JPS6142774B2 - - Google Patents
Info
- Publication number
- JPS6142774B2 JPS6142774B2 JP5334682A JP5334682A JPS6142774B2 JP S6142774 B2 JPS6142774 B2 JP S6142774B2 JP 5334682 A JP5334682 A JP 5334682A JP 5334682 A JP5334682 A JP 5334682A JP S6142774 B2 JPS6142774 B2 JP S6142774B2
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- inner layer
- outer shell
- graphite
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910001018 Cast iron Inorganic materials 0.000 claims description 98
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 51
- 239000000463 material Substances 0.000 claims description 45
- 239000002131 composite material Substances 0.000 claims description 42
- 229910045601 alloy Inorganic materials 0.000 claims description 38
- 239000000956 alloy Substances 0.000 claims description 38
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 239000011257 shell material Substances 0.000 description 57
- 229910002804 graphite Inorganic materials 0.000 description 37
- 239000010439 graphite Substances 0.000 description 37
- 229910001141 Ductile iron Inorganic materials 0.000 description 16
- 238000005266 casting Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000007711 solidification Methods 0.000 description 8
- 230000008023 solidification Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000007792 addition Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000009750 centrifugal casting Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 150000003568 thioethers Chemical class 0.000 description 4
- 229910001567 cementite Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000011276 addition treatment Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Description
この発明は熱間圧延材のワークロール等に使用
される複合鋳鉄ロールに関し、特に外殻材を高合
金グレン鋳鉄材質とする強靭鋳鉄複合ロールに関
するものである。
周知のように熱間圧延材のワークロールには、
耐摩耗性、強靭性、耐熱亀裂性、耐スポーリング
性等の種々の条件が要求される。このような諸条
件を単一材料で充分に満足させることは困難であ
り、そこで最近では外殻層と内層とを別の材質で
構成した複合ロールを使用することが多い。
このような複合ロールの外殻材としては硬さが
極めて高く、耐摩耗性に優れた材質として、最近
では高合金グレン鋳鉄を使用することが多い。こ
の高合金グレン鋳鉄は、例えばC3.3%、Si0.7
%、Mn0.6%、Ni4.5%、Cr1.8%、Mo0.4%等を
含有するものであつて、シヨア硬さHs80以上の
高硬度を示す。しかしながら高合金グレン鋳鉄は
上述のように極めて硬く、しかも炭化物の晶出量
が多いため、強靭性に欠けるから、高合金グレン
鋳鉄を外殻材とする複合ロールの内層材としては
靭性に富むものが要求される。特に最近では省エ
ネルギやコスト低減等の目的で低温圧延や高速圧
延の如く苛酷な条件下での熱間圧延が行なわれる
ようになり、そのためロールにも耐偏平性や強靭
性に著しく優れていることが要求されるようにな
つているから、前述のように高合金グレン鋳鉄を
外殻材とする複合ロールの内層材に対しても高い
強度、靭性が要求されるようになつている。
ところで高合金グレン鋳鉄を外殻材とする複合
ロールの内層材としては、従来は片状黒鉛を有す
る普通鋳鉄もしくはそれにNi、Crなどの合金元
素を少量添加した強靭鋳鉄が一般に使用されてい
る。しかしながらこの種の片状黒鉛を有する鋳鉄
においては、引張り強さが15〜25Kg/mm2程度、伸
びが1%以下と機械的強度が著しく低く、最近の
ロール強度向上の要請に応えるには不充分であつ
た。
一方複合ロールの内層材としては、黒鉛形状を
球状にした球状黒鉛鋳鉄も一部で使用されてい
る。この場合内層材強度は引張り強さ40〜50Kg/
mm2程度まで向上するが、その反面次のような種々
の問題がある。すなわち、外殻を高合金グレン鋳
鉄、内層を球状黒鉛鋳鉄とした場合、その境界部
分にセメンタイトが多量に析出した層、あるいは
黒鉛の球状化不良による片状黒鉛鋳鉄層が形成さ
れ、そのため外殻部と内層部との境界部分の強度
が著しく低下し、そのため圧延使用中に外殻層剥
離の原因となる。例えば本発明者等の実験によれ
ば第1図のミクロ組織写真に示すように、高合金
グレン鋳鉄からなる外殻部1と球状黒鉛鋳鉄から
なる内層部2との境界部に、片状黒鉛に類似した
異常黒鉛層3が形成され、その異常黒鉛層の引張
り強さは23〜28Kg/mm2程度に低下してしまうこと
が確認された。このような問題を解決するために
は、高合金グレン鋳鉄の外殻部と球状黒鉛鋳鉄の
内層部との間に第3相として中間層を鋳込むこと
が考えられるが、この場合にはロール製造工程が
複雑化してコストの上昇を招く問題がある。また
球状黒鉛鋳鉄を内層材として使用した場合、鋳込
み時に球状黒鉛鋳鉄溶湯から発生するドロスがロ
ース中心部に残留して内部欠陥を発生するおそれ
があるため、ドロスの浮上および除去対策が必要
となる。さらに、球状黒鉛鋳鉄溶湯は凝固時の体
積収縮が大きく、内びけ巣を発生し易いから、欠
陥防止のため巨大な押湯が必要となる。したがつ
て内層材として球状黒鉛鋳鉄を用いた場合には、
製造工程が複雑となり、製品歩留りも低下する問
題がある。
この発明は以上の事情に鑑みてなされたもの
で、外殻材を高合金グレン鋳鉄とする複合ロール
において、内層材強度を従来の片状黒鉛組織の普
通鋳鉄や強靭鋳鉄よりも充分に向上させて球状黒
鉛鋳鉄の場合と同等にすると同時に、球状黒鉛鋳
鉄を内層材とした場合の如く外殻部と内層部との
境界部に材質劣化域が生じないようにし、しかも
製造工程も簡単で製品歩留りも良好となるような
複合ロールを提供することを目的とするものであ
る。
すなわち本発明者等が外殻材を高合金グレン鋳
鉄とする場合の内層材について種々検討したとこ
ろ、黒鉛形状を片状と球状の中間の芋虫状(バー
ミキユラー状)としたバーミキユラー鋳鉄を内層
材として用い、併せて外殻材の高合金グレン鋳鉄
の硫黄含有量を低い値に規制することによつて、
上述の目的を達成し得ることを見出し、この発明
をなすに至つたのである。
バーミキユラー鋳鉄は前述のように黒鉛形状を
片状と球形の中間にしたものであつてその強度は
球状黒鉛鋳鉄に劣らず、引張り強さが35〜50Kg/
mm2程度である。またバーミキユラー鋳鉄の鋳造性
は普通鋳鉄と同程度に良好で、凝固時の体積収縮
による内部ひけ巣の発生は普通鋳鉄の場合と同程
度に少なく、例えばバーミキユラー鋳鉄鋳物の断
面状況の一例を第2図Aに示すが、この場合のひ
け巣発生は第2図Cに示す球状黒鉛鋳鉄鋳物の場
合よりも格段に少なく、第2図Bに示す普通鋳鉄
鋳物の場合と同程度である。またバーミキユラー
鋳鉄の鋳込温度は球状黒鉛鋳鉄の場合(1350〜
1400℃程度)ほどの高温を要さず、外殻を高合金
グレン鋳鉄とする複合ロールの内層材として用い
た場合に、外殻部と内層部との境界部における黒
鉛形状の劣化がなく、併せて外殻材としての高合
金グレン鋳鉄のS含有量を抑制することによつ
て、境界部に強度低下域が生じることが防止され
る。したがつて外殻を高合金グレン鋳鉄とする複
合ロールの内層材としてバーミキユラー鋳鉄を用
いかつ外殻の高合金グレン鋳鉄のS含有量を抑制
することによつて、圧延時における外殻層剥離の
危険を招くことなく内層を強靭にすることがで
き、しかも内部ひけ巣が少ないため過大な押湯を
必要とせず、鋳造歩留りの低下を避けることがで
きるのである。
したがつてこの発明の複合ロールは、外殻を高
合金グレン鋳鉄とする複合ロールにおいて、外殻
の高合金グレン鋳鉄のS含有量を0.020%以下に
規制するとともに、内層材質をC2.5〜4.0%、
Si2.0〜3.5%の範囲内でかつ炭素飽和度Scが0.80
〜1.20となるようにCおよびSiを含有しかつ
Mg0.010〜0.025%、Ca0.002〜0.005%、希土類元
素0.010〜0.020%のうち1種または2種以上を含
有し、さらにMn1.5%以下、Ni1.5%以下、Cr0.8
%以下、Mo1.5%以下を含有し、残部がFeおよび
不可避的不純物よりなるバーミキユラー鋳鉄とし
たことを特徴とするものである。
以下この発明の複合ロールをさらに詳細に説明
する。
この発明の複合ロールは、前述のように外殻材
として高合金グレン鋳鉄が使用される。この高合
金グレン鋳鉄外殻材としては、S以外については
公知の組成のものを用いれば良い。すなわち、通
