JP2000038653A - Die or mold having surface film - Google Patents

Die or mold having surface film

Info

Publication number
JP2000038653A
JP2000038653A JP10205376A JP20537698A JP2000038653A JP 2000038653 A JP2000038653 A JP 2000038653A JP 10205376 A JP10205376 A JP 10205376A JP 20537698 A JP20537698 A JP 20537698A JP 2000038653 A JP2000038653 A JP 2000038653A
Authority
JP
Japan
Prior art keywords
mold
base material
coating
gpa
mold base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10205376A
Other languages
Japanese (ja)
Inventor
Hisanori Ohara
久典 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10205376A priority Critical patent/JP2000038653A/en
Publication of JP2000038653A publication Critical patent/JP2000038653A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a die or the like having a surface film simultaneously improving thermal crack resistance and oxidation-resistance and having a long life. SOLUTION: On the surface of a die base metal or a mold base metal composed of cemented carbide, ceramics, steel or cast iron, a film composed of (Ti(1-x-y)CrxAly) N (x) and (y) are value satisfying 0.02<=x<1.0 and 0.02<=y<=0.7), having 0.3 to 50 μm film thickness and compression stress of 0.5 to 8 GPa by the average value of residual stress is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、表面被膜を有す
る金型又は鋳型に関する。
The present invention relates to a mold or a mold having a surface coating.

【0002】[0002]

【従来の技術】自動車部品、機械部品、家電製品用部品
等の鉄系部品又はアルミニウム合金部品やマグネシウム
合金部品を、温間若しくは熱間で鍛造する際に、又は、
鋳造する際に使用される金型や鋳型(以下、「金型等」
と略する。)は、使用中に金型等表面が受ける高温(一
般に、500℃以上の高温である。)のために、金型等
表面の酸化による損傷、繰り返し熱応力による疲労亀裂
の発生等が生じ、ヒートチェックとよばれる「はだあ
れ」の現象が生じる。特に、アルミニウムの鋳造におい
ては、金型等の表面がアルミニウムにより侵食され、
「はだあれ」が生じる。この「はだあれ」は、加工数の
増大によって進行し、寸法精度の維持が困難になった時
点で金型等の寿命とされる。また、溶融ガラスを金型に
封じ込めて金型形状を転写し成形する際に用いられる金
型についても同様に、溶融ガラスから金型表面が受ける
高温によって類似の損傷を生じる。さらに、溶融アルミ
ニウム、溶融(又は半溶融)マグネシウム、又は、溶融
ガラスと金型等の表面が反応するために、アルミニウム
やガラスが溶着し、金型等に貼り付く現象が問題とな
る。このような被加工物と金型との溶着現象は、作業能
率の低下を招く。
2. Description of the Related Art When forging iron-based parts, aluminum alloy parts, and magnesium alloy parts such as automobile parts, machine parts, parts for home appliances, etc., in warm or hot, or
Molds and molds used for casting (hereinafter referred to as “molds, etc.”
Abbreviated. ) Is caused by the high temperature applied to the surface of the mold or the like during use (generally, a high temperature of 500 ° C. or more), causing damage to the surface of the mold or the like due to oxidation, generation of fatigue cracks due to repeated thermal stress, and the like. A phenomenon called “heat check” occurs. In particular, in the casting of aluminum, the surface of a mold or the like is eroded by aluminum,
"Dare" occurs. This “bare-spotting” proceeds due to an increase in the number of processes, and the life of the mold and the like is determined when it becomes difficult to maintain the dimensional accuracy. Similarly, a mold used when the molten glass is sealed in the mold to transfer and mold the shape of the mold is similarly damaged by the high temperature applied to the mold surface from the molten glass. Further, since a surface of a mold or the like reacts with molten aluminum, molten (or semi-molten) magnesium, or molten glass, a phenomenon that aluminum or glass is welded and adheres to the mold or the like becomes a problem. Such a welding phenomenon between the workpiece and the mold causes a reduction in work efficiency.

【0003】上記のような金型の損傷を少しでも遅らせ
るために、現在の鍛造又は鋳造された金型等には、タフ
トライト処理、ガス窒化処理、イオン窒化処理、浸硫窒
化処理等の窒化処理が幅広く行われている。これらの窒
化処理の特徴は、鋼からなる金型等母材表面に窒素を主
成分とする元素を拡散浸透させ、表面硬度の増大、表面
圧縮応力の導入等を図り、ヒートチェックに対する金型
表面の耐久性を向上させている。
[0003] In order to delay the above-mentioned mold damage as much as possible, current forged or cast dies and the like are subjected to a nitriding treatment such as a tuftrite treatment, a gas nitriding treatment, an ion nitriding treatment and a sulphonitriding treatment. Processing is widely performed. The feature of these nitriding treatments is that the element mainly composed of nitrogen is diffused and infiltrated into the surface of a base material such as a steel mold to increase the surface hardness, introduce surface compressive stress, etc. Has improved durability.

【0004】しかし、窒化処理では、金型等表面の耐酸
化性を向上させることはできない。このため、金型等の
表面が酸化され、この酸化スケールが成長し、脱落し、
再度酸化が生じる。このようなサイクルにより、金型等
の表面が酸化により損傷する。
[0004] However, the nitriding treatment cannot improve the oxidation resistance of the surface of a mold or the like. For this reason, the surface of the mold and the like is oxidized, and this oxide scale grows, falls off,
Oxidation occurs again. Due to such a cycle, the surface of the mold and the like is damaged by oxidation.

【0005】窒化処理以外の表面処理法としては、化学
蒸着法(CVD法)、物理蒸着法(PVD法)等によ
り、炭化チタン、窒化チタン、炭窒化チタン等のセラミ
ックス被膜を形成させる方法があげられる。また、TR
D法、TD法と呼ばれる熱反応・析出法により炭化バナ
ジウム被膜を形成させる方法もあげられる。
As a surface treatment method other than the nitriding treatment, there is a method of forming a ceramic film such as titanium carbide, titanium nitride, titanium carbonitride, etc. by a chemical vapor deposition method (CVD method), a physical vapor deposition method (PVD method) or the like. Can be Also, TR
There is also a method of forming a vanadium carbide coating by a thermal reaction / precipitation method called a D method or a TD method.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、炭窒化
チタン、炭化バナジウム等は、それ自身の耐酸化性が5
00〜600℃付近で失われ、金型表面の酸化抑制に顕
著な効果は見られない。
However, titanium carbonitride, vanadium carbide and the like have oxidation resistance of 5%.
It is lost at around 00 to 600 ° C., and no remarkable effect is observed in suppressing the oxidation of the mold surface.

【0007】また、ガラス成形金型においては、金属素
材の表面に硬質合金を肉盛り溶接したり、耐熱金属被膜
を形成したりすることにより、耐熱性、耐酸化性、高温
硬度等を改善することが行われいるが、金属又は合金を
ベースとした材料となるため、材料硬度は、ビッカーズ
硬度で700kg/mm2 程度と低く、硬質粒子の噛み
込み等による金型の損傷を防ぐには不十分であった。
In a glass molding die, heat resistance, oxidation resistance, high-temperature hardness, etc. are improved by overlaying a hard alloy on the surface of a metal material or forming a heat-resistant metal film. However, since the material is based on a metal or an alloy, the material hardness is as low as about 700 kg / mm 2 in Vickers hardness, and it is not possible to prevent damage to the mold due to biting of hard particles. Was enough.

【0008】これらの欠点を克服するために、上記の窒
化処理等の表面硬化処理と、上記蒸着法等の被膜形成処
理を組み合わせた方法が開示されている。例えば、特開
昭62−103368号公報には、金属基材の表面に窒
化物層を形成し、セラミックコーティング層を被覆した
セラミックコーティング金属が提案されている。この場
合の被膜形成方法としては、CVD法が用いられてい
る。また、特開平2−125861号公報には、イオン
窒化処理とイオンプレーティングを同一真空槽内で連続
して行い、金属の窒化物、炭化物、炭窒化物、炭窒酸化
物、酸化物等の膜を一層又は多層形成する方法が開示さ
れている。さらに、特開平5−98422号公報には、
真空容器内で高周波電源を用いてプラズマを発生させ、
窒素イオンを被処理物に衝突させて硬化層を作り、その
まま直ちにセラミックスコーティングする連続処理法が
開示されている。さらにまた、特開平8−35075号
公報には、金属部材をアンモニアガス及び水素ガスの雰
囲気下でグロー放電を行ってイオン窒化させ、次に、こ
のイオン窒化層の上にPVD法により硬質被膜を形成さ
せる方法が開示されている。
In order to overcome these drawbacks, there is disclosed a method in which a surface hardening treatment such as the above-mentioned nitriding treatment and a film forming treatment such as the above-mentioned vapor deposition method are combined. For example, Japanese Patent Application Laid-Open No. 62-103368 proposes a ceramic coating metal in which a nitride layer is formed on the surface of a metal substrate and the ceramic coating layer is coated. In this case, a CVD method is used as a film forming method. Japanese Patent Application Laid-Open No. 2-158661 discloses that an ion nitriding treatment and an ion plating are continuously performed in the same vacuum chamber to remove metal nitrides, carbides, carbonitrides, carbonitrides, oxides and the like. A method for forming a film in one or more layers is disclosed. Further, JP-A-5-98422 discloses that
Generate plasma using a high frequency power supply in a vacuum vessel,
A continuous processing method is disclosed in which a hardened layer is formed by colliding nitrogen ions with an object to be processed, and ceramic coating is immediately performed as it is. Furthermore, Japanese Patent Application Laid-Open No. 8-35075 discloses that a metal member is ion-nitrided by performing glow discharge in an atmosphere of ammonia gas and hydrogen gas, and then a hard coating is formed on the ion-nitrided layer by a PVD method. A method of forming is disclosed.

【0009】これらの先行技術は、いずれも処理方法を
単に開示しただけか、あるいは材料系を開示したに止ま
っており、耐熱亀裂性と耐酸化性を同時に満足させる材
料系と、その材料系が満足すべき機械的特性を示したも
のではなかった。
All of these prior arts merely disclose a processing method or merely disclose a material system. A material system which satisfies both heat crack resistance and oxidation resistance simultaneously, and a material system which satisfies both conditions are disclosed. It did not show satisfactory mechanical properties.

【0010】そこで、この発明は、耐熱亀裂性及び耐酸
化性を同時に向上させる表面被膜を有する長寿命の金型
等を提供することである。
Accordingly, an object of the present invention is to provide a long-life mold or the like having a surface coating that simultaneously improves heat crack resistance and oxidation resistance.

【0011】[0011]

【課題を解決するための手段】この発明は、超硬合金、
セラミックス、鋼又は鋳鉄からなる金型母材又は鋳型母
材の表面に、(Ti(1-x-y) Crx Aly )N(式中、
x及びyは、0.02≦x<1.0、0.02≦y≦
0.7を満たす値である。)によって構成され、その膜
厚が0.3〜50μmで、残留応力の平均値を0.5〜
8GPaの圧縮応力である被膜を形成することにより上
記の課題を解決したのである。
The present invention provides a cemented carbide,
On the surface of a mold base material or a mold base material made of ceramics, steel or cast iron, (Ti (1-xy) Cr x Al y ) N (where
x and y are 0.02 ≦ x <1.0, 0.02 ≦ y ≦
It is a value that satisfies 0.7. ), The film thickness is 0.3 to 50 μm, and the average value of the residual stress is 0.5 to 50 μm.
The above problem was solved by forming a film having a compressive stress of 8 GPa.

【0012】上記の被膜は、耐熱亀裂性及び耐酸化性に
優れており、この被膜を有する金型又は鋳型を用いて温
間若しくは熱間での鍛造や鋳造を行っても、金型等表面
の酸化による損傷や疲労亀裂を抑制することができる。
The above coating is excellent in heat crack resistance and oxidation resistance. Even if forging or casting is performed warm or hot using a mold or a mold having this coating, the surface of the die or the like can be obtained. Damage and fatigue cracks due to oxidation of the steel can be suppressed.

【0013】[0013]

【発明の実施の形態】以下、この発明の実施形態を説明
する。この発明にかかる表面被膜を有する金型又は鋳型
の第1の実施形態は、金型母材又は鋳型母材(以下、
「金型等母材」と略する。)の表面に、チタン、クロム
及びアルミニウムの合金の窒化物によって構成される被
膜を形成したものである。
Embodiments of the present invention will be described below. A first embodiment of a mold or a mold having a surface coating according to the present invention is a mold base material or a mold base material (hereinafter, referred to as a base material).
Abbreviated as "base material such as mold". ), A coating composed of a nitride of an alloy of titanium, chromium and aluminum is formed.

【0014】上記金型等母材としては、超硬合金、セラ
ミックス、鋼又は鋳鉄等をあげることができる。上記の
チタン、クロム及びアルミニウムの合金の窒化物は、下
記式〔1〕で表すことができる。
Examples of the base material such as a mold include a cemented carbide, ceramics, steel, cast iron and the like. The nitride of the above alloy of titanium, chromium and aluminum can be represented by the following formula [1].

【0015】 (Ti(1-x-y) Crx Aly )N 〔1〕 このとき、クロムの含有割合、すなわち、式〔1〕中の
xは、0.02≦x<1.0を満たすのがよい。また、
アルミニウムの含有割合、すなわち、式〔1〕中のy
は、0.02≦y≦0.7を満たすのがよい。さらに、
チタンの含有割合、すなわち、式〔1〕中の1−x−y
は、正の値を示せばよい。
(Ti (1-xy) Cr x Al y ) N [1] At this time, the content ratio of chromium, that is, x in the formula [1], satisfies 0.02 ≦ x <1.0. Is good. Also,
The content ratio of aluminum, that is, y in the formula [1]
Preferably satisfies 0.02 ≦ y ≦ 0.7. further,
The content ratio of titanium, that is, 1-xy in the formula [1]
May be a positive value.

【0016】窒化チタンにクロムとアルミニウムを添加
することにより、被膜の耐酸化性を向上させることがで
きる。これは、被膜中のクロムとアルミニウムが金型使
用時の高温大気雰囲気下で酸化し、被膜表面に酸化クロ
ムと酸化アルミニウムとからなる強固な保護膜を形成す
るためである。このような緻密な酸化被膜は、窒化チタ
ン被膜の酸化の進行を大幅に抑制する効果を有してお
り、金型表面の酸化摩耗を大きく抑制する。
The oxidation resistance of the coating can be improved by adding chromium and aluminum to titanium nitride. This is because chromium and aluminum in the coating are oxidized in a high-temperature atmosphere when the mold is used, and a strong protective film made of chromium oxide and aluminum oxide is formed on the surface of the coating. Such a dense oxide film has an effect of greatly suppressing the progress of oxidation of the titanium nitride film, and greatly suppresses oxidative wear of the mold surface.

【0017】クロムの組成比xが1以上であると、上記
被膜が脆くなりやすい。また、xが0.02未満である
と、耐酸化性向上の効果を得にくくなる。さらに、アル
ミニウムの組成比yが0.7を越えると、上記被膜の硬
度が極端に低下する場合がある。また、yが0.02未
満であると、耐酸化性向上の効果を得にくくなる。
If the composition ratio x of chromium is 1 or more, the above-mentioned coating tends to become brittle. When x is less than 0.02, it is difficult to obtain the effect of improving the oxidation resistance. Further, when the aluminum composition ratio y exceeds 0.7, the hardness of the coating may be extremely reduced. On the other hand, when y is less than 0.02, it is difficult to obtain the effect of improving the oxidation resistance.

【0018】上記被膜の膜厚は0.3〜50μmがよ
い。0.3μm未満だと、被膜の効果が得にくい。また
50μmを越えると、使用時の衝撃によって被膜が破壊
する場合が生じる。
The thickness of the above coating is preferably 0.3 to 50 μm. If it is less than 0.3 μm, it is difficult to obtain the effect of the coating. On the other hand, if it exceeds 50 μm, the coating may be broken by impact during use.

【0019】また、上記被膜には、残留応力として圧縮
応力が存在しているのがよい。残留応力は、X線回折法
(sin2 ψ法)で測定されるものである。上記被膜の
残留応力は、その平均値が0.5〜8GPaの圧縮応力
であるのがよい。この残留応力が0.5GPaより小さ
い圧縮応力である場合、又は、引張りの残留応力となっ
ている場合は、熱亀裂の発生抑制効果が得られず、好ま
しくない。また、残留応力が8GPaを越える圧縮応力
である場合は、逆に亀裂発生を促進するので、好ましく
ない。
It is preferable that a compressive stress exists as a residual stress in the coating. The residual stress is measured by an X-ray diffraction method (sin 2 ψ method). The residual stress of the film is preferably a compressive stress having an average value of 0.5 to 8 GPa. If this residual stress is a compressive stress smaller than 0.5 GPa or if it is a tensile residual stress, the effect of suppressing the occurrence of thermal cracks cannot be obtained, which is not preferable. On the other hand, when the residual stress is a compressive stress exceeding 8 GPa, it is not preferable because cracks are accelerated.

【0020】上記被膜を上記金型等表面に形成する方法
としては、イオンプレーティング法、アークイオンプレ
ーティング法等のPVD法、プラズマCVD法等のCV
D法等の方法を採用することができる。
As a method for forming the coating on the surface of the mold or the like, there are a PVD method such as an ion plating method and an arc ion plating method, and a CV method such as a plasma CVD method.
A method such as the D method can be adopted.

【0021】これらの要件を満たすことにより、耐熱亀
裂性と耐酸化性を有する被膜を有する金型等が得られ
る。
By satisfying these requirements, a mold having a coating having heat crack resistance and oxidation resistance can be obtained.

