JP5389474B2 - Spheroidal graphite cast iron material having hard coating, press mold, and method for producing spheroidal graphite cast iron material having hard coating - Google Patents
Spheroidal graphite cast iron material having hard coating, press mold, and method for producing spheroidal graphite cast iron material having hard coating Download PDFInfo
- Publication number
- JP5389474B2 JP5389474B2 JP2009048960A JP2009048960A JP5389474B2 JP 5389474 B2 JP5389474 B2 JP 5389474B2 JP 2009048960 A JP2009048960 A JP 2009048960A JP 2009048960 A JP2009048960 A JP 2009048960A JP 5389474 B2 JP5389474 B2 JP 5389474B2
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- hard coating
- spheroidal graphite
- graphite cast
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims description 66
- 239000011248 coating agent Substances 0.000 title claims description 64
- 239000000463 material Substances 0.000 title claims description 64
- 229910001141 Ductile iron Inorganic materials 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000010936 titanium Substances 0.000 claims description 62
- 229910052719 titanium Inorganic materials 0.000 claims description 54
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 50
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 48
- 229910002804 graphite Inorganic materials 0.000 claims description 41
- 239000010439 graphite Substances 0.000 claims description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 32
- 229910001018 Cast iron Inorganic materials 0.000 claims description 29
- 239000007789 gas Substances 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 24
- 238000005121 nitriding Methods 0.000 claims description 19
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 17
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 238000005240 physical vapour deposition Methods 0.000 claims description 10
- 238000007733 ion plating Methods 0.000 claims description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 8
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- -1 nitrogen ions Chemical class 0.000 claims description 8
- 230000008020 evaporation Effects 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 46
- 229910000831 Steel Inorganic materials 0.000 description 25
- 239000010959 steel Substances 0.000 description 25
- 238000007373 indentation Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 150000004767 nitrides Chemical class 0.000 description 10
- 238000003825 pressing Methods 0.000 description 10
- 239000011324 bead Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010891 electric arc Methods 0.000 description 4
- 206010040844 Skin exfoliation Diseases 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 208000037998 chronic venous disease Diseases 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
本発明は高張力鋼板のような高強度の鋼板をプレス加工するための金型材として好ましく用いられうる硬質被膜を有する球状化黒鉛鋳鉄材に関する。 The present invention relates to a spheroidal graphite cast iron material having a hard coating that can be preferably used as a mold material for pressing a high-strength steel plate such as a high-tensile steel plate.
近年、自動車製造の分野において、安全性の向上や、車体の軽量化を目的として高張力鋼板が多用される傾向にある。 In recent years, in the field of automobile manufacture, high-tensile steel sheets tend to be frequently used for the purpose of improving safety and reducing the weight of a vehicle body.
高張力鋼板は高張力、高強度を有する。そのために、従来用いられてきたプレス鋼板に比べて、プレス成形加工時に高い加圧力が必要となる。 High-tensile steel sheets have high tension and high strength. Therefore, compared with the press steel plate conventionally used, a high pressurizing force is required at the time of press forming.
ところで、従来から、高張力鋼板のプレス加工に用いられる金型には鋼材が広く用いられてきた。しかしながら、鋼材は切削抵抗が高く、また、金型加工に要する切削容積が大きく、さらに鋼材自身のコストが比較的高いという問題があった。そのために、鋼材から得られる金型は、トータルコストが高くなるという問題があった。 By the way, conventionally, steel materials have been widely used for dies used for press working of high-tensile steel plates. However, the steel material has a problem that the cutting resistance is high, the cutting volume required for die machining is large, and the cost of the steel material itself is relatively high. For this reason, a mold obtained from steel has a problem that the total cost becomes high.
上述したような問題を解決するために、例えば、下記特許文献1に示すような、鋳鉄材から得られる金型が知られている。鋳鉄材から得られる金型母材は、予め、加熱して溶かした鋳鉄を型に流し込み、冷えて固まった後、型から取り出して得られる。そして、表面のみを切削加工することにより仕上げられる。従って、切削加工が比較的簡単で、また、材料コストも比較的安くなる点からトータルコストを下げることができる。しかしながら、鋳鉄材を母材とする金型は、耐摩耗性に乏しいという欠点があった。そのために、高張力鋼板を加工するような金型として鋳鉄材を母材とする金型を用いた場合には、摩耗が発生しやすく、金型寿命が短くなるという問題があった。 In order to solve the above-described problems, for example, a mold obtained from a cast iron material as shown in Patent Document 1 below is known. A mold base material obtained from a cast iron material is obtained by pouring cast iron previously heated and melted into a mold, cooling and solidifying, and then removing it from the mold. And it is finished by cutting only the surface. Therefore, the total cost can be reduced because cutting is relatively simple and the material cost is relatively low. However, a mold using a cast iron material as a base material has a drawback of poor wear resistance. Therefore, when a mold having a cast iron material as a base material is used as a mold for processing a high-tensile steel plate, there is a problem that wear tends to occur and the mold life is shortened.
鋳鉄材の耐摩耗性を向上させる技術としては、例えば、鋳鉄材の表面にチタン系被膜等の硬質被膜を形成させる方法が知られている。例えば、下記特許文献2には、鋳鉄の少なくとも一部の表面層をチル化し、そのチル化層の表面を研磨仕上げした後、PVDもしくはCVD処理によりチル化層表面に硬質被膜を生成させる方法が開示されている。なお、チル化とは、レーデブライト層とパーライトからなる組織を有し、黒鉛を含まない鋳鉄表面を形成させる表面処理である。このような表面処理は、例えば、鋳鉄の表面にレーザーやプラズマアーク等の高密度エネルギーを照射することにより、その表層部を再溶融した後、急速際凝固させることにより行われる。 As a technique for improving the wear resistance of a cast iron material, for example, a method of forming a hard film such as a titanium film on the surface of the cast iron material is known. For example, Patent Document 2 below discloses a method in which at least a part of a surface layer of cast iron is chilled, the surface of the chilled layer is polished, and then a hard coating is formed on the surface of the chilled layer by PVD or CVD treatment. It is disclosed. Note that chilling is a surface treatment that forms a cast iron surface that has a structure composed of a reedbright layer and pearlite and does not contain graphite. Such surface treatment is performed, for example, by irradiating the surface of cast iron with high-density energy such as laser or plasma arc to remelt its surface layer portion and then rapidly solidify it.
上述した特許文献2に開示された方法によれば、表層部に黒鉛を含まないチル化層が形成される。そしてチル化された表面の硬度は高くなる。従って、このようなチル化された表面に硬質被膜を形成した場合には、その表面硬度は比較的高くなる。しかしながら、このような方法により得られる部材においては、表面に黒鉛が存在しないために、黒鉛の自己潤滑作用による摺動性(滑り性)が失われてしまう。そのために、このような方法により得られる部材は、高い表面硬度を有するが、表面の摩擦係数も高くなる。従って、このような部材を用いて得られた金型を鋼板のプレス加工に用いた場合には、プレス時における表面の離型抵抗が高くなるために、硬質被膜の密着力が低いという問題が生じる。また、チル化に際しては、母材表面に高密度エネルギーを照射させて溶融した後、急速に再凝固させるような煩雑な工程が必要であるために、大型の金型の製造に適用した場合には、その全面をチル化することは多大な労力を要する。 According to the method disclosed in Patent Document 2 described above, a chilled layer not containing graphite is formed in the surface layer portion. And the hardness of the chilled surface is increased. Therefore, when a hard film is formed on such a chilled surface, the surface hardness is relatively high. However, in a member obtained by such a method, since graphite does not exist on the surface, the slidability (slidability) due to the self-lubricating action of graphite is lost. Therefore, the member obtained by such a method has a high surface hardness, but also has a high friction coefficient on the surface. Therefore, when a mold obtained using such a member is used for pressing a steel sheet, the surface mold release resistance during pressing increases, so that the adhesion of the hard coating is low. Arise. In addition, in the case of chilling, since it requires a complicated process of rapidly re-solidifying after irradiating the surface of the base material with high-density energy, it is necessary to apply it to the manufacture of a large mold. It takes a lot of labor to chill the entire surface.
本発明は、上述した問題を解決し、各種鋼板、特に、高張力鋼板等をプレス加工するのに好ましく用いられうる、高い密着力を有する硬質被膜が表面に形成された硬質被膜を有する球状化黒鉛鋳鉄材を提供することを目的とする。 The present invention solves the above-mentioned problems, and can be preferably used to press various steel plates, particularly high-tensile steel plates, and has a hard coating having a hard coating with a high adhesion formed on the surface. An object is to provide a graphite cast iron material.
本発明の一局面の硬質被膜を有する球状化黒鉛鋳鉄材は、窒化処理された球状化黒鉛鋳鉄の表面にチタン系硬質被膜が形成されており、前記表面における球状黒鉛の平均粒子径が30μm以下であることを特徴とする。このような構成によれば、密着力が著しく高いチタン系硬質被膜を有する球状化黒鉛鋳鉄材が得られる。 The spheroidal graphite cast iron material having a hard coating of one aspect of the present invention has a titanium-based hard coating formed on the surface of nitridized spheroidal graphite cast iron, and the average particle diameter of spheroidal graphite on the surface is 30 μm or less. It is characterized by being. According to such a configuration, a spheroidal graphite cast iron material having a titanium-based hard coating with extremely high adhesion can be obtained.
また、前記チタン系硬質被膜は、前記表面からTiN層、前記TiN層表面に形成されるTi(CxNy)層(但し、x+y=1,x<1で、前記TiN層表面から遠ざかるにつれてxが1に近づくように徐々に増大する)、及び前記Ti(CxNy)層表面に形成されたTiC層からなることがさらに高い硬質被膜の密着力が得られる点から好ましい。 In addition, the titanium-based hard coating includes a TiN layer from the surface and a Ti (CxNy) layer formed on the TiN layer surface (where x + y = 1, x <1, and as the distance from the TiN layer surface increases, x Is gradually increased so as to approach 1), and a TiC layer formed on the surface of the Ti (CxNy) layer is preferable from the viewpoint of obtaining a higher adhesion of the hard coating.
また、前記チタン系硬質被膜はPVD法、好ましくはアークイオンプレーティング法を用いて形成された被膜であることが好ましい。PVD法による被膜形成によれば、500℃以下のような低温で被膜形成することができる。低温で被膜形成することにより、被膜形成後の歪みや熱変形が小さいために、より密着力の高い被膜を形成することができる。また、被膜形成後の寸法修正等のために加工を要せずに、そのまま使用することができるという利点もある。 The titanium-based hard coating is preferably a coating formed by a PVD method, preferably an arc ion plating method. According to the film formation by the PVD method, the film can be formed at a low temperature of 500 ° C. or less. By forming the film at a low temperature, since the distortion and thermal deformation after the film formation are small, a film with higher adhesion can be formed. Moreover, there is also an advantage that it can be used as it is without processing for dimensional correction after the coating is formed.
また、本発明の他の一局面は、上記何れかに記載の硬質被膜を有する球状化黒鉛鋳鉄材からなるプレス用金型である。 Another aspect of the present invention is a press die made of a spheroidal graphite cast iron material having any one of the hard coatings described above.
また、本発明の他の一局面は、球状化黒鉛鋳鉄からなる母材を窒化処理する窒化処理工程と、前記窒化処理された母材表面にPVD法によりチタン系被膜を形成する被膜形成工程とを備え、前記母材表面における、球状黒鉛の平均粒子径が30μm以下であることを特徴とする硬質被膜を有する球状化黒鉛鋳鉄材の製造方法である。このような方法によれば、密着力が著しく高い炭化チタン系硬質被膜を有する球状化黒鉛鋳鉄材が得られる。 Another aspect of the present invention is a nitriding treatment step of nitriding a base material made of spheroidal graphite cast iron, and a coating forming step of forming a titanium-based coating film on the surface of the nitriding base material by a PVD method, And an average particle diameter of spheroidal graphite on the surface of the base material is 30 μm or less, and a method for producing a spheroidal graphite cast iron material having a hard coating. According to such a method, a spheroidal graphite cast iron material having a titanium carbide-based hard coating with extremely high adhesion can be obtained.
また、前記被膜形成工程は、前記母材とチタン蒸発源が載置された真空チャンバ内に窒素ガスを供給し、前記チタン蒸発源にアーク放電することによりチタンを蒸発させてプラズマを発生させ、前記プラズマによりイオン化された窒素イオン及びチタンイオンをバイアス電圧により加速させて前記金型母材表面に窒素イオン及びチタンイオンを被着させてTiN膜を形成する工程と、前記窒素ガスの供給を徐々に減少させるとともに、炭化水素ガスを供給量を徐々に増加させながら供給することによりTiCN膜を形成する工程と、
前記窒素ガスの供給を止め、前記炭化水素ガスのみを供給することによりTiC層を形成する工程とを備えることが好ましい。このような方法によれば、さらに高い硬質被膜の密着力が得られる。
Further, the film forming step supplies nitrogen gas into a vacuum chamber in which the base material and the titanium evaporation source are mounted, and generates plasma by evaporating titanium by arc discharge to the titanium evaporation source, Nitrogen ions and titanium ions ionized by the plasma are accelerated by a bias voltage to form a TiN film by depositing nitrogen ions and titanium ions on the surface of the mold base material, and supply of the nitrogen gas is gradually performed. And forming a TiCN film by supplying hydrocarbon gas while gradually increasing the supply amount; and
And a step of forming a TiC layer by stopping the supply of the nitrogen gas and supplying only the hydrocarbon gas. According to such a method, higher adhesion strength of the hard coating can be obtained.
本発明によれば、各種鋼板、特に、高張力鋼板等をプレス加工するのに好ましく用いられうる、高い密着力を有する硬質被膜を有する球状化黒鉛鋳鉄材が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the spheroidal graphite cast iron material which has a hard film with high adhesive force which can be preferably used for pressing various steel plates, especially a high-tensile steel plate etc. is obtained.
