JP6274317B2 - Manufacturing method of die casting coating mold - Google Patents
Manufacturing method of die casting coating mold Download PDFInfo
- Publication number
- JP6274317B2 JP6274317B2 JP2016544231A JP2016544231A JP6274317B2 JP 6274317 B2 JP6274317 B2 JP 6274317B2 JP 2016544231 A JP2016544231 A JP 2016544231A JP 2016544231 A JP2016544231 A JP 2016544231A JP 6274317 B2 JP6274317 B2 JP 6274317B2
- Authority
- JP
- Japan
- Prior art keywords
- coating
- hard
- film
- hard film
- smoothing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims description 125
- 239000011248 coating agent Substances 0.000 title claims description 123
- 238000004512 die casting Methods 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000009499 grossing Methods 0.000 claims description 59
- 239000000463 material Substances 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 48
- 239000000758 substrate Substances 0.000 claims description 46
- 238000007733 ion plating Methods 0.000 claims description 15
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 claims description 5
- 230000003746 surface roughness Effects 0.000 description 29
- 230000000052 comparative effect Effects 0.000 description 26
- 230000003628 erosive effect Effects 0.000 description 20
- 238000005498 polishing Methods 0.000 description 20
- 238000002844 melting Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- 150000004767 nitrides Chemical class 0.000 description 18
- 230000003287 optical effect Effects 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- 239000011651 chromium Substances 0.000 description 15
- 229910001873 dinitrogen Inorganic materials 0.000 description 15
- 239000012495 reaction gas Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 238000005121 nitriding Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 6
- 239000010432 diamond Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910001315 Tool steel Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052752 metalloid Inorganic materials 0.000 description 4
- 150000002738 metalloids Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005422 blasting Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 ferrous metals Chemical class 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 101000794020 Homo sapiens Bromodomain-containing protein 8 Proteins 0.000 description 1
- 101001006782 Homo sapiens Kinesin-associated protein 3 Proteins 0.000 description 1
- 101000615355 Homo sapiens Small acidic protein Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- WGKGADVPRVLHHZ-ZHRMCQFGSA-N N-[(1R,2R,3S)-2-hydroxy-3-phenoxazin-10-ylcyclohexyl]-4-(trifluoromethoxy)benzenesulfonamide Chemical compound O[C@H]1[C@@H](CCC[C@@H]1N1C2=CC=CC=C2OC2=C1C=CC=C2)NS(=O)(=O)C1=CC=C(OC(F)(F)F)C=C1 WGKGADVPRVLHHZ-ZHRMCQFGSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102100021255 Small acidic protein Human genes 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/06—Permanent moulds for shaped castings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/22—Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C3/00—Selection of compositions for coating the surfaces of moulds, cores, or patterns
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
本発明は、鋼やアルミニウム、マグネシウム、亜鉛、それらの合金に代表される各種の鉄・非鉄金属の鋳造、特にはアルミニウムやその合金の鋳造に用いられる、アークイオンプレーティング法で硬質皮膜を被覆するダイカスト用被覆金型の製造方法に関する。 The present invention coats a hard film by arc ion plating, which is used for casting of various ferrous and non-ferrous metals represented by steel, aluminum, magnesium, zinc and alloys thereof, and particularly for casting of aluminum and alloys thereof. The present invention relates to a method for manufacturing a die casting coating mold.
近年、ダイカスト製品の軽量化、高性能化、用途の多様化等に伴って、その製品寸法形状に対する金型の精度、そして金型表面に負荷される熱応力条件は、年々厳しくなっており、金型寿命が不安定化する傾向にある。ダイカスト用金型の表面には、溶融金属による加熱と、離型剤の噴霧による冷却を繰り返して受けることで、熱応力による疲労クラックが発生する。また同時に、溶融金属と接することで、金型表面では溶損や焼付きが発生する。 In recent years, with the weight reduction, high performance, and diversification of applications of die-cast products, the accuracy of the mold for the product dimensions and the thermal stress conditions applied to the mold surface have become stricter year by year. The mold life tends to become unstable. Fatigue cracks due to thermal stress are generated on the surface of the die casting mold by repeatedly receiving heating by molten metal and cooling by spraying a release agent. At the same time, contact with the molten metal causes melting and seizure on the mold surface.
そこで、このような課題を防止又は抑制するために、窒化物、炭窒化物、酸窒化物、酸化物等の硬質皮膜を被覆したダイカスト用被覆金型が提案されている。被覆手段の中でもアークイオンプレーティング法は基材への熱的負荷が小さいため金型の変寸が少なく、硬質皮膜の密着性にも優れることから有効である。 Therefore, in order to prevent or suppress such problems, a die casting coating mold in which a hard film such as a nitride, carbonitride, oxynitride, or oxide is coated has been proposed. Among the coating means, the arc ion plating method is effective because the thermal load on the base material is small, so that the size of the mold is small and the adhesion of the hard film is excellent.
例えば、特許文献1では、アークイオンプレーティング法でCrの窒化物を単層で被覆することが提案されている。特許文献2では、イオンプレーティング法で金属または合金と、炭化物、窒化物、酸化物、あるいは炭窒化物を積層させることが提案されている。また、引用文献3では、化学的に安定な酸化物皮膜を適用することが開示されており、具体的にはアークイオンプレーティング法でCrの酸化物の上にAlCrの酸化物を設けることが提案されている。
For example, Patent Document 1 proposes to coat a single layer of Cr nitride by an arc ion plating method.
本発明者は、皮膜の密着性に優れるアークイオンプレーティング法で被覆処理したダイカスト用被覆金型であっても、局所的な溶損や焼付きが発生することを確認した。そして、ダイカスト用被覆金型における溶損や焼付きの発生原因を検討したところ、硬質皮膜に含まれるドロップレットやパーティクル等の凹凸を起点とするボイド等の隙間欠陥により、局所的な溶損や焼付きが発生していることを確認した。 The present inventor has confirmed that local melting damage and seizure occur even in a die casting coating die coated by an arc ion plating method having excellent coating adhesion. Then, when the cause of the occurrence of melting damage or seizure in the die casting coating mold was examined, local defects such as voids and voids starting from irregularities such as droplets and particles contained in the hard coating, It was confirmed that seizure occurred.
本発明の目的は上記の課題に鑑み、溶融金属に対する耐溶損性および耐焼付き性に優れたダイカスト用被覆金型の製造方法を提供することである。 In view of the above-described problems, an object of the present invention is to provide a method for manufacturing a die casting coating mold having excellent resistance to erosion and seizure against molten metal.
本発明は、ダイカスト用金型の基材の表面にアークイオンプレーティング法で硬質皮膜を被覆するダイカスト用被覆金型の製造方法であって、基材の表面にアークイオンプレーティング法で第1の硬質皮膜を被覆する工程と、その第1の硬質皮膜の表面を平滑化処理する工程と、その平滑化処理された第1の硬質皮膜の上にアークイオンプレーティング法で第2の硬質皮膜を被覆する工程とを有するダイカスト用被覆金型の製造方法である。
ここで平滑化処理は、ボンバード処理であることが好ましい。
本発明のダイカスト用被覆金型の製造方法において、第1の硬質皮膜または第2の硬質皮膜は、クロム系窒化物であることが好ましい。
また、本発明のダイカスト用被覆金型の製造方法において、第2の硬質皮膜は、少なくとも2層以上の多層構造を有することが好ましい。The present invention is a method of manufacturing a die casting coating mold in which a hard film is coated on the surface of a die casting mold base material by an arc ion plating method. Coating the hard film, smoothing the surface of the first hard film, and applying the second hard film by arc ion plating on the smoothed first hard film Is a method for manufacturing a die casting coating mold.
Here, the smoothing process is preferably a bombard process.
In the method for manufacturing a die casting coating mold according to the present invention, the first hard film or the second hard film is preferably a chromium nitride.
In the method for manufacturing a die casting coating mold according to the present invention, the second hard coating preferably has a multilayer structure of at least two layers.
本発明によれば、アルミニウム等の溶融金属に対して、優れた耐溶損性および耐焼付き性を発揮できるダイカスト用被覆金型を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the coating metal mold | die for die-casting which can exhibit the outstanding fusing resistance and seizure resistance with respect to molten metals, such as aluminum, can be provided.
本発明者は、ダイカスト用被覆金型の局所的な溶損や焼付を低減するには、アークイオンプレーティング法による硬質皮膜の被覆処理の途中に平滑化処理を設けることが有効であることを見出して、本発明に到達した。 The present inventor has found that it is effective to provide a smoothing process in the middle of the coating process of the hard film by the arc ion plating method in order to reduce local melting damage and seizure of the coating mold for die casting. As a result, the present invention has been reached.
本発明者は、硬質皮膜の内部に含まれるドロップレットやパーティクルが原因となり、局所的な溶損や焼付きが発生することを確認した。そして、最表面の硬質皮膜を平滑化処理するだけでは、皮膜内部に含まれるドロップレットやパーティクルを起点とする欠陥は除去することができず、ダイカスト用金型の溶損や焼付きを抑制することはできないことを確認した。そして、ダイカスト用金型の溶損や焼付きを抑制するためには、硬質皮膜の形成の途中に平滑化処理を設けることが有効であることを知見した。
本発明では、第1の硬質皮膜をアークイオンプレーティング法で被覆し、その表面を平滑化処理する。第1の硬質皮膜の表面を平滑化処理することで皮膜の表面にあるドロップレットやパーティクル等に起因した表面の凹凸をならして平滑にすることができる。そして、第1の硬質皮膜の表面を平滑化処理した後には、第2の硬質皮膜をアークイオンプレーティング法で被覆することが重要である。平滑化処理された第1の硬質皮膜の上にアークイオンプレーティング法で第2の硬質皮膜を被覆することで、第1の硬質皮膜の表面に存在する平滑化処理痕に起因する微細な凹凸も埋められるようになり、硬質皮膜の全体に含まれるドロップレットやパーティクル等を起点にする表面の凹凸が低減し、局所的な溶損や焼付きを抑制することができる。The present inventor has confirmed that local melting damage and seizure occur due to droplets and particles contained in the hard coating. And by simply smoothing the hard coating on the outermost surface, defects starting from droplets and particles contained in the coating cannot be removed, and melting and seizure of the die casting mold are suppressed. I confirmed that I can't. And in order to suppress the melting loss and seizure of the die-casting die, it has been found that it is effective to provide a smoothing treatment during the formation of the hard coating.
In the present invention, the first hard coating is coated by an arc ion plating method, and the surface thereof is smoothed. By smoothing the surface of the first hard film, the surface unevenness caused by droplets or particles on the surface of the film can be smoothed and smoothed. Then, after the surface of the first hard film is smoothed, it is important to coat the second hard film by the arc ion plating method. By coating the second hard film on the surface of the first hard film by the arc ion plating method on the first hard film that has been smoothed, fine irregularities caused by the smoothing process traces present on the surface of the first hard film As a result, the surface irregularities starting from the droplets and particles contained in the entire hard coating are reduced, and local melting and seizure can be suppressed.
本発明において、上記の「平滑化処理」とは、機械的研磨、ボンバード処理等のように、硬質皮膜の表面の表面粗さの数値を小さくする処理をいう。 上記の表面粗さのパラメータには、JIS−B−0601−2001に準拠する算術平均粗さRa、および、最大高さRzを用いることができる。そして、上記の平滑化処理により、第1の硬質皮膜の表面の算術平均粗さRaを0.05μm以下、最大高さRzを1.00μm以下にすることが好ましく、Rzを0.50μm以下にすることがより好ましい。 In the present invention, the above-mentioned “smoothing treatment” refers to a treatment for reducing the surface roughness value of the surface of the hard coating, such as mechanical polishing, bombardment treatment or the like. As the surface roughness parameter, arithmetic average roughness Ra and maximum height Rz based on JIS-B-0601-2001 can be used. And by said smoothing process, it is preferable to make arithmetic mean roughness Ra of the surface of a 1st hard film into 0.05 micrometer or less, maximum height Rz to 1.00 micrometers or less, and Rz to 0.50 micrometers or less. More preferably.
ボンバード処理はアルゴン等のガスを用いたボンバード処理や、金属イオンを用いたボンバード処理を適用することができる。ボンバード処理を適用すれば、同一炉内で連続的に処理できるので、後述する機械的研磨よりも好ましい。
但し、ボンバード処理の時間が長くなり過ぎると、第1の硬質皮膜の表面に凹凸が多くなり、耐溶損性が低下する傾向にある。より優れた耐溶損性を発揮するためには、ボンバード処理は、処理時間を40分以下とすることが好ましい。更に好ましくは30分以下である。但し、処理時間が短くなり過ぎれば、耐溶損性を向上させる効果が得られ難い。そのため、ボンバード処理は、処理時間を5分以上とすることが好ましい。更には、10分以上とすることが好ましい。
ガスボンバード処理は、基材に印加する負のバイアス電圧を−700V以上−400V以下で実施することが好ましい。基材に印加する負のバイアス電圧が−400Vより大きく(−400Vよりもプラス側)なると、第1の硬質皮膜の平滑化が十分でないため耐溶損性および耐焼付き性が低下する傾向にある。また、基材に印加する負のバイアス電圧が−700Vより小さく(−700Vよりもマイナス側)なると、第1の硬質皮膜の表面に凹凸が多く形成され易くなり耐溶損性および耐焼付き性が低下する傾向にある。For the bombardment treatment, a bombardment treatment using a gas such as argon or a bombardment treatment using metal ions can be applied. If bombarding is applied, it can be continuously processed in the same furnace, which is preferable to mechanical polishing described later.
However, if the bombardment time is too long, the surface of the first hard coating becomes uneven, and the melt resistance tends to decrease. In order to exhibit better resistance to erosion, the bombardment treatment is preferably performed for 40 minutes or less. More preferably, it is 30 minutes or less. However, if the treatment time becomes too short, it is difficult to obtain the effect of improving the melt resistance. Therefore, it is preferable that the bombarding process has a processing time of 5 minutes or longer. Furthermore, it is preferable to set it as 10 minutes or more.
The gas bombardment treatment is preferably performed at a negative bias voltage applied to the substrate of −700 V or more and −400 V or less. When the negative bias voltage applied to the substrate is larger than −400 V (plus side from −400 V), the first hard coating is not sufficiently smoothed, so that the melt resistance and seizure resistance tend to decrease. In addition, when the negative bias voltage applied to the substrate is smaller than −700 V (minus side than −700 V), many irregularities are easily formed on the surface of the first hard film, and the resistance to fusing and seizure is lowered. Tend to.
一方、ドロップレットに起因する表面の凹凸を解消して平滑な表面状態にするためには、次のような機械的研磨が有効である。
(1)ダイヤモンドペースト等の研磨剤を保持した研磨布で硬質皮膜の表面を磨く方法
(2)ダイヤモンド粒子と含水した研磨剤を用い、基材に被覆された皮膜に高速で滑走させて、発生する摩擦力によって磨く、いわゆるエアロラップ(登録商標)等による研磨方法
(3)エアーを使用せずに弾性と粘着性を持った研磨剤を噴射することで磨く、いわゆるスマップ(SMAP)(亀井鉄工所製の鏡面ショットマシンである)等による研磨方法
さらに、これらの機械的研磨の後には3μm以下のダイヤモンドペースト磨きをすることで、より好ましい平滑化が実現できる。
第1の硬質皮膜の表面を機械的研磨するためには、第1の硬質皮膜を被覆後に試料を炉内から取出す必要がある。第1の硬質皮膜を機械的研磨により平滑化処理した後に、試料を炉内に戻して第2の硬質皮膜を被覆すればよい。
機械的研磨はより平滑な表面状態を達成でき、耐溶損性および耐焼付き性を向上させるのに好ましい。On the other hand, the following mechanical polishing is effective in order to eliminate the surface irregularities caused by the droplets and to obtain a smooth surface state.
(1) A method of polishing the surface of a hard film with a polishing cloth holding an abrasive such as diamond paste (2) Using diamond particles and a water-containing abrasive, sliding the film coated on the substrate at a high speed to generate Polishing by so-called aero lapping (registered trademark), etc. (3) Polishing by spraying abrasives with elasticity and adhesion without using air, so-called SMAP (Kamei Iron Works) Further, a more preferable smoothing can be realized by polishing the diamond paste of 3 μm or less after the mechanical polishing.
In order to mechanically polish the surface of the first hard film, it is necessary to remove the sample from the furnace after coating the first hard film. After the first hard film is smoothed by mechanical polishing, the sample may be returned to the furnace to cover the second hard film.
Mechanical polishing can achieve a smoother surface state and is preferable for improving the resistance to erosion and seizure.
本発明の第1の硬質皮膜および第2の硬質皮膜には、窒化物、炭化物、炭窒化物、炭酸窒化物、酸窒化物、酸化物を適用することができる。
本発明において、第1の硬質皮膜および第2の硬質皮膜は単層であってもよいが、多層構造とすることが好ましい。第2の硬質皮膜を多層構造とすることで、第2の硬質皮膜に優れた機械的特性を付加することができる。例えば、密着性に優れるクロム系窒化物と、このクロム系窒化物にSi、Bなどの第3元素を加えたクロム系窒化物等を積層させることで、第2の硬質皮膜に高硬度を付加することができる。Nitride, carbide, carbonitride, carbonitride, oxynitride, and oxide can be applied to the first hard film and the second hard film of the present invention.
In the present invention, the first hard film and the second hard film may be a single layer, but preferably have a multilayer structure. By making the second hard film into a multilayer structure, excellent mechanical properties can be added to the second hard film. For example, high hardness is added to the second hard film by laminating chromium nitride with excellent adhesion and chromium nitride obtained by adding a third element such as Si or B to the chromium nitride. can do.
第1の硬質皮膜は、窒化物又は炭窒化物であることが好ましい。基材側にある第1の硬質皮膜が窒化物又は炭窒化物であれば、基材との密着性がより優れる傾向にあり好ましい。更には窒化物であることが好ましい。また、第1の硬質皮膜は、金属(半金属を含む)部分の原子比率(原子%)でCrを50%以上含有するクロム系の窒化物または炭窒化物であることがより好ましく、Crを70%以上含有することがさらに好ましい。 The first hard film is preferably a nitride or carbonitride. If the first hard film on the substrate side is a nitride or carbonitride, it is preferable because the adhesion to the substrate tends to be more excellent. Further, a nitride is preferable. The first hard coating is more preferably a chromium-based nitride or carbonitride containing 50% or more of Cr in an atomic ratio (atomic%) of a metal (including metalloid) portion, and Cr It is more preferable to contain 70% or more.
ダイカスト用被覆金型の耐溶損性および耐焼付き性を高めるには、表面側にある第2の硬質皮膜は、窒化物、炭窒化物、酸窒化物、酸化物であることが好ましい。更には窒化物又は酸窒化物であることが好ましい。特に、窒化物であることが好ましい。また、第2の硬質皮膜は、金属(半金属を含む)部分の原子比率(原子%)でCrを50%以上含有するクロム系の窒化物または炭窒化物であることがより好ましく、Crを70%以上含有することがさらに好ましい。 In order to improve the melt resistance and seizure resistance of the die casting coating mold, the second hard film on the surface side is preferably a nitride, carbonitride, oxynitride, or oxide. Further, nitride or oxynitride is preferable. In particular, a nitride is preferable. The second hard coating is more preferably a chromium-based nitride or carbonitride containing 50% or more of Cr in an atomic ratio (atomic%) of a metal (including metalloid) portion, and Cr It is more preferable to contain 70% or more.
第2の硬質皮膜は、Si、Bの少なくとも1種以上を含有することが好ましい。Si、Bの少なくとも1種を含有することで皮膜組織が微細になり、耐摩耗性および耐溶損性がより向上する。これらの効果を十分に発揮するには、第2の硬質皮膜は金属(半金属を含む)部分の原子比率(原子%)でSi、Bの1種以上を3%以上含有することがより好ましく、さらに好ましくは5%以上である。但し、Si、Bの含有量が多くなり過ぎると皮膜の靱性が低下する。そのため、第2の硬質皮膜は金属(半金属を含む)部分の原子比率(原子%)でSi、Bの1種以上を15%以下で含有することが好ましく、Si、Bの1種以上を10%以下で含有することがより好ましい。 The second hard coating preferably contains at least one of Si and B. By containing at least one of Si and B, the film structure becomes finer, and the wear resistance and the erosion resistance are further improved. In order to fully exhibit these effects, it is more preferable that the second hard coating contains 3% or more of one or more of Si and B in the atomic ratio (atomic%) of the metal (including metalloid) portion. More preferably, it is 5% or more. However, when the contents of Si and B are excessive, the toughness of the film is lowered. Therefore, it is preferable that the second hard coating contains at least 15% of Si and B in an atomic ratio (atomic%) of a metal (including metalloid) portion, and at least 1 type of Si and B. It is more preferable to contain it at 10% or less.
本発明では、第2の硬質皮膜の表面も平滑化処理することが好ましい。そして、この場合、第2の硬質皮膜の表面を研磨して算術平均粗さRa(JIS−B−0601−2001に準拠)が0.05μm以下、最大高さRz(JIS−B−0601−2001に準拠)が1.00μm以下にすることがより好ましく、Rzを0.60μm以下にすることがさらに好ましい。 In the present invention, the surface of the second hard film is preferably smoothed. In this case, the surface of the second hard film is polished to have an arithmetic average roughness Ra (based on JIS-B-0601-2001) of 0.05 μm or less and a maximum height Rz (JIS-B-0601-2001). Is more preferably 1.00 μm or less, and further preferably Rz is 0.60 μm or less.
本発明の基材は特段に定めるものではないが、JIS−G−4404(2006)のSKD61やその改良材に代表される熱間工具鋼を使用することが好ましい。工具鋼の基本的特性を決定するCとCrを、質量%で、C:0.35〜0.45%、Cr:4.0〜6.0%の範囲で含有する熱間工具鋼を基材として用いることが好ましい。
基材は、窒化処理または浸炭処理等といった拡散を利用した表面硬化処理を予め適用してもよい。窒化処理をした基材を用いることで、耐溶損性や耐焼付き性がより向上する傾向にあり好ましい。Although the base material of the present invention is not particularly defined, it is preferable to use hot tool steel represented by SKD61 of JIS-G-4404 (2006) and its improved material. Based on hot tool steel containing C and Cr, which determine the basic properties of tool steel, in the mass range of C: 0.35 to 0.45% and Cr: 4.0 to 6.0%. It is preferable to use it as a material.
The substrate may be preliminarily applied with a surface hardening treatment using diffusion such as nitriding treatment or carburizing treatment. It is preferable to use a base material that has been subjected to a nitriding treatment because melting resistance and seizure resistance tend to be further improved.
硬質皮膜の密着性をより高めるためには、算術平均粗さRa(JIS−B−0601−2001に準拠)が0.05μm以下、最大高さRz(JIS−B−0601−2001に準拠)が1.00μm以下の表面粗さを有する基材を用いることが好ましい。 In order to further improve the adhesion of the hard coating, the arithmetic average roughness Ra (based on JIS-B-0601-2001) is 0.05 μm or less, and the maximum height Rz (based on JIS-B-0601-2001). It is preferable to use a substrate having a surface roughness of 1.00 μm or less.
第1の硬質皮膜または第2の硬質皮膜の表面粗さを平滑に調整するには、その被覆前の基材の表面粗さも平滑に研磨しておくことが好ましい。具体的には、硬質皮膜を被覆する前の基材の表面粗さをA、第1の硬質皮膜の平滑化処理前の表面粗さをB、第1の硬質皮膜の平滑化処理後の表面粗さをCとしたとき、その各々の算術平均粗さRaと最大高さRzが、A<C<Bの関係を満たすことが好ましい。
また、本発明においては、第1の硬質皮膜の表面を平滑化処理することに加えて、第2の硬質皮膜を平滑化処理することが好ましい、この場合、第2の硬質皮膜の平滑化処理後の表面粗さをDとして、上記のRaおよびRzの関係が、A<C<D<Bの関係を満たすことがより好ましい。
基材表面を平滑化することで、基材表面の凹凸に起因する皮膜欠陥を抑制することが出来る。基材の直上にある皮膜欠陥は直接的に基材自体を著しく腐食する原因となり、基材に近い側の皮膜の皮膜欠陥が少ないことがより好ましい。そのため、研磨後の第2の硬質皮膜の表面粗さよりも、第1の硬質皮膜の表面粗さが平滑であることが好ましく、更には被覆する前の基材の表面粗さが最も平滑であることが好ましい。
さらに、第1の硬質皮膜については、その被覆時の表面にあるドロップレット等を研磨又はエッチング除去するところ、除去の程度すなわち平滑化処理後の表面粗さCは、平滑化処理前の表面粗さBに対して、RaではC/Bが1.0未満に、RzではC/Bが0.5未満になるよう平滑化処理を行うことが好ましい。これらの式を満たすことによって、硬質皮膜の欠陥をより低減できる。In order to adjust the surface roughness of the first hard coating or the second hard coating smoothly, it is preferable that the surface roughness of the substrate before coating is also polished smoothly. Specifically, the surface roughness of the base material before coating the hard film is A, the surface roughness of the first hard film before the smoothing process is B, and the surface of the first hard film after the smoothing process When the roughness is C, it is preferable that each arithmetic average roughness Ra and maximum height Rz satisfy the relationship of A <C <B.
In the present invention, in addition to smoothing the surface of the first hard film, it is preferable to smooth the second hard film. In this case, the second hard film is smoothed. More preferably, the relationship between Ra and Rz described above satisfies the relationship of A <C <D <B, where D is the subsequent surface roughness.
By smoothing the surface of the base material, film defects caused by unevenness on the surface of the base material can be suppressed. The film defects immediately above the base material directly corrode the base material itself, and it is more preferable that the film defects on the side close to the base material are small. Therefore, the surface roughness of the first hard coating is preferably smoother than the surface roughness of the second hard coating after polishing, and the surface roughness of the substrate before coating is the smoothest. It is preferable.
Furthermore, for the first hard film, when the droplets etc. on the surface at the time of coating are polished or etched away, the degree of removal, that is, the surface roughness C after the smoothing treatment, is the surface roughness before the smoothing treatment. It is preferable that the smoothing process is performed so that C / B is less than 1.0 for Ra and C / B is less than 0.5 for Rz. By satisfying these equations, defects in the hard coating can be further reduced.
硬質皮膜の総膜厚が薄くなり過ぎると耐溶損性および耐焼付き性が十分でない場合がある。そのため、硬質皮膜の総膜厚は3μm以上とすることが好ましい。更には、硬質皮膜の総膜厚は5μm以上とすることがより好ましく、10μm以上とすることがさらに好ましい。一方、硬質皮膜の総膜厚が厚くなり過ぎると皮膜剥離が発生し易くなる。そのため、硬質皮膜の総膜厚は40μm以下とすることが好ましく、30μm以下とすることがより好ましい。 If the total thickness of the hard coating becomes too thin, the melt resistance and seizure resistance may not be sufficient. Therefore, the total film thickness of the hard coating is preferably 3 μm or more. Furthermore, the total film thickness of the hard coating is more preferably 5 μm or more, and further preferably 10 μm or more. On the other hand, if the total film thickness of the hard film becomes too thick, film peeling tends to occur. Therefore, the total film thickness of the hard coating is preferably 40 μm or less, and more preferably 30 μm or less.
本発明では、第1の硬質皮膜と基材との間に他の皮膜を設けても良い。また、第2の硬質皮膜の上に他の皮膜を設けても良い。第2の硬質皮膜の上に他の皮膜を設ける場合、第2の硬質皮膜の表面を平滑化処理し、第3以降の硬質皮膜を設けてもよい。 In the present invention, another film may be provided between the first hard film and the substrate. Further, another film may be provided on the second hard film. When another film is provided on the second hard film, the surface of the second hard film may be smoothed to provide a third or subsequent hard film.
ダイカスト用金型に要求される耐溶損性を評価するための試料を作製した。基材は、硬さを46HRCとした、熱間工具鋼として一般的に使用されているJIS−G−4404(2006)のSKD61相当鋼材を用いた。評価用の基材の寸法は、直径10mm、長さ120mmの円柱状とし、表面を研磨して、算術平均粗さRaを0.01μm、最大高さRzを0.07μmとした。全ての試料には、予めガス窒化処理した基材を用いた。
そして、一般的なアークイオンプレーティング装置を用い硬質皮膜を被覆した。表面研磨した基材を脱脂洗浄して、基材ホルダーに固定した。そして、基材温度を約500℃に加熱し、1×10−3Paの真空中で加熱脱ガスを行った。次に、Arガスを導入し、基材に−500Vのバイアス電圧を印加して、Arボンバード処理を20分間を行った。続いて、基材には−800Vのバイアス電圧を印加して、Tiボンバード処理を約5分間を行った。基材のボンバード処理は、何れの試料も同様に実施した。
皮膜には、第1の硬質皮膜にCrNを、第2の硬質皮膜にCrSiBNを選択し、基材に被覆した。実施例2の第1の硬質皮膜および第2の硬質皮膜の平滑化処理内容は表1、2に示す。詳細な試料作製条件については、下記に具体的に説明する。A sample for evaluating the resistance to fusing required for a die casting die was prepared. As the base material, a steel material equivalent to SKD61 of JIS-G-4404 (2006), which has a hardness of 46 HRC and is generally used as hot tool steel, was used. The dimensions of the substrate for evaluation were a cylindrical shape having a diameter of 10 mm and a length of 120 mm, and the surface was polished so that the arithmetic average roughness Ra was 0.01 μm and the maximum height Rz was 0.07 μm. For all samples, a substrate that had been previously gas-nitrided was used.
And the hard film was coat | covered using the general arc ion plating apparatus. The surface-polished substrate was degreased and washed and fixed to the substrate holder. Then, the base material temperature was heated to about 500 ° C., and heat degassing was performed in a vacuum of 1 × 10 −3 Pa. Next, Ar gas was introduced, a bias voltage of −500 V was applied to the substrate, and Ar bombardment treatment was performed for 20 minutes. Subsequently, a bias voltage of −800 V was applied to the substrate, and Ti bombardment was performed for about 5 minutes. The substrate was bombarded in the same manner for all samples.
For the coating, CrN was selected for the first hard coating and CrSiBN was selected for the second hard coating, and the substrate was coated. The contents of the smoothing treatment of the first hard film and the second hard film of Example 2 are shown in Tables 1 and 2. Detailed sample preparation conditions will be specifically described below.
<本発明例 試料No.1>
炉内に窒素ガスを導入し、基材に−120Vのバイアス電圧を印加し、基材温度500℃、反応ガス圧力3.0Paの条件で、第1の硬質皮膜である約5.0μmのCrNを被覆した。次に、第1の硬質皮膜の平滑化処理のために、基材をチャンバーから取り出して、ヤマシタワークス社製エアロラップ装置(AERO LAP YT-300)を使用して研磨を行い、第1の硬質皮膜を平滑化処理した。そして、第1の硬質皮膜の表面粗さを測定した。そして、脱脂洗浄を行った後に、再びチャンバー内に戻して、第2の硬質皮膜を被覆した。まず、第1の硬質皮膜の表面にある酸化膜などを除去するために、Arボンバード処理およびTiボンバード処理を行い表面をクリーニングした。その後、窒素ガスを導入し、基材に−120Vのバイアス電圧を印加して、基材温度500℃、反応ガス圧力3.0Paの条件で、約4.0μmのCrSiBNからなる第2の硬質皮膜を被覆した。ターゲットの組成は、Cr92Si3B5の組成のものを用いた。
そして、被覆した後の第2の硬質皮膜に、エアロラップ装置を使用して研磨を行い、その後3μmダイヤモンドペーストを使用して磨きによる平滑化処理を行った。<Invention Sample Sample No. 1>
Nitrogen gas is introduced into the furnace, a bias voltage of −120 V is applied to the base material, and the first hard film is about 5.0 μm of CrN under the conditions of the base material temperature of 500 ° C. and the reaction gas pressure of 3.0 Pa. Was coated. Next, for smoothing the first hard film, the base material is taken out from the chamber and polished using an aero lapping device (AERO LAP YT-300) manufactured by Yamashita Towers Co., Ltd. The film was smoothed. And the surface roughness of the 1st hard film was measured. And after performing degreasing washing | cleaning, it returned in the chamber again and coat | covered the 2nd hard film. First, in order to remove an oxide film and the like on the surface of the first hard film, the surface was cleaned by performing Ar bombardment treatment and Ti bombardment treatment. Thereafter, nitrogen gas is introduced, a bias voltage of −120 V is applied to the base material, and the second hard film made of CrSiBN of about 4.0 μm under the conditions of the base material temperature of 500 ° C. and the reaction gas pressure of 3.0 Pa. Was coated. The composition of the target was Cr 92 Si 3 B 5 .
Then, the second hard film after coating was polished using an aero lapping apparatus, and then smoothed by polishing using a 3 μm diamond paste.
<本発明例 試料No.2>
第1の硬質皮膜の被覆までは、本発明例1と同様とした。第1の硬質皮膜の平滑化処理のために、基材をチャンバーから取り出して、ヤマシタワークス社製エアロラップ装置(AERO LAP YT-300)を使用して研磨を行った後、1μmのダイヤモンドペーストにてポリッシング研磨した。
第1皮膜の平滑化処理後の工程は、本発明例1と同様とした。<Invention Sample Sample No. 2>
The process up to the first hard coating was the same as Example 1 of the present invention. For smoothing the first hard coating, the substrate is taken out of the chamber and polished using an aero lapping device (AERO LAP YT-300) manufactured by Yamashita Towers. And polished.
The process after the smoothing treatment of the first film was the same as Example 1 of the present invention.
<本発明例 試料No.3>
第1の硬質皮膜の被覆までは、本発明例1と同様とした。
第1の硬質皮膜を被覆した後、第1の硬質皮膜の表面をボンバード処理で平滑化処理するために、基材に印加する負のバイアス電圧を−500Vとし、Arガスを用いたボンバード処理を30分間実施した。そして、この平滑化処理を行った後の基材をチャンバーから取り出して、第1の硬質皮膜の表面粗さを測定した。
第1の硬質皮膜の表面粗さを測定した後、この基材をチャンバー内に戻して、本発明例1と同様の表面クリーニングを行った。そして、窒素ガスを導入し、基材に−120Vのバイアス電圧を印加して、基材温度500℃、反応ガス圧力3.0Paの条件で、約4.0μmのCrSiBNからなる(ターゲットの組成は、本発明例1と同じ)第2の硬質皮膜を被覆した。第2の硬質皮膜の平滑化処理方法は、本発明例1と同様である。<Invention Sample Sample No. 3>
The process up to the first hard coating was the same as Example 1 of the present invention.
After coating the first hard coating, in order to smooth the surface of the first hard coating by bombarding, the negative bias voltage applied to the substrate is set to -500 V, and bombarding using Ar gas is performed. Conducted for 30 minutes. And the base material after performing this smoothing process was taken out from the chamber, and the surface roughness of the 1st hard film was measured.
After measuring the surface roughness of the first hard coating, the substrate was returned to the chamber and the same surface cleaning as in Example 1 of the present invention was performed. Then, nitrogen gas was introduced, a bias voltage of −120 V was applied to the substrate, and the substrate was made of about 4.0 μm CrSiBN under the conditions of a substrate temperature of 500 ° C. and a reaction gas pressure of 3.0 Pa (the target composition was The same as Example 1 of the present invention) The second hard film was coated. The method for smoothing the second hard film is the same as in Example 1 of the present invention.
<本発明例 試料No.4>
第1の硬質皮膜の被覆までは、本発明例1と同様とした。第1の硬質皮膜の平滑化処理のために、基材をチャンバーから取り出して、平滑化処理として研磨剤を塗布したナイロン不織布(ベルスター研磨材工業株式会社製研磨パッド#400を使用した。第1皮膜の平滑化処理後の工程は、本発明例1と同様とした。<Invention Sample Sample No. 4>
The process up to the first hard coating was the same as Example 1 of the present invention. For the smoothing treatment of the first hard film, the base material was taken out of the chamber, and a nylon nonwoven fabric (polishing pad # 400 manufactured by Bell Star Abrasives Industries Co., Ltd.) coated with an abrasive as the smoothing treatment was used. The process after the smoothing treatment of one film was the same as Example 1 of the present invention.
<比較例 試料No.1>
第1の硬質皮膜の被覆までは、本発明例1と同様とした。第1の硬質皮膜の平滑化処理のために、基材をチャンバーから取り出して、平滑化処理の比較例として本発明の平滑化処理に替えて、ショットブラスト処理(投射材:スチールグリット200〜300μm)を使用した。ショットブラスト時間を約10秒間ショットブラストを行った。第1皮膜のショットブラスト処理後の工程は、本発明例1と同様とした。<Comparative Example Sample No. 1>
The process up to the first hard coating was the same as Example 1 of the present invention. For smoothing treatment of the first hard film, the base material is taken out from the chamber, and as a comparative example of the smoothing treatment, instead of the smoothing treatment of the present invention, shot blast treatment (projection material: steel grit 200 to 300 μm) )It was used. Shot blasting was performed for about 10 seconds. The process after the shot blasting treatment of the first film was the same as that of Example 1 of the present invention.
<比較例 試料No.2>
第1の硬質皮膜の被覆までは、本発明例1と同様とした。
第1の硬質皮膜の被覆後は一切の研磨処理等を行わず、本発明例10と同様の工程で第2の硬質皮膜を被覆し、試料を作成した。第2の硬質皮膜の平滑化処理方法は、本発明例1と同様である。<Comparative Example Sample No. 2>
The process up to the first hard coating was the same as Example 1 of the present invention.
After the coating of the first hard film, no polishing treatment or the like was performed, and the second hard film was coated in the same process as in Invention Example 10 to prepare a sample. The method for smoothing the second hard film is the same as in Example 1 of the present invention.
<表面粗さ測定>
基材及び硬質皮膜の表面粗さは、株式会社東京精密製の接触式面粗さ測定器SURFCOM480Aを用いて、JIS−B−0601−2001に従って、算術平均粗さRaと最大高さ粗さRzを測定した。測定条件は、評価長さ:4.0mm、測定速度:0.3mm/s、カットオフ値:0.8mmとした。表1に、硬質皮膜を被覆する前の基材の表面粗さA、第1の硬質皮膜の平滑化処理前の表面粗さB、第1の硬質皮膜の平滑化処理後の表面粗さC、および、第2の硬質皮膜の平滑化処理後の表面粗さDの測定結果を、それぞれ示す。<Surface roughness measurement>
The surface roughness of the base material and the hard coating is calculated using arithmetic contact roughness Ra and maximum height roughness Rz according to JIS-B-0601-2001 using a contact surface roughness measuring instrument SURFCOM 480A manufactured by Tokyo Seimitsu Co., Ltd. Was measured. The measurement conditions were as follows: evaluation length: 4.0 mm, measurement speed: 0.3 mm / s, cut-off value: 0.8 mm. Table 1 shows the surface roughness A of the base material before coating the hard coating, the surface roughness B before the smoothing treatment of the first hard coating, and the surface roughness C after the smoothing treatment of the first hard coating. And the measurement result of the surface roughness D after the smoothing process of a 2nd hard film is shown, respectively.
<耐溶損性評価>
アルミニウムの720℃の溶湯中に、本発明例および比較例を30時間漬し、光学顕微鏡により溶損の有無を確認した。また、試験前後の質量を測定して、溶損率(%)を確認した。表2に試料作製条件及び試験結果を纏めて示す。<Evaluation of erosion resistance>
The present invention example and the comparative example were immersed in a molten 720 ° C. aluminum for 30 hours, and the presence or absence of melting damage was confirmed by an optical microscope. In addition, the mass loss before and after the test was measured, and the melting rate (%) was confirmed. Table 2 summarizes sample preparation conditions and test results.
表2に示すように、第1の硬質皮膜の表面を平滑化処理した本発明例は、本発明の平滑化処理をしていない比較例に比べて溶損率(%)が低くなり、耐溶損性に優れることを確認した。そして、特に、第1皮膜の研磨後の最大高さRzが0.5μm以下であり、かつ第2皮膜の研磨後の最大高さRzが0.6μm以下である本発明例2、4が優れた耐溶損性を示した。
図1に本発明例1〜4の耐溶損性評価後の光学顕微鏡による外観観察写真を示す。優れた耐溶損性を示した本発明例1〜4は、先端部および側面部に溶損が確認されていない。
図2に比較例1、2の耐溶損性評価後の光学顕微鏡による外観観察写真を示す。比較例は先端部および側面部の何れも大きな溶損が確認された。
第1の硬質皮膜の表面を平滑化処理する工程を介することで、さらには、第2の硬質皮膜の表面も平滑化処理することで、耐溶損性が向上することが確認された。As shown in Table 2, the example of the present invention in which the surface of the first hard film was smoothed has a lower erosion rate (%) than the comparative example in which the smoothing treatment of the present invention is not performed. It was confirmed that the damage was excellent. Particularly, the present invention examples 2 and 4 in which the maximum height Rz after polishing of the first film is 0.5 μm or less and the maximum height Rz after polishing of the second film is 0.6 μm or less are excellent. It showed good resistance to erosion.
FIG. 1 shows a photograph of appearance observation with an optical microscope after evaluating the corrosion resistance of Examples 1 to 4 of the present invention. In Invention Examples 1 to 4 that showed excellent resistance to erosion, no erosion was confirmed at the tip and side portions.
FIG. 2 shows a photograph of appearance observation with an optical microscope after the evaluation of the corrosion resistance of Comparative Examples 1 and 2. In the comparative example, large melting damage was confirmed in both the tip portion and the side portion.
It was confirmed that through the process of smoothing the surface of the first hard film, and further the surface of the second hard film was also smoothed, thereby improving the resistance to melting.
表1および2より、本発明の製造方法を適用して得られた硬質皮膜は、その皮膜最表面の表面粗さも平滑であり、耐溶損性に優れていることが分かる。そして、その溶融アルミの耐溶損性評価試験後の皮膜表面は、図1の通り、エロージョンの孔食がほとんど確認されなかった。 From Tables 1 and 2, it can be seen that the hard coating obtained by applying the production method of the present invention has a smooth surface roughness on the outermost surface of the coating and is excellent in resistance to erosion. As shown in FIG. 1, almost no erosion pitting corrosion was confirmed on the surface of the film after the molten aluminum corrosion resistance evaluation test.
これに対し、ショットブラスト処理をした比較例1、2の硬質皮膜は、耐溶損性が著しく悪い結果となった。比較例1の硬質皮膜は表面が粗化されたことで硬質皮膜の表面粗さ値が大きくなったこと、比較例2の硬質皮膜は第1の硬質皮膜に本発明の平滑化処理自体を実施していないため、マクロパーティクルが除去されておらず、表面粗さを十分に低減させることができなかった。 On the other hand, the hard coatings of Comparative Examples 1 and 2 subjected to shot blasting resulted in extremely poor melt resistance. The surface of the hard coating of Comparative Example 1 was roughened to increase the surface roughness value of the hard coating, and the surface of the hard coating of Comparative Example 2 was subjected to the smoothing treatment itself of the present invention on the first hard coating. As a result, the macro particles were not removed, and the surface roughness could not be reduced sufficiently.
実施例2で使用する基材の種類、基材の研磨、および基材のボンバード処理条件は実施例1と同様のものとした。一部の基材には窒化処理を予め実施した。実施例2の第1の硬質皮膜および第2の硬質皮膜の種類および平滑化処理内容は表3に示す。詳細な試料作製条件については、下記に具体的に説明する。 The base material used in Example 2, the base material polishing, and the base material bombarding conditions were the same as in Example 1. Some substrates were previously subjected to nitriding treatment. Table 3 shows the types of the first hard film and the second hard film of Example 2 and the contents of the smoothing treatment. Detailed sample preparation conditions will be specifically described below.
<本発明例 試料No.10>
炉内に窒素ガスを導入し、基材に−120Vのバイアス電圧を印加し、基材温度500℃、反応ガス圧力3.0Paの条件で、第1の硬質皮膜である約5.0μmのCrNを被覆した。
その後、第1の硬質皮膜の表面を研磨により平滑化処理するため、基材をチャンバーから取り出して、ヤマシタワークス社製エアロラップ装置(AERO LAP YT-300)を使用して研磨を行った。さらにその後、1μmのダイヤモンドペーストにてポリッシング研磨し、続いては、亀井鉄工所製鏡面ショットマシンSMAP-II型を使用して、算術平均粗さRaを0.01μm、かつ最大高さRzを0.05μmとした。
そして、脱脂洗浄を行った後に、再びチャンバー内に戻して、第2の硬質皮膜を被覆した。まず、第1の硬質皮膜の表面にある酸化膜を除去するために、Arボンバード処理およびTiボンバード処理を行い表面をクリーニングした。その後、窒素ガスを導入し、基材に−120Vのバイアス電圧を印加して、基材温度500℃、反応ガス圧力3.0Paの条件で、約5.0μmのCrSiBNからなる第2の硬質皮膜を被覆した。ターゲットには、Cr92Si3B5の組成のものを用いた(数字は原子比率、以下同様である)。そして、被覆した後の第2の硬質皮膜に、エアロラップ装置を使用して研磨を行い、その後3μmダイヤモンドペーストを使用して磨きによる平滑化処理を行った。<Invention Sample Sample No. 10>
Nitrogen gas is introduced into the furnace, a bias voltage of −120 V is applied to the base material, and the first hard film is about 5.0 μm of CrN under the conditions of the base material temperature of 500 ° C. and the reaction gas pressure of 3.0 Pa. Was coated.
Thereafter, in order to smooth the surface of the first hard film by polishing, the base material was taken out of the chamber and polished using an aero lapping apparatus (AERO LAP YT-300) manufactured by Yamashita Towers. Further polishing is then performed with a 1 μm diamond paste, followed by Kamei Ironworks mirror shot machine SMAP-II, with an arithmetic average roughness Ra of 0.01 μm and a maximum height Rz of 0. .05 μm.
And after performing degreasing washing | cleaning, it returned in the chamber again and coat | covered the 2nd hard film. First, in order to remove the oxide film on the surface of the first hard film, the surface was cleaned by performing Ar bombardment treatment and Ti bombardment treatment. Thereafter, nitrogen gas is introduced, a bias voltage of −120 V is applied to the base material, and the second hard film made of CrSiBN of about 5.0 μm under the conditions of the base material temperature of 500 ° C. and the reaction gas pressure of 3.0 Pa. Was coated. A target having a composition of Cr 92 Si 3 B 5 was used (numbers are atomic ratios, and so on). Then, the second hard film after coating was polished using an aero lapping apparatus, and then smoothed by polishing using a 3 μm diamond paste.
<本発明例 試料No.11>
窒化処理して、約100μmの窒化層を形成した基材を用いた。それ以外は、本発明例10と同様とした。<Invention Sample Sample No. 11>
A base material on which a nitride layer of about 100 μm was formed by nitriding was used. Other than that, it was the same as Example 10 of the present invention.
<本発明例 試料No.12>
窒化処理して、約100μmの窒化層を形成した基材を用いた。そして、第1の硬質皮膜の被覆までは、本発明例10と同様とした。
第1の硬質皮膜を被覆した後、第1の硬質皮膜の表面をボンバード処理で平滑化処理するために、基材に印加する負のバイアス電圧を−500Vとし、Arガスを用いたボンバード処理を30分間実施した。
その後、窒素ガスを導入し、基材に−120Vのバイアス電圧を印加して、基材温度500℃、反応ガス圧力3.0Paの条件で、約5.0μmのCrSiBNからなる第2の硬質皮膜を被覆した(ターゲットの組成は、本発明例10と同じとした)。最後に、本発明例10で示した上記の平滑化処理を行った。<Invention Sample Sample No. 12>
A base material on which a nitride layer of about 100 μm was formed by nitriding was used. And it was the same as that of the example 10 of this invention until the coating of the 1st hard film.
After coating the first hard coating, in order to smooth the surface of the first hard coating by bombarding, the negative bias voltage applied to the substrate is set to -500 V, and bombarding using Ar gas is performed. Conducted for 30 minutes.
Thereafter, nitrogen gas is introduced, a bias voltage of −120 V is applied to the base material, and the second hard film made of CrSiBN of about 5.0 μm under the conditions of the base material temperature of 500 ° C. and the reaction gas pressure of 3.0 Pa. (The composition of the target was the same as in Example 10 of the present invention). Finally, the smoothing process described in Example 10 of the present invention was performed.
<本発明例 試料No.13>
窒化処理して、約100μmの窒化層を形成した基材を用いた。第1の硬質皮膜の平滑化処理までは、本発明例12と同様とした。
第1の硬質皮膜を平滑化処理した後、窒素ガスを導入し、基材に−120Vのバイアス電圧を印加して、基材温度500℃、反応ガス圧力3.0Paの条件で、約3.0μmのCrNを被覆し、続けて、約4.0μmのCrSiBNを被覆して(ターゲットの組成は、本発明例10と同じ)、第2の硬質皮膜を被覆した。最後に、本発明例10で示した上記の平滑化処理を行った。<Invention Sample Sample No. 13>
A base material on which a nitride layer of about 100 μm was formed by nitriding was used. The process up to the smoothing treatment of the first hard film was the same as Example 12 of the present invention.
After smoothing the first hard coating, nitrogen gas is introduced, a bias voltage of −120 V is applied to the substrate, and the substrate temperature is 500 ° C. and the reaction gas pressure is 3.0 Pa. The second hard film was coated with 0 μm CrN, followed by coating with about 4.0 μm CrSiBN (the target composition is the same as in Example 10 of the present invention). Finally, the smoothing process described in Example 10 of the present invention was performed.
<本発明例 試料No.14>
窒化処理して、約50μmの窒化層を形成した基材を用いた。それ以外は本発明例13と同じとした。<Invention Sample Sample No. 14>
A base material on which a nitride layer of about 50 μm was formed by nitriding was used. Otherwise, it was the same as Example 13 of the present invention.
<本発明例 試料No.15>
第1の硬質皮膜の被覆までは、本発明例10と同様とした。
第1の硬質皮膜を被覆した後、第1の硬質皮膜の表面をボンバード処理で平滑化処理するために、基材に印加する負のバイアス電圧を−500Vとし、Arガスを用いたボンバード処理を45分間実施した。
第1の硬質皮膜を平滑化処理した後、窒素ガスを導入し、基材に−120Vのバイアス電圧を印加して、基材温度500℃、反応ガス圧力3.0Paの条件で、約3.0μmのCrNを被覆し、続けて、約4.0μmのCrSiBNを被覆して(ターゲットの組成は、本発明例10と同じ)、第2の硬質皮膜を被覆した。最後に、本発明例10で示した上記の平滑化処理を行った。<Invention Sample Sample No. 15>
The process up to the first hard coating was the same as Example 10 of the present invention.
After coating the first hard coating, in order to smooth the surface of the first hard coating by bombarding, the negative bias voltage applied to the substrate is set to -500 V, and bombarding using Ar gas is performed. Performed for 45 minutes.
After smoothing the first hard coating, nitrogen gas is introduced, a bias voltage of −120 V is applied to the substrate, and the substrate temperature is 500 ° C. and the reaction gas pressure is 3.0 Pa. The second hard film was coated with 0 μm CrN, followed by coating with about 4.0 μm CrSiBN (the target composition is the same as in Example 10 of the present invention). Finally, the smoothing process described in Example 10 of the present invention was performed.
<本発明例 試料No.16>
第1の硬質皮膜の被覆までは、本発明例10と同様とした。
第1の硬質皮膜を被覆した後、第1の硬質皮膜の表面をボンバード処理で平滑化処理するために、基材に印加する負のバイアス電圧を−500Vとし、Arガスを用いたボンバード処理を60分間実施した。
第1の硬質皮膜を平滑化処理した後、窒素ガスを導入し、基材に−120Vのバイアス電圧を印加して、基材温度500℃、反応ガス圧力3.0Paの条件で、約7.0μmのCrSiBNからなる第2の硬質皮膜を被覆した(ターゲットの組成は、本発明例10と同じとした)。最後に、本発明例10で示した上記の平滑化処理を行った。<Invention Sample Sample No. 16>
The process up to the first hard coating was the same as Example 10 of the present invention.
After coating the first hard coating, in order to smooth the surface of the first hard coating by bombarding, the negative bias voltage applied to the substrate is set to -500 V, and bombarding using Ar gas is performed. Conducted for 60 minutes.
After smoothing the first hard film, nitrogen gas is introduced, a bias voltage of −120 V is applied to the substrate, and the substrate temperature is 500 ° C. and the reaction gas pressure is 3.0 Pa. A second hard film composed of 0 μm CrSiBN was coated (the composition of the target was the same as Example 10 of the present invention). Finally, the smoothing process described in Example 10 of the present invention was performed.
<本発明例 試料No.17>
第1の硬質皮膜の被覆までは、本発明例1と同様とした。
第1の硬質皮膜を被覆した後、第1の硬質皮膜の表面をボンバード処理で平滑化処理するために、基材に印加する負のバイアス電圧を−500Vとし、Arガスを用いたボンバード処理を60分間実施した。
第1の硬質皮膜を平滑化処理した後、窒素ガスを導入し、基材に−120Vのバイアス電圧を印加して、基材温度500℃、反応ガス圧力3.0Paの条件で、約3.0μmのCrNを被覆し、続けて、約4.0μmのCrSiBNを被覆し(ターゲットの組成は、本発明例10と同じ)、第2の硬質皮膜を被覆した。最後に、本発明例10で示した上記の平滑化処理を行った。<Invention Sample Sample No. 17>
The process up to the first hard coating was the same as Example 1 of the present invention.
After coating the first hard coating, in order to smooth the surface of the first hard coating by bombarding, the negative bias voltage applied to the substrate is set to -500 V, and bombarding using Ar gas is performed. Conducted for 60 minutes.
After smoothing the first hard coating, nitrogen gas is introduced, a bias voltage of −120 V is applied to the substrate, and the substrate temperature is 500 ° C. and the reaction gas pressure is 3.0 Pa. A 0 μm CrN coating was applied, followed by a coating of about 4.0 μm CrSiBN (the composition of the target was the same as in Example 10 of the present invention), and a second hard coating was applied. Finally, the smoothing process described in Example 10 of the present invention was performed.
<本発明例 試料No.18>
第1の硬質皮膜の被覆までは、本発明例1と同様とした。
第1の硬質皮膜を被覆した後、第1の硬質皮膜の表面をボンバード処理で平滑化処理するために、基材に印加する負のバイアス電圧を−700Vとし、Arガスを用いたボンバード処理を30分間実施した。
第1の硬質皮膜を平滑化処理した後、窒素ガスを導入し、基材に−120Vのバイアス電圧を印加して、基材温度500℃、反応ガス圧力3.0Paの条件で、約3.0μmのCrNを被覆し、続けて、約4.0μmのCrSiBNを被覆し(ターゲットの組成は、本発明例1と同じ)、第2の硬質皮膜を被覆した。最後に、本発明例10で示した上記の平滑化処理を行った。<Invention Sample Sample No. 18>
The process up to the first hard coating was the same as Example 1 of the present invention.
After coating the first hard film, in order to smooth the surface of the first hard film by bombarding, the negative bias voltage applied to the substrate is set to −700 V, and bombarding using Ar gas is performed. Conducted for 30 minutes.
After smoothing the first hard coating, nitrogen gas is introduced, a bias voltage of −120 V is applied to the substrate, and the substrate temperature is 500 ° C. and the reaction gas pressure is 3.0 Pa. A 0 μm CrN coating was applied, followed by a coating of about 4.0 μm CrSiBN (the composition of the target was the same as in Example 1 of the present invention), and a second hard coating was applied. Finally, the smoothing process described in Example 10 of the present invention was performed.
<比較例 試料No.10>
炉内に窒素ガスを導入し、基材に−120Vのバイアス電圧を印加し、反応ガス圧力3.0Paの条件で、約5.0μmのCrNを被覆し、続けて、約5.0μmのCrSiBNを被覆した。ターゲットには、Cr92Si3B5の組成のものを用いた(数字は原子比率、以下同様である)。最後に、本発明例10で示した上記の平滑化処理を行った。<Comparative Example Sample No. 10>
Nitrogen gas was introduced into the furnace, a bias voltage of −120 V was applied to the substrate, and about 5.0 μm of CrN was coated under the condition of a reaction gas pressure of 3.0 Pa, followed by about 5.0 μm of CrSiBN. Was coated. A target having a composition of Cr 92 Si 3 B 5 was used (numbers are atomic ratios, and so on). Finally, the smoothing process described in Example 10 of the present invention was performed.
<比較例 試料No.11>
炉内に窒素ガスを導入し、基材に−120Vのバイアス電圧を印加し、反応ガス圧力3.0Paの条件で、約13.0μmのTiAlNを被覆した。用いたターゲットの組成は、Ti50Al50とした。最後に、本発明例10で示した上記の平滑化処理を行った。<Comparative Example Sample No. 11>
Nitrogen gas was introduced into the furnace, a bias voltage of −120 V was applied to the substrate, and TiAlN of about 13.0 μm was coated under the condition of a reaction gas pressure of 3.0 Pa. The composition of the target used was Ti 50 Al 50 . Finally, the smoothing process described in Example 10 of the present invention was performed.
<比較例 試料No.12>
窒化処理して、約100μmの窒化層を形成した基材を用いた。
炉内に窒素ガスを導入し、基材に−120Vのバイアス電圧を印加し、反応ガス圧力3.0Paの条件で、個々の膜厚が10nm以下でVNとAlCrSiNとが交互に積層した約12.0μmの積層皮膜を被覆した。AlCrSiNの被覆に用いたターゲットの組成は、Al60Cr37Si3とした。最後に、本発明例10で示した上記の平滑化処理を行った。<Comparative Example Sample No. 12>
A base material on which a nitride layer of about 100 μm was formed by nitriding was used.
Nitrogen gas was introduced into the furnace, a bias voltage of -120 V was applied to the base material, and each film thickness was 10 nm or less and VN and AlCrSiN were alternately laminated under the condition of a reaction gas pressure of 3.0 Pa. A 0.0 μm laminated film was coated. The composition of the target used for coating the AlCrSiN was Al 60 Cr 37 Si 3 . Finally, the smoothing process described in Example 10 of the present invention was performed.
<比較例 試料No.13>
炉内に窒素ガスを導入し、基材に−120Vのバイアス電圧を印加し、反応ガス圧力3.0Paの条件で、個々の膜厚が10nm以下でVNとAlCrSiNとが交互に積層した約12.5μmの積層皮膜を被覆した。AlCrSiNの被覆に用いたターゲットの組成は、比較例12と同じAl60Cr37Si3とした。最後に、本発明例10で示した上記の平滑化処理を行った。<Comparative Example Sample No. 13>
Nitrogen gas was introduced into the furnace, a bias voltage of -120 V was applied to the base material, and each film thickness was 10 nm or less and VN and AlCrSiN were alternately laminated under the condition of a reaction gas pressure of 3.0 Pa. A 5 μm laminated film was coated. The composition of the target used for coating AlCrSiN was Al 60 Cr 37 Si 3 which was the same as that in Comparative Example 12. Finally, the smoothing process described in Example 10 of the present invention was performed.
<比較例 試料No.14>
窒化処理して、約100μmの窒化層を形成した基材を用いた。比較例14は、基材を窒化処理したのみで、硬質皮膜を設けていない。最後に、本発明例10で示した上記の平滑化処理を行った。<Comparative Example Sample No. 14>
A base material on which a nitride layer of about 100 μm was formed by nitriding was used. In Comparative Example 14, the base material was only nitrided and no hard coating was provided. Finally, the smoothing process described in Example 10 of the present invention was performed.
<表面粗さ評価>
本発明例および比較例は何れも第2の硬質皮膜の表面または基材の表面を研磨し、算術平均粗さRaを0.04μm、かつ最大高さRzを0.05μmとした。基材及び硬質皮膜の表面粗さは、株式会社東京精密製の接触式面粗さ測定器SURFCOM480Aを用いて、JIS−B−0601−2001に従って、評価長さが4.0mm、測定速度が0.3mm/s、カットオフ値が0.8mmの条件で測定した。<Surface roughness evaluation>
In both the inventive examples and the comparative examples, the surface of the second hard film or the surface of the substrate was polished, and the arithmetic average roughness Ra was 0.04 μm and the maximum height Rz was 0.05 μm. The surface roughness of the base material and the hard coating is 4.0 mm and the measurement speed is 0 according to JIS-B-0601-2001 using a contact surface roughness measuring device SURFCOM 480A manufactured by Tokyo Seimitsu Co., Ltd. Measurement was performed under the conditions of 3 mm / s and a cutoff value of 0.8 mm.
<耐溶損性評価>
アルミニウムの720℃の溶湯中に、本発明例および比較例を20時間漬し、光学顕微鏡により溶損の有無を確認した。また、試験前後の質量を測定して、溶損率(%)を確認した。表3に試料作製条件及び試験結果を纏めて示す。<Evaluation of erosion resistance>
The present invention example and the comparative example were immersed in a molten aluminum at 720 ° C. for 20 hours, and the presence or absence of melting damage was confirmed with an optical microscope. In addition, the mass loss before and after the test was measured, and the melting rate (%) was confirmed. Table 3 summarizes sample preparation conditions and test results.