【0022】この発明にかかる表面被膜を有する金型等
の第2の実施形態は、上記第1の実施形態のうち、被膜
の構造のみが異なり、母材の種類、被膜の膜厚や残留応
力の条件、被膜の形成方法等、被膜構造以外は第1の実
施形態の場合と同様である。
The second embodiment, such as a mold having a surface coating according to the present invention, differs from the first embodiment only in the structure of the coating, and differs from the first embodiment in the type of base material, the thickness of the coating and the residual stress. The conditions other than those described above, the film formation method, and the like are the same as those in the first embodiment except for the film structure.

【0023】第2の実施形態における被膜は、金型等母
材表面に形成されたものであり、チタン、クロム及びア
ルミニウムの合金の窒化物によって構成されたものであ
る。また、この被膜は、上記金型等母材の表面から被膜
表面に向けて、連続的又は段階的にCr又はAlの組成
比を増大させた組成の被膜である。
The coating in the second embodiment is formed on the surface of a base material such as a mold, and is made of a nitride of an alloy of titanium, chromium, and aluminum. The coating is a coating having a composition in which the composition ratio of Cr or Al is continuously or stepwise increased from the surface of the base material such as the mold toward the coating surface.

【0024】上記のチタン、クロム及びアルミニウムの
合金の窒化物は、上記式〔1〕で表すことができ、x、
yは上記の範囲を有する。
The nitride of the alloy of titanium, chromium and aluminum can be represented by the above formula [1], and x,
y has the above range.

【0025】この被膜を傾斜組成とするには、上記金型
等母材の表面から被膜表面に向けて、クロムリッチ又は
アルミニウムリッチになるように蒸発源の合金組成を調
整して、連続的に変化させていく方法、段階的に変化さ
せていく方法、特定組成の薄膜を積層していく方法等が
あげられる。
In order to make this coating a gradient composition, the alloy composition of the evaporation source is continuously adjusted from the surface of the base material such as the mold toward the coating surface so as to become chromium-rich or aluminum-rich. There are a method of changing, a method of changing in a stepwise manner, a method of laminating a thin film of a specific composition, and the like.

【0026】窒化チタンにクロムとアルミニウムを添加
する効果は上記のとおりであるが、この実施形態のよう
に被膜表面に向かってクロムリッチ又はアルミニウムリ
ッチになるようにすると、被膜表面側の耐酸化性を特に
向上させることができる。
The effect of adding chromium and aluminum to titanium nitride is as described above. However, when the film is made rich in chromium or aluminum toward the surface of the film as in this embodiment, the oxidation resistance of the film surface is reduced. Can be particularly improved.

【0027】この発明にかかる表面被膜を有する金型等
の第3の実施形態は、上記第1の実施形態のうち、被膜
の構造のみが異なり、母材の種類、被膜の膜厚や残留応
力の条件、被膜の形成方法等、被膜構造以外は第1の実
施形態の場合と同様である。
The third embodiment, such as a mold having a surface coating according to the present invention, differs from the first embodiment only in the structure of the coating, and differs from the first embodiment in the type of base material, the thickness of the coating and the residual stress. The conditions other than those described above, the film formation method, and the like are the same as those in the first embodiment except for the film structure.

【0028】第3の実施形態における被膜は、金型等母
材表面に形成されたものであり、窒化チタン、窒化クロ
ム及び窒化アルミニウムの薄層を交互に少なくとも10
回繰り返して積層した被膜である。窒化チタン薄層、窒
化クロム薄層及び窒化アルミニウム薄層の順番は任意で
よいが、所定の順番で3つの薄層が交互に積層される。
このような積層構造とすることにより、外側の一層が摩
耗して消失しても、次の層が表出し、耐酸化性が維持さ
れる。
The coating in the third embodiment is formed on the surface of a base material such as a mold, and is formed by alternately forming thin layers of titanium nitride, chromium nitride and aluminum nitride by at least 10 layers.
It is a film that has been repeatedly laminated. The order of the titanium nitride thin layer, the chromium nitride thin layer, and the aluminum nitride thin layer may be arbitrary, but three thin layers are alternately stacked in a predetermined order.
With such a laminated structure, even if the outer layer is worn away and disappears, the next layer is exposed and the oxidation resistance is maintained.

【0029】この積層被膜は、各薄層毎に蒸発源の合金
組成を調整することにより積層することができる。
This laminated coating can be laminated by adjusting the alloy composition of the evaporation source for each thin layer.

【0030】この発明にかかる表面被膜を有する金型等
の第4の実施形態は、上記第1の実施形態のうち、被膜
の構造のみが異なり、母材の種類、被膜の膜厚や残留応
力の条件、被膜の形成方法等、被膜構造以外は第1の実
施形態の場合と同様である。
The fourth embodiment, such as a mold having a surface coating according to the present invention, differs from the first embodiment only in the structure of the coating, and differs from the first embodiment in the type of base material, the thickness of the coating and the residual stress. The conditions other than those described above, the film formation method, and the like are the same as those in the first embodiment except for the film structure.

【0031】第4の実施形態における被膜は、金型等母
材表面に形成されたものであり、窒化チタンアルミニウ
ム及び窒化クロムの薄層を交互に1回又は少なくとも2
回繰り返して積層した被膜である。窒化チタンアルミニ
ウムの薄層は、チタンとアルミニウムの合金を蒸発源と
して用い、窒化物の薄層を形成させたものである。この
ような積層構造とすることにより、外側の一層が摩耗し
て消失しても、次の層が表出し、耐酸化性が維持され
る。
The coating according to the fourth embodiment is formed on the surface of a base material such as a mold, and a thin layer of titanium aluminum nitride and chromium nitride is alternately formed once or at least two times.
It is a film that has been repeatedly laminated. The thin layer of titanium aluminum nitride is formed by using an alloy of titanium and aluminum as an evaporation source to form a thin layer of nitride. With such a laminated structure, even if the outer layer is worn away and disappears, the next layer is exposed and the oxidation resistance is maintained.

【0032】この積層被膜は、各薄層毎に蒸発源の合金
組成を調整することにより積層することができる。
This laminated coating can be laminated by adjusting the alloy composition of the evaporation source for each thin layer.

【0033】この発明にかかる表面被膜を有する金型等
の第5の実施形態は、上記第1の実施形態のうち、被膜
の構造のみが異なり、母材の種類、被膜の膜厚や残留応
力の条件、被膜の形成方法等、被膜構造以外は第1の実
施形態の場合と同様である。
The fifth embodiment, such as a mold having a surface coating according to the present invention, differs from the first embodiment only in the structure of the coating, and differs in the type of the base material, the thickness of the coating and the residual stress. The conditions other than those described above, the film formation method, etc. are the same as those in the first embodiment except for the film structure.

【0034】第5の実施形態における被膜は、金型等母
材表面に形成されたものであり、窒化チタンクロム及び
窒化アルミニウムの薄層を交互に少なくとも10回繰り
返して積層した被膜である。窒化チタンクロムの薄層
は、チタンとクロムの合金を蒸発源として用い、窒化物
の薄層を形成させたものである。このような積層構造と
することにより、外側の一層が摩耗して消失しても、次
の層が表出し、耐酸化性が維持される。
The coating in the fifth embodiment is formed on the surface of a base material such as a mold, and is a coating obtained by alternately repeating thin layers of titanium chromium nitride and aluminum nitride at least 10 times. The titanium-chromium nitride thin layer is formed by using a titanium-chromium alloy as an evaporation source to form a nitride thin layer. With such a laminated structure, even if the outer layer is worn away and disappears, the next layer is exposed and the oxidation resistance is maintained.

【0035】この積層被膜は、各薄層毎に蒸発源の合金
組成を調整することにより積層することができる。
This laminated film can be laminated by adjusting the alloy composition of the evaporation source for each thin layer.

【0036】この発明にかかる表面被膜を有する金型等
の第6の実施形態は、上記第1の実施形態のうち、被膜
の構造のみが異なり、母材の種類、被膜の膜厚や残留応
力の条件、被膜の形成方法等、被膜構造以外は第1の実
施形態の場合と同様である。
The sixth embodiment of the present invention, such as a mold having a surface coating, differs from the first embodiment only in the structure of the coating, and differs from the first embodiment in the type of base material, the thickness of the coating and the residual stress. The conditions other than those described above, the film formation method, etc. are the same as those in the first embodiment except for the film structure.

【0037】第6の実施形態における被膜は、金型等母
材表面に形成されたものであり、窒化クロムアルミニウ
ム及び窒化チタンの薄層を交互に1回又は少なくとも2
回繰り返して積層した被膜である。窒化クロムアルミニ
ウムの薄層は、クロムとアルミニウムの合金を蒸発源と
して用い、窒化物の薄層を形成させたものである。この
ような積層構造とすることにより、外側の一層が摩耗し
て消失しても、次の層が表出し、耐酸化性が維持され
る。
The coating in the sixth embodiment is formed on the surface of a base material such as a mold, and a thin layer of chromium aluminum nitride and titanium nitride is alternately formed once or at least two times.
It is a film that has been repeatedly laminated. The thin layer of chromium aluminum nitride is formed by using an alloy of chromium and aluminum as an evaporation source to form a thin layer of nitride. With such a laminated structure, even if the outer layer is worn away and disappears, the next layer is exposed and the oxidation resistance is maintained.

【0038】この積層被膜は、各薄層毎に蒸発源の合金
組成を調整することにより積層することができる。
The laminated coating can be laminated by adjusting the alloy composition of the evaporation source for each thin layer.

【0039】この発明にかかる表面被膜を有する金型等
の第7の実施形態は、鋼又は鋳鉄からなる金型等母材の
表面に窒化処理層を形成させ、この金型等母材を用いて
上記の被膜を形成し、上記第1〜第6の実施形態のいず
れかの表面被覆を有する金型等を作製したものである。
According to a seventh embodiment of a mold having a surface coating according to the present invention, a nitriding layer is formed on the surface of a base material such as a mold made of steel or cast iron. The above-mentioned coating is formed by using the above method, and a mold or the like having the surface coating of any of the first to sixth embodiments is produced.

【0040】上記窒化処理層は、上記金型等母材の表面
に窒素を拡散浸透させることにより窒化処理層を形成さ
せたものである。この窒化処理法としては、タフトライ
ド処理、ガス窒化処理、イオン窒化処理等、多数の窒化
処理法が適用できる。但し、上記の多くの処理法では、
窒化処理後の金型等母材表面に、化合物層又は脆化層と
呼ばれる脆い化合物である、γ’−Fe4 N又はγ’−
Fe2-3 Nの層が発生する。このため、このような化合
物層を研磨することにより除去する必要がある。なお、
イオン窒化処理法を用いれば、上記の化合物層を形成さ
せることなく、窒化処理が可能となる。
The nitriding layer is formed by diffusing and infiltrating nitrogen into the surface of the base material such as the mold. As the nitriding method, many nitriding methods such as a tuftride process, a gas nitriding process, and an ion nitriding process can be applied. However, in many of the above methods,
Γ′-Fe 4 N or γ′- which is a brittle compound called a compound layer or an embrittlement layer on the surface of a base material such as a mold after nitriding.
A layer of Fe 2-3 N occurs. Therefore, it is necessary to remove such a compound layer by polishing. In addition,
By using the ion nitriding method, the nitriding treatment can be performed without forming the compound layer.

【0041】この窒化処理層の厚み、すなわち、この窒
化処理層が形成される上記金型等母材の表面からの深さ
は、50〜500μmがよい。50μm未満では、窒化
処理層の効果を十分に発揮することができない。また、
500μmを越える場合は、この厚さの窒化処理層を形
成させるために著しく長時間の窒化処理が必要となり、
経済的でない。
The thickness of the nitrided layer, that is, the depth from the surface of the base material such as a mold on which the nitrided layer is formed is preferably 50 to 500 μm. If it is less than 50 μm, the effect of the nitriding layer cannot be sufficiently exerted. Also,
In the case where the thickness exceeds 500 μm, nitridation treatment for an extremely long time is required to form a nitridation treatment layer having this thickness.
Not economic.

【0042】この窒化処理層を形成させることにより、
耐熱亀裂性向上という優れた効果がもたらされる。さら
に、この窒化処理層に圧縮残留応力を与えるのがよい。
この圧縮残留応力は、上記と同様のX線回折法で測定す
ることができる。上記金型等母材の表面から深さ10μ
mにわたっての残留応力は、平均値で0.2〜1.5G
Paの圧縮応力がよい。0.2GPa未満の圧縮応力、
又は、引張りの残留応力となっている場合は、熱亀裂の
発生抑制効果が得られにくい。また、1.5GPaを越
えるの圧縮応力の場合は、逆に亀裂発生を促進してしま
う。
By forming this nitrided layer,
An excellent effect of improving heat crack resistance is provided. Further, it is preferable to apply a compressive residual stress to the nitriding layer.
This compressive residual stress can be measured by the same X-ray diffraction method as described above. 10μ depth from the surface of the base material such as the mold
The residual stress over m is 0.2-1.5 G on average
Good compressive stress of Pa. Compressive stress less than 0.2 GPa,
Alternatively, when the residual stress is tensile, it is difficult to obtain the effect of suppressing the occurrence of thermal cracks. On the other hand, when the compressive stress exceeds 1.5 GPa, crack generation is accelerated.

【0043】この発明にかかる表面被膜を有する金型等
の第8の実施形態は、上記第1〜第6の実施形態で使用
される金型等母材、又は、第7の実施形態で使用される
表面に窒化処理層が施された金型等母材の表面と、上記
第1〜第6の実施形態で形成されるいずれかの被膜との
間に、硬質被膜中間層を設けたものである。
The eighth embodiment of the mold having a surface coating according to the present invention is the base material such as the mold used in the first to sixth embodiments or the mold used in the seventh embodiment. A hard coating intermediate layer is provided between the surface of a base material such as a mold having a nitrided layer applied to the surface to be formed and any of the coatings formed in the first to sixth embodiments. It is.

【0044】この硬質被膜中間層は、窒化チタン又は窒
化クロムのいずれかによって形成される。この硬質被膜
中間層を設けることにより、上記の金型等母材と上記被
膜との密着性を向上させることができる。特に、第7の
実施形態で使用される金型等母材を用いる場合、被膜と
の密着性をより向上させることができる。
The hard coating intermediate layer is formed of either titanium nitride or chromium nitride. By providing this hard coating intermediate layer, the adhesion between the base material such as the mold and the coating can be improved. In particular, when the base material such as a mold used in the seventh embodiment is used, the adhesion to the coating can be further improved.

【0045】上記の第1〜第7の実施形態の表面被膜を
有する金型又は鋳型は、耐熱亀裂性及び耐酸化性を合わ
せもった金型又は鋳型なので、これらの金型又は鋳型
を、鉄系部品の温間若しくは熱間鍛造加工用、アルミニ
ウム合金の鋳造用、マグネシウム合金の鋳造若しくはチ
クソ成形用、又は、溶融ガラスの成形用の金型母材又は
鋳型として使用することができる。
The molds or molds having the surface coatings of the first to seventh embodiments are molds or molds having both heat crack resistance and oxidation resistance. It can be used as a mold base material or a mold for warm or hot forging of a system component, for casting of an aluminum alloy, for casting or thixoforming of a magnesium alloy, or for forming molten glass.

【0046】[0046]

【実施例】以下に、この発明の実施例を説明する。な
お、各実施例及び比較例において使用した処理を下記に
示す。
Embodiments of the present invention will be described below. The processing used in each example and comparative example is shown below.

【0047】〔母材表面の窒化処理〕 処理:タフトライド処理 温度550℃、時間30分〜20時間、塩浴中で母材を
保持し、表面に深さ25〜450μmの硬化層を得た。
この表面に生成した深さ5〜10μmの化合物層を研磨
除去し、表面粗さ(Rz)を0.3μm以下とした。
[Nitriding Treatment of Base Material Surface] Treatment: Tuftride treatment The base material was held in a salt bath at a temperature of 550 ° C. for a time period of 30 minutes to 20 hours to obtain a hardened layer having a depth of 25 to 450 μm on the surface.
The compound layer having a depth of 5 to 10 μm formed on this surface was polished and removed, and the surface roughness (Rz) was reduced to 0.3 μm or less.

【0048】処理:イオン窒化処理 温度500℃、時間15分〜2時間、窒素ガス60流量
%、水素ガス40流量%、処理槽内待機圧力2Tor
r、基材(母材)に印加した直流電圧−100V、同高
周波電力(13.56MHz)1000Wの条件で、表
面に40〜150μmの硬化層を得た。この表面には有
害な化合物層は生成しなかったが、プラズマ処理によっ
て荒らされた表面を軽くラッピングし、表面粗さ(R
z)を0.3μm以下とした。
Processing: ion nitriding temperature 500 ° C., time 15 minutes to 2 hours, nitrogen gas 60 flow%, hydrogen gas 40 flow%, standby pressure in processing tank 2 Torr
Under a condition of r, a DC voltage of −100 V applied to the base material (base material), and a high-frequency power (13.56 MHz) of 1000 W, a cured layer of 40 to 150 μm was obtained on the surface. No harmful compound layer was formed on this surface, but the surface roughened by the plasma treatment was lightly wrapped and the surface roughness (R
z) was set to 0.3 μm or less.

【0049】〔被膜の形成〕 処理:(Ti(1-x-y) Crx Aly )N被膜の形成 アークイオンプレーティング法を用いて、目標とする組
成x及びyで決まるチタン−クロム−アルミニウム合金
(Cr組成x、或いはAl組成yは、それぞれ100×
x原子%、100×y原子%)で作製された蒸発源を用
いて、アーク電流100A、基材(母材)温度450
℃、窒素雰囲気中、真空槽内圧力30mTorr、基材
(母材)に印加した直流電圧−200Vの条件で、処理
時間を変えて、厚み0.2〜55μmの(Ti(1-x-y)
Crx Aly )N被膜を形成した。また、基材(母材)
温度或いは基材(母材)に印加した直流電圧を変化させ
て、被膜中の残留応力を変化させたものも用意した。
[0049] [Formation of coating film] process: (Ti (1-xy) Cr x Al y) with the formation of N coatings arc ion plating method, depends on the composition x and y targeted titanium - chromium - aluminum alloy (Cr composition x or Al composition y is 100 ×
(x atomic%, 100 x y atomic%), an arc current of 100 A and a substrate (base material) temperature of 450
C., a nitrogen atmosphere, a vacuum chamber pressure of 30 mTorr, and a DC voltage of -200 V applied to a base material (base material), changing the processing time and changing the processing time to 0.2 to 55 μm thick (Ti (1-xy)
A Cr x Al y ) N coating was formed. The base material (base material)
One in which the residual stress in the coating was changed by changing the temperature or the DC voltage applied to the base material (base material) was also prepared.

【0050】処理:TiN/CrN/AlN積層被膜
の形成 純チタン(不可避不純物を0.5重量%以下を含
む。)、純クロム(不可避不純物を0.5重量%以下を
含む。)、純アルミニウム(不可避不純物を0.5重量
%以下を含む。)のそれぞれで作製された蒸発源を各1
個ずつ用いて、これら3つの蒸発源を真空槽内壁に隣接
するように配置した。3つの蒸発源の中心に回転テーブ
ルを配置し、そこに基材(母材)を取り付けた。アーク
イオンプレーティング法を用いて、それぞれの蒸発源の
アーク電流100A、基材(母材)温度450℃、窒素
雰囲気中、真空槽内圧力30mTorr、基材に印加し
た直流電圧−200V、テーブルの回転数1rpm、処
理時間20分の条件で、厚み約5μmのTiN/CrN
/AlN積層被膜を形成した。積層の繰り返し回数は2
5回であった。また、テーブル回転数を変化させ、積層
の繰り返し回数を9〜500回とした試料も作製した。
Treatment: Formation of TiN / CrN / AlN laminated film Pure titanium (containing 0.5% by weight or less of inevitable impurities), pure chromium (including 0.5% by weight or less of inevitable impurities), pure aluminum (Including 0.5% by weight or less of unavoidable impurities).
These three evaporation sources were used individually and arranged so as to be adjacent to the inner wall of the vacuum chamber. A rotary table was arranged at the center of the three evaporation sources, and a base material (base material) was attached thereto. Using the arc ion plating method, the arc current of each evaporation source was 100 A, the substrate (base material) temperature was 450 ° C., the pressure in the vacuum chamber was 30 mTorr in a nitrogen atmosphere, the DC voltage applied to the substrate was −200 V, and the TiN / CrN having a thickness of about 5 μm under the conditions of a rotation speed of 1 rpm and a processing time of 20 minutes.
/ AlN laminated film was formed. Number of repetitions of lamination is 2
Five times. In addition, samples were prepared in which the number of times of lamination was changed from 9 to 500 by changing the number of rotations of the table.

【0051】処理:窒化チタンアルミニウム/窒化ク
ロム積層被膜の形成 上記の処理に準ずる方法で行った。すなわち、所望の
組成からなるチタンアルミニウム合金(不可避不純物を
0.5重量%以下を含む。)と純クロム(不可避不純物
を0.5重量%以下を含む。)のそれぞれで作製された
蒸発源を各1個ずつ、真空槽内壁に対抗させて設置し
た。テーブルの回転数は0.8rpmとした。その他の
条件は、上記処理に記載の方法と同様であり、厚み5
〜6μmの窒化チタンアルミニウム/窒化クロム積層被
膜を形成した。積層の繰り返し回数は25回であった。
また、テーブル回転数を変化させ、積層の繰り返し回数
を500回としたものも作製した。さらに、積層の繰り
返し回数が1回又は2回のサンプルについては、基材
(母材)をそれぞれの蒸発源の正面で所定の時間静止さ
せて、狙いとする繰り返し回数となるようにした。
Treatment: Formation of Titanium Aluminum Nitride / Chromium Nitride Laminate Film The treatment was carried out according to the above treatment. That is, an evaporation source made of a titanium-aluminum alloy having a desired composition (containing 0.5% by weight or less of unavoidable impurities) and pure chromium (including 0.5% by weight or less of unavoidable impurities) is used. Each one was placed in opposition to the inner wall of the vacuum chamber. The rotation speed of the table was 0.8 rpm. Other conditions are the same as the method described in the above-mentioned treatment,
A titanium-aluminum nitride / chromium nitride laminated film having a thickness of 66 μm was formed. The number of times of lamination was 25 times.
Also, a table was prepared in which the number of times of lamination was changed to 500 times by changing the number of rotations of the table. Further, for the samples in which the number of repetitions of lamination was one or two, the base material (base material) was allowed to stand still for a predetermined time in front of each evaporation source so that the desired number of repetitions was achieved.

【0052】処理:窒化チタンクロム/窒化アルミニ
ウム積層被膜の形成 所望の組成からなるチタンクロム合金(不可避不純物を
0.5重量%以下を含む。)と純アルミニウム(不可避
不純物を0.5重量%以下を含む。)のそれぞれで作製
された蒸発源を用いた以外は、上記処理と同様な方法
を用いて積層被膜を形成した。
Treatment: Formation of titanium chromium nitride / aluminum nitride laminated film A titanium chromium alloy (containing 0.5% by weight or less of inevitable impurities) having a desired composition and pure aluminum (0.5% by weight or less of inevitable impurities) ), Except that the evaporation source prepared in each of the above steps was used, to form a laminated film by the same method as the above-mentioned treatment.

【0053】処理:窒化クロムアルミニウム/窒化チ
タン積層被膜の形成 所望の組成からなるクロムアルミニウム合金(不可避不
純物を0.5重量%以下を含む。)と純チタン(不可避
不純物を0.5重量%以下を含む。)のそれぞれで作製
された蒸発源を用いた以外は、上記処理と同様な方法
を用いて積層被膜を形成した。
Treatment: Formation of Chromium Aluminum Nitride / Titanium Nitride Laminated Coating A chromium aluminum alloy (containing 0.5% by weight or less of inevitable impurities) having a desired composition and pure titanium (0.5% by weight or less of inevitable impurities) ), Except that the evaporation source prepared in each of the above steps was used, to form a laminated film by the same method as the above-mentioned treatment.

【0054】処理:(Ti(1-x-y) Crx Aly )N
傾斜組成被膜の形成 (Ti(1-x1-y1) Crx1Aly1)N→(Ti(1-x2-y2)
Crx2Aly2)N傾斜組成被膜を下記の方法で形成し
た。アークイオンプレーティング法を用いて、目標とす
るx1、y1で決まるチタン−クロム−アルミニウム合
金(Cr組成x1、或いはAl組成y1は、それぞれ1
00×x1原子%、100×y1原子%)で作製された
蒸発源と、x2、y2で決まるチタン−クロム−アルミ
ニウム合金(Cr組成x2、或いはAl組成y2は、そ
れぞれ100×x2原子%、100×y2原子%)で作
製された蒸発源とを、距離300mmの間隔を開けて2
基平行に配置し、アーク電流100A、基材(母材)温
度450℃、窒素雰囲気中、真空槽内圧力30mTor
r、基材(母材)に印加した直流電圧−200V、処理
時間60分の条件で、基材(母材)を2つの蒸発源の間
をゆっくりと平行移動させることにより、厚み2μmの
2段階の(Ti(1-x1-y1) Crx1Aly1)N→(Ti
(1-x2-y2) Crx2Aly2)N傾斜組成被膜を形成した。
Processing: (Ti (1-xy) Cr x Al y ) N
Formation of gradient composition film (Ti (1-x1-y1) Cr x1 Al y1 ) N → (Ti (1-x2-y2)
A Cr x2 Al y2 ) N gradient composition coating was formed by the following method. Using an arc ion plating method, a titanium-chromium-aluminum alloy determined by target x1 and y1 (Cr composition x1 or Al composition y1 is 1
An evaporation source made of 00 × x1 atomic% and 100 × y1 atomic% and a titanium-chromium-aluminum alloy (Cr composition x2 or Al composition y2) determined by x2 and y2 are 100 × x2 atomic% and 100 × 2 atomic%, respectively. × y2 at%) with an evaporation source spaced apart by a distance of 300 mm
Arranged in parallel, arc current 100A, base material (base material) temperature 450 ° C, nitrogen atmosphere, vacuum chamber pressure 30mTorr
r, a DC voltage applied to the base material (base material) of -200 V, a processing time of 60 minutes, and slowly moving the base material (base material) between the two evaporation sources to obtain a 2 μm-thick 2 μm stage of (Ti (1-x1-y1 ) Cr x1 Al y1) N → (Ti
(1-x2-y2) Cr x2 Al y2) forming the N gradient composition film.

