成を選択することで、所望の組成を有する硬質被膜を得ることができる。 As the process gas, only N 2 gas is usually used. However, depending on the composition of the hard coating, N 2 gas and CH 4 gas (mixed with C), O 2 gas (mixed with O), TMS, A mixed gas in which various gases such as tetramethylsilane, C and Si are mixed at a predetermined ratio can be used. Thus, the hard film which has a desired composition can be obtained by selecting a composition of a metal target and process gas.
 また、I200/I111は、バイアス電圧や成膜時の内圧などで変更することが出来る。たとえば、バイアス電圧を高くしたり、あるいは、内圧を低くすることにより、(200)面の回折ピークが、(111)面の回折ピークに対して相対的により高くなるように制御できる。他に、硬質被膜中にCを添加することで、(111)面の回折ピークが、(200)面の回折ピークに対して相対的により高くなるよう制御できる。 I 200 / I 111 can be changed by a bias voltage, an internal pressure during film formation, or the like. For example, the diffraction peak of the (200) plane can be controlled to be relatively higher than the diffraction peak of the (111) plane by increasing the bias voltage or decreasing the internal pressure. In addition, by adding C to the hard coating, the diffraction peak of the (111) plane can be controlled to be relatively higher than the diffraction peak of the (200) plane.
 なお、アークイオンプレーティング法にて硬質被膜を成膜する場合、硬質被膜中にドロップレットと呼ばれる未反応粒子が混在する。この未反応粒子は、金属ターゲット上のアークスポットから一度に大量に成膜原料が放出されることにより、Nガスなどのガス成分と十分反応せずに硬質被膜中に取り込まれた粒子状の物質のことをいう。アークイオンプレーティング法においてはドロップレットを完全に0にすることは困難とされる。また、硬質被膜中において未反応粒子の周辺部や未反応粒子が脱落した跡には空隙が形成される。そして、このような硬質被膜中に存在する未反応粒子や、この未反応粒子に起因して形成される空隙は、硬質被膜の機械的特性を低下させる。このため、硬質被膜の成膜に際しては、発生する未反応粒子の数・サイズを抑制すると共に、未反応粒子に起因して形成される空隙の割合も小さくすることが必要である。 In addition, when forming a hard film by the arc ion plating method, unreacted particles called droplets are mixed in the hard film. The unreacted particles are formed in the form of particles taken into the hard film without sufficiently reacting with a gas component such as N 2 gas by releasing a large amount of film forming raw material at once from an arc spot on the metal target. It means a substance. In the arc ion plating method, it is difficult to make the droplets completely zero. In addition, voids are formed in the periphery of the unreacted particles and in the traces of the unreacted particles dropping out in the hard coating. And the unreacted particle which exists in such a hard film, and the space | gap formed resulting from this unreacted particle reduce the mechanical characteristic of a hard film. For this reason, when forming a hard coating, it is necessary to suppress the number and size of generated unreacted particles and to reduce the proportion of voids formed due to unreacted particles.
 したがって、アークイオンプレーティング法にて形成された硬質被膜(未反応粒子を含むと共に空隙を有する硬質被膜)においては、硬質被膜の断面において硬質被膜中の空隙に起因する面積率(空隙面積率)は2.2%以下である。また、硬質被膜中に含まれる未反応粒子の断面面積率は約1.5%以下であることが好ましい。空隙面積率を2.2%以下とすることにより、硬質被膜の局部的な強度低下を抑制でき、結果的に、硬質被膜に高い負荷が加わった際に硬質被膜のクラック・剥離を抑制することが極めて容易となる。また、未反応粒子の断面面積率を約1.5%以下とすることにより、硬質被膜中の未反応粒子が形成された部分において、マイクロスカッフが発生するのを抑制でき、結果的に、硬質被膜の損傷を抑制できる。なお、空隙面積率は、1.8%以下であることがより好ましく、0%に近いほどよい。また、未反応粒子の断面面積率も0%に近いほどよい。また、未反応粒子が粗大であるほどマイクロスカッフも生じやすくなるため、未反応粒子の粒径は7μm以下であることが好ましく、5μm以下であることがさらに好ましく、粒径は小さければ小さいほどよい。なお、本実施形態のシール部材に用いる硬質被膜の空隙面積率および断面面積率を実質的に0%とする場合には、硬質被膜は、アークイオンプレーティング法以外の成膜方法を用いて成膜されることが好ましい。 Therefore, in the hard film (hard film containing unreacted particles and having voids) formed by the arc ion plating method, the area ratio (void area ratio) due to the voids in the hard film in the cross section of the hard film Is 2.2% or less. The cross-sectional area ratio of unreacted particles contained in the hard coating is preferably about 1.5% or less. By setting the void area ratio to 2.2% or less, local strength reduction of the hard coating can be suppressed, and as a result, cracking and peeling of the hard coating can be suppressed when a high load is applied to the