常はC2.8〜3.8%、Si0.8〜1.8%、Mn0.3〜1.0%、
P0.3%以下、Cr0.5〜2.0、Ni5.0%以下、および
必要に応じて、0.3%程度以下のM0からなる高合
金グレン鋳鉄を用いる。そしてこの発明の場合特
にその外殻材となる高合金グレン鋳鉄中のSを
0.020%以下に規制する。この理由は次の通りで
ある。すなわち、内殻材となるバーミキユラー鋳
鉄を溶製するにあたつては、Mg、Ca、希土類元
素の1種または2種以上を溶湯に添加し、その作
用によつて黒鉛形状をバーミキユラー状にする
が、これらの元素はいずれもSとの親和力が強い
ため、内殻溶湯を注入した時に外殻溶湯との境界
部において外殻溶湯中のSと内殻溶湯中のMg、
Ca、あるいは希土類元素とが結合して硫化物を
形成し、その硫化物が外殻と内層との境界部に残
部して非金属介在物となり、局部的な強度低下を
招いて圧延使用時に境界部から外殻が剥離するお
それがある。一方、外殻材の高合金グレン鋳鉄中
のS含有量が0.02%以下となれば、形成される硫
化物系非金属介在物の量が減少し、形状も数ミク
ロン程度の微細なものとなるため強度への影響が
なく、圧延使用時における境界部からの外殻の剥
離等の問題が生じない。
一方、内層材としては前述の如くC2.5〜4.0
%、Si2.0〜3.5%の範囲内でかつ
C(%)/{4.23−Si(%)/3.2}
により規定される炭素飽和度Scが0.80〜1.20とな
るようにC、Si量を調整し、さらにMg0.010〜
0.025%、Ca0.002〜0.005%、Ce等の希土類元素
0.002〜0.005%の1種以上を含有し、かつMn1.5
%以下、Ni1.5%以下、Cr0.8%以下、Mo1.5%以
下を含有し、残部がFeおよび不可避的不純物よ
りなるバーミキユラー鋳鉄を用いる。このような
内層材の成分限定理由は次の通りである。
Cは鋳鉄中のSiとともに鋳鉄組織を決定する主
要元素であり、両者は互いに関連の深い作用を果
たすものである。C含有量が2.5%未満では凝固
後のバーミキユラー鋳鉄中の黒鉛量が少なく、そ
の形状も片状に近いものが多くなるため強度が低
下する。一方C含有量が4.0%を越える場合に
は、黒鉛形状が粗大になるとともに溶湯組成が過
共晶側に移行するためMg、Ca、希土類元素など
の合金を添加するとバーミキユラー黒鉛量が減少
して球状の黒鉛が多くなり、球状黒鉛鋳鉄に近い
組織となつて凝固時の内部ひけ巣量が増大してし
まう。
SiはCと関連して鋳鉄の材質への影響の大きい
元素であるが、Si含有量が2.0未満では黒鉛化が
不充分となり易く、セメンタイトが析出して混在
するため強度、特に靭性の定価を招く。Si含有量
が3.5%を越える場合には黒鉛晶出量が多くなる
とともに基地組織がフエライトとなり、そのため
ロール軸芯部を形成させた場合に駆動部などロー
ルネツク部の硬度が低くなつて摩耗量が増大する
から好ましくない。
さらにC、Siの含有量は、鋳鉄の共晶程度をあ
らわす炭素飽和度Sc、すなわち
C(%)/{4.23−Si(%)/3.2}
の値が0.80〜1.20の範囲内となるように規制す
る。バーミキユラー鋳鉄における炭素飽和度Sc
と強度、ひけ巣との関係は、実験により第3図に
示す関係が得られている。但し第3図において曲
線4は内部ひけ巣量、曲線5は引張り強さをあら
わす。炭素飽和度が0.80未満の場合には凝固時の
ひけ巣量は著しく低い値となつて内部健全性が保
たれるが、片状黒鉛量が増加して全黒鉛量の30%
以上を占めるようになり、機械的性質特に引張り
強さが低下して高強度が得られなくなる。一方炭
素飽和度が1.00を越えれば鋳鉄中の黒鉛組織とし
てバーミキユラー黒鉛と球状黒鉛とが混在したも
のとなる。さらに炭素飽和度Scが1.20を越えれば
球状黒鉛の割合が30%を越えてバーミキユラー黒
鉛の割合が70%よりも低くなり、このように球状
黒鉛の割合が大きくなればその凝固形態は球状黒
鉛鋳鉄に近くなり、機械的強度は向上する反面、
内部ひけ巣量が著しく多くなり、内部健全性の良
好なロールが得られなくなる。したがつて複合ロ
ールの内層材として高強度と内部健全性の両者を
満足するためには、C、Siの含有量を炭素飽和度
がScが0.80〜1.20の範囲内となるように調整する
必要がある。
Mg、Ca、希土類元素は、鋳込み前の鋳鉄溶湯
中に通常はFeやSiとの合金の形で添加して、鋳
放しにおいて内層となる材質中に片状と球状の中
間形状のバーミキユラー状黒鉛を晶出させるため
のものである。これらの添加を行なわない場合に
は黒鉛形状がバーミキユラー状とならないため黒
鉛が切欠きとなつて高強度が得られないが、これ
らはいずれも黒鉛球状化能を有するものであるか
ら、溶鉄中にこれらの元素が過剰に残留した場合
には過度に球状化が進行してバーミキユラー状黒
鉛の割合が少なくなつてしまう。そこでこれらの
元素の添加処理後の残留量、すなわち鋳鉄中の含
有量は、それぞれの黒鉛球状化能の大きさに応じ
て定める必要がある。すなわち、Mgの場合には
0.010〜0.025%、Caの場合には0.002〜0.005%、
Ce等の希土類元素の場合、0.010〜0.020%の範囲
の含有量とする。このような範囲とすることによ
つて鋳鉄中の全黒鉛粒中の70%以上の黒鉛をバー
ミキユラー状としたバーミキユラー鋳鉄を得るこ
とができる。含有量が上記範囲に不足する場合に
は片状の黒鉛が多くなるため強度向上を図ること
ができず、逆に上記範囲を越える場合には球状黒
鉛の量が増加して、凝固時の膨張に伴う内部ひけ
巣量が増大する。
なおMg、Ca、希土類元素は、これらのうち1
種を単独添加しても良いし、2種以上を複合添加
しても良い。但し複合添加の場合には、各元素の
残留量が上述の範囲を満たし、かつそれらの合計
量が0.025%以下となるように定めることが望ま
しい。合計量が0.025%を越えれば前記同様に球
状黒鉛の量が増大して、内部ひけ巣量が大きくな
るおそれがある。
さらに内層材質はロールの駆動部分をも形成す
ることから、その強度および耐摩耗性.硬度を確
保するため、通常の鋳鉄の場合と同様に内層材質
にNi、Cr、Mo、Mnを少量添加することが好まし
く、その上限限定理由は次の通りである。
Niは強度向上元素であるが、1.5%を越えれば
強度向上の効果が認められなくなるとともに、鋳
鉄においては黒鉛化を促進し、フエライト基地と
なつて軟質となるため、Niの上限は1.5%とし
た。なおNi添加効果を有効に発揮させるために
は0.3%以上の添加が好ましい。
Crは炭化物安定化元素であり、少量の添加に
より基地組織をパーライトとし、強度、硬度が上
昇し、耐摩耗性向上に効果を発揮する。一方Cr
が0.8%を越えるとセメンタイトが析出するた
め、靭性が低下し急激な衝撃を受けた場合に破損
の危険が生じる。したがつて、Crは0.8%以下と
した。
MoもCrと同様に炭化物安定化元素であり、少
量の添加で強度向上に寄与するが、1.5%以上の
含有ではその効果が変わらないため、Moは1.5%
以下とした。
Mnは基地組織に対する影響の強い元素であ
り、基地組織のパーライト化によりロールネツク
部の強度、硬度を向上させるに有効であるが、
1.5%を越えるMnを添加してもパーライト化の程
度は変らないため、Mnは1.5%以下とした。なお
Mn0.3未満では上述の効果が充分に得られないか
ら、Mnは0.3%以上とすることが好ましい。
さらにこのほか鋳鉄には不可避的不純物として
P,Sが含有されるのが通常であるが、この発明
の内層材のバーミキユラー鋳鉄としては、Pは
0.100%以下、Sは0.030%以下とすることが好ま
しい。
すなわちPは鋳鉄溶湯の流動性を増す作用があ
るが、多量にPを添加すると、Fe−C−P共晶
析出物が結晶粒界に偏析し強度低下の原因となる
ため、強度に影響を及ぼさない0.100%以下に規
制することが好ましい。
Sは黒鉛形状を芋虫状とするために添加する
Mg、Caあるいは希土類元素の効果を失わせない
ために、その含有量を規制することが好ましい。
すなわちSはMg,Caあるいは希土類元素との結
合力が著しく強く、Sを含有する溶鉄にこれらの
元素を添加するとただちに硫化物を形成して、こ
れらの元素の黒鉛形状制御作用を失わせる。
0.030%を越えるSを含有する溶鉄においても上
記元素を多量に添加すれば芋虫状黒鉛を得ること
は可能であるが、形成された多量の硫化物が残存
し強度低下を招く。したがつてS含有量は0.030
%以下に規制することが望ましい。
この発明の複合ロールを製造する方法として
は、外殻となる高合金グレン鋳鉄溶湯を鋳型内に
充満させて外殻部の凝固を待つた後、未凝固部分
の溶湯を内層となるべきバーミキユラー鋳鉄溶湯
と置換して内層を凝固させるいわゆる中抜き鋳造
法、あるいは回転鋳型内に外殻となる高合金グレ
ン鋳鉄溶湯を所定厚み分注入し、次いで内層とな
るバーミキユラー鋳鉄溶湯を注入してロール軸芯
部を形成させる遠心鋳造法など、いずれの方法を
採用しても良い。
なお内層となるバーミキユラー鋳鉄溶湯の凝固
温度は従来の複合ロールの内層に使用されている
普通鋳鉄とほぼ同じであり、また溶湯の流動性も
ほぼ同一であるから、内層のバーミキユラー鋳鉄
溶湯の鋳込み温度は、従来の普通鋳鉄の場合と同
じ1260〜1350℃程度で差し仕えない。また遠心鋳
造の場合内層となる溶湯の注入方式としては、全
量を1回に注入する方式と、2回以上に分割して
注入する方式とがあるが、この発明の複合ロール
を製造する場合にはいずれを用いても良い。
以下にこの発明を熱延仕上げ後段ワークロール
に適用した実施例、および従来の普通鋳鉄を内層
材とする複合ロールの比較例を記す。
実施例 1
外殻を高合金グレン鋳鉄材質とし内層材をバー
ミキユラー鋳鉄材質とする、ロールサイズφ750
mm×2300mmの複合ロールを遠心鋳造法によつて
製造した。外殻の高合金グレン鋳鉄の化学成分
は、C3.27%、Si0.72%、Mm0.60%、P0.049%、
S0.013%、Ni4.34%、Cr1.79%、Mo0.36%、残部
Feであり、特にS含有量が0.020%以下となるよ
うに溶製した。一方内殻となるバーミキユラー鋳
鉄の溶湯には、鋳込み前にFe−45%Si−25%Ca
合金を1%添加して溶湯処理した。処理後のバー
ミキユラー鋳鉄の化学成分はC3.32%、Si2.53
%、Mn0.56%、P0.051%、S0.010%、Ni0.79%、
Cr0.22%、Mo0.10%、Ca0.0034%、残部Feであ
る。なお内層となるバーミキユラー鋳鉄溶湯の鋳
込み温度は1330℃であり、またその鋳込みは溶湯
全量を1回で注入した。
比較例
外殻を高合金グレン鋳鉄とし内層を普通鋳鉄と
する前記同様の複合ロールを遠心鋳造法によつて
製造した。外殻の高合金グレン鋳鉄の化学成分は
実施例の場合と同じであり、また内層の普通鋳鉄
の化学成分はC3.29%、Si1.22%、Mn0.46%、
P0.085%、S0.016%、Ni0.75%、Cr0.50%、
Mo0.14%、残部Feである。内層となる普通鋳鉄
の鋳込み温度は1335℃、またその鋳込みは、溶湯
全量を1回で注入した。
実施例1のロールの内層部のミクロ組織を第4
図に示し、また比較例のロールの内層部のミクロ
組織を第5図に示す。これらのミクロ組織写真の
比較から明らかなように、この発明の実施例1の
内層部の組織は、従来の普通鋳鉄を用いた内層部
の組織と比較して黒鉛形状が改善されて、切欠き
とならないバーミキユラー黒鉛組織となつている
ことが確認される。
この発明の実施例1による複合ロールの外殻部
と内層部との境界部のミクロ組織写真を第6図に
示す。第6図において6は高合金グレン鋳鉄から
なる外殻部、7はバーミキユラー鋳鉄からなる内
層部、8は外殻と内層との境界部を示す。第6図
から明らかなように境界部8に溶着不良等の欠陥
は発生しておらず、第1図に示したように球状黒
鉛鋳鉄を内層に用いた場合の如く境界部に片状黒
鉛層の形成もなく、外殻部から内層部への材質変
化の不連続がない良好な組織が得られる。
また外殻部と内層部との溶着部(境界部)の機
械的強度については、従来の普通鋳鉄を内層材と
する比較例の複合ロールの溶着部の引張り強さが
15〜18Kg/mm2であつたのに対し、バーミキユラー
鋳鉄を内層材とするこの発明の実施例1の複合ロ
ールにおいては溶着部の引張り強さが28〜32Kg/
mm2程度となつて、溶着部の強度が2倍に向上する
ことが判明した。したがつてこの発明の複合ロー
ルにおいては圧延使用時に溶着部における亀裂の
発生や外殻層の剥離などの事故が生じることを有
効に防止できることが明らかである。
さらに、内層部の強度は、普通鋳鉄を内層材と
する比較例の複合ロールでは引張り強さ18〜28
Kg/mm2、ヤング率11000〜14000Kg/mm2程度にとど
まつたのに対し、バーミキユラー鋳鉄を内層材と
したこの発明の実施例1の複合ロールにおいては
内層部の引張り強さ41.1〜44.4Kg/mm2、ヤング率
17000Kg/mm2なるすぐれた値が得られた。なお内
層材を球状黒鉛鋳鉄とした複合ロールの内層部の
引張り強さは40〜50Kg/mm2程度であり、したがつ
てこの発明の複合ロールは内層材を球状黒鉛鋳鉄
とした複合ロールと比較しても遜色のない内層材
強度を有していることが明らかである。
実施例 2
第1表のNo.1〜No.3に示すように、内層材とし
てMgを添加した例、希土類元素(Ce)を添加し
た例、およびMgとCaを同時に添加した例につい
て、前記同様な複合ロールを作成した場合の機械
的特性を第2表に示す。
The present invention relates to a composite cast iron roll used as a work roll for hot-rolled materials, and more particularly to a strong cast iron composite roll whose outer shell material is made of high-alloy grain cast iron. As is well known, work rolls for hot rolled materials include:
Various conditions are required such as wear resistance, toughness, heat cracking resistance, and spalling resistance. It is difficult to fully satisfy these conditions with a single material, so recently composite rolls in which the outer shell layer and the inner layer are made of different materials are often used. Recently, high-alloy grain cast iron is often used as the outer shell material of such composite rolls, as it has extremely high hardness and excellent wear resistance. This high alloy grain cast iron is, for example, C3.3%, Si0.7
%, Mn0.6%, Ni4.5%, Cr1.8%, Mo0.4%, etc., and exhibits high hardness with shore hardness Hs80 or higher. However, as mentioned above, high-alloy grain cast iron is extremely hard and has a large amount of carbide crystallization, so it lacks toughness, so it is not suitable as an inner layer material for composite rolls with high-alloy grain cast iron as the outer shell material. is required. In particular, recently, hot rolling has been carried out under harsh conditions such as low-temperature rolling and high-speed rolling for the purpose of energy saving and cost reduction, and as a result, the rolls have outstanding flatness resistance and toughness. Therefore, as mentioned above, high strength and toughness are also required for the inner layer material of a composite roll whose outer shell material is made of high-alloy grain cast iron. By the way, as the inner layer material of a composite roll whose outer shell material is high-alloy grain cast iron, conventionally, normal cast iron with flake graphite or tough cast iron with small amounts of alloying elements such as Ni and Cr added thereto has been generally used. However, cast iron containing this type of flake graphite has extremely low mechanical strength, with a tensile strength of about 15 to 25 Kg/ mm2 and an elongation of less than 1%, and is therefore inadequate to meet recent demands for improved roll strength. It was enough. On the other hand, spheroidal graphite cast iron, which is made from spherical graphite, is also used as the inner layer material of some composite rolls. In this case, the inner layer material strength is a tensile strength of 40 to 50 kg/
Although it improves to about mm 2 , there are various problems as follows. In other words, when the outer shell is made of high-alloy grain cast iron and the inner layer is made of spheroidal graphite cast iron, a layer in which a large amount of cementite precipitates or a layer of flaky graphite cast iron due to poor spheroidization of graphite is formed at the boundary between them, and as a result, the outer shell The strength of the boundary between the outer layer and the inner layer decreases significantly, which causes peeling of the outer shell layer during rolling. For example, according to experiments conducted by the present inventors, as shown in the microstructure photograph in FIG. It was confirmed that an abnormal graphite layer 3 similar to the above was formed, and the tensile strength of the abnormal graphite layer decreased to about 23 to 28 Kg/mm 2 . In order to solve this problem, it is conceivable to cast an intermediate layer as a third phase between the outer shell of high-alloy grain cast iron and the inner layer of spheroidal graphite cast iron, but in this case, the roll There is a problem in that the manufacturing process becomes complicated and costs increase. Additionally, when spheroidal graphite cast iron is used as the inner layer material, dross generated from the molten spheroidal graphite cast iron during pouring may remain in the center of the loin and cause internal defects, so measures must be taken to float and remove the dross. . Furthermore, molten spheroidal graphite cast iron has a large volumetric shrinkage during solidification and tends to generate cavities, so a huge feeder is required to prevent defects. Therefore, when spheroidal graphite cast iron is used as the inner layer material,
There is a problem that the manufacturing process becomes complicated and the product yield also decreases. This invention was made in view of the above circumstances, and it is possible to sufficiently improve the strength of the inner layer material in a composite roll whose outer shell material is made of high-alloy grain cast iron than that of conventional ordinary cast iron or tough cast iron with flake graphite structure. At the same time, the material is made to be equivalent to that of spheroidal graphite cast iron, and at the same time, there is no material deterioration area at the boundary between the outer shell and the inner layer, unlike when spheroidal graphite cast iron is used as the inner layer material.Moreover, the manufacturing process is simple and the product is easy to use. It is an object of the present invention to provide a composite roll with good yield. In other words, the present inventors conducted various studies on the inner layer material when the outer shell material is high-alloy grain cast iron, and found that the inner layer material is vermicular cast iron with graphite shaped like a caterpillar (vermicular shape) between flaky and spherical. In addition, by regulating the sulfur content of the high-alloy grain cast iron used as the outer shell material to a low value,
It was discovered that the above-mentioned object can be achieved, and the present invention was completed. As mentioned above, vermicular cast iron has a graphite shape that is between flaky and spherical, and its strength is comparable to that of spheroidal graphite cast iron, with a tensile strength of 35 to 50 kg/
It is about mm2 . In addition, the castability of vermicular cast iron is as good as that of normal cast iron, and the occurrence of internal shrinkage cavities due to volume shrinkage during solidification is as small as that of normal cast iron. As shown in Figure A, the occurrence of shrinkage cavities in this case is much less than in the case of the spheroidal graphite iron casting shown in Figure 2C, and is comparable to that in the case of the ordinary cast iron casting shown in Figure 2B. In addition, the casting temperature of vermicular cast iron is 1350~
When used as the inner layer material of a composite roll whose outer shell is made of high-alloy grain cast iron, there is no deterioration of the graphite shape at the boundary between the outer shell and the inner layer. In addition, by suppressing the S content of the high-alloy grain cast iron used as the outer shell material, it is possible to prevent a region of reduced strength from occurring at the boundary. Therefore, by using vermicular cast iron as the inner layer material of a composite roll whose outer shell is made of high-alloy grain cast iron and by suppressing the S content of the high-alloy grain cast iron of the outer shell, peeling of the outer shell layer during rolling can be prevented. The inner layer can be strengthened without causing any danger, and since there are few internal shrinkage cavities, an excessively large feeder is not required, and a drop in casting yield can be avoided. Therefore, in the composite roll of the present invention, the outer shell is made of high-alloy grain cast iron, the S content of the high-alloy grain cast iron of the outer shell is regulated to 0.020% or less, and the inner layer material is C2.5~ 4.0%,
Si is within the range of 2.0 to 3.5% and carbon saturation Sc is 0.80
Contains C and Si so that it is ~1.20 and
Contains one or more of Mg0.010-0.025%, Ca0.002-0.005%, rare earth elements 0.010-0.020%, and further includes Mn1.5% or less, Ni1.5% or less, Cr0.8