【0055】〔硬質被膜中間層の形成〕 処理:TiN被膜又はCrN被膜の形成 処理に準ずる方法で行った。すなわち、チタン又はク
ロムで作製された蒸発源を用いて、処理の方法と同じ
条件で厚み2μmのTiN被膜又はCrN被膜を形成し
た。この方法で硬質被膜中間層を形成したが、この中間
層の上に被膜を設ける場合は、それぞれの被膜の形成に
あたっては、本法に引き続き、上記「〔被膜の形成〕」
の各手法を行うことにより実施した。
[Formation of Hard Coating Intermediate Layer] Treatment: Performed by a method similar to the treatment for forming a TiN coating or a CrN coating. That is, a 2 μm-thick TiN film or CrN film was formed using the evaporation source made of titanium or chromium under the same conditions as the processing method. Although the hard coating intermediate layer was formed by this method, in the case of providing a coating on this intermediate layer, in forming each coating, the above-mentioned "[Formation of coating]"
Each method was performed.

【0056】〔残留応力の測定〕金型等母材の表面近傍
及び被膜の残留応力の測定は、sin2 ψ法によるX線
回折法を用いて実施した。sin2 ψ法におけるψとい
う角度は、X線回折における傾角ψである。材料(母
材)表面の法線を基準にした方位を意味しており、ψ=
0°であれば材料(母材)表面に対する法線の法線の向
きを、ψ=90°であれば材料(母材)表面と平行な向
きを示す。材料表面に平行な向き(ψ=90°)の圧縮
応力は、同じ向きに材料を最も大きく縮ませ、垂直な方
向(ψ=0°)に材料を最も大きく膨らませる。このと
きの材料の膨張・収縮の程度を材料を構成する結晶格子
の面間隔の変化に置き換えると、面間隔の変化(歪み)
とψとは以下のように関係付けられる。 面間隔の変化=(ヤング率とポアソン比で決まる定数)
×応力×sin2 ψ そこで、X線回折時にψを変化させながら特定の結晶面
の格子定数を計測し、sin2 ψを横軸に、面間隔を縦
軸にしてグラフを書くと、測定した点は概ね直線上に乗
る。この直線の傾きは材料固有のヤング率及びポアソン
比で決まる定数と、応力との積であるから、傾きより応
力の値が計算できる。
[Measurement of Residual Stress] The residual stress in the vicinity of the surface of the base material such as a mold and in the coating was measured by the X-ray diffraction method by the sin 2 ψ method. The angle ψ in the sin 2 ψ method is the tilt angle に お け る in X-ray diffraction. It means the direction based on the normal line of the material (base material) surface.
0 ° indicates the direction of the normal to the surface of the material (base material), and ψ = 90 ° indicates the direction parallel to the surface of the material (base material). A compressive stress in a direction parallel to the material surface (ψ = 90 °) causes the material to shrink the most in the same direction and expand the material the most in the perpendicular direction (垂直 = 0 °). If the degree of expansion and contraction of the material at this time is replaced with a change in the plane spacing of the crystal lattice constituting the material, the change in the plane spacing (strain)
And ψ are related as follows. Change in plane spacing = (constant determined by Young's modulus and Poisson's ratio)
× Stress × sin 2 ψ Then, the lattice constant of a specific crystal plane was measured while changing ψ at the time of X-ray diffraction, and a graph was written with sin 2横 as the abscissa and the plane interval as the ordinate. The points are approximately on a straight line. Since the slope of this straight line is the product of the stress and a constant determined by the Young's modulus and Poisson's ratio inherent to the material, the stress value can be calculated from the slope.

【0057】〔実施例及び比較例に使用する試料及び比
較試料の作製〕JIS鋼種SKD61からなるφ40×
h30の円筒形状のブロックを作り、焼き入れ、焼き戻
しによる熱処理を施して、ロックウェルCスケール硬度
52の母材を作製した。この母材のφ40の一方の面を
表面粗さ(Rz)0.3μm以下に研磨した。この母材
の研磨面に、上記の各処理法に従い、表1〜3に記載の
表面処理、被膜形成等を行い、試料1〜30を作製し
た。また、同様にして、比較試料1〜10を作製した。
なお、表1〜3に記載されている母材の残留応力、及
び、被膜の残留応力は、いずれも、上記の測定法により
測定した圧縮応力の値を示す。
[Preparation of Samples and Comparative Samples Used in Examples and Comparative Examples] φ40 × made of JIS steel type SKD61
A block having a cylindrical shape of h30 was formed, and heat treatment was performed by quenching and tempering to prepare a base material having a Rockwell C scale hardness of 52. One surface of φ40 of this base material was polished to a surface roughness (Rz) of 0.3 μm or less. Samples 1 to 30 were prepared by subjecting the polished surface of the base material to the surface treatment and film formation shown in Tables 1 to 3 according to the above-described treatment methods. Similarly, Comparative Samples 1 to 10 were prepared.
In addition, the residual stress of the base material and the residual stress of the coating film shown in Tables 1 to 3 each indicate the value of the compressive stress measured by the above measurement method.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【表3】 [Table 3]

【0061】(実施例1、比較例1)上記各試料及び比
較試料を用い、600℃大気中で60秒間加熱し、次い
で、水中で60秒間急冷する操作を繰り返し、熱負荷を
かけた。この熱負荷サイクルを100回単位で作用させ
た後の被膜表面、又は母材表面の損傷を光学顕微鏡で観
察し、亀裂発生開始サイクル数を評価した。その結果を
表4〜6に示す。表4〜6から明らかなように、本発明
においては、熱亀裂の発生が大幅に抑制されていること
が確認された。
(Example 1, Comparative Example 1) Using each of the above samples and comparative samples, a heat load was applied by repeating the operation of heating at 600 ° C. in the atmosphere for 60 seconds and then rapidly cooling in water for 60 seconds. After the heat load cycle was applied 100 times, damage on the coating surface or the base material surface was observed with an optical microscope, and the number of crack initiation cycles was evaluated. The results are shown in Tables 4 to 6. As is clear from Tables 4 to 6, in the present invention, it was confirmed that generation of thermal cracks was significantly suppressed.

【0062】(実施例2、比較例2)試料1、4、8、
9、14、21、24、28と、比較試料1、3、6、
8に行った各処理を、温間鍛造用の金型パンチ(JIS
鋼種SKH51、ロックウェルCスケール硬度53)に
それぞれ行い、実際に温間鍛造時の金型寿命評価を行っ
た。鍛造時には、金型表面は700℃まで加熱されてい
た。寿命の判定は、被加工材の寸法精度が規定の範囲を
外れた時点とした。寿命評価結果を表4〜6に示す。表
4〜6から明らかなように、本発明においては、金型の
寿命が大きく向上していることが確認された。
Example 2, Comparative Example 2 Samples 1, 4, 8,
9, 14, 21, 24, 28 and comparative samples 1, 3, 6,
8 were converted to warm forging die punches (JIS
For each of the steel types SKH51 and Rockwell C scale hardness 53), the die life evaluation during warm forging was actually performed. During forging, the mold surface was heated to 700 ° C. The life was determined when the dimensional accuracy of the workpiece was out of the specified range. Tables 4 to 6 show the life evaluation results. As is clear from Tables 4 to 6, in the present invention, it was confirmed that the life of the mold was greatly improved.

【0063】(実施例3、比較例3)試料1、4、8、
9、14、21、24、28と、比較試料1、3、6、
8に行った各処理を、アルミニウム合金鋳造用の鋳抜き
ピン(JIS鋼種SKD61、ロックウェルCスケール
硬度51)にそれぞれ行い、実際にアルミニウム合金の
鋳造時の鋳抜きピンの寿命評価を行った。鋳造方法は重
力鋳造とし、鋳抜きピン表面は670℃まで加熱されて
いた。寿命の判定は、被加工材の寸法精度が規定の範囲
を外れた時点とした。寿命評価結果を表4〜6に示す。
表4〜6から明らかなように、本発明においては、鋳抜
きピンの寿命が大きく向上していることが確認された。
Example 3, Comparative Example 3 Samples 1, 4, 8,
9, 14, 21, 24, 28 and comparative samples 1, 3, 6,
Each of the treatments performed in No. 8 was performed on a cast-out pin (JIS steel type SKD61, Rockwell C scale hardness 51) for casting an aluminum alloy, and the life of the cast-out pin when actually casting an aluminum alloy was evaluated. The casting method was gravity casting, and the surface of the cast pin was heated to 670 ° C. The life was determined when the dimensional accuracy of the workpiece was out of the specified range. Tables 4 to 6 show the life evaluation results.
As is clear from Tables 4 to 6, in the present invention, it was confirmed that the life of the cast pin was greatly improved.

【0064】(実施例4、比較例4)試料1、4、8、
9、14、21、24、28と、比較試料1、3、6、
8に行った各処理を、超硬合金製のガラスレンズ成形金
型、又は、アルミナ−炭化チタン系セラミックス製のガ
ラスレンズ成形金型にそれぞれ行い、実際にガラスレン
ズの成形を行った。但し、金型母材には窒化処理が適用
できなかったので、被膜部のみに上記の各処理を適用し
た。成形方法は、プレス成形とし、金型表面のうちガラ
ス素材が最初に接触する部位は800℃まで加熱されて
いた。各種試作品の評価においては、離型性が低下して
継続使用ができなくなったときを金型の寿命と定めた。
結果を表4〜6に示す。表4〜6から明らかなように、
本発明においては、金型寿命が大幅に伸びることが確認
された。
Example 4, Comparative Example 4 Samples 1, 4, 8,
9, 14, 21, 24, 28 and comparative samples 1, 3, 6,
Each of the treatments performed in No. 8 was performed on a glass lens molding die made of cemented carbide or a glass lens molding die made of alumina-titanium carbide ceramics, and glass lenses were actually molded. However, since the nitriding treatment could not be applied to the mold base material, each of the above treatments was applied only to the coating portion. The molding method was press molding, and the portion of the mold surface where the glass material first contacted was heated to 800 ° C. In the evaluation of various prototypes, the mold life was defined as the time when the mold release property was reduced and continuous use was impossible.
The results are shown in Tables 4 to 6. As is clear from Tables 4 to 6,
In the present invention, it was confirmed that the life of the mold was greatly extended.

【0065】(実施例5、比較例5)試料1、4、8、
9、14、21、24、28と、比較試料1、3、6、
8に行った各処理をマグネシウム合金のチクソ成形金型
(JIS鋼種SKD61、ロックウェルCスケール硬度
51)にそれぞれ行い、実際にチクソ成形を行った時の
金型寿命評価を行った。成形方法はマグネシウム合金
(AZ91D)を580℃に加熱して半溶融状態にし、
250℃に保たれた金型内部に射出成形する「チクソ成
形法」を採用した。金型表面には毎ショット毎に離型剤
をスプレー塗付した。各種試作品の評価は、金型表面に
マグネシウム合金が焼き付き、継続して成形が困難にな
ったときを金型の寿命と定めた。結果を表4〜6に示
す。表4〜6から明らかなように、本発明品において
は、金型寿命が大幅に伸びることが確認された。
Example 5, Comparative Example 5 Samples 1, 4, 8,
9, 14, 21, 24, 28 and comparative samples 1, 3, 6,
8 were performed on magnesium alloy thixomolding dies (JIS steel type SKD61, Rockwell C scale hardness 51), and the mold life when thixomolding was actually performed was evaluated. The forming method is to heat the magnesium alloy (AZ91D) to 580 ° C to make it a semi-molten state,
The "thixo molding method" in which injection molding was performed inside a mold kept at 250 ° C was adopted. The mold surface was spray-coated with a release agent every shot. The evaluation of various prototypes was defined as the life of the mold when the magnesium alloy was seized on the surface of the mold and molding became difficult continuously. The results are shown in Tables 4 to 6. As is clear from Tables 4 to 6, it was confirmed that in the product of the present invention, the mold life was significantly extended.

【0066】[0066]

【表4】 [Table 4]

【0067】[0067]

【表5】 [Table 5]

【0068】[0068]

【表6】 [Table 6]

【0069】[0069]

【発明の効果】この発明によれば、耐熱亀裂性及び耐酸
化性に優れた被膜を有する金型又は鋳型が得られ、金型
又は鋳型の表面の酸化による損傷や疲労亀裂を抑制する
ことができる。これにより、金型又は鋳型の寿命向上が
達成できる。
According to the present invention, a mold or a mold having a coating excellent in heat crack resistance and oxidation resistance can be obtained, and damage and fatigue cracks due to oxidation of the surface of the mold or the mold can be suppressed. it can. Thereby, the life of the mold or the mold can be improved.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 超硬合金、セラミックス、鋼又は鋳鉄か
らなる金型母材又は鋳型母材の表面に、(Ti(1-x-y)
Crx Aly )N(式中、x及びyは、0.02≦x<
1.0、0.02≦y≦0.7を満たす値である。)に
よって構成され、その膜厚が0.3〜50μmで、残留
応力の平均値が0.5〜8GPaの圧縮応力である被膜
が形成された表面被膜を有する金型又は鋳型。
1. The surface of a mold base material or a mold base material made of cemented carbide, ceramics, steel or cast iron, is provided with (Ti (1-xy)
Cr x Al y ) N (where x and y are 0.02 ≦ x <
1.0, 0.02 ≦ y ≦ 0.7. A) a mold or a mold having a surface film formed with a film having a thickness of 0.3 to 50 μm and a compressive stress having an average residual stress of 0.5 to 8 GPa.
【請求項2】 上記被膜は、上記の金型母材又は鋳型母
材の表面から被膜表面に向けて、連続的又は段階的にC
r又はAlの組成比を増大させた組成の被膜である請求
項1に記載の表面被膜を有する金型又は鋳型。
2. The method according to claim 1, wherein the coating is formed continuously or stepwise from the surface of the mold base material or the mold base material toward the coating surface.
The mold or the mold having a surface coating according to claim 1, which is a coating having a composition in which the composition ratio of r or Al is increased.
【請求項3】 超硬合金、セラミックス、鋼又は鋳鉄か
らなる金型母材又は鋳型母材の表面に、窒化チタン、窒
化クロム及び窒化アルミニウムの薄層が交互に少なくと
も10回繰り返して積層され、その膜厚が0.3〜50
μmで、残留応力の平均値が0.5〜8GPaの圧縮応
力である被膜が形成された表面被膜を有する金型又は鋳
型。
3. A thin layer of titanium nitride, chromium nitride and aluminum nitride is alternately and repeatedly laminated at least 10 times on a surface of a mold base material or a mold base material made of cemented carbide, ceramics, steel or cast iron, Its film thickness is 0.3-50
A mold or a mold having a surface coating formed with a coating having a compressive stress of 0.5 to 8 GPa with an average residual stress of 0.5 to 8 GPa.
【請求項4】 超硬合金、セラミックス、鋼又は鋳鉄か
らなる金型母材又は鋳型母材の表面に、窒化チタンアル
ミニウム及び窒化クロムの薄層が交互に1回又は少なく
とも2回繰り返して積層され、その膜厚が0.3〜50
μmで、残留応力の平均値が0.5〜8GPaの圧縮応
力である被膜が形成された表面被膜を有する金型又は鋳
型。
4. Thin layers of titanium aluminum nitride and chromium nitride are alternately and repeatedly laminated at least once or twice on the surface of a mold base material or a mold base material made of cemented carbide, ceramics, steel or cast iron. Whose thickness is 0.3 to 50
A mold or a mold having a surface coating formed with a coating having a compressive stress of 0.5 to 8 GPa with an average residual stress of 0.5 to 8 GPa.
【請求項5】 超硬合金、セラミックス、鋼又は鋳鉄か
らなる金型母材又は鋳型母材の表面に、窒化チタンクロ
ム及び窒化アルミニウムの薄層が交互に少なくとも10
回繰り返して積層され、その膜厚が0.3〜50μm
で、残留応力の平均値が0.5〜8GPaの圧縮応力で
ある被膜が形成された表面被膜を有する金型又は鋳型。
5. A thin layer of titanium chromium nitride and aluminum nitride alternately having a thickness of at least 10 on the surface of a mold base material or a mold base material made of cemented carbide, ceramics, steel or cast iron.
Times, and the thickness is 0.3 to 50 μm
A mold or a mold having a surface coating on which a coating having an average residual stress of 0.5 to 8 GPa is formed.
【請求項6】 超硬合金、セラミックス、鋼又は鋳鉄か
らなる金型母材又は鋳型母材の表面に、窒化クロムアル
ミニウム及び窒化チタンの薄層が交互に1回又は少なく
とも2回繰り返して積層され、その膜厚を0.3〜50
μmで、残留応力の平均値が0.5〜8GPaの圧縮応
力である被膜が形成された表面被膜を有する金型又は鋳
型。
6. A thin layer of chromium aluminum nitride and titanium nitride is alternately and repeatedly laminated once or at least twice on the surface of a mold base material or a mold base material made of cemented carbide, ceramics, steel or cast iron. , The thickness of which is 0.3 to 50
A mold or a mold having a surface coating formed with a coating having a compressive stress of 0.5 to 8 GPa with an average residual stress of 0.5 to 8 GPa.
【請求項7】 鋼又は鋳鉄からなる金型母材又は鋳型母
材の表面に、窒素を拡散浸透させることにより、厚みが
50〜500μmで、上記表面から深さ10μmにわた
っての残留応力の平均値が0.2〜1.5GPaの圧縮
応力である窒化処理層を形成してなる請求項1乃至6の
いずかに記載の表面被膜を有する金型又は鋳型。
7. An average value of residual stress over a thickness of 50 to 500 μm and a depth of 10 μm from the surface by diffusing and infiltrating nitrogen into the surface of a mold base material or a mold base material made of steel or cast iron. The mold or the mold having a surface coating according to any one of claims 1 to 6, wherein a nitrided layer having a compressive stress of 0.2 to 1.5 GPa is formed.
【請求項8】 上記金型母材又は鋳型母材と上記被膜と
の間に、窒化チタン又は窒化クロムのいずれかによって
形成される硬質被膜中間層が設けられる請求項1乃至7
のいずれかに記載の表面被膜を有する金型又は鋳型。
8. A hard coating intermediate layer formed of either titanium nitride or chromium nitride is provided between the mold base material or the mold base material and the coating.
A mold or a mold having the surface coating according to any one of the above.
【請求項9】 請求項1〜8のいずれかに記載の表面被
膜を有する金型又は鋳型を用いて形成される、鉄系部品
の温間若しくは熱間鍛造加工用、アルミニウム合金の鋳
造用、マグネシウム合金の鋳造若しくはチクソ成形用、
又は、溶融ガラスの成形用の金型又は鋳型。
9. For hot or hot forging of an iron-based part, for casting of an aluminum alloy, formed by using a mold or a mold having the surface coating according to any one of claims 1 to 8. For magnesium alloy casting or thixoforming,
Alternatively, a mold or a mold for forming molten glass.
JP10205376A 1998-07-21 1998-07-21 Die or mold having surface film Pending JP2000038653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10205376A JP2000038653A (en) 1998-07-21 1998-07-21 Die or mold having surface film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10205376A JP2000038653A (en) 1998-07-21 1998-07-21 Die or mold having surface film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008030709A Division JP2008150712A (en) 2008-02-12 2008-02-12 Die or mold having surface coating film