hard coating. Is extremely easy. In addition, by making the cross-sectional area ratio of the unreacted particles about 1.5% or less, it is possible to suppress the occurrence of microscuffing in the portion where the unreacted particles are formed in the hard coating. Damage to the coating can be suppressed. The void area ratio is more preferably 1.8% or less, and the closer to 0%, the better. Further, the cross-sectional area ratio of unreacted particles is preferably as close to 0%. In addition, since the coarser the unreacted particles, the more easily microscuffing occurs. Therefore, the particle size of the unreacted particles is preferably 7 μm or less, more preferably 5 μm or less, and the smaller the particle size, the better. . When the void area ratio and the cross-sectional area ratio of the hard coating used for the seal member of this embodiment are substantially 0%, the hard coating is formed using a film forming method other than the arc ion plating method. It is preferred to be membraned.
 なお、空隙の数やサイズを小さくする方法としては特に限定されないが、たとえば、金属ターゲットと成膜対象である基材との距離を大きく取り、バイアス電圧を高めに設定することで減少させることが有効である。また、未反応粒子の数やサイズを小さくするためには、たとえば、金属ターゲットの近傍に防着板等を配置することが有効である。また、成膜により金属ターゲットの消耗が進行すると空隙や未反応粒子の数・サイズが増大するため、金属ターゲットの交換頻度を大きくすることも空隙や未反応粒子の数・サイズを抑制する上では有効である。この他にも、最近では、蒸発源の磁場を強力にすることで、未反応粒子数を低減する技術も開発されている。 The method for reducing the number and size of the voids is not particularly limited. For example, the gap may be decreased by increasing the distance between the metal target and the substrate to be deposited and setting the bias voltage higher. It is valid. In order to reduce the number and size of the unreacted particles, for example, it is effective to arrange an adhesion preventing plate or the like in the vicinity of the metal target. In addition, since the number and size of voids and unreacted particles increase as the metal target wears out due to film formation, increasing the frequency of replacement of the metal target is also effective in reducing the number and size of voids and unreacted particles. It is valid. In addition to this, recently, a technique for reducing the number of unreacted particles by strengthening the magnetic field of the evaporation source has been developed.
 また、上述した硬質被膜の断面における空隙面積率や未反応粒子の断面面積率は、以下の手順にて求めた。まず、ピストンリングあるいはターボチャージャー用シールリングを円周方向に1cm程度の長さに切断し、硬質被膜を、イオンミリング法あるいは収束イオンビーム法(FIB法)により加工することで、硬質被膜の断面を露出させる。続いて、硬質被膜の断面を走査型電子顕微鏡により撮影した。このようにして得られた硬質被膜の断面画像(約45μm×60μm)について、市販の画像解析ソフトを用いて二値化解析した。なお、二値化解析は、空隙面積率については、空隙部分とそれ以外の部分について二値化し、断面面積率については、未反応粒子部分とそれ以外の部分について二値化した。そして、同一の測定サンプルについて、5視野の平均値を空隙面積率あるいは断面面積率として求めた。 Further, the void area ratio in the cross section of the hard coating and the cross sectional area ratio of the unreacted particles were obtained by the following procedure. First, the piston ring or turbocharger seal ring is cut to a length of about 1 cm in the circumferential direction, and the hard coating is processed by the ion milling method or the focused ion beam method (FIB method), so that the cross section of the hard coating is obtained. To expose. Then, the cross section of the hard film was image | photographed with the scanning electron microscope. The cross-sectional image (about 45 μm × 60 μm) of the hard coating thus obtained was subjected to binarization analysis using commercially available image analysis software. In the binarization analysis, the void area ratio was binarized for the void portion and the other portions, and the cross-sectional area ratio was binarized for the unreacted particle portion and the other portions. And about the same measurement sample, the average value of 5 visual fields was calculated | required as a void | hole area ratio or a cross-sectional area ratio.
 硬質被膜の成膜に用いる基材としては、ピストンリングあるいはターボチャージャー用シールリングに用いられる公知の基材であれば特に制限無く用いることができるが、たとえば、ステンレス鋼やバネ鋼や高速度工具鋼や耐熱鋼からなる基材を用いることができる。なお、ステンレス鋼からなる基材を用いる場合には、予め窒化処理を施し、化合物層を除去した基材を用いてもよい。 The base material used for forming the hard coating can be used without particular limitation as long as it is a known base material used for piston rings or turbocharger seal rings. For example, stainless steel, spring steel, and high-speed tools can be used. A base material made of steel or heat-resistant steel can be used. In addition, when using the base material which consists of stainless steel, you may use the base material which gave the nitriding process previously and removed the compound layer.
 本実施形態のシール部材がピストンリングである場合、硬質被膜は、ピストンリング基材の外周面を覆うように成膜される。また、必要に応じて、その他の面にも硬質被膜が成膜されていてもよい。具体例を挙げれば、本実施形態のシール部材では、図1に例示したようにピストンリング基材3Bの外周面3BSを覆うように硬質被膜3Fを設ける以外にも、ピストンリング基材3Bの側面、すなわち、第一側面3B1および/または第二側面3B2を覆うように硬質被膜を設けてもよい。また、本実施形態のシール部材がターボチャージャー用シールリングである場合、硬質被膜は、ターボチャージャー用シールリング基材の第一側面および/または第二側面を覆うように成膜される。また、必要に応じて、その他の面にも硬質被膜が成膜されていてもよい。具体例を挙げれば、本実施形態のシール部材では、図2に例示したようにターボチャージャー用シールリング基材6Bの第一側面6BS1および第二側面6BS2を各々覆うように硬質被膜6Fを設ける以外にも、ベアリングハウジング8に対向する面である外周面6BEを覆うように硬質被膜を設けてもよい。また、図2に示す例において、第一側面6BS1または第二側面6BS2のいずれか一方の面に設けた硬質被膜6Fを省略してもよい。 When the seal member of this embodiment is a piston ring, the hard coating is formed so as to cover the outer peripheral surface of the piston ring base material. Moreover, the hard film may be formed into the other surface as needed. If a specific example is given, in the sealing member of this embodiment, in addition to providing the hard coating 3F so as to cover the outer peripheral surface 3BS of the piston ring base 3B as illustrated in FIG. That is, you may provide a hard film so that 1st side surface 3B1 and / or 2nd side surface 3B2 may be covered. When the seal member of the present embodiment is a turbocharger seal ring, the hard coating is formed to cover the first side surface and / or the second side surface of the turbocharger seal ring base material. Moreover, the hard film may be formed into the other surface as needed. If a specific example is given, in the sealing member of this embodiment, as illustrated in FIG. 2, a hard coating 6F is provided so as to cover the first side surface 6BS1 and the second side surface 6BS2 of the turboring seal ring base material 6B. In addition, a hard coating may be provided so as to cover the outer peripheral surface 6BE, which is the surface facing the bearing housing 8. In the example shown in FIG. 2, the hard coating 6F provided on one of the first side surface 6BS1 and the second side surface 6BS2 may be omitted.
 なお、シール部材基材と硬質被膜との密着性を向上させるために、必要に応じて、シール部材基材と硬質被膜との間に、アンダーコート層を設けてもよい。このアンダーコート層としては、たとえば、Ti、Cr、Ti-Al合金などを主成分とする薄膜を利用することができる。 Note that an undercoat layer may be provided between the seal member substrate and the hard coating as necessary in order to improve the adhesion between the seal member substrate and the hard coating. As this undercoat layer, for example, a thin film mainly composed of Ti, Cr, Ti—Al alloy or the like can be used.
 硬質被膜の膜厚は特に限定されるものではないが、耐久性を確保する観点から、ピストンリングの場合は10μm以上であることが好ましい。また、膜厚の上限値は特に限定されるものではないが、生産性等の実用上の観点からは30μm以下であることが好ましい。他方、ターボチャージャー用シールリングの場合は、3μm前後が耐久性、実用性の観点から好ましい。 The film thickness of the hard coating is not particularly limited, but is preferably 10 μm or more in the case of a piston ring from the viewpoint of ensuring durability. The upper limit value of the film thickness is not particularly limited, but is preferably 30 μm or less from the practical viewpoint such as productivity. On the other hand, in the case of a turbocharger seal ring, about 3 μm is preferable from the viewpoint of durability and practicality.