表1に示すように、第1の硬質皮膜の表面を平滑化処理した本発明例は、平滑化処理をしていない比較例に比べて溶損率(%)が低くなり、耐溶損性に優れることを確認した。特に、平滑化処理する工程で、研磨した本発明例10、11及び基材に印加するバイアス電圧を−500Vとし、30分間のアルゴンボンバード処理した本発明例12〜14は、溶損率(%)が0%であり優れた耐溶損性を示した。また、基材に窒化処理を施した本発明例11〜14は、溶損率が0%であり優れた耐溶損性を示した。
図3に本発明例10〜12の耐溶損性評価後の光学顕微鏡による外観観察写真を示す。図4に本発明例13〜15の耐溶損性評価後の光学顕微鏡による外観観察写真を示す。図5に本発明例16〜18の耐溶損性評価後の光学顕微鏡による外観観察写真を示す。特に優れた耐溶損性を示した本発明例10〜14は、先端部および側面部に溶損が確認されていない。
図6に比較例10〜12の耐溶損性評価後の光学顕微鏡による外観観察写真を示す。図7に比較例13、14の耐溶損性評価後の光学顕微鏡による外観観察写真を示す。比較例は先端部および側面部の何れも大きな溶損が確認された。
第1の硬質皮膜の表面を平滑化処理する工程を介することで、耐溶損性が向上することが確認された。As shown in Table 1, the example of the present invention in which the surface of the first hard film was smoothed has a lower erosion rate (%) than that of the comparative example that has not been smoothed, resulting in resistance to erosion. It was confirmed that it was excellent. In particular, the inventive examples 10 and 11 polished and the bias voltage applied to the substrate at −500 V in the smoothing step and the inventive examples 12 to 14 treated with argon bombardment for 30 minutes have a loss rate (%). ) Was 0%, indicating excellent melt resistance. In addition, Examples 11 to 14 of the present invention in which the base material was subjected to nitriding treatment had a melting rate of 0% and exhibited excellent resistance to melting.
FIG. 3 shows a photograph of the appearance observed with an optical microscope after evaluating the corrosion resistance of Examples 10 to 12 of the present invention. FIG. 4 shows photographs of external appearance observation with an optical microscope after the evaluation of the corrosion resistance of Examples 13 to 15 of the present invention. FIG. 5 shows photographs of external appearance observation with an optical microscope after the evaluation of the corrosion resistance of Examples 16 to 18 of the present invention. In Examples 10 to 14 of the present invention that showed particularly excellent resistance to erosion, no erosion was confirmed at the tip and side portions.
FIG. 6 shows a photograph of external appearance observation with an optical microscope after the evaluation of the corrosion resistance of Comparative Examples 10-12. FIG. 7 shows photographs of external observation using an optical microscope after the evaluation of the resistance to melting of Comparative Examples 13 and 14. In the comparative example, large melting damage was confirmed in both the tip portion and the side portion.
It has been confirmed that the melt resistance is improved by performing a process of smoothing the surface of the first hard coating.
Claims (3)
前記第1の硬質皮膜の表面を平滑化処理し、第1の硬質皮膜の表面の算術平均粗さRaを0.05μm以下、最大高さRzを1.00μm以下とする工程と、
前記平滑化処理された第1の硬質皮膜の上にアークイオンプレーティング法で第2の硬質皮膜を被覆する工程と、を有し、
前記平滑化処理は、ガスボンバード処理であり、
前記ガスボンバード処理は、基材に印加する負のバイアス電圧を−700V以上−400V以下で実施し、
前記第1の硬質皮膜を被覆する工程と、前記第1の硬質皮膜の表面を平滑化処理する工程とは、同一炉内で処理されることを特徴とするダイカスト用被覆金型の製造方法。 A step of coating the surface of the base material of the die casting mold with the first hard film by an arc ion plating method;
Smoothing the surface of the first hard film, setting the arithmetic average roughness Ra of the surface of the first hard film to 0.05 μm or less and the maximum height Rz to 1.00 μm or less ;
Have a, a step of coating a second hard coating film by arc ion plating method on the first hard coating said treated smoothed,
The smoothing process is a gas bombardment process,
The gas bombardment treatment is performed at a negative bias voltage applied to the substrate of −700 V or more and −400 V or less,
The method of manufacturing a die casting coating mold , wherein the step of coating the first hard coating and the step of smoothing the surface of the first hard coating are performed in the same furnace .
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014167187 | 2014-08-20 | ||
JP2014167187 | 2014-08-20 | ||
JP2015066605 | 2015-03-27 | ||
JP2015066605 | 2015-03-27 | ||
PCT/JP2015/073246 WO2016027832A1 (en) | 2014-08-20 | 2015-08-19 | Method for manufacturing coated mold for die casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2016027832A1 JPWO2016027832A1 (en) | 2017-04-27 |
JP6274317B2 true JP6274317B2 (en) | 2018-02-07 |
Family
ID=55350775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016544231A Active JP6274317B2 (en) | 2014-08-20 | 2015-08-19 | Manufacturing method of die casting coating mold |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6274317B2 (en) |
KR (1) | KR101862526B1 (en) |
CN (1) | CN106660110B (en) |
WO (1) | WO2016027832A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102317383B1 (en) | 2018-02-27 | 2021-10-26 | 히다찌긴조꾸가부시끼가이사 | Covering member and manufacturing method thereof |
CN110508776A (en) * | 2019-08-20 | 2019-11-29 | 宁波孚士威机械有限公司 | A kind of processing technology of high intensity bracket |
JP6960126B1 (en) * | 2020-08-30 | 2021-11-05 | Rtm 株式会社 | Surface treatment method for cooling holes in molds |
US20220290289A1 (en) * | 2021-03-10 | 2022-09-15 | Vapor Technologies, Inc. | Pvd coatings for aluminum die casting molds |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3691623B2 (en) | 1997-02-28 | 2005-09-07 | 株式会社神戸製鋼所 | Casting member having excellent resistance to melting Al and method for producing the same |
CN100489135C (en) * | 2005-12-31 | 2009-05-20 | 财团法人工业技术研究院 | Multi-component heat resistance alloy and die with multi-component heat resistance alloy layer |
JP4883400B2 (en) * | 2006-09-27 | 2012-02-22 | 日立金属株式会社 | Casting parts |
JP4771223B2 (en) * | 2006-09-27 | 2011-09-14 | 日立金属株式会社 | Durable hard material coated mold for plastic working |
JP2008188609A (en) | 2007-02-02 | 2008-08-21 | Daido Steel Co Ltd | Die-casting die and surface treatment method therefor |
EP2042261A3 (en) * | 2007-09-26 | 2015-02-18 | Sandvik Intellectual Property AB | Method of making a coated cutting tool |
JP5435326B2 (en) | 2008-09-02 | 2014-03-05 | 日立金属株式会社 | Die-casting coating mold and manufacturing method thereof |
JP5156971B2 (en) * | 2009-03-17 | 2013-03-06 | Smc株式会社 | Coating member for preventing melting damage |
KR101455142B1 (en) * | 2010-03-31 | 2014-10-27 | 히타치 긴조쿠 가부시키가이샤 | Process for production of coated article having excellent corrosion resistance, and coated article |
JP2013076124A (en) * | 2011-09-30 | 2013-04-25 | Hitachi Tool Engineering Ltd | Method for manufacturing coated article with excellent corrosion resistance, and coated article |
KR20140019947A (en) * | 2012-08-07 | 2014-02-18 | 현대자동차주식회사 | Coating material for aluminum die casting and the method for manufacturing thereof |
-
2015
- 2015-08-19 KR KR1020177004008A patent/KR101862526B1/en active IP Right Grant
- 2015-08-19 CN CN201580044403.9A patent/CN106660110B/en active Active
- 2015-08-19 JP JP2016544231A patent/JP6274317B2/en active Active
- 2015-08-19 WO PCT/JP2015/073246 patent/WO2016027832A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2016027832A1 (en) | 2017-04-27 |
CN106660110A (en) | 2017-05-10 |
KR20170033353A (en) | 2017-03-24 |
CN106660110B (en) | 2019-05-28 |
WO2016027832A1 (en) | 2016-02-25 |
KR101862526B1 (en) | 2018-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6477867B2 (en) | Coated mold and manufacturing method thereof | |
JP5351875B2 (en) | Mold for plastic working, method for producing the same, and method for forging aluminum material | |
JP6274317B2 (en) | Manufacturing method of die casting coating mold | |
JP4513058B2 (en) | Casting parts | |
JP5498572B2 (en) | Method for producing coated article excellent in corrosion resistance and coated article | |
JP2000038653A (en) | Die or mold having surface film | |
JP6569376B2 (en) | Carbide tool and manufacturing method thereof | |
JP2012183548A (en) | Die for die casting | |
JP4883400B2 (en) | Casting parts | |
JP2932618B2 (en) | Casting pin for aluminum casting | |
CN110709190A (en) | Component for aluminum die casting mold | |
JP6593667B1 (en) | Covering member and manufacturing method thereof | |
JP2021025132A (en) | Coated member and manufacturing method of the same | |
JP2008150712A (en) | Die or mold having surface coating film | |
JP2013076124A (en) | Method for manufacturing coated article with excellent corrosion resistance, and coated article | |
JP2011156546A (en) | Protective film for casting die surface | |
JP5892414B2 (en) | Method for producing coated article excellent in corrosion resistance and coated article | |
JPH10323746A (en) | Surface coating cast omission pin | |
JP2017155293A (en) | Deposition method of spray coating | |
JP2010261057A (en) | Method for forming high-hardness and wear-resistant film | |
JPH04210477A (en) | Cast drawing pin for aluminum casting and its production | |
JPH1058122A (en) | Ladle for aluminum melting furnace and manufacture thereof | |
JPH11256309A (en) | Casting member excellent in erosion resistance | |
JP2005290536A (en) | Method for coating substrate, and structure of coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6274317 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |