JPS61133360A - Spheroidal graphite cast iron for metallic mold - Google Patents

Spheroidal graphite cast iron for metallic mold

Info

Publication number
JPS61133360A
JPS61133360A JP25349384A JP25349384A JPS61133360A JP S61133360 A JPS61133360 A JP S61133360A JP 25349384 A JP25349384 A JP 25349384A JP 25349384 A JP25349384 A JP 25349384A JP S61133360 A JPS61133360 A JP S61133360A
Authority
JP
Japan
Prior art keywords
graphite
cast iron
spheroidal graphite
casting
graphite cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25349384A
Other languages
Japanese (ja)
Inventor
Toshiaki Ishihara
敏明 石原
Kazutake Ikushima
生嶋 一丈
Yasuhiro Miyamoto
康弘 宮本
Katsumi Suzuki
克美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP25349384A priority Critical patent/JPS61133360A/en
Publication of JPS61133360A publication Critical patent/JPS61133360A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide spheroidal graphite cast iron giving a metallic mold having a fine appearance and satisfactory mechanical characteristics by specifying the contents of C, Si, Ni, Cu, Mo and Mg and regulating the carbon equiv. CONSTITUTION:This spheroidal graphite cast iron for a metallic mold consists of, by weight, 2.8-3.8% C, 1.5-3.0% Si, (C+1/3Si=3.8-4.3%), 4.5-6.0% Ni, 0.3-2.5% Cu, 0.2-1.0% Mo, 0.02-0.07% Mg and the balance Fe with inevitable impurities. The spheroidal graphite cast iron does not contain spheroidal graphite of >100mum maximum grain size by the graphite grain refining effect of Ni and Cu, and the average grain size of graphite is <=60mum. The average grain size of graphite in a casting surface is reduced to <=30mum by a rapid cooling effect produced by contact with the surface of a casting mold. When a metallic mold made of the cast iron is used, a thick-walled casting having a smooth surface and high dimensional accuracy is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、成形用金型に好適な球状黒鉛鋳鉄に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to spheroidal graphite cast iron suitable for forming molds.

(従来の技術) 金型主体が鋳鉄よりなる金型は、その鋳造性の良さから
プレス型、ゴム型等の金型に用いられている。特に鋳造
品の中でも球状黒鉛鋳鉄は、その機械的特性が優れてい
ることから、金型としての使用範囲が拡大されているが
鋳造品の肉厚が増すにつれて晶出した黒鉛が成長し、粗
大化するため、良好な表面性が得られないという欠点を
有していた。
(Prior Art) Molds whose main body is made of cast iron are used for press molds, rubber molds, and the like because of their good castability. Among cast products, spheroidal graphite cast iron has excellent mechanical properties, so its use as molds has expanded, but as the thickness of the cast product increases, crystallized graphite grows and becomes coarse. This has the disadvantage that good surface properties cannot be obtained because of the oxidation.

(発明が解決しようとする問題点) ここで、黒鉛を微細化する手段として、接種条件の検討
や熱伝導性のよい鋳型を用いることにより急冷させると
いった方法が用いられているが、これらの方法は生産上
高度の技術を要する他、厚肉鋳造品においては、黒鉛が
微細化できるのは表面層のみであり、冷却の遅い鋳物内
部では黒鉛粒は粗大化し、加工面の外観、機械特性に悪
影響を及ぼすといった欠点を有していた。
(Problems to be Solved by the Invention) Here, as a means of refining graphite, methods such as examining inoculation conditions and quenching by using a mold with good thermal conductivity are used, but these methods In addition to requiring advanced production techniques, in thick-walled castings, graphite can only be refined in the surface layer, and graphite grains become coarser inside the casting where cooling is slow, resulting in poor appearance and mechanical properties of the machined surface. It had the disadvantage of having a negative impact.

また鋳鋼を主体とした鋳造金型では、鋼は凝固する際の
収縮率が大きいため、寸法精度の良好な金型を鋳造する
ことが困難であるという欠点を有していた。
Further, casting molds mainly made of cast steel have the disadvantage that it is difficult to cast molds with good dimensional accuracy because steel has a large shrinkage rate when solidified.

本発明の目的は前記のような欠点を除き、特に厚肉鋳造
品においても容易に微細な球状黒鉛が得られることから
、表面が平滑であり、しかも寸法精度が良好であるとと
もに機械特性の優れた金型用球状黒鉛鋳鉄を提供しよう
とするものである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and also to easily obtain fine spherical graphite even in thick-walled cast products, so that the surface is smooth, the dimensional accuracy is good, and the mechanical properties are excellent. The present invention aims to provide spheroidal graphite cast iron for molds.

(8!I点を解決するための手段) 本発明は、重量パーセントで、C2,8〜3.8%。(8!Means to solve I point) The present invention is C2.8 to 3.8% by weight.

5i1.5〜3.0%、 Ni  4.5〜6.0%、
Cue、3〜265%、Mo0.2〜1.0%、 MO
0,02〜0.07%と残部Feおよび不可避的不純物
からなり、炭素当量(C++Si)が3.8〜4.3%
よりなることを特徴とするものであって、好ましくは、
その鋳肌面に分布される球状黒鉛粒子の粒径が30μm
以下であり、鋳肌面以外の部分においては、平均黒鉛粒
径が60μm以下であり、かつ最大黒鉛粒径が100μ
m以下とするものである。
5i 1.5-3.0%, Ni 4.5-6.0%,
Cue, 3-265%, Mo0.2-1.0%, MO
0.02 to 0.07%, the balance consisting of Fe and unavoidable impurities, and the carbon equivalent (C++Si) is 3.8 to 4.3%
It is characterized by consisting of, preferably,
The particle size of the spherical graphite particles distributed on the casting surface is 30 μm.
or less, and in areas other than the casting surface, the average graphite particle size is 60 μm or less, and the maximum graphite particle size is 100 μm.
m or less.

(作 用) 本発明における球状黒鉛鋳鉄のこのような黒鉛粒の微細
化効果はその組成に寄因するところが大きく、以下にそ
の詳細な説明を記す。
(Function) The effect of refining the graphite grains of the spheroidal graphite cast iron in the present invention is largely due to its composition, and a detailed explanation thereof will be given below.

C及び3iについては一般的鋳鉄に含まれるものである
が、CIが2.8%未満であると、凝固時の体積収縮量
が大となり、金型としての良好な寸法精度が得られなく
なるため2.8%以上とし、また3、8%を超えると、
凝固時に初晶黒鉛が発生し、それは容易に粗大化するこ
とがらC2,8〜3.8%とした。
C and 3i are included in general cast iron, but if the CI is less than 2.8%, the amount of volumetric shrinkage during solidification will be large, making it impossible to obtain good dimensional accuracy as a mold. 2.8% or more, and if it exceeds 3.8%,
Since primary crystal graphite is generated during solidification and easily becomes coarse, the C content was set at 8 to 3.8%.

次に3iについては、3.0%を超えると初晶黒鉛の発
生を促進するため、3.0%以下とし、1.5%未満で
あると、チルの発生により加工性が劣化するため1.5
%以上とした。ざらにCと3i量の関係において炭素当
量(C%++Si%)の値が   3368未満である
と、凝固点の上昇と凝固温度範囲の増大化により、金型
の良好な寸法精度が得られなくなり、4.3を超えると
初晶黒鉛の発生、粗大化により良好な表面性が得られな
くなるため(C%十+s+%)−3,8〜4.3とした
Next, regarding 3i, if it exceeds 3.0%, it will promote the generation of primary crystal graphite, so it should be 3.0% or less, and if it is less than 1.5%, the processability will deteriorate due to the generation of chill, so 1 .5
% or more. Roughly speaking, if the value of carbon equivalent (C%++Si%) in the relationship between C and the amount of 3i is less than 3368, good dimensional accuracy of the mold cannot be obtained due to an increase in the freezing point and an increase in the solidification temperature range. If it exceeds 4.3, good surface properties cannot be obtained due to generation of primary graphite and coarsening (C% + s + %) -3.8 to 4.3.

次にNiとCIJについては、それらの含有量が黒鉛粒
の微細化と機械特性に対し非常に重要な役割りを有する
元素である。第1図は、NiとCuの添加が黒鉛粒径に
及ぼす効果を示すグラフであり、200φ砂型に各50
kg鋳造し鋳放した後、鋳物中央部のミク0111より
測定した結果を示している。第1図に示すようにNiは
Cuと同時に含有した場合、特に凝固速度の小さい厚肉
鋳造品において、Ni4.5%以上から著しい黒鉛微細
化効果を示す、それは10%以上で最も優れたものとな
る。
Next, Ni and CIJ are elements whose contents play a very important role in the refinement of graphite grains and mechanical properties. Figure 1 is a graph showing the effect of the addition of Ni and Cu on graphite particle size.
This figure shows the results of measurements taken from Miku 0111 in the center of the casting after casting and as-casting. As shown in Figure 1, when Ni is contained at the same time as Cu, especially in thick-walled cast products with a slow solidification rate, Ni exhibits a remarkable graphite refining effect when the Ni content is 4.5% or more, and it is most excellent when the Ni content is 10% or more. becomes.

しかしながら6%を超えるNiを含有した場合、鋳放状
態にて組織中のマルテンサイトが増加し、金型としての
加工性が損なわれるためN i4.5〜6%とした。C
uについては、第1図に示す通りN1の黒鉛微細化効果
を促進す゛る元素であるが、Cuが0.3%未満ではそ
の効果が少な(、また2、5%を超えると粒界に析出相
が現われ機械特性に悪影響を与えるため、Cu  0.
3〜2.5%とした。
However, if Ni exceeds 6%, martensite increases in the structure in the as-cast state, impairing workability as a mold, so the Ni content was set at 4.5 to 6%. C
Regarding u, as shown in Figure 1, it is an element that promotes the graphite refining effect of N1, but if Cu is less than 0.3%, the effect is small (and if it exceeds 2.5%, it will precipitate at grain boundaries). Cu0.
It was set at 3 to 2.5%.

MOについてはこれ自身は黒鉛の粒径に影響を及ぼすも
のではないが、以上に記したC、S+ 。
Although MO itself does not affect the particle size of graphite, the above-mentioned C and S+.

Ni、Quの組成において0.2〜1%のMOを添加す
ることにより、鋳造後の徐冷条件下において、基地組織
をベイナイト組織とする効果を有しており、このベイナ
イト化により金型として良好な機械特性を有するものと
なる。ここでMOが0.2%未満であるとベイナイト化
の効果が得られず、1%を超えると炭化物が形成され易
くなり加工性が劣化することがらMo  0.2〜1.
0%とした。
By adding 0.2 to 1% MO to the composition of Ni and Qu, it has the effect of converting the base structure into a bainite structure under slow cooling conditions after casting, and this bainite formation makes it difficult to use as a mold. It has good mechanical properties. Here, if MO is less than 0.2%, the effect of bainiticization cannot be obtained, and if it exceeds 1%, carbides are likely to be formed and workability is deteriorated.
It was set to 0%.

Maは黒鉛球状化元素であり、通例の球状黒鉛鋳鉄と同
様0.02〜0.07%とした。
Ma is a graphite spheroidizing element, and was set at 0.02 to 0.07% as in usual spheroidal graphite cast iron.

以上の組成よりなる球状黒鉛鋳鉄材において、鋳造条件
、鋳物の大きさ、形状によらず前述のNiとCuの黒鉛
粒微細化効果により、最大黒鉛粒径が100μmを超え
る球状黒鉛は存在せず、平均黒鉛粒径は60μ層以下と
なり、かつ鋳肌面では鋳型面との接触による急冷効果に
より平均黒鉛粒径は30μ1m以下となる。以上の黒鉛
粒径は、接種方法の改善、鋳物の小型化、熱伝導性のよ
い鋳型の併用によりさらに微細化されることはいうまで
もない。ここで例えばNiもしくはCuの含有量が前述
の所定のものより少ないこと等の要因により球状黒鉛の
成長粗大化が起り、鋳肌面の黒鉛粒径が30μmを超え
ると、表面の平滑度が劣化し、良好な成形面が得られに
くくなる。また鋳物内部の最大黒鉛粒径が100μmを
超えるか平均黒鉛粒径が60μ間を超えると、加工面の
外観が劣化するばかりか機械特性も低下することとなる
In the spheroidal graphite cast iron material with the above composition, there is no spheroidal graphite with a maximum graphite particle size exceeding 100 μm due to the aforementioned graphite grain refining effect of Ni and Cu, regardless of casting conditions, casting size, and shape. The average graphite particle size is 60 μm or less, and the average graphite particle size is 30 μm or less on the casting surface due to the quenching effect caused by contact with the mold surface. It goes without saying that the above graphite particle size can be further reduced by improving the inoculation method, downsizing the casting, and using a mold with good thermal conductivity. Here, for example, if the Ni or Cu content is lower than the predetermined value mentioned above, the growth and coarsening of spheroidal graphite will occur, and if the graphite particle size on the casting surface exceeds 30 μm, the surface smoothness will deteriorate. However, it becomes difficult to obtain a good molding surface. Furthermore, if the maximum graphite particle size inside the casting exceeds 100 μm or the average graphite particle size exceeds 60 μm, not only the appearance of the machined surface will deteriorate, but also the mechanical properties will deteriorate.

以上に示した球状黒鉛鋳鉄を鋳造して得た金型は、焼入
、焼戻し、焼鈍等の熱処理によっても、その球状黒鉛粒
径は、何ら変化せず、鋳肌面に分布される球状黒鉛粒径
が、30μm以下であることから1.従来の鋳鉄製金型
に比べ良好な鋳肌面を有し、かつ内部の黒鉛粒径も最大
100μm以下、平均60μm以下であり組織がベイナ
イト組織よりなることから良好な加工面外観と機械特性
を有するものである。また球状黒鉛鋳鉄は鋼と異なり、
凝固時の収縮率が小さいので、寸法精度良く鋳造するこ
とができる。
In the mold obtained by casting the spheroidal graphite cast iron shown above, the spheroidal graphite particle size does not change at all even after heat treatment such as quenching, tempering, annealing, etc., and the spheroidal graphite grain size is distributed on the casting surface. Since the particle size is 30 μm or less, 1. It has a better casting surface than conventional cast iron molds, and the internal graphite grain size is less than 100 μm at maximum, and less than 60 μm on average, and the structure is bainitic, resulting in good machined surface appearance and mechanical properties. It is something that you have. Also, unlike steel, spheroidal graphite cast iron
Since the shrinkage rate during solidification is small, it can be cast with high dimensional accuracy.

哀m 所定量の高純度銑鉄、極軟鋼、電解Ni、電気銅、Fe
 −Mo 、Fe−8iを高周波炉を用いて溶解後、N
r−Maと)−e−8iにより球状化処理を行ない、第
1表No、1〜6に示す組成(本発明はNo、1.2)
としたものと、No 7に示す非合金の球状黒鉛鋳鉄と
、No、8に示す鋳鋼をセラミック鋳型を用いて鋳造し
、それぞれ300−曽×600m5 xloG−一のキ
ャビティ部を有する金型を得た。ここでNo、1〜7に
ついては鋳造温度1300℃。
A specified amount of high-purity pig iron, extremely mild steel, electrolytic Ni, electrolytic copper, Fe
- After melting Mo and Fe-8i using a high frequency furnace, N
r-Ma and)-e-8i, the composition shown in Table 1 No. 1 to 6 (No. 1.2 in the present invention)
The non-alloyed spheroidal graphite cast iron shown in No. 7 and the cast steel shown in No. 8 were cast using a ceramic mold to obtain a mold each having a cavity of 300 mm x 600 m5 x lo G-1. Ta. Here, for Nos. 1 to 7, the casting temperature was 1300°C.

N008については鋳造温度1530℃であり鋳造重量
は約600kgで平均肉厚は150mmであり、鋳型の
寸法は上記寸法のキャビティ部を有する鋳物が得られる
よう各鋳物の寸法収縮率を考慮したものである。
For N008, the casting temperature was 1530°C, the casting weight was approximately 600 kg, and the average wall thickness was 150 mm, and the dimensions of the mold were determined in consideration of the dimensional shrinkage rate of each casting so that a casting having a cavity with the above dimensions could be obtained. be.

それらの金型の表層部と内部の平均黒鉛粒径と内部の最
大黒鉛粒径、金型成形面の鋳放しの表面イ を3000番まで研摩したときの表面あらさ、キャピテ
イ部長手方向の寸法精度および引張強度、伸び。
The average graphite grain size and the internal maximum graphite grain size in the surface layer and inside of these molds, the surface roughness when the as-cast surface of the mold molding surface is polished to No. 3000, and the dimensional accuracy in the longitudinal direction of the capacity. and tensile strength, elongation.

第2表より明らかなように、本発明による金型N0.1
.2は一般的な球状黒鉛鋳鉄製金型(No。
As is clear from Table 2, mold No. 1 according to the present invention
.. 2 is a general spheroidal graphite cast iron mold (No.

7)に比べ黒鉛粒が微細化しているため、表面の平滑度
が格段に向上し良好な外観を呈するものであり、さらに
鋳放し抗層での機械特性も基地組織がベイナイト組織で
あることも相まって良好なものとなっている。また一般
鋳鋼に比べ極めて高い寸法精度を示している。
Since the graphite grains are finer compared to 7), the surface smoothness is much improved and it has a good appearance.Furthermore, the mechanical properties of the as-cast layer are also improved because the base structure is a bainite structure. Together they are good. It also exhibits extremely high dimensional accuracy compared to general cast steel.

しかしながらNi及びQuが本発明の組成範囲からはず
れたもの(No、3,4)は、黒鉛粒の微細化効果が低
下するため、黒鉛粒が粗大化しており、表面の平滑度も
劣るばかりか寸法収縮率の安定性及び機械特性も若干劣
化している。またC及びSi量が本発明の組成範囲の上
限側へはずれた場合(No、5)、粗大な初晶黒鉛の存
在によりN’o、3.4と同様の傾向を示し、下限側へ
はずれた場合(No、6)は、融点の上昇による鋳造性
の悪化により、良好な寸法精度が得られないものとなっ
ている。
However, in the case where Ni and Qu are out of the composition range of the present invention (No. 3, 4), the graphite grain refinement effect decreases, so the graphite grains become coarse and the surface smoothness is not only inferior. The stability of dimensional shrinkage rate and mechanical properties are also slightly degraded. In addition, when the amount of C and Si deviates to the upper limit side of the composition range of the present invention (No, 5), it shows the same tendency as N'o, 3.4 due to the presence of coarse primary graphite, and it deviates to the lower limit side. In the case (No. 6), good dimensional accuracy cannot be obtained due to deterioration of castability due to the increase in melting point.

なお本発明による鋳造金型は鋳放し状態でも良好な機械
特性を有するものであるが、火災焼入等の表面焼入もし
く焼入れ、もしくは焼戻し等の熱処理によりさらに機械
特性の向上が計られることはいうまでもない。
Although the casting mold according to the present invention has good mechanical properties even in the as-cast state, the mechanical properties can be further improved by heat treatment such as surface hardening such as fire hardening, quenching, or tempering. Needless to say.

(発明の効果) 以上の説明より明らかなように、本発明の球状黒鉛鋳鉄
は鋳造により作製する金型に好適な材料であって、しか
も厚肉鋳造品においても表面層部の球状黒鉛粒径が容易
に30μm以下になることにより、極めて平滑度の高い
成形面を得ることができる。
(Effects of the Invention) As is clear from the above explanation, the spheroidal graphite cast iron of the present invention is a suitable material for molds produced by casting, and even in thick-walled cast products, the spheroidal graphite particle size in the surface layer portion By easily reducing the diameter to 30 μm or less, a molded surface with extremely high smoothness can be obtained.

さらに機械特性及び寸法精度が、良好な金型が鋳造によ
り得ることができることから、合金鋼を機械加工した金
型に匹敵する諸特性を有するとともに特に大型金型にお
いてはコスト納期を大幅に節減した金型を容易に得るこ
とができ、業界の発展に寄与するところ極めて大なるも
のである。
Furthermore, since molds with good mechanical properties and dimensional accuracy can be obtained by casting, they have properties comparable to molds machined from alloy steel, and the cost and lead time can be significantly reduced, especially for large molds. Molds can be easily obtained, and this contributes greatly to the development of the industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、NiとCuの添加が黒鉛粒径に及ぼす効果を
示すグラフである。
FIG. 1 is a graph showing the effect of adding Ni and Cu on graphite particle size.

Claims (1)

【特許請求の範囲】 1、重量パーセントで、C2.8〜3.8%、Si1.
5〜3.0%、Ni4.5〜6.0%、Cu0.3〜2
.5%、Mo0.2〜1.0%、Mg0.02〜0.0
7%と残部Feおよび不可避的不純物からなり、(C+
1/3Si)が3.8〜4.3%であることを特徴とす
る金型用球状黒鉛鋳鉄。 2、球状黒鉛の平均粒径が60μm以下であり、かつ球
状黒鉛の最大粒径が100μm以下であることを特徴と
する特許請求の範囲第1項記載の金型用球状黒鉛鋳鉄。 3、金型主体を球状黒鉛鋳鉄よりなるものとして、その
鋳肌面に分布される球状黒鉛の平均粒径が30μm以下
であることを特徴とする特許請求の範囲第1項または第
2項記載の金型用球状黒鉛鋳鉄。
[Claims] 1. C2.8-3.8% in weight percent, Si1.
5-3.0%, Ni4.5-6.0%, Cu0.3-2
.. 5%, Mo0.2-1.0%, Mg0.02-0.0
7%, the balance consisting of Fe and unavoidable impurities, (C+
Spheroidal graphite cast iron for molds, characterized in that 1/3Si) is 3.8 to 4.3%. 2. The spheroidal graphite cast iron for molds according to claim 1, wherein the average particle size of the spheroidal graphite is 60 μm or less, and the maximum particle size of the spheroidal graphite is 100 μm or less. 3. Claims 1 or 2, characterized in that the mold main body is made of spheroidal graphite cast iron, and the average particle size of the spheroidal graphite distributed on the casting surface is 30 μm or less. Spheroidal graphite cast iron for molds.
JP25349384A 1984-11-30 1984-11-30 Spheroidal graphite cast iron for metallic mold Pending JPS61133360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25349384A JPS61133360A (en) 1984-11-30 1984-11-30 Spheroidal graphite cast iron for metallic mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25349384A JPS61133360A (en) 1984-11-30 1984-11-30 Spheroidal graphite cast iron for metallic mold

Publications (1)

Publication Number Publication Date
JPS61133360A true JPS61133360A (en) 1986-06-20

Family

ID=17252139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25349384A Pending JPS61133360A (en) 1984-11-30 1984-11-30 Spheroidal graphite cast iron for metallic mold

Country Status (1)

Country Link
JP (1) JPS61133360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202926A (en) * 2009-03-03 2010-09-16 Toyo Advanced Technologies Co Ltd Spheroidal graphite cast iron material having hard film, die for press, and method for manufacturing spheroidal graphite cast iron material having hard film
US20110247581A1 (en) * 2008-11-19 2011-10-13 Trieschmann Joerg Gear and balance shaft for a piston engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110247581A1 (en) * 2008-11-19 2011-10-13 Trieschmann Joerg Gear and balance shaft for a piston engine
US8561589B2 (en) * 2008-11-19 2013-10-22 Mitec Automotive Ag Gear and balance shaft for a piston engine
JP2010202926A (en) * 2009-03-03 2010-09-16 Toyo Advanced Technologies Co Ltd Spheroidal graphite cast iron material having hard film, die for press, and method for manufacturing spheroidal graphite cast iron material having hard film

Similar Documents

Publication Publication Date Title
JP3217661B2 (en) High strength ductile cast iron
JPS59232649A (en) Metallic mold for molding plastic
JPH04218640A (en) Die stock
JPS61133360A (en) Spheroidal graphite cast iron for metallic mold
JP3696844B2 (en) Aluminum alloy with excellent semi-melt formability
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP2001131678A (en) High strength spheroidal graphite cast iron and producing method therefor
JPH02298236A (en) Low thermal expansion alloy
US3297435A (en) Production of heat-treatable aluminum casting alloy
KR900001097B1 (en) Cast metallic mold for molding plastic
JPS61143554A (en) Cast iron material for surface hardening
JP2002363690A (en) Steel for plastic molding die
JP3959764B2 (en) Method for producing high-strength cast iron and high-strength cast iron
KR20100011658A (en) Manufacturing method of casting roll
JPS6330380B2 (en)
JPH07179984A (en) Cast iron of high strength and low expansion and its production
JP4162461B2 (en) Spheroidal graphite cast iron and manufacturing method
JPS6142774B2 (en)
JPH0270015A (en) Spheroidal graphite cast iron
KR900004165B1 (en) Cast iron for mold
JPH0959730A (en) Copper alloy for heat resistant metal mold such as metal mold for glass forming
JPH08120396A (en) Pearlitic spheroidal graphite cast iron as cast and its production
JPH0742544B2 (en) High alloy grain cast iron material for rolling rolls with excellent surface roughening resistance
JPH01309939A (en) Spheroidal graphite cast iron and its manufacture