 また、硬質被膜を形成した後に、ラッピングや研磨加工を行い、硬質被膜表面の粗度をRaで0.2以下とすることが好ましい。粗度を小さくすることにより、相手材の摩耗を抑制すると共に、摩擦抵抗を減少させることで硬質被膜の損傷を抑制することがより容易になる。 Also, after forming the hard film, it is preferable to perform lapping or polishing to make the surface of the hard film have a roughness Ra of 0.2 or less. By reducing the roughness, it becomes easier to suppress the damage of the hard coating by suppressing the wear of the counterpart material and reducing the frictional resistance.
 以下に本発明を実施例を挙げて説明するが、本発明は以下の実施例のみに限定されるものでは無い。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to only the following examples.
(評価用サンプルの作製)
 ピストンリング基材を、アークイオンプレーティング装置内にセットした後、装置内を真空排気して減圧すると共に、基材を加熱した。その後、基材に対して所定のバイアス電圧を印加することでイオンボンバードを行った。次に、バイアス電圧を所定の値に設定した後、装置内にプロセスガスを導入することで、基材の外周面に厚さ20μmの硬質被膜を成膜し、評価用のピストンリングサンプルを得た。また、耐摩耗性および相手攻撃性の評価のために、ピストンリングサンプルの作製条件と同条件で、ピンの先端に硬質被膜を成膜したサンプルも準備した。
(Preparation of sample for evaluation)
After setting the piston ring base material in the arc ion plating apparatus, the inside of the apparatus was evacuated and decompressed, and the base material was heated. Thereafter, ion bombardment was performed by applying a predetermined bias voltage to the substrate. Next, after setting the bias voltage to a predetermined value, a process gas is introduced into the apparatus to form a hard coating having a thickness of 20 μm on the outer peripheral surface of the base material, and an evaluation piston ring sample is obtained. It was. In addition, a sample having a hard film formed on the tip of the pin was also prepared for the evaluation of the wear resistance and the opponent attack property under the same conditions as the piston ring sample.
 なお、硬質被膜の成膜に際しては、表1および表2に示す各々の実施例および比較例にて成膜する硬質被膜の組成に応じた金属組成からなる金属ターゲットを用い、プロセスガスとしては、各々の実施例および比較例にて成膜する硬質被膜の組成に応じてNガス、あるいは、NガスおよびCHガスを所定の割合で混合した混合ガスを用いた。なお、比較例1の硬質被膜Cr(N,O)は、NaCl型の結晶構造を有するCrNにOを固溶させた被膜であり、金属元素と非金属元素とを原子比率で略1:1の割合で含み、金属元素はCr、非金属元素としてはNを主元素とし、Oを原子比率でO/(N+O)=0.3を含有している。したがって、Cr(N,O)を成膜する場合は、金属Crターゲットを用い、プロセスガスとしてはNガスおよびOガスを所定の割合で混合した混合ガスを用いた。CrNにOを添加する目的は硬質被膜にOを固溶させることにより被膜を強化し、クラック・剥離の発生を抑制することである。また、所望値のI200/I111が得られるように、各々の実施例および比較例にて成膜時の内圧を2Pa~5Paの範囲、バイアス電圧を-10V~-50Vの範囲内で適宜選択した。また、空隙および未反応粒子の断面面積率の値については、金属ターゲットと基板との距離、バイアス電圧、防着板の設置の有無、ターゲット材の使用量、および、ターゲット表面近傍の磁場分布等を適宜変更することで変動させた。 When forming the hard film, a metal target composed of a metal composition corresponding to the composition of the hard film formed in each of the examples and comparative examples shown in Table 1 and Table 2 is used, and as a process gas, N 2 gas or a mixed gas in which N 2 gas and CH 4 gas were mixed at a predetermined ratio was used according to the composition of the hard coating film formed in each example and comparative example. The hard coating Cr (N, O) of Comparative Example 1 is a coating in which O is dissolved in CrN having a NaCl-type crystal structure, and a metallic element and a nonmetallic element are approximately 1: 1 in atomic ratio. The metallic element contains Cr, the nonmetallic element contains N as a main element, and O contains atomic ratio O / (N + O) = 0.3. Therefore, when forming a Cr (N, O) film, a metal Cr target was used, and a mixed gas in which N 2 gas and O 2 gas were mixed at a predetermined ratio was used as the process gas. The purpose of adding O to CrN is to strengthen the coating by dissolving O in the hard coating and suppress the occurrence of cracks and peeling. Further, in each of the examples and comparative examples, the internal pressure during film formation was appropriately set within a range of 2 Pa to 5 Pa and the bias voltage within a range of −10 V to −50 V so that a desired value of I 200 / I 111 was obtained. Selected. In addition, as for the values of the cross-sectional area ratio of the voids and unreacted particles, the distance between the metal target and the substrate, the bias voltage, the presence or absence of the deposition plate, the amount of target material used, the magnetic field distribution near the target surface, etc. It was made to fluctuate by changing suitably.