% or less, Mo is 1.5% or less, and the balance is Fe and unavoidable impurities. The composite roll of the present invention will be explained in more detail below. As mentioned above, the composite roll of the present invention uses high-alloy grain cast iron as the outer shell material. As this high-alloy grain cast iron shell material, a material having a known composition other than S may be used. That is, usually C2.8~3.8%, Si0.8~1.8%, Mn0.3~1.0%,
High-alloy grain cast iron consisting of P0.3% or less, Cr0.5-2.0, Ni5.0% or less, and if necessary, M0 of about 0.3% or less is used. In particular, in the case of this invention, S in the high alloy grain cast iron that is the outer shell material is
Regulated to 0.020% or less. The reason for this is as follows. In other words, when melting vermicular cast iron that becomes the inner shell material, one or more of Mg, Ca, and rare earth elements are added to the molten metal, and the graphite shape is made into a vermicular shape by its action. However, all of these elements have a strong affinity with S, so when the molten inner shell is injected, at the boundary with the molten outer shell, S in the molten outer shell, Mg in the molten inner shell,
Ca or rare earth elements combine to form sulfides, and the sulfides remain at the boundary between the outer shell and the inner layer and become nonmetallic inclusions, causing local strength reduction and forming boundaries during rolling. There is a risk that the outer shell may peel off from the part. On the other hand, if the S content in the high-alloy grain cast iron of the outer shell material is 0.02% or less, the amount of sulfide-based nonmetallic inclusions formed will decrease, and the shape will become fine, on the order of several microns. Therefore, the strength is not affected, and problems such as peeling of the outer shell from the boundary during rolling use do not occur. On the other hand, as mentioned above, the inner layer material is C2.5~4.0.
%, Si Adjust the amount of C and Si so that it is within the range of 2.0 to 3.5% and the carbon saturation Sc defined by C (%) / {4.23 - Si (%) / 3.2} is 0.80 to 1.20. and further Mg0.010~
0.025%, Ca0.002~0.005%, rare earth elements such as Ce
Contains 0.002 to 0.005% of one or more types, and Mn1.5
% or less, Ni 1.5% or less, Cr 0.8% or less, Mo 1.5% or less, and the balance is Fe and unavoidable impurities. The reason for limiting the components of the inner layer material is as follows. C, along with Si in cast iron, is a major element that determines the structure of cast iron, and the two perform functions that are closely related to each other. When the C content is less than 2.5%, the amount of graphite in the solidified vermicular cast iron is small, and the shape thereof is often flaky, resulting in a decrease in strength. On the other hand, when the C content exceeds 4.0%, the graphite shape becomes coarse and the molten metal composition shifts to the hypereutectic side. Therefore, when alloys such as Mg, Ca, and rare earth elements are added, the amount of vermicular graphite decreases. The amount of spheroidal graphite increases, resulting in a structure similar to that of spheroidal graphite cast iron, resulting in an increase in the amount of internal shrinkage cavities during solidification. Si is an element that has a large effect on the material quality of cast iron in relation to C, but if the Si content is less than 2.0, graphitization tends to be insufficient, and cementite precipitates and is mixed in, reducing the list price of strength, especially toughness. invite When the Si content exceeds 3.5%, the amount of graphite crystallized increases and the matrix structure becomes ferrite. Therefore, when the roll shaft core is formed, the hardness of the roll neck parts such as the drive part becomes low and the amount of wear decreases. It is not desirable because it increases. Furthermore, the content of C and Si is determined so that the carbon saturation Sc, which indicates the degree of eutecticism of cast iron, is within the range of 0.80 to 1.20, that is, the value of C (%) / {4.23-Si (%) / 3.2} regulate. Carbon saturation Sc in vermicular cast iron
As for the relationship between the strength and shrinkage cavities, the relationship shown in Fig. 3 has been obtained through experiments. However, in FIG. 3, curve 4 represents the amount of internal shrinkage cavities, and curve 5 represents the tensile strength. If the carbon saturation is less than 0.80, the amount of shrinkage cavities during solidification will be extremely low and internal integrity will be maintained, but the amount of flaky graphite will increase to 30% of the total graphite amount.
As a result, the mechanical properties, particularly the tensile strength, deteriorate, making it impossible to obtain high strength. On the other hand, if the carbon saturation exceeds 1.00, the graphite structure in cast iron will be a mixture of vermicular graphite and spheroidal graphite. Furthermore, if the carbon saturation degree Sc exceeds 1.20, the proportion of spheroidal graphite exceeds 30% and the proportion of vermicular graphite becomes lower than 70%, and if the proportion of spheroidal graphite increases in this way, the solidification form becomes spheroidal graphite cast iron. Although the mechanical strength is improved,
The amount of internal shrinkage cavities increases significantly, making it impossible to obtain a roll with good internal soundness. Therefore, in order to satisfy both high strength and internal soundness as an inner layer material of a composite roll, it is necessary to adjust the content of C and Si so that the carbon saturation degree is within the range of Sc from 0.80 to 1.20. There is. Mg, Ca, and rare earth elements are added to the molten cast iron before casting, usually in the form of an alloy with Fe or Si. It is used to crystallize. If these additions are not made, the graphite shape will not become vermicular, and the graphite will become notches, making it impossible to obtain high strength. However, since all of these have the ability to make graphite spheroidize, they are not added to the molten iron. If these elements remain in excess, spheroidization will proceed excessively and the proportion of vermicular graphite will decrease. Therefore, the residual amount of these elements after the addition treatment, that is, the content in cast iron, needs to be determined depending on the graphite nodularity of each element. That is, in the case of Mg
0.010-0.025%, 0.002-0.005% for Ca,
In the case of rare earth elements such as Ce, the content should be in the range of 0.010 to 0.020%. By setting it within such a range, it is possible to obtain vermicular cast iron in which 70% or more of the graphite in all the graphite grains in the cast iron is in a vermicular form. If the content is less than the above range, there will be a large amount of flaky graphite, making it impossible to improve the strength.On the other hand, if it exceeds the above range, the amount of spheroidal graphite will increase, causing expansion during solidification. The amount of internal shrinkage cavities increases. Note that Mg, Ca, and rare earth elements are 1 of these.
Seeds may be added singly, or two or more types may be added in combination. However, in the case of combined addition, it is desirable that the residual amount of each element satisfies the above-mentioned range and the total amount thereof is determined to be 0.025% or less. If the total amount exceeds 0.025%, the amount of spheroidal graphite increases as described above, and the amount of internal shrinkage cavities may increase. Furthermore, since the inner layer material also forms the driving part of the roll, its strength and wear resistance are high. In order to ensure hardness, it is preferable to add a small amount of Ni, Cr, Mo, and Mn to the inner layer material as in the case of ordinary cast iron, and the reason for limiting the upper limit is as follows. Ni is a strength-improving element, but if it exceeds 1.5%, the strength-improving effect is no longer recognized, and in cast iron, it promotes graphitization and becomes a ferrite base, making it soft, so the upper limit for Ni is 1.5%. did. Note that in order to effectively exhibit the effect of Ni addition, it is preferable to add 0.3% or more. Cr is a carbide stabilizing element, and when added in small amounts, the base structure becomes pearlite, increasing strength and hardness, and is effective in improving wear resistance. On the other hand, Cr
If it exceeds 0.8%, cementite will precipitate, resulting in a decrease in toughness and the risk of breakage when subjected to sudden impact. Therefore, Cr was set to 0.8% or less. Like Cr, Mo is also a carbide stabilizing element, and it contributes to improving strength when added in small amounts, but the effect does not change when the content exceeds 1.5%.
The following was made. Mn is an element that has a strong influence on the base structure, and is effective in improving the strength and hardness of the roll neck by turning the base structure into pearlite.
Since the degree of pearlitization does not change even if more than 1.5% of Mn is added, the Mn content was set to 1.5% or less. In addition
If Mn is less than 0.3, the above-mentioned effects cannot be sufficiently obtained, so it is preferable that Mn is 0.3% or more. Furthermore, cast iron usually contains P and S as unavoidable impurities, but in the vermicular cast iron used as the inner layer material of this invention, P is
It is preferable that S is 0.100% or less, and S is 0.030% or less. In other words, P has the effect of increasing the fluidity of molten cast iron, but when a large amount of P is added, Fe-C-P eutectic precipitates segregate at grain boundaries and cause a decrease in strength, so it has no effect on strength. It is preferable to limit the amount to 0.100% or less. S is added to make the graphite shape caterpillar-like.
In order not to lose the effects of Mg, Ca or rare earth elements, it is preferable to control their content.
That is, S has an extremely strong binding force with Mg, Ca, or rare earth elements, and when these elements are added to molten iron containing S, sulfides are immediately formed and the graphite shape control effect of these elements is lost.
Even in molten iron containing more than 0.030% S, it is possible to obtain caterpillar graphite by adding a large amount of the above elements, but a large amount of formed sulfides remain, leading to a decrease in strength. Therefore, the S content is 0.030
It is desirable to limit the amount to less than %. The method for manufacturing the composite roll of this invention is to fill a mold with molten high-alloy grain cast iron that will become the outer shell, wait for the outer shell to solidify, and then pour the unsolidified molten metal into vermicular cast iron that will become the inner layer. The so-called hollow casting method, in which the inner layer is solidified by replacing the molten metal, or the molten high-alloy grain cast iron, which will become the outer shell, is poured into a rotary mold to a predetermined thickness, and then the molten vermicular cast iron, which will become the inner layer, is injected to form the roll shaft core. Any method such as centrifugal casting may be used to form the part. The solidification temperature of the molten vermicular cast iron that forms the inner layer is almost the same as that of ordinary cast iron used for the inner layer of conventional composite rolls, and the fluidity of the molten metal is also almost the same, so the casting temperature of the molten vermicular cast iron that forms the inner layer There is no problem at about 1260 to 1350℃, which is the same as for conventional ordinary cast iron. In addition, in the case of centrifugal casting, there are two methods for injecting the molten metal that will form the inner layer: a method in which the entire amount is injected at once, and a method in which the molten metal is injected in two or more parts. Either can be used. Below, an example in which the present invention is applied to a hot-rolled post-finish work roll, and a comparative example of a composite roll using conventional ordinary cast iron as the inner layer material will be described. Example 1 The outer shell is made of high-alloy grain cast iron and the inner layer is made of vermicular cast iron, roll size φ750
A composite roll of mm×2300 mm was manufactured by centrifugal casting. The chemical composition of the high alloy grain cast iron of the outer shell is C3.27%, Si0.72%, Mm0.60%, P0.049%,
S0.013%, Ni4.34%, Cr1.79%, Mo0.36%, balance
It is made of Fe, and was particularly melted to have an S content of 0.020% or less. On the other hand, the molten metal of the vermicular cast iron that forms the inner shell is made of Fe-45%Si-25%Ca before casting.
A molten metal was treated by adding 1% of the alloy. The chemical composition of vermicular cast iron after treatment is C3.32%, Si2.53
%, Mn0.56%, P0.051%, S0.010%, Ni0.79%,
Cr0.22%, Mo0.10%, Ca0.0034%, balance Fe. The pouring temperature of the molten vermicular cast iron that forms the inner layer was 1330°C, and the entire amount of the molten metal was poured at one time. Comparative Example A composite roll similar to the above, having an outer shell made of high-alloy grain cast iron and an inner layer made of ordinary cast iron, was manufactured by centrifugal casting. The chemical composition of the high alloy grain cast iron of the outer shell is the same as in the example, and the chemical composition of the ordinary cast iron of the inner layer is C3.29%, Si1.22%, Mn0.46%,
P0.085%, S0.016%, Ni0.75%, Cr0.50%,
Mo0.14%, balance Fe. The casting temperature of the ordinary cast iron that forms the inner layer was 1335°C, and the entire amount of molten metal was poured in one go. The microstructure of the inner layer of the roll of Example 1 was
The microstructure of the inner layer of the roll of the comparative example is shown in FIG. As is clear from the comparison of these microstructure photographs, the structure of the inner layer of Example 1 of the present invention has an improved graphite shape and a notch shape compared to the structure of the inner layer using conventional ordinary cast iron. It is confirmed that the structure has a vermicular graphite structure that does not FIG. 6 shows a microstructure photograph of the boundary between the outer shell and the inner layer of the composite roll according to Example 1 of the present invention. In FIG. 6, reference numeral 6 indicates an outer shell made of high-alloy grain cast iron, 7 an inner layer made of vermicular cast iron, and 8 a boundary between the outer shell and the inner layer. As is clear from FIG. 6, there are no defects such as poor welding in the boundary 8, and as shown in FIG. A good structure with no discontinuity in material change from the outer shell to the inner layer can be obtained. Regarding the mechanical strength of the welded part (boundary part) between the outer shell and the inner layer, the tensile strength of the welded part of a comparative composite roll using conventional ordinary cast iron as the inner layer material is
The tensile strength of the welded part was 15 to 18 Kg/mm 2 , whereas in the composite roll of Example 1 of the present invention using vermicular cast iron as the inner layer material, the tensile strength of the welded part was 28 to 32 Kg/mm 2 .
It was found that the strength of the welded part was doubled when the thickness of the welded part became approximately mm 2 . Therefore, it is clear that the composite roll of the present invention can effectively prevent accidents such as cracking in the welded portion and peeling of the outer shell layer during rolling use. Furthermore, the tensile strength of the inner layer was 18 to 28 for the composite roll of the comparative example using ordinary cast iron as the inner layer material.
Kg/mm 2 and Young's modulus remained at about 11,000 to 14,000 Kg/mm 2 , whereas in the composite roll of Example 1 of this invention using vermicular cast iron as the inner layer material, the tensile strength of the inner layer was 41.1 to 44.4 Kg/mm. 2 , Young's modulus
An excellent value of 17000Kg/ mm2 was obtained. The tensile strength of the inner layer of a composite roll whose inner layer material is spheroidal graphite cast iron is about 40 to 50 Kg/mm 2 , therefore, the composite roll of this invention is compared with a composite roll whose inner layer material is spheroidal graphite cast iron. It is clear that the strength of the inner layer material is comparable to that of other materials. Example 2 As shown in No. 1 to No. 3 of Table 1, examples of adding Mg as an inner layer material, examples of adding rare earth elements (Ce), and examples of adding Mg and Ca at the same time were Table 2 shows the mechanical properties of similar composite rolls.
【表】【table】
【表】
この実施例2におけるMg添加、REM添加ある
いはMg+Ca添加の場合も実施例1と同様に外殻
と内層との境界部に異常組織の形成はなく、機械
的性質の改善も著しいことが判明した。
なお実施例においてロール軸芯部まぜ内層材が
充満している板圧延用の中実ロールについて説明
したが、別途製造した軸芯部を焼ばめして用いる
型式の複合スリーブ状の中空ロールにもこの発明
を適用し得ることは勿論である。
以上の説明で明らかなようにこの発明は外殻が
高合金グレン鋳鉄材質からなる複合ロールにおい
て、内層材質を従来を普通鋳鉄材質に代えて、芋
虫状黒鉛組織を有するバーミキユラー鋳鉄とし、
かつ外殻の高合金グレン鋳鉄のS含有量を0.020
%以下に規制したものである。このようなこの発
明の複合ロールにおいては、内層強度が従来の普
通鋳鉄を内層に用いた場合の2倍程度と著しく高
く、しかも外殻と内層との境界部(溶着部)に強
度が局部的に低下する異常組織層が生じることが
ないため、圧延使用時に境界部からのクラツク発
生や外殻層の剥離等の問題が生じることがなく、
かつまた内層部の凝固時における内部ひけ巣量も
少ないため内部健全性も良好である。またこの発
明の複合ロールの製造にあたつては、前述のよう
に内部ひけ巣量が少なく、しかも外殻と内層との
間に別の第3層を鋳込んだりする等の特殊な手段
を講じる必要がないから、従来の普通鋳鉄を内層
材とする複合ロールの製造の場合と同様な方法、
設備により容易に高強度でしかも内部健全性、耐
久性が高い複合ロールを得ることができる。した
がつてこの発明によれば、苛酷な条件下でのロー
ルの使用性能を従来よりも格段に向上させること
ができ、しかもロール製造コストも特に高くなる
ことがない等、種々の顕著な効果を得ることがで
きる。[Table] In the case of Mg addition, REM addition, or Mg+Ca addition in Example 2, as in Example 1, no abnormal tissue was formed at the boundary between the outer shell and the inner layer, and the mechanical properties were significantly improved. found. In addition, although the solid roll for plate rolling in which the roll core part is filled with the mixed inner layer material has been described in the example, it is also applicable to a composite sleeve-shaped hollow roll of the type that uses a separately manufactured shaft core part that is shrink-fitted. Of course, this invention can be applied. As is clear from the above description, the present invention provides a composite roll in which the outer shell is made of high-alloy grain cast iron, and the inner layer is made of vermicular cast iron having a caterpillar graphite structure instead of the conventional ordinary cast iron material.
And the S content of the high alloy grain cast iron of the outer shell is 0.020.
% or less. In such a composite roll of the present invention, the strength of the inner layer is extremely high, about twice that of the conventional case where ordinary cast iron is used for the inner layer, and the strength is localized at the boundary (welded part) between the outer shell and the inner layer. Since there is no abnormal tissue layer that deteriorates during rolling, problems such as cracks from the boundary and peeling of the outer shell layer do not occur during rolling use.
Moreover, since the amount of internal shrinkage cavities during solidification of the inner layer is small, the internal soundness is also good. In addition, in manufacturing the composite roll of the present invention, as mentioned above, the amount of internal shrinkage cavities is small, and special measures such as casting another third layer between the outer shell and the inner layer are used. Since there is no need to take any steps, we can use the same method as in the case of manufacturing composite rolls using conventional ordinary cast iron as the inner layer material.
By using the equipment, it is possible to easily obtain a composite roll with high strength, internal soundness, and durability. Therefore, according to the present invention, the usability of the roll under harsh conditions can be significantly improved compared to the conventional method, and the roll manufacturing cost does not particularly increase. Obtainable.
第1図は高合金グレン鋳鉄を外殻材とし内層材
として球状黒鉛鋳鉄を用いた複合ロールの外殻部
と内層部との境界部付近のミクロ組織写真、第2
図A〜Cは各種鋳鉄球形鋳物のひけ巣状況を示す
ための断面写真、第3図はバーミキユラー鋳鉄に
おける炭素飽和度と引張り強さおよびひけ巣量と
の関係を示す相関図、第4図はこの発明の実施例
の複合ロールにおける内層のバーミキユラー鋳鉄
のミクロ組織写真、第5図は従来の複合ロールに
おける内層の普通鋳鉄のミクロ組織写真、第6図
はこの発明の実施例の複合ロールにおける外殻部
と内層部との境界部付近のミクロ組織写真であ
る。
Figure 1 is a photograph of the microstructure near the boundary between the outer shell and inner layer of a composite roll that uses high-alloy grain cast iron as the outer shell material and spheroidal graphite cast iron as the inner layer material.
Figures A to C are cross-sectional photographs showing the state of shrinkage cavities in various spherical cast iron castings, Figure 3 is a correlation diagram showing the relationship between carbon saturation, tensile strength, and amount of shrinkage cavities in vermicular cast iron, and Figure 4 is A microstructure photograph of the inner layer of vermicular cast iron in the composite roll of the embodiment of this invention, FIG. 5 is a microstructure photograph of the inner layer of normal cast iron in the conventional composite roll, and FIG. This is a photograph of the microstructure near the boundary between the shell and the inner layer.
Claims (1)
ルにおいて、 前記外殻の高合金グレン鋳鉄のS含有量を
0.020%(重量%、以下同じ)以下に規制すると
ともに、内層材質をC2.5〜4.0%、Si2.0〜3.5%で
範囲内でかつ C(%)/{4.23−Si(%)/3.2} で規定される炭素飽和度Scが0.80〜1.20の範囲内
の値となるようにCおよびSiを含有し、かつ
Mn1.5%以下、Ni1.5%以下、Cr0.8%以下、
Mo1.5%以下を含有し、しかもMg0.010〜0.025
%、Ca0.002〜0.005%、希土類元素0.010〜0.020
%のうち1種または2種以上を含有し、残部が
Feおよび不可避的不純物よりなるバーミキユラ
ー鋳鉄としたことを特徴とする強靭鋳鉄複合ロー
ル。[Claims] 1. In a composite roll whose outer shell is made of high-alloy grain cast iron, the S content of the high-alloy grain cast iron of the outer shell is
In addition to regulating the inner layer material to 0.020% (weight%, the same hereinafter) or less, the inner layer material must be within the range of C2.5 to 4.0% and Si2.0 to 3.5%, and C (%) / {4.23 - Si (%) / 3.2 } Contains C and Si such that the carbon saturation degree Sc specified by
Mn1.5% or less, Ni1.5% or less, Cr0.8% or less,
Contains Mo1.5% or less, and Mg0.010 to 0.025
%, Ca0.002~0.005%, rare earth elements 0.010~0.020
%, and the remainder is
A strong cast iron composite roll characterized by being made of vermicular cast iron containing Fe and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5334682A JPS58171552A (en) | 1982-03-31 | 1982-03-31 | Tough composite cast iron roll |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5334682A JPS58171552A (en) | 1982-03-31 | 1982-03-31 | Tough composite cast iron roll |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58171552A JPS58171552A (en) | 1983-10-08 |
JPS6142774B2 true JPS6142774B2 (en) | 1986-09-24 |
Family
ID=12940207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5334682A Granted JPS58171552A (en) | 1982-03-31 | 1982-03-31 | Tough composite cast iron roll |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58171552A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0429163U (en) * | 1990-07-04 | 1992-03-09 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111139396B (en) * | 2019-12-23 | 2021-06-01 | 山东时风(集团)有限责任公司 | Intelligent preparation method of vermicular cast iron brake drum |
CN117380740B (en) * | 2023-12-13 | 2024-02-09 | 辽宁省亿联盛新材料有限公司 | Composite cast iron roller for improving composite black line and production method thereof |
-
1982
- 1982-03-31 JP JP5334682A patent/JPS58171552A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0429163U (en) * | 1990-07-04 | 1992-03-09 |
Also Published As
Publication number | Publication date |
---|---|
JPS58171552A (en) | 1983-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100392138C (en) | Half high speed steel composite roller and preparation process thereof | |
US4546527A (en) | Composite sleeve for use in rolling rolls for H-section steel and channel steel | |
JPH06510707A (en) | Cam shaft and its casting method | |
JPS6036645A (en) | Composite cylinder liner | |
JPS6036757A (en) | Composite cylinder liner | |
WO1995024513A1 (en) | Steel alloys and rolling mill rolls produced therefrom | |
JP4354718B2 (en) | Composite roll for hot rolling made by centrifugal casting | |
US6013141A (en) | Cast iron indefinite chill roll produced by the addition of niobium | |
JPS6142774B2 (en) | ||
JP5282546B2 (en) | High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance | |
JP5282547B2 (en) | High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance | |
JPS6027407A (en) | Composite high-chromium cast iron roll | |
JP4565301B2 (en) | High-strength spheroidal graphite cast iron and method for producing the same | |
JPH11279681A (en) | High strength cast iron | |
JPS641203B2 (en) | ||
JPH03122249A (en) | Centrifugally cast high chromium roll | |
JPS63303608A (en) | Tough high chrome cast iron roll | |
JPS6051548B2 (en) | Wear-resistant alloy cast iron | |
JPS61143554A (en) | Cast iron material for surface hardening | |
JPS5890363A (en) | Production of composite roll of high alloy cast iron | |
JP2857568B2 (en) | Composite cylinder liner | |
JPH11199962A (en) | Composite rolling for rolling | |
JPS5920417B2 (en) | Manufacturing method of high chromium roll with strong core material | |
JPS60230958A (en) | Mold for centrifugal casting | |
US3132936A (en) | Refining of irons and steels |