JP2005060810A - Coating material and its production method - Google Patents

Coating material and its production method Download PDF

Info

Publication number
JP2005060810A
JP2005060810A JP2003296226A JP2003296226A JP2005060810A JP 2005060810 A JP2005060810 A JP 2005060810A JP 2003296226 A JP2003296226 A JP 2003296226A JP 2003296226 A JP2003296226 A JP 2003296226A JP 2005060810 A JP2005060810 A JP 2005060810A
Authority
JP
Japan
Prior art keywords
film
layer
coating material
sliding
metal nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003296226A
Other languages
Japanese (ja)
Inventor
Yuji Shima
祐司 島
Norio Aoyama
紀夫 青山
Shigeo Inoue
茂夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2003296226A priority Critical patent/JP2005060810A/en
Publication of JP2005060810A publication Critical patent/JP2005060810A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating material having excellent sliding properties, high hardness and high fracture toughness and solving the problem that, though, in accordance with the tightening of regulations in exhaust gas from an engine of an automobile or the like, in the sliding parts of a piston ring, a valve lifter, a diesel jet pump or the like, the sliding environment has been getting severe as shown in the increase of the load of facial pressure, the increase of a sliding rate or the like, so that the needs for the improvement of wear resistance, scuff resistance and lowering the attacking properties against the mating material have been increased, but, an ion plating film adopted as the countermeasure therefor is worn out, or further, defaced in the severe environment of the engine. <P>SOLUTION: The coating material is the one formed to a film having a multilayer structure consisting of a layer having a high nitrogen concentration and a layer having a low nitrogen concentration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、トライボロジー特性に優れ摺動面等に被覆されている被覆材、例えば内燃機関用ピストンリング、バルブリフタ、ディーゼル噴射ポンプ等の摺動部に使用される被覆材に関する。より詳細には、本発明は、硬質皮膜を形成するPVD条件を制御することにより形成された新規な組織を有する皮膜に関する。   The present invention relates to a coating material excellent in tribological characteristics and coated on a sliding surface or the like, for example, a coating material used for a sliding portion of an internal combustion engine piston ring, a valve lifter, a diesel injection pump or the like. More specifically, the present invention relates to a film having a novel structure formed by controlling PVD conditions for forming a hard film.

自動車等エンジンの排ガス規制強化や高出力低燃費化により、ピストンリング、バルブリフタ、ディーゼル噴射ポンプ等の部品の摺動部は、燃焼温度の上昇による熱負荷が増大しており、面圧負荷が増大しており、摺動速度が増大しており、更に低粘度潤滑油の採用等により、その環境は過酷化している。したがって上記部品には、硬度を高めると同時に破壊靭性を向上し、耐摩耗性及び耐スカッフ性を向上し、相手材攻撃性を低下する等のニーズが高まっている。     Due to stricter exhaust gas regulations for automobile engines and higher fuel efficiency, the sliding load of parts such as piston rings, valve lifters, and diesel injection pumps has increased heat load due to increased combustion temperature, resulting in increased surface pressure load. In addition, the sliding speed is increasing, and the environment is becoming harsh due to the adoption of low viscosity lubricating oil and the like. Therefore, there is an increasing need for the above-mentioned parts, such as increasing hardness and improving fracture toughness, improving wear resistance and scuffing resistance, and lowering the attack of the counterpart material.

例えばピストンリングに関しては、従来は硬質クロムめっき処理や窒化処理などによる皮膜が使用されていたが、上記のニーズに対応する改良皮膜が提案されてきた。すなわち、特許文献1において提案された窒化クロム皮膜はトライボロジー特性に優れるイオンプレーティングによる金属クロム結晶と窒化クロム結晶との混合物であり、特許文献2において提案された窒化クロム皮膜は酸素を固溶した窒化クロム結晶である。しかしながら、前記の特許文献による皮膜を被覆した摺動部材は、摺動条件の特に過酷なエンジンにおいては、摩耗やスカッフ、摺動に伴うクラックや剥離等が発生し、トライボロジー性能が充分ではなく不足するに至っている。     For example, with respect to piston rings, conventionally, a coating made of hard chrome plating or nitriding has been used, but an improved coating corresponding to the above needs has been proposed. That is, the chromium nitride film proposed in Patent Document 1 is a mixture of metal chromium crystals and chromium nitride crystals by ion plating excellent in tribological characteristics, and the chromium nitride film proposed in Patent Document 2 has dissolved oxygen in a solid solution. It is a chromium nitride crystal. However, the sliding member coated with the film according to the above-mentioned patent document has insufficient tribological performance due to wear, scuffing, cracking or peeling due to sliding, etc. in engines with particularly severe sliding conditions. Has led to.

このため、更なる対応として、コーティング中の雰囲気圧力又はバイアス電圧を定められた二種類の設定条件で所定時間毎に繰返し制御することにより、摺動面に柱状形態を有する柱状組織の層もしくは所定の空孔率を有する層と、柱状でない緻密組織の層もしくは真密度に近い低空孔率の層とを交互に積層した皮膜破断面結晶を有する窒化クロム系皮膜層が特許文献3に開示されている。特許文献3では各層の長所及び短所として、柱状組織は耐欠け剥離性は良好であるが耐スカッフ性及び耐摩耗性が低く、一方、緻密組織は耐スカッフ性及び耐摩耗性は優れているが耐欠け剥離性が低いことを示し、柱状組織と緻密組織を積層し層状皮膜にすることで、それぞれの層の短所を他の層が補うことにより、皮膜の密着性、耐摩擦摩耗性、耐腐食摩耗性及び耐剥離性を改善するとしている。   For this reason, as a further measure, by repeatedly controlling the atmospheric pressure or bias voltage in the coating every predetermined time under two predetermined setting conditions, a layer of a columnar structure having a columnar shape on the sliding surface or a predetermined Patent Document 3 discloses a chromium nitride-based coating layer having a film fractured surface crystal in which layers having a porosity of 2 mm and non-columnar dense structure layers or layers having a low porosity close to true density are alternately laminated. Yes. In Patent Document 3, as the advantages and disadvantages of each layer, the columnar structure has good chipping resistance but low scuff resistance and wear resistance, whereas the dense structure has excellent scuff resistance and wear resistance. Demonstrates low chipping resistance. By laminating a columnar structure and a dense structure to form a layered film, the other layers compensate for the shortcomings of each layer, resulting in film adhesion, friction wear resistance, It is supposed to improve corrosion wear resistance and peel resistance.