(評価)
 得られた各実施例、比較例のサンプルについては、I200/I111、硬質被膜の組成、空隙面積率および未反応粒子の断面面積率、マイクロビッカース硬さ、ならびに、押し込み弾性率を測定した。これに加えて、耐クラック・剥離性、耐摩耗性および相手攻撃性についても評価した。これらの結果を以下の表1および表2に示す。
(Evaluation)
For the obtained samples of Examples and Comparative Examples, I 200 / I 111 , composition of hard coating, void area ratio and cross-sectional area ratio of unreacted particles, micro Vickers hardness, and indentation elastic modulus were measured. . In addition, crack resistance / peeling resistance, wear resistance, and opponent attack were also evaluated. These results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表1および表2に示す耐クラック・剥離性、耐摩耗性および相手攻撃性の評価方法は以下の通りである。 The evaluation methods for crack resistance / peelability, wear resistance and opponent attack properties shown in Tables 1 and 2 are as follows.
<耐クラック・剥離性>
 硬質被膜の耐クラック・剥離性は、図3に示すリングオンローター式摩擦試験機を用いて以下の手順で評価した。まず、ピストンリングサンプルをピストンリングの円周方向に1cmから2cm程度に切り出した試験片10の外周面を、一定速度で回転するスチール製のローター12に重錘で荷重Pを加えて押し付け、強制的に焼き付きを発生させた。その状態で一定時間、ローター12を回転させた後、硬質被膜にクラックや剥離が発生したか否か確認し、損傷が見られない場合は、荷重Pをさらに増加させて再試験した。これを繰り返すことで、クラックや剥離が発生し始める荷重Pを確認した。なお、潤滑油は、チュービングポンプやエアディスペンサーを用いて供給した。試験条件は以下の通りである。また、表1および表2に示す結果は、比較例1の試験片10において、クラックや剥離が発生し始めた荷重Pの値を基準値1とし、その相対値で示したものであり、値が大きいほど硬質被膜の耐クラック・剥離性が優れていることを意味する。なお、耐クラック・剥離性の評価結果は、1.0以上であることが好適である。
・初期の荷重P:40N
・ローター12の回転速度:1000rpm
・試験1回当たりのローター12の回転時間:1min
<Crack resistance / peelability>
The crack resistance / peelability of the hard coating was evaluated by the following procedure using a ring-on-rotor friction tester shown in FIG. First, the outer peripheral surface of the test piece 10 obtained by cutting a piston ring sample in the circumferential direction of the piston ring from about 1 cm to 2 cm is pressed against a steel rotor 12 rotating at a constant speed by applying a load P with a weight. Seizure was generated. In this state, after rotating the rotor 12 for a certain period of time, it was confirmed whether or not the hard coating was cracked or peeled. If no damage was observed, the load P was further increased and retested. By repeating this, the load P at which cracks and peeling began to occur was confirmed. The lubricating oil was supplied using a tubing pump or an air dispenser. The test conditions are as follows. Further, the results shown in Table 1 and Table 2 show the relative value of the load P at which cracks and peeling began to occur in the test piece 10 of Comparative Example 1 as a reference value 1. A larger value means that the hard coating is more excellent in crack resistance and peelability. The evaluation result of crack resistance / peelability is preferably 1.0 or more.
・ Initial load P: 40N
・ Rotation speed of the rotor 12: 1000 rpm
・ Rotation time of the rotor 12 per test: 1 min
<耐摩耗性および相手攻撃性>
 耐摩耗性および相手攻撃性は、図4に示すピンオンプレート式往復動摩擦試験機を用いて評価した。この往復動摩擦試験機は、ピンの先端部に硬質被膜が成膜された上試験片20を、スプリング荷重により荷重Pを加えてプレート状の下試験片22に押し付け、下試験片22が往復動することにより両者が摺動するよう構成されている。なお、上試験片20はピストンリングに見立てたものである。また、下試験片22は、鋳鉄製のシリンダボアに見立てたものであり、鋳鉄製のプレートから構成される。潤滑油は、チュービングポンプやエアディスペンサーを用いて供給した。所定の荷重、速度にて一定時間運転後、表面粗さ計にて上試験片20および下試験片22の摩耗量を計測した。なお、上試験片20の摩耗量は、ピン先端に設けられた硬質被膜の摩耗量を意味し、下試験片22の摩耗量は相手材の摩耗量(摩耗深さ)を意味する。試験条件は以下の通りである。また、表1および表2に示す結果は、比較例1の摩耗量を基準値1とし、その相対値で示したものであり、「耐摩耗性」については値が小さいほど硬質被膜の摩耗が抑制され、「相手攻撃性」については値が小さいほど相手材の摩耗が抑制されることを意味する。なお、耐摩耗性の評価結果は1.0以下であることが好適であり、相手攻撃性の評価結果は1.2以下であれば実用に際し大きな支障はない。
・荷重P:100N
・速度:600cpm  (cpm :サイクル毎分)
・試験時間:60min
<Abrasion resistance and opponent attack>
The wear resistance and opponent attack were evaluated using a pin-on-plate reciprocating friction tester shown in FIG. In this reciprocating friction tester, an upper test piece 20 having a hard film formed on the tip of a pin is pressed against a plate-like lower test piece 22 by applying a load P by a spring load, and the lower test piece 22 reciprocates. By doing so, both are configured to slide. The upper test piece 20 is like a piston ring. Further, the lower test piece 22 is like a cylinder bore made of cast iron, and is composed of a cast iron plate. Lubricating oil was supplied using a tubing pump or an air dispenser. After operating for a fixed time at a predetermined load and speed, the wear amount of the upper test piece 20 and the lower test piece 22 was measured with a surface roughness meter. The wear amount of the upper test piece 20 means the wear amount of the hard coating provided on the tip of the pin, and the wear amount of the lower test piece 22 means the wear amount (wear depth) of the counterpart material. The test conditions are as follows. Further, the results shown in Tables 1 and 2 show the wear amount of Comparative Example 1 as a reference value 1 and show the relative value. As for the “wear resistance”, the smaller the value, the harder the wear of the hard coating. The smaller the “partner aggression” is, the more the wear of the counterpart material is suppressed. In addition, it is suitable that the abrasion resistance evaluation result is 1.0 or less, and if the opponent aggression evaluation result is 1.2 or less, there will be no great trouble in practical use.
・ Load P: 100N
Speed: 600 cpm (cpm: cycle per minute)
・ Test time: 60 min
1 シリンダ
1S シリンダボア
2 ピストン
2G 溝(ピストン溝)
2S 外周面(ピストン外周面)
3 ピストンリング
3B ピストンリング基材
3B1 第一側面(ピストンリング第一側面)
3B2 第二側面(ピストンリング第二側面)
3F 硬質被膜
3S 外周面(ピストンリング外周面)
4 タービンホイール
5 タービン軸
5G 溝(ターボチャージャー用シールリング溝)
5S タービン軸外周面
6 ターボチャージャー用シールリング
6S1 第一側面(シールリング第一側面)
6S2 第二側面(シールリング第二側面)
6B シールリング基材(ターボチャージャー用シールリング基材)
6BS1 第一側面(シールリング基材第一側面)
6BS2 第二側面(シールリング基材第二側面)
6BE 外周面(シールリング基材外周面)
6F 硬質被膜
7 ベアリング
8 ベアリングハウジング
10 試験片
12 ローター
20 上試験片
22 下試験片
 
1 Cylinder 1S Cylinder bore 2 Piston 2G Groove (piston groove)
2S outer peripheral surface (piston outer peripheral surface)
3 Piston Ring 3B Piston Ring Base 3B1 First Side (Piston Ring First Side)
3B2 Second side (piston ring second side)
3F Hard coating 3S outer peripheral surface (piston ring outer peripheral surface)
4 Turbine wheel 5 Turbine shaft 5G groove (seal ring groove for turbocharger)