Publications (1)

Publication Number Publication Date
JP2000038653A true JP2000038653A (en) 2000-02-08

Family

ID=16505812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10205376A Pending JP2000038653A (en) 1998-07-21 1998-07-21 Die or mold having surface film

Country Status (1)

Country Link
JP (1) JP2000038653A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219723A2 (en) * 2000-12-28 2002-07-03 Kabushiki Kaisha Kobe Seiko Sho Hard film for cutting tools
JP2003010958A (en) * 2001-06-28 2003-01-15 Mitsui Mining & Smelting Co Ltd Mold for die cast molding, die cast molding method, and molded product
US6794064B2 (en) * 2001-11-28 2004-09-21 Metaplas Ionon Oberflaechenveredelungstechnik Gmbh Hard coating coated parts
GB2408712B (en) * 2002-10-30 2006-02-01 Honda Motor Co Ltd Mold for casting and method of surface treatment thereof
JP2008174782A (en) * 2007-01-17 2008-07-31 Kobe Steel Ltd Molding tool and hard-film-coated member therefor
JP2008240157A (en) * 2008-04-21 2008-10-09 Kobe Steel Ltd Hard coating film-coated member for molding tool, and molding tool
JP2010202926A (en) * 2009-03-03 2010-09-16 Toyo Advanced Technologies Co Ltd Spheroidal graphite cast iron material having hard film, die for press, and method for manufacturing spheroidal graphite cast iron material having hard film
US7947363B2 (en) * 2007-12-14 2011-05-24 Kennametal Inc. Coated article with nanolayered coating scheme
WO2012069475A1 (en) 2010-11-23 2012-05-31 Seco Tools Ab Coated cutting tool insert
CN106734918A (en) * 2016-12-12 2017-05-31 重庆市合川区银窝铸造厂 One kind is for casting superhigh temperature metalwork casting mould production technology
KR101822810B1 (en) 2015-11-20 2018-01-29 쎄코 툴스 에이비 Coated cutting tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598422A (en) * 1991-04-04 1993-04-20 Sumitomo Electric Ind Ltd Continuous treatment for ion nitriding-ceramic coating
JPH07133111A (en) * 1993-11-08 1995-05-23 Sumitomo Electric Ind Ltd Ultra-thin film laminated body
JPH08209337A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JPH08296064A (en) * 1995-04-24 1996-11-12 Sumitomo Metal Mining Co Ltd Article coated with oxidation and wear resistant film
JPH09256138A (en) * 1996-03-19 1997-09-30 Kobe Steel Ltd Titanium-base alloy member excellent in oxidation resistance and wear resistance
JPH09295204A (en) * 1996-04-26 1997-11-18 Hitachi Tool Eng Ltd Surface coating throw away insert

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598422A (en) * 1991-04-04 1993-04-20 Sumitomo Electric Ind Ltd Continuous treatment for ion nitriding-ceramic coating
JPH07133111A (en) * 1993-11-08 1995-05-23 Sumitomo Electric Ind Ltd Ultra-thin film laminated body
JPH08209337A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JPH08296064A (en) * 1995-04-24 1996-11-12 Sumitomo Metal Mining Co Ltd Article coated with oxidation and wear resistant film
JPH09256138A (en) * 1996-03-19 1997-09-30 Kobe Steel Ltd Titanium-base alloy member excellent in oxidation resistance and wear resistance
JPH09295204A (en) * 1996-04-26 1997-11-18 Hitachi Tool Eng Ltd Surface coating throw away insert

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219723A3 (en) * 2000-12-28 2002-09-04 Kabushiki Kaisha Kobe Seiko Sho Hard film for cutting tools
US6824601B2 (en) 2000-12-28 2004-11-30 Kobe Steel, Ltd. Hard film for cutting tools, cutting tool coated with hard film, process for forming hard film, and target used to form hard film
AU780899B2 (en) * 2000-12-28 2005-04-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Hard film for cutting tools, cutting tool coated with hard film, process for forming hard film, and target used to form hard film
EP1702997A2 (en) * 2000-12-28 2006-09-20 Kabushiki Kaisha Kobe Seiko Sho Hard film for cutting tools
EP1702997A3 (en) * 2000-12-28 2006-11-29 Kabushiki Kaisha Kobe Seiko Sho Hard film for cutting tools
EP1219723A2 (en) * 2000-12-28 2002-07-03 Kabushiki Kaisha Kobe Seiko Sho Hard film for cutting tools
JP2003010958A (en) * 2001-06-28 2003-01-15 Mitsui Mining & Smelting Co Ltd Mold for die cast molding, die cast molding method, and molded product
US6794064B2 (en) * 2001-11-28 2004-09-21 Metaplas Ionon Oberflaechenveredelungstechnik Gmbh Hard coating coated parts
US7600556B2 (en) 2002-10-30 2009-10-13 Honda Motor Co., Ltd. Mold for casting and method of surface treatment thereof
GB2408712B (en) * 2002-10-30 2006-02-01 Honda Motor Co Ltd Mold for casting and method of surface treatment thereof
US8043728B2 (en) 2007-01-17 2011-10-25 Kobe Steel, Ltd. Hard coating film for forming tool and forming tool
JP4668214B2 (en) * 2007-01-17 2011-04-13 株式会社神戸製鋼所 Mold for molding
JP2008174782A (en) * 2007-01-17 2008-07-31 Kobe Steel Ltd Molding tool and hard-film-coated member therefor
US7947363B2 (en) * 2007-12-14 2011-05-24 Kennametal Inc. Coated article with nanolayered coating scheme
JP2008240157A (en) * 2008-04-21 2008-10-09 Kobe Steel Ltd Hard coating film-coated member for molding tool, and molding tool
JP2010202926A (en) * 2009-03-03 2010-09-16 Toyo Advanced Technologies Co Ltd Spheroidal graphite cast iron material having hard film, die for press, and method for manufacturing spheroidal graphite cast iron material having hard film
WO2012069475A1 (en) 2010-11-23 2012-05-31 Seco Tools Ab Coated cutting tool insert
US9180522B2 (en) 2010-11-23 2015-11-10 Seco Tools Ab Coated cutting tool insert
KR101822810B1 (en) 2015-11-20 2018-01-29 쎄코 툴스 에이비 Coated cutting tool
CN106734918A (en) * 2016-12-12 2017-05-31 重庆市合川区银窝铸造厂 One kind is for casting superhigh temperature metalwork casting mould production technology

Similar Documents

Publication Publication Date Title
JP4311803B2 (en) Surface coating mold and manufacturing method thereof
US20140044944A1 (en) Coating material for aluminum die casting mold and method of manufacturing the coating material
JP4513058B2 (en) Casting parts
Birol et al. Thermal cycling of AlTiN-and AlTiON-coated hot work tool steels at elevated temperatures
JP2000038653A (en) Die or mold having surface film
JP2008080352A (en) Hard material coated die for plastic working having excellent durability
HU219541B (en) Aluminium-mould, process its and apparate for making this process
EP3006601B1 (en) Method for manufacturing mold for cold working use
JP6274317B2 (en) Manufacturing method of die casting coating mold
JP3154403B2 (en) Coating mold
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JP4481463B2 (en) High hardness corrosion resistant alloy member and manufacturing method thereof
JP2823169B2 (en) Coil spring and its manufacturing method
JP2012183548A (en) Die for die casting
JP2008150712A (en) Die or mold having surface coating film
JP5389474B2 (en) Spheroidal graphite cast iron material having hard coating, press mold, and method for producing spheroidal graphite cast iron material having hard coating
JP2004052094A (en) Sputtering target, hard coating, and hard-coated member
JP3029642B2 (en) Casting molds or molten metal fittings with excellent erosion resistance to molten metal
JPH11197762A (en) Die
JP4411594B2 (en) Cold working mold
JP4883400B2 (en) Casting parts
JP2011147946A (en) Warm/hot forging die and method of manufacturing the same
JPH1190611A (en) Die for die casting and manufacture thereof
JP4097074B2 (en) Method for forming chromium nitride film
WO2019039225A1 (en) Aluminum die-casting mold part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603