特許文献3の窒化クロム皮膜においては、一部を耐スカッフ性及び耐摩耗性の低い柱状組織とし、各層の厚さを0.1〜10.0μmとしている。耐スカッフ性の低い柱状組織が最大10μmと比較的厚く形成されているため、過酷な摺動環境下におけるスカッフ摩耗が支配的な摺動条件のときに柱状組織の層が摺動面になると、皮膜が大幅に摩耗することが予想されるため、特許文献3の窒化クロムの摺動特性は充分とは言えない。これに対して、各層の厚さを薄くすると各層の特徴も薄れ、また積層数も多くなりプロセス上成膜が煩雑になると示されている。     In the chromium nitride film of Patent Document 3, a part is a columnar structure having low scuff resistance and wear resistance, and the thickness of each layer is 0.1 to 10.0 μm. Since the columnar structure having low scuff resistance is formed relatively thick as a maximum of 10 μm, when the layer of the columnar structure becomes a sliding surface under the sliding condition where scuff wear is dominant in a severe sliding environment, Since the coating is expected to wear significantly, the sliding characteristics of the chromium nitride of Patent Document 3 cannot be said to be sufficient. On the other hand, it is shown that when the thickness of each layer is reduced, the characteristics of each layer are also reduced, and the number of layers is increased, so that film formation is complicated in the process.

また、特許文献4にはTiAlNの層状組織を得るために、特許文献3と同様にバイアス電圧を変化させることによりTi(1-x)AlN,0.1≦x≦0.4からなる低硬度層とTi(1−x)AlN,0.4≦x≦0.75からなる高硬度層を積層した耐摩耗性硬質皮膜を開示している。しかし、この皮膜においてはバイアス電圧を変化させることによりTiとAlの比を変化させて積層構造を得ているため、皮膜にはかなり大きい残留応力が発生し、皮膜厚さを厚くすると皮膜内や母材との界面で剥離が発生し易い欠点がある。このため、皮膜厚さは3μm以下であり厚膜化された皮膜の実施例は開示されていない。
特公平6−010454号公報 特開平6−265023号公報 特開平8−312779号公報 特開平11−61380号公報 特開平6−147318号公報
Patent Document 4 includes Ti (1-x) Al x N, 0.1 ≦ x ≦ 0.4 by changing the bias voltage in the same manner as Patent Document 3 in order to obtain a layered structure of TiAlN. An abrasion-resistant hard coating is disclosed in which a low-hardness layer and a high-hardness layer made of Ti (1-x) Al x N, 0.4 ≦ x ≦ 0.75 are laminated. However, in this film, since the laminated structure is obtained by changing the ratio of Ti and Al by changing the bias voltage, a considerably large residual stress is generated in the film. There is a drawback that peeling easily occurs at the interface with the base material. For this reason, the film thickness is 3 μm or less, and an example of a thickened film is not disclosed.
Japanese Patent Publication No. 6-010454 JP-A-6-265023 JP-A-8-312779 JP-A-11-61380 JP-A-6-147318

本発明は、以上の点に鑑みてなされたもので、摺動条件の特に過酷なエンジンにおける摺動環境下でも耐スカッフ性、耐摩耗性、耐欠け剥離性などの摺動特性に優れ、更に高硬度であり高破壊靭性の被覆材を提供することを目的とする。     The present invention has been made in view of the above points, and is excellent in sliding characteristics such as scuff resistance, wear resistance, chipping resistance even under a sliding environment in an engine having particularly severe sliding conditions. An object is to provide a coating material having high hardness and high fracture toughness.

上記の課題を解決するために、本発明者等は鋭意研究を行った結果、層状組織を緻密組織のみから構成し、同一化合物である金属窒化物(例えばCrN結晶単一相あるいはCrN+CrN混晶)を窒素濃度が異なった多層として積層することによって各層間の結合性が高くなり、層間歪みを少なくすることができ、更に破壊靭性を向上できることを見いだし、発明を完成した。これにより、皮膜の硬度、破壊靭性、密着性、耐スカッフ性、耐摩擦摩耗性及び耐欠け剥離性に優れたPVDによる高硬度高破壊靭性層状組織の皮膜を提供することができる。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, the layered structure is composed only of a dense structure, and a metal nitride (for example, a CrN crystal single phase or CrN + Cr 2 N mixed) is formed of the same compound. It has been found that by laminating crystal as a multilayer having different nitrogen concentrations, the bondability between the respective layers is increased, the strain between the layers can be reduced, and the fracture toughness can be further improved. As a result, it is possible to provide a high hardness and high fracture toughness layered film of PVD that is excellent in hardness, fracture toughness, adhesion, scuff resistance, friction wear resistance and chipping resistance.

本発明の第1は、結晶質金属窒化物からなる皮膜を基材に被着してなる被覆材において、前記皮膜の断面組織が窒素濃度の異なる層状組織であることを特徴とする被覆材である。
金属窒化物は、結晶性を有するものであれば特に限定されない。代表的な金属窒化物としてCrNやTiNが挙げられるが、TiAlN等の3元系の金属窒化物でも良い。本発明において、「層状組織」とは図4に示すように走査型電子顕微鏡組織観察下で濃淡が検出される層であり、例えば10μm成膜する場合、10を超える層数、好ましくは20〜100層の濃淡が形成される。従来より摺動部に形成された皮膜中の組成を基板側では皮膜の密着性を良好にし、皮膜表面側では摺動特性が良好になるように原料ガス濃度を非連続的に変更する成膜法は知られていたが(特許文献5)、このような公知の皮膜を、数μmから10数μmの厚さに成膜する過程では濃度の変更は5回程度が限度である。また、原料ガス濃度を変更しても必ずしも本発明でいう「層状組織」が形成されない。
本発明において層状組成の各層の厚さがライン分析可能限度より薄くなる場合は、当該層状組織と同一の濃淡が現れるような拡大組織(各層の厚さが厚い組織)を形成し、各層のN濃度を分析、もしくはTEM装置で分析するものとする。
基材としてはステンレス鋼や窒化鋼等の鋼材、アルミニウム、アルミニウム合金、マグネシウム合金、チタンおよびチタン合金などの線材又は板材、鋳物を好ましく使用することができる。
A first aspect of the present invention is a coating material obtained by depositing a film made of crystalline metal nitride on a base material, wherein the cross-sectional structure of the film is a layered structure having different nitrogen concentrations. is there.
The metal nitride is not particularly limited as long as it has crystallinity. Typical metal nitrides include CrN and TiN, but ternary metal nitrides such as TiAlN may also be used. In the present invention, the “layered structure” is a layer whose density is detected under the observation of a scanning electron microscope structure as shown in FIG. 4. For example, in the case of forming a 10 μm film, the number of layers exceeds 10, preferably 20 to 100 layers of shading are formed. Conventionally, the composition in the film formed on the sliding part is a film that changes the source gas concentration discontinuously so that the adhesion of the film is good on the substrate side and the sliding property is good on the film surface side. Although the method has been known (Patent Document 5), in the process of forming such a known film to a thickness of several μm to several tens of μm, the concentration change is limited to about five times. Further, even if the raw material gas concentration is changed, the “layered structure” referred to in the present invention is not necessarily formed.
In the present invention, when the thickness of each layer of the layered composition becomes thinner than the line analysis possible limit, an enlarged structure (structure having a thicker layer) in which the same density as the layered structure appears is formed, and N of each layer is formed. The concentration shall be analyzed or analyzed with a TEM device.
As the base material, steel materials such as stainless steel and nitride steel, aluminum, aluminum alloy, magnesium alloy, titanium and titanium alloy and other wire materials or plate materials, and castings can be preferably used.

本発明の第2は、結晶質窒化物よりなる皮膜の破断面が緻密組織のみであることを特徴とするものである。緻密組織は特許文献3において本出願人が提案したものである。この特許文献の段落番号0032に組織観察法が述べられており、またその組織形成方法は段落番号0031,第1,2文に述べられている。本発明が特徴とする層状組織は特許文献3で述べられている柱状組織でも緻密組織でも形成可能であるが、耐スカッフ性が優れた緻密組織の方が好ましい。皮膜の緻密組織は、皮膜空孔率が0.5体積%以下のほぼ真密度を有する皮膜である。 The second aspect of the present invention is characterized in that the fracture surface of the film made of crystalline nitride has only a dense structure. The dense structure was proposed by the present applicant in Patent Document 3. The structure observation method is described in paragraph number 0032 of this patent document, and the structure formation method is described in paragraph number 0031 and the first and second sentences. The lamellar structure characterized by the present invention can be formed by a columnar structure or a dense structure described in Patent Document 3, but a dense structure having excellent scuff resistance is preferred. The dense structure of the film is a film having a substantially true density with a film porosity of 0.5% by volume or less.

本発明の第3は皮膜の窒素濃度が隣接層において増減している被覆材である。被覆部表面には、窒素濃度の高い金属窒化物と低い金属窒化物のどちらを配しても良い。 A third aspect of the present invention is a coating material in which the nitrogen concentration of the film increases or decreases in the adjacent layer. Either a metal nitride having a high nitrogen concentration or a metal nitride having a low nitrogen concentration may be disposed on the surface of the covering portion.

本発明の層状組織は金属窒化物の中の窒素と当該金属の濃度が上下層で異なる組織である。TiやCr等の窒化物のように窒素が固溶限内でN(窒素)を固溶した窒化物を形成する場合はこの固溶範囲内で窒素濃度を変化させることができる。例えば、Tiの窒化物は図1に示す様にδ相(TiN)に約28原子%から55原子%の固溶限を有しており、固溶限外の窒素濃度の低い側では窒素濃度が約25原子%までのε相が生成する。本発明の皮膜はこのε相を含んでも良い。Tiの窒化物において窒素濃度が25原子%以下では、窒素の固溶している金属Tiが発生するので耐スカッフ性や耐摩耗性が低下する。また、窒素濃度が55.0原子%以上では固相として生成しない。以上のように、層状組織における各層は窒素濃度が異なる窒化物結晶のみから構成されるため、各層間の結合性は非常に良く層間剥離が発生しないと同時に破壊靭性が向上する。   The layered structure of the present invention is a structure in which the concentration of nitrogen in the metal nitride and the metal is different between the upper and lower layers. In the case of forming a nitride in which N (nitrogen) is dissolved in a solid solution limit, such as a nitride such as Ti or Cr, the nitrogen concentration can be changed within this solid solution range. For example, Ti nitride has a solid solubility limit of about 28 atomic% to 55 atomic% in the δ phase (TiN) as shown in FIG. 1, and the nitrogen concentration is low on the low nitrogen concentration side outside the solid solubility limit. Ε phase up to about 25 atomic%. The coating of the present invention may contain this ε phase. When the nitrogen concentration of Ti nitride is 25 atomic% or less, metal Ti in which nitrogen is dissolved is generated, so that the scuff resistance and wear resistance are lowered. Further, when the nitrogen concentration is 55.0 atomic% or more, it is not generated as a solid phase. As described above, since each layer in the layered structure is composed of only nitride crystals having different nitrogen concentrations, the bonding between the layers is very good, and delamination does not occur, and fracture toughness is improved.

本発明の第4は、層状組織の各層の厚さがサブミクロン以上1μm以下の厚さであることを特徴とする被覆材である。各層の厚さが1μm以上では各層間に発生する層間歪みが大きくなり層間における耐剥離性が低下する。本発明の皮膜が同一窒化物からなる場合は、各層間の違いは窒素濃度だけであるが、層間歪みは各層の厚さに大きく依存するので、各層の厚さが大きいと各層の物性の差に起因する界面歪みは大きくなる。本発明において、非常に優れた耐剥離性や耐摩耗性、耐スカッフ性を得るためには層の厚さを1μm以下という非常に薄い膜厚に限定することが好ましい。     A fourth aspect of the present invention is a coating material characterized in that each layer of the layered structure has a thickness of submicron or more and 1 μm or less. When the thickness of each layer is 1 μm or more, the interlayer strain generated between the layers increases, and the peel resistance between the layers decreases. When the film of the present invention is made of the same nitride, the difference between the layers is only the nitrogen concentration, but the interlayer strain greatly depends on the thickness of each layer. Therefore, if the thickness of each layer is large, the difference in physical properties of each layer The interfacial strain due to this increases. In the present invention, in order to obtain very excellent peel resistance, abrasion resistance, and scuff resistance, it is preferable to limit the thickness of the layer to a very thin film thickness of 1 μm or less.

本発明の第5は、結晶質金属窒化物からなる皮膜と基材間に、下地層として、金属皮膜、セラミック系イオンプレーティング皮膜が介挿されているか、あるいは基材を窒化した窒化層が下地層として形成されていることを特徴とする被覆材である。通常、PVD皮膜の下地層として種々のものが採用されているが、本発明の層状組織による皮膜においても従来の下地層を適用することが可能である。下地層の金属としてはTi,Cr,Alなどを、下地層のセラミックとしてはTiN、CrN、Ti-Al-Nなどを好ましく使用することができる。窒化層は窒化用鋼をガス窒化若しくはガス軟窒化等により形成することができる。下地層の厚さは5〜90μmが好ましい。図1には本発明の実施態様に係るピストンリングを示し、1はピストンリング素材、2は下地層、4は窒化層、3は本発明の皮膜である。     According to a fifth aspect of the present invention, a metal film or a ceramic ion plating film is interposed as a base layer between a film made of crystalline metal nitride and a substrate, or a nitride layer obtained by nitriding a substrate is provided. It is a covering material characterized by being formed as an underlayer. Normally, various types of underlayers for PVD coatings are employed, but conventional underlayers can also be applied to coatings with a layered structure of the present invention. Ti, Cr, Al or the like can be preferably used as the metal of the underlayer, and TiN, CrN, Ti—Al—N or the like can be preferably used as the ceramic of the underlayer. The nitride layer can be formed by nitriding steel by gas nitriding or gas soft nitriding. The thickness of the underlayer is preferably 5 to 90 μm. FIG. 1 shows a piston ring according to an embodiment of the present invention, wherein 1 is a piston ring material, 2 is an underlayer, 4 is a nitrided layer, and 3 is a coating of the present invention.

本発明の第6は、結晶質金属窒化物からなる皮膜の硬度範囲がビッカース硬度で1500から2500までの被覆材である。本発明の皮膜は、ビッカース硬度で少なくとも1500以上有するような物質を選択して形成されることが好ましい。このような物質としてはCr-N、Ti-N、Ti-Al-Nなどの多くの窒化物が列挙される。また、皮膜の硬度を高くするために皮膜破断面組織は緻密質であることが好ましい。このような皮膜を膜厚1μm以下で層状に積層することで、硬度は上昇しビッカース硬度で2500以上となりうるが、ビッカース硬度2500以上では硬度が高すぎるため、層間亀裂などの欠陥が発生し易くなる恐れがあるので、硬度の上限はビッカース硬度で2500とする。特に好ましくは、ビッカース硬度で1600から2000である。     A sixth aspect of the present invention is a coating material having a hardness range of a film made of crystalline metal nitride and having a Vickers hardness of 1500 to 2500. The film of the present invention is preferably formed by selecting a substance having a Vickers hardness of at least 1500 or more. As such a substance, many nitrides such as Cr—N, Ti—N, and Ti—Al—N are listed. In order to increase the hardness of the film, the film fracture surface structure is preferably dense. By laminating such a film in a layer form with a film thickness of 1 μm or less, the hardness can be increased and the Vickers hardness can be 2500 or more. Therefore, the upper limit of hardness is set to 2500 in terms of Vickers hardness. The Vickers hardness is particularly preferably 1600 to 2000.

本発明の第7は、結晶質金属窒化物からなる皮膜全体の厚さが1μmから80μmであることを特徴とする被覆材である。皮膜厚さが1μm以下では摺動部材としての機能を発揮することができない。一方、80μm以上では経済的にも無駄であり、皮膜の密着性や皮膜内の欠陥が発生し易くなる。通常の多層皮膜は特許文献4の実施例のように、10μm以下の皮膜厚さで使用されるのに対して、本皮膜は層間の窒素濃度が異なるのみであることと層の膜厚が非常に小さいため層界面での歪みが小さく抑えることができ厚膜化が可能である。最適膜厚は20から50μm程度である。     According to a seventh aspect of the present invention, there is provided a coating material characterized in that the total thickness of the film made of crystalline metal nitride is 1 μm to 80 μm. When the film thickness is 1 μm or less, the function as a sliding member cannot be exhibited. On the other hand, if it is 80 μm or more, it is economically wasteful, and adhesion of the film and defects in the film tend to occur. The normal multilayer film is used with a film thickness of 10 μm or less as in the example of Patent Document 4, whereas this film is different only in the nitrogen concentration between layers and the film thickness of the layer is very different. Therefore, the strain at the interface between the layers can be kept small, and the film thickness can be increased. The optimum film thickness is about 20 to 50 μm.

本発明の第8は、結晶質金属窒化物からなる皮膜をPVD法により金属蒸気、反応ガスと基材を接触させることにより形成することを特徴とする摺動部材の製造方法である。先に述べた金属窒化物からなる層の窒素濃度変化は、コーティング処理中に金属蒸気の蒸発量を一定に保ち窒素濃度を変化させる方法あるいは窒素濃度を一定に保ち金属蒸気の蒸発量を変化させる方法のどちらの方法も可能である。この窒素及び/又は金属濃度の変化を請求項4で限定した1μm以下という非常に薄い層厚さについて行うためには、カソード周りに設置したコイルに電流を流すことで交流磁場を発生させ、コイル磁場を制御することでカソード表面のアークの飛び方、つまり、金属蒸発量を制御し、多数積層した層状組織を形成した。     An eighth aspect of the present invention is a method for manufacturing a sliding member, characterized in that a film made of crystalline metal nitride is formed by contacting a metal vapor, a reactive gas and a substrate by a PVD method. The nitrogen concentration change of the layer made of metal nitride described above is a method of changing the vapor concentration of metal vapor while keeping the evaporation amount of metal vapor constant during the coating process or changing the evaporation amount of metal vapor while keeping the nitrogen concentration constant. Either method is possible. In order to perform this change in nitrogen and / or metal concentration for a very thin layer thickness of 1 μm or less as defined in claim 4, an alternating magnetic field is generated by passing an electric current through a coil installed around the cathode, and the coil By controlling the magnetic field, the way of the arc on the cathode surface, that is, the amount of metal evaporation was controlled, and a layered structure in which a large number of layers were laminated was formed.

以上説明したように、本発明の摺動部材は特開平8−312779号で開示されている層状破面組織よりも緻密であり、かつ窒素濃度の異なった層を薄膜化しさらに多層状に積層することにより、従来の皮膜に比べ高硬度でかつ破壊靭性の高い皮膜を得ることができる。すなわち、耐摩耗特性に優れると共に皮膜内クラックを抑制することができる。このため、ピストンリング,バルブリフタ、ディーゼル噴射ポンプ等の過酷な摺動条件使用される摺動部品に要求される厚膜イオンプレーティング皮膜を生成させることができ、耐久性を向上させることが可能となる。なお、本発明の皮膜はカムフォロアなどのエンジン部品、更にはシューディスクなどのコンプレッサー部品をはじめとする摺動部品や切削工具などにも適用することが可能である。   As described above, the sliding member of the present invention is denser than the layered fracture surface structure disclosed in JP-A-8-312779, and the layers having different nitrogen concentrations are thinned and laminated in multiple layers. As a result, a film having higher hardness and higher fracture toughness than conventional films can be obtained. That is, it is excellent in wear resistance and can suppress cracks in the film. Therefore, it is possible to generate a thick film ion plating film required for sliding parts used in severe sliding conditions such as piston rings, valve lifters, diesel injection pumps, etc., and to improve durability. Become. The coating of the present invention can also be applied to engine parts such as cam followers, sliding parts such as compressor parts such as shoe discs, and cutting tools.

以下に本発明を実施例により詳細に説明する。
実施例においては、まず、3.2×2.3mmのピストンリング用線材(17Crステンレス鋼)をφ95mmのリング状に曲げ成形した後、歪取りの焼鈍処理を行った。次に、粗合口隙取り、側面平行出しの粗研磨、ピストンリング外周面のバレルフェース研磨を行った。その後、ピストンリング外周面に窒化処理を施し、仕上げ合口隙取りを行った。これを超音波洗浄により脱脂した。ピストンリング母材と下地層との密着性を向上させるため、母材表面にショットブラスト処理を施し表面粗さを3.2〜4.5μmRzに仕上げ、エアーブローで表面のゴミを除去し、洗浄した。上述のように処理したピストンリング21を図3に示すイオンプレーティング用押さえ治具22にセットしかつ合口ピース24により合口間隔を保持した。さらに全体を締付けナット23により固定した。
Hereinafter, the present invention will be described in detail with reference to examples.
In the examples, first, a 3.2 × 2.3 mm piston ring wire (17Cr stainless steel) was bent into a ring shape of φ95 mm and then subjected to annealing treatment. Next, rough gap clearance, rough side parallel polishing, and barrel face polishing of the piston ring outer peripheral surface were performed. Thereafter, the outer peripheral surface of the piston ring was subjected to nitriding treatment to finish the gap. This was degreased by ultrasonic cleaning. In order to improve the adhesion between the piston ring base material and the base layer, the surface of the base material is shot blasted to a surface roughness of 3.2 to 4.5 μm Rz, and dust is removed from the surface by air blow and washed. did. The piston ring 21 processed as described above was set on the ion plating holding jig 22 shown in FIG. Further, the whole was fixed by a tightening nut 23.

図3で説明したように組み立てたピストンリングを図9に示すように、ワーク4として回転テーブル5にセットした後、図9に示す成膜装置の真空チャンバー11内部を排気口6から真空度0.03Pa程度まで真空引きを行い、ワーク4を回転させ、ヒーター(図示せず)設定温度を873Kにて加熱を行った。次に、一旦トリガ電極1で電界を発生させた後に純度99.9%のクロムターゲット2を使用して、表1の設定条件でイオンボンバードクリーニング処理を施した。この後、アーク電源8で設定されるアーク電流160A、バイアス電源10で設定されるバイアス電圧−25V、真空度0.8Pa、ガス入口7から導入されるN2ガス流量120sccm、回転テーブル5回転数4rpm、ヒーター温度873Kで、窒化クロム層状皮膜を15〜25μm程度成膜した。窒素濃度の異なる層状を有する窒化クロム系皮膜は、窒素ガス流量を一定にし成膜装置内のカソード周りに設置したコイルに電源9から電流を流すことで磁場を発生させ、コイル磁場を制御することでカソード表面のアークの飛び方、つまり、金属蒸発量を制御し、図5に示す多数積層した層状組織をもつ皮膜形成した。成膜後は、真空中で2時間程度徐冷し、炉から出した。 The piston ring assembled as described in FIG. 3 is set on the rotary table 5 as a work 4 as shown in FIG. 9, and then the inside of the vacuum chamber 11 of the film forming apparatus shown in FIG. Vacuum was drawn to about 0.03 Pa, the work 4 was rotated, and a heater (not shown) set temperature was heated at 873K. Next, after an electric field was once generated by the trigger electrode 1, an ion bombardment cleaning process was performed using the chromium target 2 having a purity of 99.9% under the setting conditions shown in Table 1. After this, the arc current 160A set by the arc power supply 8; the bias voltage −25V set by the bias power supply 10; the degree of vacuum 0.8 Pa; the N 2 gas flow rate 120 sccm introduced from the gas inlet 7; A chromium nitride layered film having a thickness of about 15 to 25 μm was formed at 4 rpm and a heater temperature of 873 K. A chromium nitride-based film having a layer form with different nitrogen concentrations generates a magnetic field by controlling the coil magnetic field by causing a current to flow from a power source 9 to a coil installed around a cathode in a film forming apparatus with a constant nitrogen gas flow rate. Thus, a film having a multi-layered structure shown in FIG. 5 was formed by controlling how the arc on the cathode surface flew, that is, the amount of metal evaporation. After film formation, the film was gradually cooled in vacuum for about 2 hours and then removed from the furnace.

Figure 2005060810
Figure 2005060810

一方、比較例は成膜装置内のカソード回りに設置した磁場発生用のコイルを使用していない以外はすべて実施例と同一条件にて成膜した。比較例は、磁場の影響がないのでアークの飛び方が均一で金属蒸発量は常に一定であり、実施例で生じたような層状組織は生じない。     On the other hand, all the comparative examples were formed under the same conditions as in the examples except that the magnetic field generating coil installed around the cathode in the film forming apparatus was not used. In the comparative example, since there is no influence of the magnetic field, the arc flight is uniform and the metal evaporation amount is always constant, and the layered structure as in the example does not occur.

上記の実施例及び比較例の皮膜を成膜したピストンリングについて、合口から180°の部分を切断し、樹脂に埋め込み、鏡面に研磨した後、電子顕微鏡で1500倍にて研磨面からの反射電子像を観察したSEM写真をそれぞれ図4、図5に示す。また、図6に実施例の皮膜のライン分析による測定結果を示す。図中横軸は層表面からの深さ(単位mm)、縦軸はCrとNの濃度を相対%で示したものである。
従来技術による比較例(図5)においては、断面組織は単一な層のみ認められ層状組織は認められない。一方、本発明による実施例(図4)の皮膜においては、窒素濃度の異なる層が多数、すなわち約50層積層された層状組織が認められる。図6におけるN濃度ピーク数も約50である。
なお、比較例による層状組織を生じない皮膜でもN濃度のピーク増減が認められたが、この増減は皮膜の電子濃度のゆらぎなどから発生する雑音であり、図6のものよりは明らかに小さく、有意差が認められた。
図7、8には、上記した合口から180°の断面部分を走査型電子顕微鏡で反射電子像を観察した写真(図7:実施例,倍率1500倍、図8:比較例,倍率1500倍)を示す。本発明実施例の破断面は緻密組織である。
For the piston rings on which the films of the above examples and comparative examples were formed, the 180 ° portion was cut from the joint, embedded in resin, polished to a mirror surface, and then reflected electrons from the polished surface at 1500 times with an electron microscope The SEM photograph which observed the image is shown in FIG. 4, FIG. 5, respectively. Moreover, the measurement result by the line analysis of the film | membrane of an Example is shown in FIG. In the figure, the horizontal axis represents the depth (unit: mm) from the layer surface, and the vertical axis represents the Cr and N concentrations in relative%.
In the comparative example (FIG. 5) according to the prior art, the cross-sectional structure is recognized only as a single layer, and the layered structure is not recognized. On the other hand, in the film of the example (FIG. 4) according to the present invention, a layered structure in which a large number of layers having different nitrogen concentrations, that is, about 50 layers are laminated is recognized. The number of N concentration peaks in FIG.
In addition, the peak concentration increase / decrease in N concentration was observed even in the film that did not produce a layered structure according to the comparative example, but this increase / decrease is noise generated from fluctuations in the electron concentration of the film, which is clearly smaller than that of FIG. Significant differences were observed.
7 and 8 are photographs in which a reflected electron image is observed with a scanning electron microscope at a cross section of 180 ° from the above-mentioned joint (FIG. 7: Example, magnification 1500 times, FIG. 8: Comparative example, magnification 1500 times). Indicates. The fracture surface of the embodiment of the present invention is a dense structure.

また、実施例及び比較例によるピストンリングを側面方向に合口から180°を回転中心としてねじることにより皮膜の耐剥離性を評価するねじり試験を行った。その結果、実施例及び比較例共に180°ねじれ部まで皮膜剥離及び欠けは認められず、母材との密着性は良好であった。更に、インデンテーション法による皮膜の破壊靭性の評価および皮膜の残留応力を測定した。本発明による実施例の皮膜は、従来の皮膜よりも高硬度であり、一般に硬度が高くなると破壊靭性値が低下、残留応力が大きくなるにも拘わらず、本発明の皮膜は破壊靭性値が向上し、残留応力は比較例と同等あるいは小さいレベルであった。このことは、耐摩耗特性に優れ、脆性材料である金属窒化物の層に微小亀裂を発生させることなく、厚膜化が可能であることを意味する。上記の結果をまとめたものを表2に示す。     Moreover, the torsion test which evaluates the peeling resistance of a film | membrane was done by twisting the piston ring by an Example and a comparative example to the side surface direction 180 degrees from a joint as a rotation center. As a result, neither peeling of the film nor chipping was observed up to the 180 ° twisted part in both Examples and Comparative Examples, and the adhesion with the base material was good. Furthermore, the fracture toughness of the film was evaluated by the indentation method, and the residual stress of the film was measured. The coatings of the examples according to the present invention have higher hardness than the conventional coatings. Generally, the higher the hardness, the lower the fracture toughness value, and the higher the residual stress, the higher the fracture toughness value of the coating of the present invention. The residual stress was equal to or smaller than that of the comparative example. This means that the film thickness can be increased without generating microcracks in the metal nitride layer, which is a brittle material, with excellent wear resistance. Table 2 summarizes the above results.

Figure 2005060810
Figure 2005060810

本発明の被覆材の構成を示す略図である。It is a schematic diagram showing the composition of the covering material of the present invention. Ti−Nの状態図である。It is a state diagram of Ti-N. 実施例に用いられたセット治具の略図である。It is the schematic of the setting jig | tool used for the Example. 本発明の実施例による皮膜断面のSEM写真(倍率×1500)である。It is a SEM photograph (magnification x1500) of the section of the film by the example of the present invention. 従来技術による比較例の皮膜断面のSEM写真(倍率×1500)である。It is a SEM photograph (magnification x1500) of a film section of a comparative example by the prior art. 実施例による皮膜断面のライン分析結果を示す図である。It is a figure which shows the line analysis result of the film cross section by an Example. 本発明の実施例による緻密組織皮膜破面のSEM写真(倍率×1500)である。It is a SEM photograph (magnification x1500) of a dense structure film fracture surface by an example of the present invention. 従来技術による柱状組織皮膜破面のSEM写真(倍率×1500)である。It is a SEM photograph (magnification x1500) of a columnar structure membrane fracture surface by conventional technology. 本発明の実施例に使用した装置の概略図である。It is the schematic of the apparatus used for the Example of this invention.

符号の説明Explanation of symbols

1.被覆材
2.下地層
3.皮膜
4.窒化層
5.締め付けナット
6.合口ピース
7.ピストンリング(ワーク)
8.押さえ治具
9.ドロップレット
1. Covering material2. 2. Underlayer Film 4 4. Nitride layer Tightening nut Auxiliary piece 7. Piston ring (workpiece)
8). Holding jig 9. Droplet

Claims (8)

結晶質金属窒化物からなる皮膜を基材に被着してなる被覆材において、前記結晶質金属窒化物よりなる皮膜の断面組織が窒素濃度の異なる層状組織であることを特徴とする被覆材。 A covering material obtained by depositing a film made of crystalline metal nitride on a base material, wherein the cross-sectional structure of the film made of crystalline metal nitride is a layered structure having different nitrogen concentrations. 前記結晶質金属窒化物からなる皮膜の破断面が緻密組織であることを特徴とする請求項1記載の被覆材。 The coating material according to claim 1, wherein the fracture surface of the film made of the crystalline metal nitride has a dense structure. 前記窒素濃度は隣接層において増減していることを特徴とする請求項1又は2記載の被覆材。 The covering material according to claim 1 or 2, wherein the nitrogen concentration increases or decreases in an adjacent layer. 前記皮膜の層状組織を形成する各層の厚さが1.00μm以下であることを特徴とする請求項1から4までの何れか1項記載の被覆材。 The coating material according to any one of claims 1 to 4, wherein a thickness of each layer forming the layered structure of the film is 1.00 µm or less. 前記結晶質金属窒化物からなる皮膜と前記基材の間に、下地層として金属皮膜もしくはセラミック系イオンプレーティング皮膜が介挿されているか、あるいは前記基材を窒化した窒化層が下地層として形成されていることを特徴とする請求項1から4までの何れか1項記載の被覆材。 A metal film or a ceramic ion plating film is interposed as an underlayer between the crystalline metal nitride film and the base material, or a nitride layer formed by nitriding the base material is formed as an underlayer The coating material according to any one of claims 1 to 4, wherein the coating material is formed. 前記結晶質金属窒化物からなる皮膜のビッカース硬度が1500から2500までの範囲であることを特徴とする請求項1から5までの何れか1項記載の被覆材。 6. The coating material according to claim 1, wherein the film made of the crystalline metal nitride has a Vickers hardness in the range of 1500 to 2500. 前記結晶質金属窒化物からなる皮膜の厚さが1から80μmの範囲であることを特徴とする請求項1から6までの何れか1項記載の被覆材。 The coating material according to any one of claims 1 to 6, wherein the thickness of the film made of the crystalline metal nitride is in the range of 1 to 80 µm. 請求項1から7までの何れか1項記載の前記結晶質金属窒化物からなる皮膜をPVD法により形成する被覆材の製造方法。 The manufacturing method of the coating | covering material which forms the membrane | film | coat consisting of the said crystalline metal nitride of any one of Claim 1-7 by PVD method.
JP2003296226A 2003-08-20 2003-08-20 Coating material and its production method Pending JP2005060810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003296226A JP2005060810A (en) 2003-08-20 2003-08-20 Coating material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003296226A JP2005060810A (en) 2003-08-20 2003-08-20 Coating material and its production method

Publications (1)

Publication Number Publication Date
JP2005060810A true JP2005060810A (en) 2005-03-10

Family

ID=34372207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003296226A Pending JP2005060810A (en) 2003-08-20 2003-08-20 Coating material and its production method

Country Status (1)

Country Link
JP (1) JP2005060810A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271072A (en) * 2006-03-31 2007-10-18 Nippon Piston Ring Co Ltd Piston ring for internal combustion engine
DE102006046917B3 (en) * 2006-10-04 2008-02-21 Federal-Mogul Burscheid Gmbh Piston ring for use in diesel engine and petrol engine, comprises adjacent individual layers having different metallic elements within periodicity, where individual layers have specific thickness and piston ring is made of carrier material
DE102006046915B3 (en) * 2006-10-04 2008-03-06 Federal-Mogul Burscheid Gmbh Piston ring has carrier material, particularly steel or casting material, where wear resistant coating is made of alternately built multi coat layer system, where each periodicity comprises of two individual layers
DE102007027245A1 (en) 2007-06-13 2008-12-18 Federal-Mogul Burscheid Gmbh piston ring
DE102007035502A1 (en) 2007-07-28 2009-02-05 Federal-Mogul Burscheid Gmbh piston ring
JP2009287099A (en) * 2008-05-30 2009-12-10 Nikon Corp Sliding member and manufacturing method of the same
WO2014088096A1 (en) * 2012-12-07 2014-06-12 株式会社リケン Piston ring
CN103917686A (en) * 2011-05-27 2014-07-09 马勒发动机零部件巴西有限公司 An element provided with at least one slide surface for use on an internal combustion engine
WO2015046427A1 (en) * 2013-09-30 2015-04-02 株式会社リケン Piston ring
WO2015046437A1 (en) * 2013-09-30 2015-04-02 株式会社リケン Piston ring
WO2015064538A1 (en) * 2013-10-31 2015-05-07 株式会社リケン Piston ring and method for manufacturing same
US9777239B2 (en) 2011-05-27 2017-10-03 Mahle Metal Leve S.A. Element comprising at least one sliding surface having a coating for use in an internal combustion engine or a compressor
WO2019093290A1 (en) * 2017-11-08 2019-05-16 株式会社デンソー Gas carburization device and gas carburization method
JP2019090350A (en) * 2017-11-13 2019-06-13 株式会社デンソー Valve device
CN115306580A (en) * 2022-08-29 2022-11-08 奇瑞汽车股份有限公司 Method for improving quality of engine oil ring scraper

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271072A (en) * 2006-03-31 2007-10-18 Nippon Piston Ring Co Ltd Piston ring for internal combustion engine
US10000840B2 (en) 2006-10-04 2018-06-19 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
WO2008040694A3 (en) * 2006-10-04 2008-07-31 Federal Mogul Burscheid Gmbh Piston ring for internal combustion engines
DE102006046917C5 (en) * 2006-10-04 2014-03-20 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
WO2008040695A2 (en) 2006-10-04 2008-04-10 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
US9598763B2 (en) 2006-10-04 2017-03-21 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
WO2008040695A3 (en) * 2006-10-04 2008-08-07 Federal Mogul Burscheid Gmbh Piston ring for internal combustion engines
DE102006046915C5 (en) * 2006-10-04 2015-09-03 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
DE102006046915B3 (en) * 2006-10-04 2008-03-06 Federal-Mogul Burscheid Gmbh Piston ring has carrier material, particularly steel or casting material, where wear resistant coating is made of alternately built multi coat layer system, where each periodicity comprises of two individual layers
DE102006046917B3 (en) * 2006-10-04 2008-02-21 Federal-Mogul Burscheid Gmbh Piston ring for use in diesel engine and petrol engine, comprises adjacent individual layers having different metallic elements within periodicity, where individual layers have specific thickness and piston ring is made of carrier material
WO2008040694A2 (en) 2006-10-04 2008-04-10 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
US8273469B2 (en) 2007-06-13 2012-09-25 Federal-Mogul Burscheid Gmbh Piston ring
DE102007027245A1 (en) 2007-06-13 2008-12-18 Federal-Mogul Burscheid Gmbh piston ring
DE102007027245B4 (en) 2007-06-13 2018-08-30 Federal-Mogul Burscheid Gmbh piston ring
JP2010534801A (en) * 2007-07-28 2010-11-11 フェデラル−モーグル ブルシェイド ゲーエムベーハー piston ring
WO2009016051A1 (en) 2007-07-28 2009-02-05 Federal-Mogul Burscheid Gmbh Piston ring
DE102007035502A1 (en) 2007-07-28 2009-02-05 Federal-Mogul Burscheid Gmbh piston ring
US9447490B2 (en) 2007-07-28 2016-09-20 Federal-Mogul Burscheid Gmbh Piston ring
JP2009287099A (en) * 2008-05-30 2009-12-10 Nikon Corp Sliding member and manufacturing method of the same
CN103917686A (en) * 2011-05-27 2014-07-09 马勒发动机零部件巴西有限公司 An element provided with at least one slide surface for use on an internal combustion engine
US9777239B2 (en) 2011-05-27 2017-10-03 Mahle Metal Leve S.A. Element comprising at least one sliding surface having a coating for use in an internal combustion engine or a compressor
JP2014519552A (en) * 2011-05-27 2014-08-14 マーレ メタル レーベ ソシエダーデ アノニマ Element with at least one sliding surface for an internal combustion engine
US9447879B2 (en) 2012-12-07 2016-09-20 Kabushiki Kaisha Riken Piston ring
CN104838182A (en) * 2012-12-07 2015-08-12 株式会社理研 Piston ring
JPWO2014088096A1 (en) * 2012-12-07 2017-01-05 株式会社リケン piston ring
WO2014088096A1 (en) * 2012-12-07 2014-06-12 株式会社リケン Piston ring
CN105593581B (en) * 2013-09-30 2018-02-16 株式会社理研 Piston ring
US10006546B2 (en) 2013-09-30 2018-06-26 Kabushiki Kaisha Riken Piston ring
WO2015046427A1 (en) * 2013-09-30 2015-04-02 株式会社リケン Piston ring
CN105593581A (en) * 2013-09-30 2016-05-18 株式会社理研 Piston ring
JP2015068419A (en) * 2013-09-30 2015-04-13 株式会社リケン Piston ring
WO2015046437A1 (en) * 2013-09-30 2015-04-02 株式会社リケン Piston ring
US10006547B2 (en) 2013-10-31 2018-06-26 Kabushiki Kaisha Riken Piston ring and its production method
WO2015064538A1 (en) * 2013-10-31 2015-05-07 株式会社リケン Piston ring and method for manufacturing same
JP2015086967A (en) * 2013-10-31 2015-05-07 株式会社リケン Piston ring and manufacturing method thereof
WO2019093290A1 (en) * 2017-11-08 2019-05-16 株式会社デンソー Gas carburization device and gas carburization method
JP2019085623A (en) * 2017-11-08 2019-06-06 株式会社デンソー Gas carburization apparatus, and gas carburization method
JP2019090350A (en) * 2017-11-13 2019-06-13 株式会社デンソー Valve device
CN115306580A (en) * 2022-08-29 2022-11-08 奇瑞汽车股份有限公司 Method for improving quality of engine oil ring scraper
CN115306580B (en) * 2022-08-29 2024-03-01 奇瑞汽车股份有限公司 Method for improving quality of engine oil ring scraping blade

Similar Documents

Publication Publication Date Title
JP5319295B2 (en) Chromium nitride ion plating film, method for producing the same, and piston ring for internal combustion engine
JP2005060810A (en) Coating material and its production method
US11293548B2 (en) Sliding member and coating film
JP4839120B2 (en) Piston ring with laminated coating
JP5564099B2 (en) Combination of cylinder and piston ring
JP6325455B2 (en) piston ring
US9840766B2 (en) Component having a coating and method for the production thereof
JP5435326B2 (en) Die-casting coating mold and manufacturing method thereof
JP2009167512A (en) Diamond-like carbon film for sliding component and method for manufacturing the same
JP2008241032A (en) Piston ring and its manufacturing method
JP2730571B2 (en) Sliding material and piston ring
JP2001335878A (en) Sliding member
EP4269647A1 (en) Crn coating film and sliding member
JP2739722B2 (en) piston ring
JP2007132423A (en) Piston ring
JP2023544788A (en) Hard carbon coating with improved adhesive strength by HiPIMS and its method
JP6756641B2 (en) piston ring
JP4374153B2 (en) piston ring
JP4374154B2 (en) piston ring
JP2003042294A (en) Piston ring
JP4374160B2 (en) piston ring
JP2011147946A (en) Warm/hot forging die and method of manufacturing the same
JP2006207691A (en) Hard film coated sliding member
JPH01155061A (en) Cylinder liner
JPH0727228A (en) Sliding member and crn film coating method