5S Turbine shaft outer peripheral surface 6 Turbocharger seal ring 6S1 First side surface (seal ring first side surface)
6S2 Second side (second side of seal ring)
6B Seal ring base material (Turbocharger seal ring base material)
6BS1 first side (seal ring base material first side)
6BS2 Second side (second side of seal ring substrate)
6BE outer peripheral surface (seal ring base material outer peripheral surface)
6F Hard coating 7 Bearing 8 Bearing housing 10 Test piece 12 Rotor 20 Upper test piece 22 Lower test piece

Claims (4)

  1.  内燃機関用ピストンリング基材の外周面、第一側面および第二側面から選択される少なくとも一つの表面上に硬質被膜が被覆されたピストンリングにおいて、
     前記硬質被膜が、NaCl型の結晶構造を有し、少なくともTi、AlおよびNを含むと共にTiおよびAlに対するAlの原子比率(Al/(Ti+Al))が、0.10~0.63の範囲内にある組成を有し、
     前記硬質被膜の断面における空隙面積率が、2.2%以下であり、
     前記硬質被膜のX線回折測定における(111)面の回折ピーク強度に対する(200)面の回折ピーク強度の比率(I200/I111)が、1を超え15以下であることを特徴とするピストンリング。
    In the piston ring in which the hard coating is coated on at least one surface selected from the outer peripheral surface, the first side surface, and the second side surface of the piston ring base material for the internal combustion engine,
    The hard coating has a NaCl-type crystal structure, contains at least Ti, Al, and N, and has an atomic ratio of Al to Ti and Al (Al / (Ti + Al)) within a range of 0.10 to 0.63. Having a composition
    The void area ratio in the cross section of the hard coating is 2.2% or less,
    The ratio of the diffraction peak intensity of the (200) plane to the diffraction peak intensity of the (111) plane in the X-ray diffraction measurement of the hard coating (I 200 / I 111 ) is more than 1 and 15 or less. ring.
  2.  請求項1に記載のピストンリングにおいて、
     前記原子比率(Al/(Ti+Al))が、0.18~0.56の範囲内にあることを特徴とするピストンリング。
    The piston ring according to claim 1, wherein
    The piston ring, wherein the atomic ratio (Al / (Ti + Al)) is in a range of 0.18 to 0.56.
  3.  内燃機関に用いられるターボチャージャー用シールリング基材の外周面、第一側面および第二側面から選択される少なくとも一つの表面上に硬質被膜が被覆されたターボチャージャー用シールリングにおいて、
     前記硬質被膜が、NaCl型の結晶構造を有し、少なくともTi、AlおよびNを含むと共にTiおよびAlに対するAlの原子比率(Al/(Ti+Al))が、0.10~0.63の範囲内にある組成を有し、
     前記硬質被膜の断面における空隙面積率が、2.2%以下であり、
     前記硬質被膜のX線回折測定における(111)面の回折ピーク強度に対する(200)面の回折ピーク強度の比率(I200/I111)が、1を超え15以下であることを特徴とするターボチャージャー用シールリング。
    In a turbocharger seal ring in which a hard coating is coated on at least one surface selected from an outer peripheral surface, a first side surface, and a second side surface of a turbocharger seal ring base material used for an internal combustion engine,
    The hard coating has a NaCl-type crystal structure, contains at least Ti, Al, and N, and has an atomic ratio of Al to Ti and Al (Al / (Ti + Al)) within a range of 0.10 to 0.63. Having a composition
    The void area ratio in the cross section of the hard coating is 2.2% or less,
    The ratio of the diffraction peak intensity of the (200) plane to the diffraction peak intensity of the (111) plane in the X-ray diffraction measurement of the hard coating (I 200 / I 111 ) is more than 1 and 15 or less. Charger seal ring.
  4.  請求項3に記載のターボチャージャー用シールリングにおいて、
     前記原子比率(Al/(Ti+Al))が、0.18~0.56の範囲内にあることを特徴とするターボチャージャー用シールリング。
    The seal ring for a turbocharger according to claim 3,
    A turbocharger seal ring, wherein the atomic ratio (Al / (Ti + Al)) is in a range of 0.18 to 0.56.
PCT/JP2013/077293 2013-10-08 2013-10-08 Piston ring and seal ring for turbocharger WO2015052761A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/077293 WO2015052761A1 (en) 2013-10-08 2013-10-08 Piston ring and seal ring for turbocharger
JP2015541324A JPWO2015052761A1 (en) 2013-10-08 2013-10-08 Piston ring and turbocharger seal ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077293 WO2015052761A1 (en) 2013-10-08 2013-10-08 Piston ring and seal ring for turbocharger

Publications (1)

Publication Number Publication Date
WO2015052761A1 true WO2015052761A1 (en) 2015-04-16

Family

ID=52812612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077293 WO2015052761A1 (en) 2013-10-08 2013-10-08 Piston ring and seal ring for turbocharger

Country Status (2)

Country Link
JP (1) JPWO2015052761A1 (en)
WO (1) WO2015052761A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057897A (en) * 2015-09-15 2017-03-23 Tpr株式会社 piston ring
JP2017057896A (en) * 2015-09-15 2017-03-23 Tpr株式会社 piston ring
WO2019077962A1 (en) * 2017-10-16 2019-04-25 株式会社Ihi Seal structure for supercharger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141534A (en) * 1991-11-14 1993-06-08 Nippon Piston Ring Co Ltd Piston ring
JP2644710B2 (en) * 1988-03-24 1997-08-25 神鋼コベルコツール株式会社 Abrasion resistant coating
JP3599628B2 (en) * 2000-02-25 2004-12-08 株式会社タンガロイ Composite hard film coated member
JP2005535836A (en) * 2002-08-16 2005-11-24 ボーグワーナー・ターボ・システムズ・ゲーエムベーハー Exhaust gas turbocharger for internal combustion engine
JP2008307615A (en) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting work and its manufacturing method
JP2009090452A (en) * 2007-08-24 2009-04-30 Seco Tools Ab Coated cutting tool for general turning of heat-resistant super-alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644710B2 (en) * 1988-03-24 1997-08-25 神鋼コベルコツール株式会社 Abrasion resistant coating
JPH05141534A (en) * 1991-11-14 1993-06-08 Nippon Piston Ring Co Ltd Piston ring
JP3599628B2 (en) * 2000-02-25 2004-12-08 株式会社タンガロイ Composite hard film coated member
JP2005535836A (en) * 2002-08-16 2005-11-24 ボーグワーナー・ターボ・システムズ・ゲーエムベーハー Exhaust gas turbocharger for internal combustion engine
JP2008307615A (en) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting work and its manufacturing method
JP2009090452A (en) * 2007-08-24 2009-04-30 Seco Tools Ab Coated cutting tool for general turning of heat-resistant super-alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057897A (en) * 2015-09-15 2017-03-23 Tpr株式会社 piston ring
JP2017057896A (en) * 2015-09-15 2017-03-23 Tpr株式会社 piston ring
WO2019077962A1 (en) * 2017-10-16 2019-04-25 株式会社Ihi Seal structure for supercharger
CN111183279A (en) * 2017-10-16 2020-05-19 株式会社Ihi Seal structure of supercharger

Also Published As

Publication number Publication date
JPWO2015052761A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5452734B2 (en) Process for manufacturing slide elements with a coating, in particular piston rings, and slide elements
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
JP6109325B2 (en) Combination of aluminum alloy mating material and piston ring
JP5575989B2 (en) Combination of cylinder and piston ring
JP2001192864A (en) Hard film and coated member
JP2008081522A (en) Slide member
JP2008241032A (en) Piston ring and its manufacturing method
JP6422495B2 (en) piston ring
WO2015052761A1 (en) Piston ring and seal ring for turbocharger
WO2017130587A1 (en) Sliding member and production method therefor
JP2007284760A (en) Sliding member
JP5914334B2 (en) High toughness coating and sliding member
WO2015052762A1 (en) Piston ring and seal ring for turbocharger
JP2009052081A (en) Hard carbon film
JP6499949B2 (en) piston ring
JP4462077B2 (en) Combination sliding member
JP6416066B2 (en) piston ring
JP2006207691A (en) Hard film coated sliding member
JP6756641B2 (en) piston ring
JP6938807B1 (en) Sliding members and piston rings
US20170362965A1 (en) Boron doped ta-c coating for engine components
JP7159111B2 (en) Combination of sliding member and lubricating oil
CN111148858B (en) Sliding member
JP2006206960A (en) Sliding member coated with hard film
JP2001234363A (en) Composite film and coated sliding parts having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895341

Country of ref document: EP

Kind code of ref document: A1