本発明の好ましい実施形態を図面を参照しながら説明する。 Preferred embodiments of the present invention will be described with reference to the drawings.
図1は、本実施形態の窒化処理された球状化黒鉛鋳鉄1の表面にチタン系硬質被膜2が形成されている構成を示す断面模式図である。球状化黒鉛鋳鉄1の表層は、窒化処理により形成された窒化層1aが形成されている。そして、球状化黒鉛鋳鉄1の表面における球状黒鉛の平均粒子径は30μm以下である。 FIG. 1 is a schematic cross-sectional view showing a configuration in which a titanium-based hard coating 2 is formed on the surface of a nitridized spheroidal graphite cast iron 1 according to this embodiment. On the surface layer of the spheroidal graphite cast iron 1, a nitrided layer 1a formed by nitriding is formed. And the average particle diameter of the spherical graphite in the surface of the spheroidized graphite cast iron 1 is 30 micrometers or less.
球状化黒鉛鋳鉄は、黒鉛が球状化された鋳鉄であれば特に限定されない。その具体例としては、鉄鋼記号FCD等で表されるものが挙げられる。これらの中でも特に、FCD540、FCD600、FCD700等が強度に優れている点から好ましく用いられる。 The spheroidized graphite cast iron is not particularly limited as long as it is cast iron in which graphite is spheroidized. Specific examples thereof include those represented by steel symbols FCD and the like. Among these, FCD540, FCD600, FCD700 and the like are particularly preferably used because of their excellent strength.
本発明における球状化黒鉛鋳鉄1の表面における、球状黒鉛の平均粒子径は30μm以下であり、好ましくは、20〜30μmである。本発明においては、このような球状化黒鉛鋳鉄の表面にチタン系硬質被膜を形成させることにより、密着力に優れた炭化チタン系硬質被膜を有する球状化黒鉛鋳鉄が得られる。前記平均粒子径が30μmを超える場合には、チタン系硬質被膜の密着力が著しく低下する。また、球状黒鉛の平均粒子径が20μm以下のものは生産が困難になる傾向がある。なお、球状黒鉛の平均粒子径は、窒化処理された球状化黒鉛鋳鉄の表面を金属顕微鏡で100倍の倍率で観察し、任意に100個の球状化黒鉛を選び、その各球状化黒鉛の面積を求め、それを等価円に換算したときの直径の平均値である。 The average particle diameter of the spheroidal graphite on the surface of the spheroidal graphite cast iron 1 in the present invention is 30 μm or less, preferably 20 to 30 μm. In the present invention, spheroidized graphite cast iron having a titanium carbide-based hard coating having excellent adhesion can be obtained by forming a titanium-based hard coating on the surface of such spheroidized graphite cast iron. When the average particle diameter exceeds 30 μm, the adhesion of the titanium-based hard coating is remarkably reduced. In addition, spherical graphite having an average particle size of 20 μm or less tends to be difficult to produce. The average particle diameter of the spheroidal graphite is determined by observing the surface of the nitrided spheroidal graphite cast iron with a metal microscope at a magnification of 100 times, arbitrarily selecting 100 spheroidal graphites, and determining the area of each spheroidal graphite. Is the average value of the diameter when converted to an equivalent circle.
本発明で用いられる球状化黒鉛鋳鉄の表面は、窒化処理されている。このような窒化処理は球状化黒鉛鋳鉄の表面を硬質化させる。そしてこのように硬質化された表面により、バックアップ力が向上し、その表面に形成されるチタン系硬質被膜の硬度及び密着力を充分に高めることができる。 The surface of spheroidal graphite cast iron used in the present invention is nitrided. Such nitriding treatment hardens the surface of the spheroidal graphite cast iron. The hardened surface improves the backup force and can sufficiently increase the hardness and adhesion of the titanium-based hard coating formed on the surface.
本実施形態における窒化処理方法は特に限定されず、従来から知られた、イオン窒化法、パルスプラズマ拡散(PPD)窒化処理、タフトライト処理、ガス窒化処理等が特に限定なく用いられる。これらの中ではイオン窒化法や、PPD窒化処理が、母材の変態点以下の温度である、約500〜550℃の温度で窒化処理できるために、窒化処理前後の寸法変化を抑制することができる点から好ましい。 The nitriding method in the present embodiment is not particularly limited, and conventionally known ion nitriding method, pulse plasma diffusion (PPD) nitriding treatment, tuftlite treatment, gas nitriding treatment and the like are used without particular limitation. Among these, the ion nitriding method and the PPD nitriding treatment can perform nitriding treatment at a temperature of about 500 to 550 ° C., which is a temperature below the transformation point of the base material. It is preferable from the point which can be performed.
窒化層の厚みとしては、被膜形成前の球状化黒鉛鋳鉄の表面からの深さが50〜300μm、さらには100〜200μmであることが好ましい。窒化層の深さが浅すぎる場合には表面硬度が充分に高くならない。一方、窒化層を深くしすぎても、球状化黒鉛鋳鉄の表面に対する表面硬度の向上によるバックアップ力は頭打ちになり、また、長時間の窒化処理が必要になるために経済的ではない。 As the thickness of the nitrided layer, the depth from the surface of the spheroidized graphite cast iron before film formation is preferably 50 to 300 μm, more preferably 100 to 200 μm. If the nitride layer is too shallow, the surface hardness will not be sufficiently high. On the other hand, even if the nitrided layer is made too deep, the backup force due to the improvement of the surface hardness with respect to the surface of the spheroidal graphite cast iron reaches a peak, and a nitriding treatment for a long time is required, which is not economical.
また、窒化層の一部を構成する表層部の化合物層の厚みとしては5〜20μm、さらには10〜15μmであることが好ましい。 Further, the thickness of the compound layer in the surface layer portion constituting a part of the nitride layer is preferably 5 to 20 μm, more preferably 10 to 15 μm.
チタン系硬質被膜2が形成される球状化黒鉛鋳鉄1の表面の表面粗さ(Ra)としては、0.1μm以下、さらには0.05μm以下であることが好ましい。表面の粗さがこのような範囲の場合には滑り性に優れ、摩擦抵抗の低い表面が得られる。特に、PVD法によりチタン系硬質被膜を形成する場合においては、緻密で平滑性の高い被膜が得られるために、球状化黒鉛鋳鉄1の表面の表面状態が被膜に反映されやすくなる。 The surface roughness (Ra) of the spheroidized graphite cast iron 1 on which the titanium-based hard coating 2 is formed is preferably 0.1 μm or less, and more preferably 0.05 μm or less. When the surface roughness is in such a range, a surface having excellent slipperiness and low frictional resistance can be obtained. In particular, when a titanium-based hard coating is formed by the PVD method, a dense and highly smooth coating is obtained, so that the surface state of the spheroidized graphite cast iron 1 is easily reflected in the coating.
チタン系硬質被膜は、チタンを主成分とする被膜であり、その具体例としては、例えば、窒化チタン、炭化チタン、炭窒化チタン等が挙げられる。 The titanium-based hard coating is a coating containing titanium as a main component, and specific examples thereof include titanium nitride, titanium carbide, titanium carbonitride, and the like.
このようなチタン系硬質被膜は、従来から知られた、アークイオンプレーティング法等のイオンプレーティング法や、マグネトロンスパッタリング法等の反応性スパッタリング法等の物理蒸着法(PVD法)、化学的蒸着法(CVD)等を用いて形成される。これらの中では、PVD法による被膜形成によれば、500℃以下のような低温で被膜形成することができる点から好ましい。低温で被膜形成することにより、被膜形成後の歪みや熱変形を小さくすることができるために、より密着力の高い被膜を形成することができる。 Such titanium-based hard coatings are conventionally known physical plating methods (PVD methods) such as ion plating methods such as arc ion plating methods, reactive sputtering methods such as magnetron sputtering methods, and chemical vapor deposition. It is formed using a method (CVD) or the like. Among these, the film formation by the PVD method is preferable because the film can be formed at a low temperature of 500 ° C. or less. By forming the film at a low temperature, distortion and thermal deformation after the film formation can be reduced, so that a film with higher adhesion can be formed.
チタン系硬質被膜としては、球状化黒鉛鋳鉄1の表面から遠ざかるにつれて窒素濃度が徐々に低下し、一方、炭素濃度が徐々に増大するような被膜であることが、特に、好ましい。具体的には、球状化黒鉛鋳鉄1の窒化層1aの表面には、窒化層1aと密着力のよいTiN層が形成されており、そして、TiN層中の窒素原子を徐々に炭素に置換するように炭素濃度が徐々に増大するTi(CxNy)層(但し、x+y=1,x<1で、前記TiN層表面から遠ざかるにつれてxが1に近づくように徐々に増大する)が形成されており、金型表面の最表層に硬度及び滑り性に優れたTiC層が形成されていることが好ましい。このようなチタン系硬質被膜、硬度、密着力、滑り性に特に優れている。 The titanium-based hard coating is particularly preferably a coating in which the nitrogen concentration gradually decreases as the distance from the surface of the spheroidized graphite cast iron 1 increases, while the carbon concentration gradually increases. Specifically, a TiN layer having good adhesion to the nitride layer 1a is formed on the surface of the nitrided layer 1a of the spheroidal graphite cast iron 1, and the nitrogen atoms in the TiN layer are gradually replaced with carbon. Ti (C x N y ) layer whose carbon concentration gradually increases (however, when x + y = 1, x <1, x gradually increases so that x approaches 1 as the distance from the TiN layer surface increases) It is preferable that a TiC layer having excellent hardness and slipperiness is formed on the outermost layer of the mold surface. Such a titanium-based hard coating, particularly excellent in hardness, adhesion, and slipperiness.
チタン系硬質被膜2の厚みは、特に限定されないが、1〜5μm、さらには、2〜4μm程度であることが、被膜の内部応力バランスを維持してより高い密着力を確保できる点から好ましい。 The thickness of the titanium-based hard coating 2 is not particularly limited, but is preferably about 1 to 5 μm, and more preferably about 2 to 4 μm, from the viewpoint of maintaining a higher adhesive force while maintaining the internal stress balance of the coating.
チタン系硬質被膜を形成する方法の一例として、アークイオンプレーティング法を用いて上述したような、球状化黒鉛鋳鉄1の表面から遠ざかるにつれて窒素濃度が徐々に低下し、一方、炭素濃度が徐々に増大するような被膜を形成する方法について、図2を参照して詳しく説明する。 As an example of a method of forming a titanium-based hard coating, the nitrogen concentration gradually decreases as the distance from the surface of the spheroidized graphite cast iron 1 as described above using the arc ion plating method, while the carbon concentration gradually increases. A method of forming an increasing film will be described in detail with reference to FIG.
図2はアークイオンプレーティング法によるアーク式真空成膜装置の一例を示す。 FIG. 2 shows an example of an arc type vacuum film forming apparatus using an arc ion plating method.
はじめに、真空チャンバ10内の回転テーブル11に窒化層1aが形成された球状化黒鉛鋳鉄1を載置する。そして、真空チャンバ10内を、250〜550℃に昇温し、さらに、10−2〜10−3Pa程度にまで減圧した後、ガス導入口12aからアルゴン(Ar)ガスを導入する。なお、チタン系硬質被膜の密着力を向上させるために、球状化黒鉛鋳鉄1は400〜500℃程度に加熱されていることが好ましい。そして、球状化黒鉛鋳鉄1にバイアス電源15によりバイアス電圧を印加することによりArイオンを衝突させ、球状化黒鉛鋳鉄1の表面を活性化させる。 First, the spheroidal graphite cast iron 1 on which the nitride layer 1 a is formed is placed on the turntable 11 in the vacuum chamber 10. The inside of the vacuum chamber 10 is heated to 250 to 550 ° C. and further depressurized to about 10 −2 to 10 −3 Pa, and then argon (Ar) gas is introduced from the gas introduction port 12a. In order to improve the adhesion of the titanium-based hard coating, the spheroidized graphite cast iron 1 is preferably heated to about 400 to 500 ° C. Then, a bias voltage is applied to the spheroidized graphite cast iron 1 by a bias power source 15 to cause Ar ions to collide with each other, thereby activating the surface of the spheroidized graphite cast iron 1.
そして、アーク電源13a、14a及び陽極13b、14bによりアーク放電を発生させ、チタン蒸発源13,14のチタンを蒸発させる。同時に、ガス導入口12aから、例えば、窒素ガスを窒素源として、供給する。そして、アーク放電により発生したプラズマ中で、窒素及びチタンをイオン化し、バイアス電圧によりイオンを加速させることにより、上記イオン化物を球状化黒鉛鋳鉄1表面に被着させ、TiN膜を形成する。次に、ガス導入口12aから、炭素源である炭化水素ガスを供給することにより、TiCN膜を形成する。このとき、徐々に窒素ガスの供給を減少させ、炭化水素ガスの供給を増加させていく。そして、最後は窒素ガスの供給を止め、炭化水素ガスのみを供給する。このように、系内に供給する原料ガスとして、初期には窒素ガスを多く供給し、徐々に、窒素ガスを炭化水素ガスに置き換えていくことにより、球状化黒鉛鋳鉄1表面にTiN膜を形成させ、次に、徐々に膜中の窒素量が減少し、また、炭素量が増大するようにTi(CxNy)層を形成させ、最後に、最外層にTiC層を形成させる。このように、密着力に優れたTiN層を金型表面に接触するように形成し、徐々に、窒素を炭素に置き換えるように層厚方向の組成を変化させ、その表面に滑り性と摩耗性に優れたTiC層を形成することにより、耐久性に優れた硬質膜を球状化黒鉛鋳鉄1の表面に形成することができる。 Then, arc discharge is generated by the arc power supplies 13a, 14a and the anodes 13b, 14b, and the titanium of the titanium evaporation sources 13, 14 is evaporated. At the same time, for example, nitrogen gas is supplied as a nitrogen source from the gas inlet 12a. Then, nitrogen and titanium are ionized in plasma generated by arc discharge, and ions are accelerated by a bias voltage, thereby depositing the ionized product on the surface of the spheroidized graphite cast iron 1 to form a TiN film. Next, a TiCN film is formed by supplying hydrocarbon gas as a carbon source from the gas inlet 12a. At this time, the supply of nitrogen gas is gradually decreased and the supply of hydrocarbon gas is increased. Finally, supply of nitrogen gas is stopped and only hydrocarbon gas is supplied. In this way, as the source gas supplied into the system, a large amount of nitrogen gas is initially supplied, and the nitrogen gas is gradually replaced with hydrocarbon gas, thereby forming a TiN film on the surface of spheroidal graphite cast iron 1 Next, a Ti (C x N y ) layer is formed so that the amount of nitrogen in the film gradually decreases and the amount of carbon increases, and finally, a TiC layer is formed as the outermost layer. In this way, a TiN layer with excellent adhesion is formed so as to be in contact with the mold surface, and the composition in the layer thickness direction is gradually changed so that nitrogen is replaced with carbon. By forming a TiC layer excellent in the above, a hard film having excellent durability can be formed on the surface of the spheroidal graphite cast iron 1.
このように形成される硬質被膜を有する球状化黒鉛鋳鉄材の表面硬度(ビッカース硬度)としては、3000〜3800HV程度であることが耐摩耗性が高い点から好ましい。 The surface hardness (Vickers hardness) of the spheroidized graphite cast iron material having the hard coating formed as described above is preferably about 3000 to 3800 HV because of high wear resistance.
このようなチタン系硬質被膜が形成された球状化黒鉛鋳鉄材は、チタン系硬質被膜の密着力に優れ、また、滑り性にも優れたものになる。従って、このような球状化黒鉛鋳鉄材は、各種鋼板のプレス加工、特に、高張力鋼板のプレス加工用の金型に好ましく用いられる。 The spheroidized graphite cast iron material on which such a titanium-based hard coating is formed has excellent adhesion to the titanium-based hard coating and also has excellent slipperiness. Accordingly, such a spheroidized graphite cast iron material is preferably used for a die for press-working various steel plates, particularly for high-strength steel plates.
実施例により、本発明をさらに具体的に説明する。なお、本発明は実施例により何ら限定されるものではない。 The present invention will be described more specifically with reference to examples. In addition, this invention is not limited at all by the Example.
(実施例1)
C:3.5%、Si:2.3%、Mn:0.5%、P:<0.05%、S:<0.02%、Mg:0.05%、Cu:0.4%(何れも質量%)の配合物500kgを高周波誘導電気炉で溶融することにより溶湯とした。そして、上記溶湯を1350〜1450℃で、図3に示すような形状を得るための砂型内に流し込み、1150〜950℃の温度範囲を約350℃/分の冷却速度で冷却した後、自然放冷して鋳物を得た。そして、得られた鋳物の表面に切削加工を施すことにより、図3に示したようなオス側金型母材20a及びメス側金型母材21aを作製した。
Example 1
C: 3.5%, Si: 2.3%, Mn: 0.5%, P: <0.05%, S: <0.02%, Mg: 0.05%, Cu: 0.4% A molten metal was prepared by melting 500 kg of a blend (both mass%) in a high frequency induction electric furnace. Then, the molten metal is poured into a sand mold for obtaining a shape as shown in FIG. 3 at 1350 to 1450 ° C., and the temperature range of 1150 to 950 ° C. is cooled at a cooling rate of about 350 ° C./min. A casting was obtained after cooling. And the male side metal mold | die base material 20a and the female side metal mold | die base material 21a as shown in FIG. 3 were produced by cutting the surface of the obtained casting.
次にオス側金型母材20a及びメス側金型母材21aにイオン窒化処理を行った。具体的には、温度550℃、圧力250Paに設定したイオン窒化炉内に、オス側金型母材20a及びメス側金型母材21aを載置した。そして、オス側金型母材20a及びメス側金型母材21aに−400Vの直流電圧を印加しながら、窒素ガス含量50%の空気と窒素の混合ガスを流量2L/分で流した。そしてこの処理を約20時間行うことにより深さ150μmの窒化層を形成した。このとき、窒化層の表層部の13μmは化合物層であった。そして、化合物層の表面の数μmをブラスト研磨することにより、表面粗さ(Ra)約0.05μmの鏡面仕上げされた表面を形成した。得られた表面を金属顕微鏡で観察したところ、各粒子の粒子径の範囲が23〜28μmで、平均粒子径が25μmの球状黒鉛が観察された。 Next, ion nitriding treatment was performed on the male side mold base material 20a and the female side mold base material 21a. Specifically, the male mold base 20a and the female mold base 21a were placed in an ion nitriding furnace set at a temperature of 550 ° C. and a pressure of 250 Pa. Then, while applying a DC voltage of −400 V to the male side mold base material 20a and the female side mold base material 21a, a mixed gas of air having a nitrogen gas content of 50% and nitrogen was flowed at a flow rate of 2 L / min. This treatment was performed for about 20 hours to form a nitride layer having a depth of 150 μm. At this time, 13 μm of the surface layer portion of the nitride layer was a compound layer. Then, a mirror-finished surface having a surface roughness (Ra) of about 0.05 μm was formed by blast polishing several μm of the surface of the compound layer. When the obtained surface was observed with a metallographic microscope, spherical graphite having a particle diameter range of 23 to 28 μm and an average particle diameter of 25 μm was observed.
次に、鏡面仕上げされたオス側金型母材20a及びメス側金型母材21aの表面に、図2に示したようなアーク式真空成膜装置を用いて、アークイオンプレーティング法により以下の手順でチタン系硬質被膜を形成した。 Next, an arc ion plating method as shown in FIG. 2 is used on the surfaces of the mirror-finished male die base material 20a and female side die base material 21a to perform the following by an arc ion plating method. A titanium-based hard coating was formed by the procedure described above.
はじめに、回転テーブル11上に、オス側金型母材20a及びメス側金型母材21aを載置した。そして、真空チャンバ10内を3×10−3Paにまで減圧した。オス側金型母材20a及びメス側金型母材21aそれぞれの温度は図略のヒータにより450℃になるように制御した。次に、ガス導入口12aからArガスを供給する一方、排気口から排気することにより内圧を2.7Paに維持した。 First, the male mold base 20a and the female mold base 21a were placed on the turntable 11. And the pressure inside the vacuum chamber 10 was reduced to 3 × 10 −3 Pa. Each temperature of the male side mold base material 20a and the female side mold base material 21a was controlled to 450 ° C. by a heater (not shown). Next, while supplying Ar gas from the gas introduction port 12a, the internal pressure was maintained at 2.7 Pa by exhausting from the exhaust port.
次に、Arガスの供給を止めた後、窒素ガスを3000mL/minの流量で7分間供給した。このときも内圧を2.7Paに維持していた。また、同時に、チタン蒸発源13,14にアーク放電することにより、チタンを蒸発させた。アーク放電により発生したプラズマ中で、窒素及びチタンはイオン化され、オス側金型母材20a及びメス側金型母材21aにバイアス電源15により印加されたバイアス電圧によりイオンが加速されて、それぞれの表面にTiN膜が形成された。 Next, after the supply of Ar gas was stopped, nitrogen gas was supplied at a flow rate of 3000 mL / min for 7 minutes. At this time, the internal pressure was maintained at 2.7 Pa. At the same time, the arc was discharged to the titanium evaporation sources 13 and 14 to evaporate titanium. In the plasma generated by the arc discharge, nitrogen and titanium are ionized, and ions are accelerated by the bias voltage applied by the bias power source 15 to the male side mold base material 20a and the female side mold base material 21a. A TiN film was formed on the surface.
次に、窒素ガスの供給とメタンガスの供給量において、徐々に窒素ガスの供給量が減少し、メタンガスの供給量が増加するように制御しながら、窒素ガス及びメタンガスを内圧を2.7Paに維持しながら20分間供給した。そして、最終的には、窒素ガスの供給を止め、メタンガスのみを20分間供給した。 Next, in the supply of nitrogen gas and the supply amount of methane gas, the internal pressure of nitrogen gas and methane gas is maintained at 2.7 Pa while controlling so that the supply amount of nitrogen gas gradually decreases and the supply amount of methane gas increases. For 20 minutes. And finally, supply of nitrogen gas was stopped and only methane gas was supplied for 20 minutes.
上記のような方法により、オス側金型母材20a及びメス側金型母材21aそれぞれの表面に約1μmのTiN層と、前記TiN層表面に約2μmのTi(CxNy)層と、前記Ti(CxNy)層表面に約1μmのTiC層を形成させた。 By the method as described above, a TiN layer of about 1 μm on the surface of each of the male mold base 20a and the female mold base 21a, and a Ti (C x N y ) layer of about 2 μm on the surface of the TiN layer Then, a TiC layer having a thickness of about 1 μm was formed on the surface of the Ti (CxNy) layer.
このようにして得られた、チタン系硬質被膜が形成されたオス側金型20及びメス側金型21表面のマイクロビッカース硬度、スクラッチ密着力、ロックウエル圧痕テスト、及びビード引抜き特性を評価した。 The micro Vickers hardness, scratch adhesion, Rockwell indentation test, and bead pulling characteristics of the surfaces of the male mold 20 and the female mold 21 formed with the titanium-based hard coating were evaluated.
なお、密着力は、CSEM社製のスクラッチ試験機(Automatic Scratch Tester REVETEST)を用いたスクラッチ測定値により評価した。また、ロックウエル圧痕テスト及びビード引抜き特性は、以下の方法により、評価した。 In addition, the adhesive force was evaluated by a scratch measurement value using a scratch tester (Automatic Scratch Tester REVETEST) manufactured by CSEM. Moreover, the Rockwell indentation test and the bead drawing characteristics were evaluated by the following methods.
[ロックウエル圧痕テスト]
ロックウェル圧痕試験(圧子:ロックウェルCスケール、押し付け荷重:1470N(150kgf))を行い、圧痕周辺部の皮膜の状態から、以下の基準で密着性を評価した。なお、このときの圧痕の光学顕微鏡写真を図5に示す。
優:試験箇所の圧痕周辺部に剥離等の欠陥が認められなかった
良:試験箇所の圧痕周辺部に1箇所の欠陥が認められた
劣:試験箇所の圧痕周辺部の少なくとも2箇所の剥離等の欠陥が認められた
[ビード引抜き特性]
図4に示すように、20×300×1.4mmの高張力鋼材CR980Y(100k級ハイテン)からなる鋼板30をオス側金型20及びメス側金型21に挟み込んだ。そして、鋼板30を挟み込んだオス側金型20及びメス側金型21からなるプレス用金型を固定された小型プレス機にセットした。そして、小型プレス機によりオス側金型20及びメス側金型21を徐々に加圧しながら、挟み込まれた鋼板30の一端を定速(500mm/min)で引っ張った。そして、鋼板30が破断したときの引抜荷重F及び小型プレス機の押付荷重Pを測定した。
[Rockwell indentation test]
A Rockwell indentation test (indenter: Rockwell C scale, pressing load: 1470 N (150 kgf)) was performed, and the adhesion was evaluated according to the following criteria from the state of the film around the indentation. An optical micrograph of the indentation at this time is shown in FIG.
Excellent: No defect such as peeling was found around the indentation at the test site. Good: One defect was found around the indentation at the test site. Inferior: At least two peelings around the indentation at the test site. [Bead pulling characteristics]
As shown in FIG. 4, a steel plate 30 made of 20 × 300 × 1.4 mm high-tensile steel CR980Y (100 k class high tensile) was sandwiched between a male mold 20 and a female mold 21. Then, a pressing die composed of a male die 20 and a female die 21 sandwiching the steel plate 30 was set in a fixed small press. Then, one end of the sandwiched steel sheet 30 was pulled at a constant speed (500 mm / min) while gradually pressing the male mold 20 and the female mold 21 with a small press. And the drawing load F when the steel plate 30 broke and the pressing load P of a small press machine were measured.
そして、引張初期及び破断時の引抜荷重F及び押付荷重Pから、「摩擦係数μ=引抜荷重F/押付荷重P」の式より摩擦係数を測定した。 Then, the friction coefficient was measured from the pull-out load F and the pressing load P at the initial stage of tension and at the time of breakage by the formula of “friction coefficient μ = pull-out load F / pressing load P”.
結果を表1に示す。 The results are shown in Table 1.
(実施例2)
実施例1において、オス側金型母材20a及びメス側金型母材21aの作成時の1150〜950℃の温度範囲の冷却速度を約290℃/分にした以外は実施例1と同様にして窒化層が形成された表面粗さ(Ra)約0.05μmのオス側金型母材20a及びメス側金型母材21aを得た。得られた表面を金属顕微鏡で観察したところ、各粒子の粒子径の範囲が28〜32μmで、平均粒子径が30μmの球状黒鉛が観察された。そして、実施例1と同様にして評価した。結果を表1に示す。
(Example 2)
In Example 1, the same as in Example 1 except that the cooling rate in the temperature range of 1150 to 950 ° C. was set to about 290 ° C./min when the male mold base 20a and the female mold base 21a were created. Thus, a male mold base 20a and a female mold base 21a having a surface roughness (Ra) of about 0.05 μm on which a nitride layer was formed were obtained. When the obtained surface was observed with a metal microscope, spherical graphite having a particle diameter range of 28 to 32 μm and an average particle diameter of 30 μm was observed. And it evaluated similarly to Example 1. FIG. The results are shown in Table 1.
(比較例1)
実施例1において、オス側金型母材20a及びメス側金型母材21aの作成時の1150〜950℃の温度範囲の冷却速度を約160℃/分にした以外は実施例1と同様にして窒化層が形成された表面粗さ(Ra)約0.05μmのオス側金型母材20a及びメス側金型母材21aを得た。得られた表面を金属顕微鏡で観察したところ、各粒子の粒子径の範囲が38〜42μmで、平均粒子径が40μmの球状黒鉛が観察された。そして、実施例1と同様にして評価した。結果を表1に示す。また、このとき得られた、ロックウェル圧痕テストにおける圧痕の光学顕微鏡写真を図5に示す。
(Comparative Example 1)
In Example 1, the same as in Example 1 except that the cooling rate in the temperature range of 1150 to 950 ° C. was set to about 160 ° C./min when the male mold base 20a and the female side mold base 21a were created. Thus, a male mold base 20a and a female mold base 21a having a surface roughness (Ra) of about 0.05 μm on which a nitride layer was formed were obtained. When the obtained surface was observed with a metal microscope, spherical graphite having a particle diameter range of 38 to 42 μm and an average particle diameter of 40 μm was observed. And it evaluated similarly to Example 1. FIG. The results are shown in Table 1. Moreover, the optical microscope photograph of the impression in the Rockwell impression test obtained at this time is shown in FIG.
(比較例2)
実施例1において、オス側金型母材20a及びメス側金型母材21aの作成時の1150〜950℃の温度範囲の冷却速度を約60℃/分にした以外は実施例1と同様にして窒化層が形成された表面粗さ(Ra)約0.05μmのオス側金型母材20a及びメス側金型母材21aを得た。得られた表面を金属顕微鏡で観察したところ、各粒子の粒子径の範囲が53〜58μmで、平均粒子径が55μmの球状黒鉛が観察された。そして、実施例1と同様にして評価した。結果を表1に示す。
(Comparative Example 2)
In Example 1, the same procedure as in Example 1 was performed except that the cooling rate in the temperature range of 1150 to 950 ° C. was set to about 60 ° C./min when the male side mold base material 20a and the female side mold base material 21a were created. Thus, a male mold base 20a and a female mold base 21a having a surface roughness (Ra) of about 0.05 μm on which a nitride layer was formed were obtained. When the obtained surface was observed with a metallurgical microscope, spherical graphite having a particle diameter range of 53 to 58 μm and an average particle diameter of 55 μm was observed. And it evaluated similarly to Example 1. FIG. The results are shown in Table 1.
(比較例3)
実施例1において、オス側金型母材20a及びメス側金型母材21aの作成時の冷却速度を約30℃/分にした以外は実施例1と同様にして窒化層が形成された表面粗さ(Ra)約0.05μmのオス側金型母材20a及びメス側金型母材21aを得た。得られた表面を金属顕微鏡で観察したところ、各粒子の粒子径の範囲が65〜73μmで、平均粒子径が70μmの球状黒鉛が観察された。そして、実施例1と同様にして評価した。結果を表1に示す。また、実施例1及び2、比較例1〜3における密着力の評価結果をプロットしたグラフを図7に示す。
(Comparative Example 3)
In Example 1, the surface on which the nitride layer was formed in the same manner as in Example 1 except that the cooling rate at the time of creating the male mold base 20a and the female mold base 21a was about 30 ° C./min. A male mold base 20a and a female mold base 21a having a roughness (Ra) of about 0.05 μm were obtained. When the obtained surface was observed with a metal microscope, spherical graphite having a particle diameter range of 65 to 73 μm and an average particle diameter of 70 μm was observed. And it evaluated similarly to Example 1. FIG. The results are shown in Table 1. Moreover, the graph which plotted the evaluation result of the adhesive force in Examples 1 and 2 and Comparative Examples 1-3 is shown in FIG.
表1及び図7に示したように、本発明に係る、球状黒鉛の平均粒子径が30μm以下である、窒化処理された球状化黒鉛鋳鉄の表面にチタン系硬質被膜を形成した実施例1及び実施例2においては、著しく高いスクラッチ密着力を示した。また、ロックウエル圧痕テストにおいても、剥離が殆ど認められなかった。一方、球状黒鉛の平均粒子径が30μmを超える、40μmの比較例1、55μm以下の比較例2、70μm以下の比較例3においてはから密着力が急激に低下した。 As shown in Table 1 and FIG. 7, according to the present invention, an example 1 in which a titanium-based hard coating was formed on the surface of nitriding-treated spheroidal graphite cast iron having an average particle diameter of spheroidal graphite of 30 μm or less and In Example 2, extremely high scratch adhesion was shown. In the Rockwell indentation test, almost no peeling was observed. On the other hand, in the comparative example 1 of 40 μm, the average particle diameter of the spherical graphite exceeding 30 μm, the comparative example 2 of 55 μm or less, and the comparative example 3 of 70 μm or less, the adhesion force suddenly decreased.
以上の結果より、球状黒鉛の平均粒子径が30μm以下であるような窒化された球状化黒鉛鋳鉄の表面にチタン系硬質被膜を形成することにより、密着力に優れたチタン系硬質被膜が得られることが分かる。 From the above results, a titanium-based hard coating having excellent adhesion can be obtained by forming a titanium-based hard coating on the surface of nitrided spheroidal graphite cast iron having an average particle diameter of spheroidal graphite of 30 μm or less. I understand that.
また、ビード引抜特性評価においては、比較例1〜3の引抜荷重が14〜18kNであるのに対して、実施例1及び2では27kN以上と高く、実施例1及び2の球状化黒鉛鋳鉄材から得られたプレス用金型の表面に形成された硬質被膜は滑り性に優れているために、ビード引抜特性にも優れていることが分かる。さらに、ビード引抜特性評価において測定された、初期摩擦係数及び破断時摩擦係数のいずれにおいても、比較例のプレス用金型よりも実施例のプレス用金型の方が低く、滑り性にも優れていることが分かる。 Further, in the bead drawing characteristic evaluation, the drawing load of Comparative Examples 1 to 3 is 14 to 18 kN, whereas in Examples 1 and 2, it is as high as 27 kN or more, and the spheroidal graphite cast iron material of Examples 1 and 2 is used. It can be seen that the hard coating formed on the surface of the press mold obtained from No. 1 is excellent in slipperiness and therefore also excellent in bead drawing characteristics. Furthermore, in both the initial friction coefficient and the friction coefficient at break as measured in the bead drawing characteristic evaluation, the press die of the example is lower than the press die of the comparative example, and is excellent in slipperiness. I understand that
1 球状化黒鉛鋳鉄
1a 窒化層
2 チタン系硬質被膜
10 真空チャンバ
11 回転テーブル
12a ガス導入口
12b ガス排気口
13,14 チタン蒸発源
13a,14a アーク電源
13b,14b 陽極
15 バイアス電源
20 オス側金型
20a オス側金型母材
21 メス側金型
21a メス側金型母材
30 鋼板
DESCRIPTION OF SYMBOLS 1 Spheroidal graphite cast iron 1a Nitrided layer 2 Titanium hard coating 10 Vacuum chamber 11 Rotary table 12a Gas inlet 12b Gas exhaust port 13,14 Titanium evaporation source 13a, 14a Arc power source 13b, 14b Anode 15 Bias power source 20 Male side mold 20a Male side mold base material 21 Female side mold 21a Female side mold base material 30 Steel plate
Claims (7)
前記表面における球状黒鉛の平均粒子径が30μm以下であることを特徴とする硬質被膜を有する球状化黒鉛鋳鉄材。 A titanium-based hard coating is formed on the surface of nitriding spheroidal graphite cast iron,
A spheroidal graphite cast iron material having a hard coating, wherein the average particle diameter of spheroidal graphite on the surface is 30 μm or less.
前記母材表面における、球状黒鉛の平均粒子径が30μm以下であることを特徴とする硬質被膜を有する球状化黒鉛鋳鉄材の製造方法。 A nitriding treatment step of nitriding a base material made of spheroidal graphite cast iron, and a coating forming step of forming a titanium-based coating film on the surface of the nitrided base material by a PVD method,
A method for producing a spheroidal graphite cast iron material having a hard coating, characterized in that an average particle diameter of spheroidal graphite is 30 μm or less on the surface of the base material.
前記窒素ガスの供給を徐々に減少させるとともに、炭化水素ガスを供給量を徐々に増加させながら供給することによりTiCN膜を形成する工程と、
前記窒素ガスの供給を止め、前記炭化水素ガスのみを供給することによりTiC層を形成する工程とを備える請求項6に記載の硬質被膜を有する球状化黒鉛鋳鉄材の製造方法。 In the film forming step, nitrogen gas is supplied into a vacuum chamber in which the base material and the titanium evaporation source are placed, and arc is discharged to the titanium evaporation source to generate titanium, thereby generating plasma, and the plasma A step of accelerating nitrogen ions and titanium ions ionized by a bias voltage to deposit nitrogen ions and titanium ions on the surface of the mold base material to form a TiN film;
Forming the TiCN film by gradually reducing the supply of the nitrogen gas and supplying the hydrocarbon gas while gradually increasing the supply amount;
The method for producing a spheroidal graphite cast iron material having a hard coating according to claim 6, further comprising a step of forming a TiC layer by stopping the supply of the nitrogen gas and supplying only the hydrocarbon gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009048960A JP5389474B2 (en) | 2009-03-03 | 2009-03-03 | Spheroidal graphite cast iron material having hard coating, press mold, and method for producing spheroidal graphite cast iron material having hard coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009048960A JP5389474B2 (en) | 2009-03-03 | 2009-03-03 | Spheroidal graphite cast iron material having hard coating, press mold, and method for producing spheroidal graphite cast iron material having hard coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010202926A JP2010202926A (en) | 2010-09-16 |
JP5389474B2 true JP5389474B2 (en) | 2014-01-15 |
Family
ID=42964697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009048960A Active JP5389474B2 (en) | 2009-03-03 | 2009-03-03 | Spheroidal graphite cast iron material having hard coating, press mold, and method for producing spheroidal graphite cast iron material having hard coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5389474B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101519709B1 (en) * | 2013-03-05 | 2015-05-12 | 기아자동차주식회사 | A method and system for die compensation and restoration using high velocity oxy-fuel spray coaitng and plasma ion nitriding |
CN103334106B (en) * | 2013-05-21 | 2015-06-03 | 中国船舶重工集团公司第七二五研究所 | Surface-hardening treatment method of sealing pairs and friction pairs of titanium and titanium alloy ball valves |
JP6930738B2 (en) * | 2018-08-03 | 2021-09-01 | 錦見鋳造株式会社 | How to make cookware |
CN112359268A (en) * | 2020-11-17 | 2021-02-12 | 江苏华永铁基复合材料有限公司 | Titanium carbide reinforced cast iron material and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61133360A (en) * | 1984-11-30 | 1986-06-20 | Ngk Insulators Ltd | Spheroidal graphite cast iron for metallic mold |
JPH05337704A (en) * | 1992-06-11 | 1993-12-21 | Mitsubishi Materials Corp | Inclined hard layer coating cemented carbide cutting tool |
JP2000038653A (en) * | 1998-07-21 | 2000-02-08 | Sumitomo Electric Ind Ltd | Die or mold having surface film |
JP2004092714A (en) * | 2002-08-30 | 2004-03-25 | Nippon Piston Ring Co Ltd | Combination of piston and piston ring |
-
2009
- 2009-03-03 JP JP2009048960A patent/JP5389474B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010202926A (en) | 2010-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Khor et al. | Formation of hard tungsten boride layer by spark plasma sintering boriding | |
CN110770362B (en) | Sliding member and coating film | |
JP5351875B2 (en) | Mold for plastic working, method for producing the same, and method for forging aluminum material | |
Yang et al. | Phase constituents and mechanical properties of laser in-situ synthesized TiCN/TiN composite coating on Ti-6Al-4V | |
Fu et al. | Mechanical properties of DLC coating sputter deposited on surface nanocrystallized 304 stainless steel | |
JP2010001547A (en) | Hard film-coated member and tool for molding | |
JP6525310B2 (en) | Coated tools | |
JP2000271699A (en) | Surface coated forming die and production thereof | |
JP5389474B2 (en) | Spheroidal graphite cast iron material having hard coating, press mold, and method for producing spheroidal graphite cast iron material having hard coating | |
Ghasemi et al. | Wear performance of DLC coating on plasma nitrided Astaloy Mo | |
Kovací et al. | Effect of plasma nitriding parameters on the wear resistance of alloy Inconel 718 | |
JP2002307129A (en) | Coating tool for warm and hot working having excellent lubricant adhesion and wear resistance | |
JP4975481B2 (en) | Die for press | |
Yang et al. | In-situ synthesis of Ti–Al intermetallic compounds coating on Ti alloy by magnetron sputtering deposition followed by vacuum annealing | |
Spies et al. | PVD hard coatings on prenitrided low alloy steel | |
JP5720996B2 (en) | Coated member with excellent film adhesion and method for producing the same | |
Keleş et al. | Determining the critical loads of V and Nb doped ternary TiN-based coatings deposited using CFUBMS on steels | |
JPWO2014192730A1 (en) | Manufacturing method of cold working mold | |
Hsieh et al. | Mechanical properties of TaN-Cu nanocomposite thin films | |
JP2000038653A (en) | Die or mold having surface film | |
JP3765474B2 (en) | Cr alloy target material, method for producing the same, and film coating method | |
JP2004315876A (en) | Die for molding magnesium having sliding resistance improved, and surface treatment method thereof | |
JP2011080101A (en) | Hard film, plastic working die, plastic working method, and target for the hard film | |
JP6762790B2 (en) | Hard film covering member | |
JP3765475B2 (en) | Ti-Si alloy-based target material, method for producing the same, and film coating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120612 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20120612 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120612 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130917 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131009 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5389474 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |