JPS60230958A - Mold for centrifugal casting - Google Patents

Mold for centrifugal casting

Info

Publication number
JPS60230958A
JPS60230958A JP8816284A JP8816284A JPS60230958A JP S60230958 A JPS60230958 A JP S60230958A JP 8816284 A JP8816284 A JP 8816284A JP 8816284 A JP8816284 A JP 8816284A JP S60230958 A JPS60230958 A JP S60230958A
Authority
JP
Japan
Prior art keywords
cast iron
mold
graphite
centrifugal casting
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8816284A
Other languages
Japanese (ja)
Inventor
Yasuo Watanabe
靖夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8816284A priority Critical patent/JPS60230958A/en
Publication of JPS60230958A publication Critical patent/JPS60230958A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled mold having superior characteristics in three points of thermal conductivity, vibration damping capacity and strength by contg. prescribed ratios of C, Si, Mn, S and >= one kind among Mg, Cs, Ce respectively and the balance Fe, and composing of vermicular cast iron having catapillar graphite after the casting. CONSTITUTION:The mold for centrifugal casting composed of the cast iron contg. by weight 2.5-4.0% C, 2.0-3.5% Si, 0.4-1.5% Mn, <=0.030% S and >=one kind among 0.010-0.02% Mg, 0.003-0.020% Ca, 0.010-0.02% Ce and the balance Fe is presented. The cast iron in this case is vermicular cast iron having caterpillar graphite after the casting. Since the mold strength of this invention is remarkably higher compared with usual common cast iron material quality, danger of mold cracking accident, etc. is decreased and service life of the mold is extended remarkably.

Description

【発明の詳細な説明】 この発明は、鋳鉄管あるいは圧延用ロール等を遠心鋳造
法によって鋳込むだめの遠心鋳造用金型に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a centrifugal casting mold for casting cast iron pipes, rolling rolls, etc. by centrifugal casting.

一般に鋳鉄管や圧延用ロール等はその形状が円筒状ある
いは円柱状であるところから、遠心鋳造法によって鋳込
むことが最も経済的でしかも効率が良く、シたがってそ
の鋳造にあたっては遠心鋳造法を適用することが多い。
Cast iron pipes and rolling rolls are generally cylindrical or cylindrical in shape, so it is most economical and efficient to cast them using the centrifugal casting method. Often applied.

特に圧延用ロールのうちでも、外層を耐摩耗性の良好な
高台金グレン鋳鉄等の材質とし、内層を靭性の高いダク
タイル鋳鉄等とした複合ロールの製造にあたっては、外
層の鋳込みに遠心鋳造法が最適であるため、最近ではそ
のほとんどが遠心鋳造法を適用するに至っている。
Especially among rolling rolls, when manufacturing composite rolls in which the outer layer is made of a material such as high-grade grain cast iron with good wear resistance and the inner layer is made of a material such as ductile cast iron with high toughness, the centrifugal casting method is used to cast the outer layer. Since it is optimal, most of these methods have recently come to use centrifugal casting.

ところで遠心鋳造において溶鉄の鋳込みに使用される金
型としては、従来は片状黒鉛を有する普通鋳鉄を使用す
ることが多かった。この普通鋳鉄は、熱伝導率が高いと
いう長所を有する反面、先端形状がとがった片状黒鉛の
先端部に応力集中が生じ易いため充分な強度が得られず
、例えば厚肉の場合1O−15)C57f/−程度の強
度しか得られないところから、高速回転によって遠心力
による高い応力が作用する遠心鋳造用金型では特にその
寿命が短かくならざるを得す、またその安全性、信頼性
も低めという欠点があった。
Conventionally, ordinary cast iron containing flake graphite has often been used as a mold for pouring molten iron in centrifugal casting. Although this ordinary cast iron has the advantage of high thermal conductivity, it does not have sufficient strength because stress concentration tends to occur at the tip of the flaky graphite, which has a sharp tip shape. ) Since the strength is only about C57f/-, the lifespan of centrifugal casting molds, which are subject to high stress due to centrifugal force due to high-speed rotation, is inevitably short, and their safety and reliability are also limited. It also had the disadvantage of being low.

一方、最近では金型寿命の延長等を目的として、普通鋳
鉄よりも格段に高い強度を有する球状黒鉛鋳鉄もしくは
鍛鋼を遠心鋳造用金型に使用することも一部では実施さ
れている。球状黒鉛鋳鉄は通常40〜50 kgf/m
−程度の高強度を有し、また鍛鋼は80〜I U Ok
gflvty&にも達する高強度を有することから、こ
れらの高強度材を使用することによって遠心鋳造用金型
の大幅な寿命延長、安全性の向上を図ることができる。
On the other hand, recently, some use of spheroidal graphite cast iron or forged steel, which has much higher strength than ordinary cast iron, in centrifugal casting molds has been carried out for the purpose of extending the life of the mold. Spheroidal graphite cast iron is usually 40-50 kgf/m
The forged steel has a high strength of 80~I U Ok.
Since these materials have high strength reaching even gflvty&, by using these high-strength materials, it is possible to significantly extend the life of centrifugal casting molds and improve safety.

しかしながらこれらの高強度材はいずれもその熱伝導率
が普通鋳鉄よシも格段に低く、冷却効率の低下が避けら
れないという問題がある。
However, all of these high-strength materials have a problem that their thermal conductivity is much lower than that of ordinary cast iron, and a decrease in cooling efficiency is inevitable.

上述のような遠心鋳造用金型における熱伝導の問題につ
いてさらに詳しく説明すると、鋳塊の凝固速度は一般に
金型の熱容量に依存するが、同一寸法の金型の場合には
、熱伝導率の高い材料からなる金型の方が鋳込み初期の
抜熱が速くなるため、凝固組織の微細な鋳塊を得ること
ができる。特に圧延用ロール等においては表面の耐摩耗
性向上、硬度向上のために表面の組織が微細であること
が要求され、そのためには金型の熱伝導率が高いことが
必要である。例えば鋳塊直径と金型肉厚との比が4:l
の場合、鋳塊半径方向20%の範囲の表面層の凝固組織
を微細化するためには、本発明者等の実験によれば金型
の熱伝導率を0,2Calfs・式・℃以上とする必要
があることが判明している。しかるに前述のような各種
の遠心鋳造用金型材料の500℃における熱伝達率につ
いて調べたところ、普通鋳鉄が0.28 Ca1J/c
m−wc−℃程度であるのに対し、球状黒鉛鋳鉄では0
.18Ca73/crn ・wc ・’Q鍛鋼では0.
09 calA−WL−see・’c程1fKMぎす、
−ずれの高強度材も鋳塊表面層を微細化するには不充分
であり、したがってこれらの高強度材は熱伝導率の点で
遠心鋳造用金型として本来適当ではないことが判明した
To explain in more detail the problem of heat conduction in centrifugal casting molds mentioned above, the solidification rate of an ingot generally depends on the heat capacity of the mold, but for molds of the same size, the thermal conductivity A mold made of a high-quality material can remove heat more quickly during the initial stage of casting, making it possible to obtain an ingot with a finer solidified structure. In particular, rolling rolls and the like are required to have a fine surface structure in order to improve surface wear resistance and hardness, and for this purpose, it is necessary that the mold has high thermal conductivity. For example, the ratio of ingot diameter to mold wall thickness is 4:l
In this case, in order to refine the solidified structure of the surface layer within 20% of the radius of the ingot, according to experiments conducted by the present inventors, the thermal conductivity of the mold should be set to 0.2 Calfs. It turns out that you need to. However, when we investigated the heat transfer coefficient at 500°C of the various centrifugal casting mold materials mentioned above, we found that ordinary cast iron had a heat transfer coefficient of 0.28 Ca1J/c.
m-wc-℃, whereas spheroidal graphite cast iron has a temperature of 0.
.. 18Ca73/crn ・wc ・0 for 'Q forged steel.
09 calA-WL-see・'c degree 1fKMgisu,
- It has been found that high-strength materials such as these are also insufficient for refining the surface layer of the ingot, and therefore these high-strength materials are not originally suitable as molds for centrifugal casting in terms of thermal conductivity.

また一方、強度が低い普通鋳鉄を遠心鋳造用金型に用い
た場合、熱伝達に関連して次のような問題がある。すな
わち、溶湯から金型への熱伝達効率を向上させるために
は、金型内面に塗布する焼付防止用耐火物の厚みを薄く
することが望ましいが、その場合金型内面の温度上昇が
大きくなって金型の外面と内面との温度差が大きくなり
、そのため内外面の温度差による金型の熱応力が著しく
大きくなるから、従来の普通鋳鉄程度の低強度材を用い
た場合には金型破壊の危険性が高くなり、その点からも
普通鋳鉄材は遠心鋳造用金型として強度不足といえる。
On the other hand, when ordinary cast iron, which has low strength, is used in a centrifugal casting mold, the following problems occur in relation to heat transfer. In other words, in order to improve the efficiency of heat transfer from the molten metal to the mold, it is desirable to reduce the thickness of the anti-seizure refractory coated on the inner surface of the mold, but in this case, the temperature rise on the inner surface of the mold will increase. The temperature difference between the outer and inner surfaces of the mold becomes large, and the thermal stress of the mold due to the temperature difference between the inner and outer surfaces increases significantly. The risk of breakage is high, and from this point of view, ordinary cast iron materials can be said to be insufficient in strength as molds for centrifugal casting.

ところで、最近の遠心鋳造では、凝固組織の微細化を促
進するために鋳型の回転を従来よりも高速として、重力
加速度(G)で100〜150となるような高速回転と
した状態で注湯する方法が採用されることが多い。この
ように高速回転とすればそれに伴って鋳型の機械的振動
も大きくなり、その撮動によって溶湯内での成分偏析や
異常組織の形成など、製品品質の劣化を招くおそれがあ
ることが本発明者等の実験により判明している。したが
って遠心鋳造用の金型としては振動を吸収する能力すな
わち振動減衰能が高いことが望ましい。
By the way, in recent centrifugal casting, in order to promote the refinement of the solidified structure, the mold is rotated at a higher speed than before, and the metal is poured while rotating at a high speed with a gravitational acceleration (G) of 100 to 150. method is often used. If the mold is rotated at such a high speed, the mechanical vibration of the mold will also increase, and the imaging of the vibration may lead to component segregation in the molten metal, formation of abnormal structures, and other deterioration in product quality. This has been confirmed through experiments by researchers and others. Therefore, it is desirable that a mold for centrifugal casting has a high ability to absorb vibrations, that is, a high vibration damping ability.

このような振動減衰能の点からは前述のような金型材料
のうちでも普通鋳鉄が最も優れていることが知られてい
る。例えば材料に与えられた振動が消滅するまでの振動
寿命で比較すれば、普通鋳鉄をlとすれば球状黒鉛鋳鉄
は1.8、鋼は43程度であり、普通鋳鉄に比較して高
強度材の方が格段に劣ることが仰られている。そして本
発明者等の実験によっても、普通鋳鉄金型においては振
動減衰能が32X10 と高く、撮動の振幅が5〜7μ
mと小さいのに対し、同じ条件下で調べた球状黒鉛鋳鉄
金型の振動減衰能は5X10 と小さく、振幅は15〜
20μmと大きく、そのため球状黒鉛鋳鉄材質の金型を
用いての高速回転下での遠心鋳造では健全な鋳塊が得難
いことが判明した。
It is known that ordinary cast iron is the most excellent among the mold materials mentioned above in terms of vibration damping ability. For example, if we compare the vibration life until the vibration applied to the material disappears, if normal cast iron is l, spheroidal graphite cast iron is about 1.8, and steel is about 43. It is said that it is significantly inferior. Experiments by the inventors have also shown that ordinary cast iron molds have a high vibration damping capacity of 32x10, and that the amplitude of the imaging is 5 to 7μ.
m, whereas the vibration damping capacity of the spheroidal graphite cast iron mold examined under the same conditions was as small as 5X10, and the amplitude was 15~
It was found that it was as large as 20 μm, and therefore it was difficult to obtain a sound ingot by centrifugal casting under high speed rotation using a mold made of spheroidal graphite cast iron.

以上のように、遠心鋳造用金型の材質としては、熱伝導
率と振動減衰能の両者が高く、しかも高強度を有するこ
とが望ましいが、普通鋳鉄は強度の点で不充分であり、
また高強度材である球状黒鉛鋳鉄や鍛鋼は熱伝導率およ
び振動減衰能が低く、したがっていずれの材質でも前述
の要求を全て満足することはできなかったのが実情であ
る。
As mentioned above, it is desirable that the material for centrifugal casting molds has both high thermal conductivity and vibration damping ability, as well as high strength, but ordinary cast iron is insufficient in terms of strength.
In addition, high-strength materials such as spheroidal graphite cast iron and forged steel have low thermal conductivity and vibration damping ability, so the reality is that none of these materials can satisfy all of the above requirements.

この発明は以上の事情に鑑みてなされたもので、熱伝導
率、振動減衰能、および強度の3点において全て優れた
特性を兼ね備えた遠心鋳造用金型を提供することを目的
とするものである。
This invention was made in view of the above circumstances, and the purpose is to provide a centrifugal casting mold that has excellent properties in all three respects: thermal conductivity, vibration damping ability, and strength. be.

すなわち本発明者等の実験によれば、鋳塊表面層の凝固
層を充分に微細化するためには熱伝導率が0.2 Ca
l/bv・式・℃以上であることが好ましく、また重力
加速度(G)が100〜150程度の高速回転Fにおい
ても鋳塊の健全性を保つためには振動減衰能が8×10
 以上(振幅10μm以下)であることが好ましく、さ
らに金型寿命や安全性の観点からは引張り強さ30 k
l?f/nd以上の強度を有することが好ましく、この
発明ではこれらの条件を同時に満足する材質の遠心鋳造
用金型を提供することを目的とする。
That is, according to the experiments conducted by the present inventors, in order to sufficiently refine the solidified layer on the surface layer of the ingot, the thermal conductivity must be 0.2 Ca.
The vibration damping capacity is preferably 8 x 10 to maintain the integrity of the ingot even at high speed rotation F where the gravitational acceleration (G) is about 100 to 150.
or more (amplitude 10 μm or less), and from the viewpoint of mold life and safety, the tensile strength is 30 k.
l? It is preferable that the material has a strength of f/nd or higher, and an object of the present invention is to provide a centrifugal casting mold made of a material that simultaneously satisfies these conditions.

本発明者等は、上述のような要求特性を満足し得る遠心
鋳造用金型の材料を見出すべく種々実験・検討を重ねた
結果、芋虫状の黒鉛を有するバーミキュラー鋳鉄が上記
特性を満足し得ることを見出し、この発明をなすに至っ
た。すなわち、一般に鋳鉄はその構成組織の約lO%を
占める黒鉛の熱伝導率が鉄基地のフェライトやパーライ
トよシも高く、そのだめ全体としての熱伝達率が高いこ
とから、金型として使用した場合の凝固促進効果が大き
いが、その鋳鉄のうちでも普通鋳鉄は充分な熱伝導率を
有するものの、球状黒鉛鋳鉄は前述のように相対的に熱
伝達率が低い。また撮動減衰能も普通鋳鉄は高いものの
、球状黒鉛鋳鉄は低く、一方強度は逆に球状黒鉛鋳鉄が
格段に高い。このような熱伝達率、撮動減衰能、および
強度はともに鋳鉄中の黒鉛形状によって左右されるとこ
ろから、片状黒鉛と球状黒鉛との中間の形状、すなわち
芋虫状の黒鉛を有するバーミキュラー鋳鉄に着目し、実
験を重ねたところ、バーミキュラー鋳鉄は強度および熱
伝達率のみならず、振動減衰能の点においても前述の要
求特性を満足することを新規に知見してこの発明を完成
させたのである。
The inventors of the present invention have conducted various experiments and studies to find a material for a centrifugal casting mold that can satisfy the above-mentioned required properties, and have found that vermicular cast iron having caterpillar-like graphite can satisfy the above-mentioned properties. They discovered this and came up with this invention. In other words, in general, in cast iron, the thermal conductivity of graphite, which accounts for approximately 10% of its constituent structure, is higher than that of the iron base ferrite and pearlite, and the heat transfer coefficient as a whole is high, so when used as a mold. Among these cast irons, ordinary cast iron has sufficient heat conductivity, but spheroidal graphite cast iron has a relatively low heat transfer coefficient as described above. Furthermore, normal cast iron has a high attenuation ability, but spheroidal graphite cast iron has a low ability, while spheroidal graphite cast iron has significantly higher strength. Since the heat transfer coefficient, photodamping ability, and strength are all influenced by the shape of graphite in cast iron, vermicular cast iron has a shape intermediate between flaky graphite and spheroidal graphite, that is, caterpillar-like graphite. After focusing on this and conducting repeated experiments, they discovered that vermicular cast iron satisfies the above-mentioned required characteristics not only in terms of strength and heat transfer rate, but also in terms of vibration damping ability, and completed this invention. .

すなわちこの発明の遠心鋳造用金型は、その成分組成と
して、C2,5〜4.0チ、Si2.0〜3.5% 、
Mn O,4〜1.5 ’4 、S O,030%以下
を含有しかつMg 0.010〜0.02%、Ca O
,003〜0、020%、Ce 01010〜0.02
%のうちから選ばれた1種以上を含有し、残部がFeお
よび不可避的不純物よシなり、鋳放して芋虫状黒鉛を有
するバーミキュラー鋳鉄で作られていることを特徴とす
るものである。
That is, the centrifugal casting mold of the present invention has, as its component composition, C2.5 to 4.0%, Si 2.0 to 3.5%,
Contains MnO, 4-1.5'4, SO, 030% or less, and Mg 0.010-0.02%, CaO
,003~0,020%,Ce 01010~0.02
%, the remainder being Fe and unavoidable impurities, and is characterized by being made of vermicular cast iron having as-cast caterpillar graphite.

以Fこの発明の遠心鋳造用金型についてさらに詳細に説
明する。
Hereinafter, the centrifugal casting mold of the present invention will be explained in more detail.

この発明の遠心鋳造用金型は、鋳放しの状態で、片状黒
鉛と球状黒鉛の中間の黒鉛形状である芋虫状の黒鉛を有
するバーミキュラー鋳鉄からなるものであり、このよう
に黒鉛形状を制御し、かつ充分な機械的強度、熱伝導率
、振動減衰能を確保するためには前述のような成分組成
を有することが必要である。ここで前記各成分元素のう
ち、Mg。
The centrifugal casting mold of this invention is made of vermicular cast iron that has caterpillar-shaped graphite, which is an intermediate graphite shape between flaky graphite and spheroidal graphite, in the as-cast state, and the graphite shape can be controlled in this way. However, in order to ensure sufficient mechanical strength, thermal conductivity, and vibration damping ability, it is necessary to have the above-mentioned component composition. Here, among the above-mentioned component elements, Mg.

Ca 、もしくはCeは、その他の成分元素すなわちC
、Si 、 Mn 、 Sを前記範囲内で含有する溶湯
を鋳込む前に、Mg合金、Ca合金、もしくはCe合金
の1種以上として添加して、黒鉛形状を芋虫状に制御す
るだめに必要不可欠な元素であって、この発明において
はMg 、 CaもしくはCeの含有量を凝固後の鋳塊
中の残留量で規定している。すなわちこの発明の遠心鋳
造用金型を製造するにあたつては、C2,5〜4.0%
、Si2.0〜3.5%、Mn0、4〜1..5%、8
0.030%を含有し残部がFeおよび不可避的不純物
よりなる溶湯を溶製し、その溶湯を鋳込む前にMg合金
、Ca合金、もしくはCe合金の1種以上を、鋳塊中の
残留量がMgでは0.010〜0.020%、Caでは
0003〜0、020%、Ceでは0.010〜0.0
20%の範囲内となるように添加する。Mg 、 Ca
 、もしくはCeの残留量が上記範囲よりも少ない場合
には、黒鉛形状が芋虫状とならず、片状に近い黒鉛とな
って充分な強度が得られない。一方それらの残留量が上
記範囲を越える場合には、黒鉛の球状化が過度に進行し
て、芋虫状黒鉛に混じる球状黒鉛の比率が高くなって球
状黒鉛に類似した特性を示すようになる。具体的には、
芋虫状黒鉛の比率が黒鉛数にして7割以上を確保できな
くなシ、球状黒鉛の数が3割を越えるようになって、充
分な熱伝導率、振動減衰能が得られなくなる。したがっ
てMg 、 Ca 、 Ceの1種以上の残留量をそれ
ぞれo、oto〜0020チ、0.003〜0.002
0%、0.010〜0.020 %の範囲内に限定した
Ca or Ce is other component element, namely C
, Si , Mn , and S within the above range before casting the molten metal, it is added as one or more of Mg alloy, Ca alloy, or Ce alloy to control the graphite shape into a caterpillar shape. In this invention, the content of Mg, Ca or Ce is defined by the amount remaining in the ingot after solidification. That is, in manufacturing the centrifugal casting mold of this invention, C2.5 to 4.0%
, Si2.0-3.5%, Mn0, 4-1. .. 5%, 8
A molten metal containing 0.030% Fe and unavoidable impurities is produced, and before casting the molten metal, one or more of Mg alloy, Ca alloy, or Ce alloy is added to the remaining amount in the ingot. is 0.010 to 0.020% for Mg, 0003 to 0,020% for Ca, and 0.010 to 0.0 for Ce.
Add so that it is within the range of 20%. Mg, Ca
Alternatively, if the residual amount of Ce is less than the above range, the graphite shape will not be caterpillar-like, but will become flake-like, and sufficient strength will not be obtained. On the other hand, if the residual amount exceeds the above range, the spheroidization of graphite will proceed excessively, and the ratio of spheroidal graphite mixed with caterpillar graphite will increase, resulting in characteristics similar to spheroidal graphite. in particular,
The proportion of caterpillar-like graphite cannot be ensured at 70% or more in terms of graphite number, and the number of spheroidal graphite exceeds 30%, making it impossible to obtain sufficient thermal conductivity and vibration damping ability. Therefore, the residual amounts of one or more of Mg, Ca, and Ce are o, oto~0020chi, and 0.003~0.002, respectively.
0%, limited to within the range of 0.010 to 0.020%.

次にMg 、 Ca 、 Ce以外の成分限定理由につ
いて説明する。
Next, the reason for limiting components other than Mg, Ca, and Ce will be explained.

C: CはSiとともに鋳鉄の組織を構成する主要元素
であシ、特に黒鉛量、黒鉛形状に対する影響が大きい。
C: C is a major element that constitutes the structure of cast iron along with Si, and has a particularly large influence on the amount of graphite and the shape of graphite.

C含有量が2.5−未満では凝固後の鋳鉄中の黒鉛量が
少なく、熱伝導率が低下して鋼に近くなるとともに、黒
鉛形状も片状に近いものとなるため強度も低ドする。−
万〇含有量が4.0 %を越えれば、晶出する黒鉛が粗
大になるとともに溶湯組成が過共晶となる。そのため芋
虫状黒鉛を得るためにMg合金、Ca合金もしくはCe
合金を添加すれば全黒鉛数に占める球状黒鉛の比率が3
割を越えるようになシ、球状黒鉛に近い特性を示すよ−
うになって、機械的強度は向上する反面、熱伝導率、振
動減衰能がともに低下し、遠心鋳造用金型として好まし
くなくなる。したがってC含有量は2.5〜4.0%の
範囲内とした。
When the C content is less than 2.5-, the amount of graphite in the cast iron after solidification is small, the thermal conductivity decreases and it becomes similar to steel, and the graphite shape becomes almost flaky, resulting in low strength. . −
If the content exceeds 4.0%, the crystallized graphite becomes coarse and the molten metal composition becomes hypereutectic. Therefore, in order to obtain caterpillar graphite, Mg alloy, Ca alloy or Ce alloy is used.
If alloy is added, the ratio of spheroidal graphite to the total number of graphites will be 3.
It shows properties close to those of spheroidal graphite.
As a result, although the mechanical strength is improved, both the thermal conductivity and the vibration damping ability are reduced, making it undesirable as a mold for centrifugal casting. Therefore, the C content was set within the range of 2.5 to 4.0%.

Si: 5iijCと関連して鋳鉄の材質に大きな影響
を与える元素である。S1含有量が2.0%未満では黒
鉛化が不充分となるため、熱伝導率と振動減衰能の向上
が望めない。一方Si含有量が3.5チを越えれば黒鉛
晶出量は増加するが黒鉛形状が塊状となるため、振動減
衰能が低下し、遠心鋳造用金型として好ましくなくなる
。したがってSi含有量は2.θ〜3.5チの範囲内と
した。
Si: An element related to 5iijC that has a large effect on the material quality of cast iron. If the S1 content is less than 2.0%, graphitization will be insufficient, so improvements in thermal conductivity and vibration damping ability cannot be expected. On the other hand, if the Si content exceeds 3.5 inches, the amount of graphite crystallized increases, but the shape of the graphite becomes lumpy, resulting in a decrease in vibration damping ability, making it undesirable as a mold for centrifugal casting. Therefore, the Si content is 2. It was set within the range of θ to 3.5 inches.

Mn: Mnは鋳鉄の黒鉛形状には直接の影響を及ぼさ
ないが、基地組織の強度に大きな影響を及ぼす。Mn含
有量が0.4%未満では基地組織がフェライトとなるた
め伸び値は大きくなるが強度は低くなり、遠心鋳造用金
型として不適当となる。Mn含有量が0.4〜1.5 
%の範囲では基地組織はフェライトとパーライトの混合
組織となV)、Mn量が増加するにつれてパーライト割
合が増加してMn 1.5チではtlぼ完全なパーライ
ト組織となり、強度も40kgf/−以上が得られるが
、1.5%を越えてMnを増量してもそれ以上効果は増
大しない。したがってMn含有量は0.4〜1.5%の
範囲内とした。
Mn: Mn does not have a direct effect on the graphite shape of cast iron, but it has a large effect on the strength of the matrix structure. If the Mn content is less than 0.4%, the base structure becomes ferrite, so the elongation value increases but the strength decreases, making it unsuitable as a centrifugal casting mold. Mn content is 0.4-1.5
% range, the base structure becomes a mixed structure of ferrite and pearlite (V), and as the Mn amount increases, the pearlite proportion increases, and at Mn 1.5, it becomes a completely pearlite structure, and the strength is 40 kgf/- or more. However, even if the amount of Mn is increased beyond 1.5%, the effect will not increase any further. Therefore, the Mn content was set within the range of 0.4 to 1.5%.

S: Sの含有は鋳鉄の性質に直接影響を及ぼさないが
、黒鉛形状を芋虫状とするために添加されるMg 、 
Ca 、あるいはCeとの結合力が著しく強く、それら
の黒鉛形状制御元素の効果を失なわせる有害な作用を有
するから、Sの含有量を規制する必要がある。すなわち
Sを多量に含有する溶鉄にMg 、 CaあるいはCe
を含む合金を添加すれば、ただちにMgS 、 CaS
あるいはCeSが形成されてこれらの元素の作用を失な
わせ、黒鉛形状の制御が困難となる。S含有量が0.0
30%を越える溶湯においても、上記合金を多量に添加
すれば芋虫状黒゛鉛を晶出させることは可能であるが、
合金添加量を多量とするため不経済であシ、シかも生成
された多量の硫化物が鋳塊内部に残存して強度低下を招
くため、S含有量が0.030 %を越えることは好ま
しくない。したがってS含有量は0.030%以丁に限
定した。
S: The content of S does not directly affect the properties of cast iron, but Mg is added to make the graphite shape caterpillar-like.
It is necessary to regulate the content of S because its bonding force with Ca or Ce is extremely strong and has a harmful effect of destroying the effects of these graphite shape control elements. In other words, Mg, Ca or Ce is added to molten iron containing a large amount of S.
If you add an alloy containing MgS, CaS
Alternatively, CeS is formed and the effects of these elements are lost, making it difficult to control the graphite shape. S content is 0.0
It is possible to crystallize caterpillar graphite even in a molten metal with a content exceeding 30% by adding a large amount of the above alloy.
It is preferable for the S content to exceed 0.030%, since it is uneconomical to add a large amount of alloy, and a large amount of sulfide generated remains inside the ingot and causes a decrease in strength. do not have. Therefore, the S content was limited to 0.030% or less.

さらにこの発明の遠心鋳造用金型のバーミキュラー鋳鉄
材質は、C、SLによって規定される炭素飽和度Scが
0.80〜1.20の範囲内となるようにC、Siの含
有量を調整することが望ましい。すなわち炭素飽和度S
cは 5c=(0%)/(4,23−(Sin)/3.2 )
で示されるものであり、鋳鉄の共晶程度をあられすもの
として知られているが、バーミキュラー鋳鉄における炭
素飽和度と強度および全黒鉛粒に占める芋虫状黒鉛の粒
数の割合との間には第1図に示すような関係があること
が判明した。第1図において曲線1は炭素飽和度と引張
り強さとの関係をあられし、曲線2は炭素飽和度と芋虫
状黒鉛の割合との関係をあられす。第1図から明らかな
ように炭素飽和度Scが0.80未満の場合には芋虫状
黒鉛の割合は高いが、球状化率で30%以下の先端のと
がった片状黒鉛が混在するため機械的性質、特に引張り
強さが30 kgf/Id以Fに低Fし、遠心鋳造用金
型として好ましくなくなる。一方炭素飽和度が1.00
より大きくなれば、芋虫状黒鉛に混ざる球状黒鉛の割合
が多くなり、1,200を越えれば球状黒鉛割合が3割
を越えて芋虫状黒鉛の割合が7割以Fとなる。このよう
に球状黒鉛の数が増加すれば、機械的性質は向上するが
、振動減衰能が低下する。すなわち本発明者等の実験に
よれば、芋虫状黒鉛割合と振動減衰能との間には第2図
に示すような関係がちシ、芋虫状黒鉛割合が7割以下と
なれば振動減衰能が5xio 以下となり、高回転下で
使用される遠心鋳造用金型の防振には不充分であること
が判明している。したがって振動減衰能の面から芋虫状
黒鉛割合を7割以上確保するためには炭素飽和度SCを
1.200以Fとすることが好ましい。
Further, in the vermicular cast iron material of the centrifugal casting mold of the present invention, the content of C and Si is adjusted so that the carbon saturation degree Sc defined by C and SL is within the range of 0.80 to 1.20. This is desirable. That is, carbon saturation S
c is 5c=(0%)/(4,23-(Sin)/3.2)
It is known to indicate the degree of eutecticism of cast iron, but there is a relationship between carbon saturation and strength in vermicular cast iron, as well as the ratio of the number of caterpillar graphite grains to the total graphite grains. It has been found that there is a relationship as shown in Figure 1. In FIG. 1, curve 1 shows the relationship between carbon saturation and tensile strength, and curve 2 shows the relationship between carbon saturation and the proportion of caterpillar graphite. As is clear from Figure 1, when the carbon saturation degree Sc is less than 0.80, the proportion of caterpillar-like graphite is high, but since flaky graphite with sharp tips with a spheroidization rate of 30% or less is mixed, it is difficult to The mechanical properties, especially the tensile strength, are low, below 30 kgf/IdF, making it undesirable as a mold for centrifugal casting. On the other hand, carbon saturation is 1.00
If it becomes larger, the proportion of spheroidal graphite mixed with caterpillar graphite increases, and if it exceeds 1,200, the proportion of spherical graphite exceeds 30%, and the proportion of caterpillar graphite becomes 70% or more F. If the number of spheroidal graphites increases in this way, the mechanical properties will improve, but the vibration damping ability will decrease. In other words, according to the experiments conducted by the present inventors, there is a relationship between the proportion of caterpillar graphite and the vibration damping capacity as shown in Figure 2, and when the proportion of caterpillar graphite is 70% or less, the vibration damping capacity decreases. 5xio or less, which has been found to be insufficient for vibration isolation of centrifugal casting molds used under high rotation speeds. Therefore, in order to ensure a caterpillar graphite ratio of 70% or more in terms of vibration damping ability, it is preferable that the carbon saturation SC is 1.200 F or more.

以上のようなこの発明の遠心鋳造用金型材質であるバー
ミキーラー鋳鉄は、その機械的性質としては引張強さで
30〜45に9f/−の値が得られる。
As for the mechanical properties of the vermi-keeled cast iron which is the material for the centrifugal casting mold of the present invention as described above, a tensile strength value of 30 to 45 and 9 f/- can be obtained.

この強度は、球状黒鉛鋳鉄と比較すれば若干劣るが、従
来から多用されている普通鋳鉄の2倍以上の強度であシ
、遠心鋳造用金型として充分満足することができる。
Although this strength is slightly inferior to that of spheroidal graphite cast iron, it is more than twice the strength of ordinary cast iron, which has been widely used in the past, and is sufficiently satisfactory as a mold for centrifugal casting.

また熱伝導率については、第3図に示すように、この発
明の遠心鋳造用金型材質であるバーミキーラー鋳鉄3は
、普通鋳鉄4と比較して若干劣るが、球状黒鉛鋳鉄5の
約1.3倍の値を示し、5oo℃において0.22 C
a176m・式・℃の値が得られる。このような熱伝導
率は遠心鋳造用金型としての要求値を充分に満たすもの
である。
Regarding thermal conductivity, as shown in FIG. 3, vermi-keeled cast iron 3, which is the centrifugal casting mold material of the present invention, is slightly inferior to normal cast iron 4, but about 1. 3 times the value, 0.22 C at 5oooC
The value of a176m・formula・℃ is obtained. Such a thermal conductivity sufficiently satisfies the required value for a centrifugal casting mold.

一方撮動を吸収する能力である振動減衰能は、芋虫状黒
鉛割合が7割以上のバーミキュラー鋳鉄では第2図から
も明らかなように内部摩擦法による測定値が9×10 
程度以上であって、普通鋳鉄と比較すれば約IAと劣る
が、球状黒鉛鋳鉄と比較すれば約14倍と優れ、また応
力除去法による振動減衰時間で比較すれば普通鋳鉄よシ
40%長いが、球状黒鉛鋳鉄より約30チ短かいことが
確認されており、このようなバーミキュラー鋳鉄の振動
減衰能は高速回転下で使用される遠心鋳造用金型として
充分な程度であることが判明している。
On the other hand, the vibration damping ability, which is the ability to absorb vibration, has a value measured by the internal friction method of 9
It is inferior to ordinary cast iron by about IA, but it is about 14 times better than spheroidal graphite cast iron, and 40% longer than ordinary cast iron when compared in vibration damping time by stress relief method. However, it has been confirmed that it is approximately 30 inches shorter than spheroidal graphite cast iron, and the vibration damping ability of vermicular cast iron has been found to be sufficient for centrifugal casting molds used under high-speed rotation. ing.

以下に、熱間圧延用ロールの遠心鋳造用金型にこの発明
を適用した実施例、および比較例を説明する。
Examples and comparative examples in which the present invention is applied to a centrifugal casting mold for hot rolling rolls will be described below.

製作した金型寸法は、外径12601fll、内径71
Qw、長さ250011111の中空円筒状−ID、重
量は約16)ンである。第1表の試料記号l〜6に示す
本発明範囲内の成分組成のバーミキーラー鋳鉄からなる
金型、および比較例として従来の普通鋳鉄からなる試料
記号7の成分組成の金型、同じく比較例として球状黒鉛
鋳鉄からなる試料記号8の金型を作成した。ここで、本
発明例(試料記号1〜6)の金型を作成するにあたって
は、それぞれ第1表に示す成分のうち、Mg 、 Ca
もしくはCeを除く成分の溶湯を溶製し、その溶湯に1
400℃において試料記号1>3のものではFe−8i
−25チCa合金を重量割合で1俤、試料記号4のもの
ではFe−8i −15%Mg合金を重量割合で0.5
 % 、試料記号5のものではFe−43%Ce合金を
重量割合で0.05%、試料記号6のものではFe −
10%Mg −4%Ca合金を重量割合で0、5 % 
、それぞれ添加してから鋳込み、これによって黒鉛形状
が芋虫状となるように制御した。また試料記号7の普通
鋳鉄材質の比較例の金型を作成するにあたっては、第1
表に示す成分組成の溶湯をそのまま鋳込み、試料記号8
の球状黒鉛鋳鉄材質の比較例の金型を作成するにあたっ
ては、第1表に示す成分のうちMgを除く成分組成の溶
湯を溶製して鋳込み前にFe −Si −15%Mg合
金を重量割合で1.2チ添加して黒鉛形状を球状に制御
した。
The dimensions of the manufactured mold were an outer diameter of 12,601 flll and an inner diameter of 71 mm.
Qw, a hollow cylindrical shape with a length of 250011111-ID, and a weight of approximately 16) tons. Molds made of vermi-keeled cast iron with compositions within the range of the present invention shown in sample codes 1 to 6 in Table 1, and molds with sample code 7 made of conventional ordinary cast iron as a comparative example, also as comparative examples. A mold with sample code 8 made of spheroidal graphite cast iron was created. Here, when creating the molds of the examples of the present invention (sample symbols 1 to 6), Mg, Ca
Alternatively, melt a molten metal containing components other than Ce, and add 1 to the molten metal.
At 400℃, for sample code 1>3, Fe-8i
-25% Ca alloy is 1 yen by weight, and for sample code 4, Fe-8i -15%Mg alloy is 0.5% by weight.
%, in sample code 5 the Fe-43%Ce alloy was 0.05% by weight, and in sample code 6 the Fe-43%Ce alloy was 0.05% by weight.
10%Mg-4%Ca alloy 0.5% by weight
, were added and then cast, thereby controlling the graphite shape to be caterpillar-like. In addition, when creating a comparative example mold of sample code 7 made of ordinary cast iron material, the first
Pour the molten metal with the composition shown in the table as it is, and sample code 8
In order to create a comparative mold made of spheroidal graphite cast iron material, a molten metal with the composition shown in Table 1 excluding Mg was melted and a Fe-Si-15%Mg alloy was melted by weight before casting. The shape of the graphite was controlled to be spherical by adding 1.2 g.

本発明例の金型のうち、試料記号lの金型のミクロ組織
(黒鉛組織)を100倍の顕微鏡組織で第4図に示す。
Among the molds of the examples of the present invention, the microstructure (graphite structure) of the mold with sample code 1 is shown in FIG. 4 under a 100x magnification.

第4図で代表されるように、本発明例の各試料記号1〜
6の金型の組織′観察結果によれば、個々の黒鉛粒の外
接円に対する黒鉛の面積割合で30〜60チを占めてい
る芋虫状黒鉛が、全黒鉛粒数の8割以上を占めているこ
とが確認された。
As represented in FIG. 4, each sample symbol 1-
According to the observation results of the structure of the mold in No. 6, the caterpillar-like graphite, which occupies 30 to 60 inches in terms of the area ratio of graphite to the circumscribed circle of each individual graphite grain, accounts for more than 80% of the total number of graphite grains. It was confirmed that there is.

また上記各試料記号1〜8の金型について機械的緒特性
、振動減衰能および熱伝導率を関べだ結果を第2表にま
とめて示す。
Table 2 summarizes the mechanical properties, vibration damping ability, and thermal conductivity of the molds with sample numbers 1 to 8 above.

第2表に示すように、普通鋳鉄からなる比較例の金型(
試料記号7)では500℃における熱伝達率が0.31
 Cal/lb’TrL・sw・℃、振動減衰率が30
×IQ’といずれも高い値を示している反面、引張り強
さが12kgf々d1ヤング率10500ゆf/mrl
と機械的性質が劣り、また球状黒鉛鋳鉄からなる比較例
の金型(試料記号8)では引張シ強さが50kgt/n
d、ヤング率が17000 kgf/m−と機械的性質
が優れている反面、500℃における熱伝達率が0、1
6 Ca17蝕・冠・℃、振動減衰能が5×10 とい
ずれも劣っている。これに対し本発明例の金型(試料記
号1〜6)では、引張り強さが33〜44ゆr/md 
、ヤング率が13700〜15300klf/mis振
動減設能が8〜10×10.5008Cにおける熱伝達
率が0.20〜0.26 Cal/CIrL−ytc’
Cでめって、強度面では球状黒鉛鋳鉄に近く、振動減衰
能は球状黒鉛鋳鉄の2倍程度あり、さらに熱伝達率も球
状黒鉛鋳鉄と比較して高く、いずれの特性面からも遠心
鋳造用金型として望まれる特性値を満足していることが
明らかである。
As shown in Table 2, the mold of the comparative example made of ordinary cast iron (
Sample code 7) has a heat transfer coefficient of 0.31 at 500°C.
Cal/lb'TrL・sw・℃, vibration damping rate is 30
×IQ' both show high values, but on the other hand, the tensile strength is 12 kg fd1 Young's modulus 10500 f/mrl
The comparative mold (sample code 8) made of spheroidal graphite cast iron had a tensile strength of 50 kgt/n.
d. It has excellent mechanical properties with a Young's modulus of 17,000 kgf/m-, but the heat transfer coefficient at 500°C is 0.1
6 Ca17 eclipse, crown, °C, and vibration damping ability are all inferior at 5 x 10. On the other hand, the molds of the present invention examples (sample codes 1 to 6) have a tensile strength of 33 to 44 ur/md.
, Young's modulus is 13,700-15,300 klf/mis, vibration reduction capacity is 8-10 x 10.5008C, heat transfer coefficient is 0.20-0.26 Cal/CIrL-ytc'
In terms of strength, C is close to spheroidal graphite cast iron, its vibration damping capacity is about twice that of spheroidal graphite cast iron, and its heat transfer coefficient is also higher than that of spheroidal graphite cast iron. It is clear that the desired characteristic values for a mold are satisfied.

さらに上述のような谷金41Jを用いて実際に熱間圧延
用鋳鉄ロールを遠心鋳造法で鋳込んだ結果を以下に述べ
る。
Furthermore, the results of actually casting a cast iron roll for hot rolling by centrifugal casting using the above-mentioned valley metal 41J will be described below.

対象は鋳放し胴径700fi、胴長2300mのホット
ストリップミル仕上げ圧延用ワークロールであシ、溶湯
の鋳込み重量11ton、鋳込み温度1350℃とした
。また鋳型回転数は550rpm1溶湯の受ける重力加
速度140Gとして、高速回転下で鋳造を行なった。そ
して鋳型の振動を回転軸の受け台で測定した。その結果
、溶湯注入後の振動振幅は、普通鋳鉄からなる比較例の
金型(試料記号7)の場合5〜7μmという小さい値で
あったが、高強度材である球状黒鉛鋳鉄からなる比較例
金型(試料記号8)の場合15〜20μmという大きな
値を示し、振動管理限界の10μmを越えるとともに、
製品の健全性に悪影響を及ぼすことが判明した。一方本
発明例のバーミキージー鋳鉄からなる金型(試料記号1
〜6)の場合、振動振幅は8〜IOμm程度であり、普
通鋳鉄材質には及ばないが、球状黒鉛鋳鉄よしも振動振
幅が小さくなシ、実際に鋳型振動を抑制して健全な鋳物
を得る効果を発揮できることが判明した。
The object was a hot strip mill finish rolling work roll with an as-cast body diameter of 700 fi and a body length of 2300 m, the casting weight of the molten metal was 11 tons, and the casting temperature was 1350°C. Further, the mold rotation speed was 550 rpm, and the gravitational acceleration to which the molten metal was subjected was 140 G, and casting was performed under high-speed rotation. The vibration of the mold was then measured using a cradle on the rotating shaft. As a result, the vibration amplitude after pouring the molten metal was a small value of 5 to 7 μm in the case of the comparative mold made of ordinary cast iron (sample code 7), but in the comparative example made of spheroidal graphite cast iron, which is a high-strength material. In the case of the mold (sample code 8), it showed a large value of 15 to 20 μm, exceeding the vibration control limit of 10 μm, and
It was found that the integrity of the product was adversely affected. On the other hand, a mold made of vermicelli cast iron according to the present invention (sample code 1
In the case of ~6), the vibration amplitude is about 8 to IOμm, which is not as high as that of ordinary cast iron, but spheroidal graphite cast iron has a smaller vibration amplitude and can actually suppress mold vibration and produce sound castings. It turned out that it can be effective.

以上の説明で明らかなように、鋳型が高速回転する遠心
鋳造法によって圧延用ロールや鋳鉄管などの円柱状ある
いは円筒状の鋳物を鋳込むにあたってこの発明の金型を
用いれば、金型強一度が従来の普通鋳鉄材質のものと比
較して格段に高いため金型割損事故などの危険性が著し
く少なくなるとともに金型寿命も大幅に延長され、しか
も従来の高強度材である球状黒鉛鋳鉄材質の金型と比較
して熱伝導率、振動減衰能が高いため、冷却効率も優れ
るとともに金型振動を抑制することができ、そのため良
質かつ健全な鋳造製品を得ることができる。
As is clear from the above explanation, if the mold of this invention is used to cast cylindrical or cylindrical castings such as rolling rolls and cast iron pipes by the centrifugal casting method in which the mold rotates at high speed, the mold strength will be improved. Compared to conventional ordinary cast iron materials, the risk of mold breakage is significantly reduced, and the life of the mold is greatly extended. Since it has higher thermal conductivity and vibration damping ability than molds made of other materials, it has excellent cooling efficiency and can suppress mold vibrations, making it possible to obtain high-quality and healthy cast products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋳鉄材における炭素飽和度と引張シ強さおよび
芋虫状黒鉛割合との関係を示す相関図、第2図は芋虫状
黒鉛割合と振動減衰能との関係を示す相関図、第3図は
各種鋳鉄材における温度と熱伝導率との関係を示す相関
図、第4図はこの発明の金型の黒鉛組織を示す顕微鏡組
織写真である。 出願人 川崎製鉄株式会社 代理人 弁理士豊田武人 (ほか1名) 第1図 第2図 芋宍臥!9.鉗側番 (%) 第3図 屈屓 (0C) 第4図
Figure 1 is a correlation diagram showing the relationship between carbon saturation, tensile strength, and caterpillar graphite ratio in cast iron materials; Figure 2 is a correlation diagram showing the relationship between caterpillar graphite ratio and vibration damping capacity; The figure is a correlation diagram showing the relationship between temperature and thermal conductivity in various cast iron materials, and FIG. 4 is a microscopic structure photograph showing the graphite structure of the mold of this invention. Applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Takehito Toyota (and 1 other person) Figure 1 Figure 2 Imo Shishiga! 9. Force side number (%) Fig. 3 Deflection (0C) Fig. 4

Claims (1)

【特許請求の範囲】 C2,5〜4.0%【重量%、以下同じ)、Si2.0
〜3.511Mn 0.4〜1.5%、 S O,03
0’llr以下を含有し、さらにMg 0.010〜0
.02%、Ca0.003〜0.020%、Ce O,
010〜0.020チのうち1種以上を含有し、残部が
Feおよび不可避的不純物よりなり、しかも鋳放して芋
虫状黒鉛を有するバーミキュラー鋳鉄で構成されている
ことを特徴とする遠心鋳造用金型。
[Claims] C2.5 to 4.0% (weight %, same hereinafter), Si2.0
~3.511Mn 0.4~1.5%, SO,03
Contains 0'llr or less, and further contains Mg 0.010 to 0
.. 02%, Ca0.003-0.020%, CeO,
Gold for centrifugal casting, characterized in that it is made of vermicular cast iron containing one or more of 0.010 to 0.020%, the remainder consisting of Fe and unavoidable impurities, and having caterpillar graphite as cast. Type.
JP8816284A 1984-05-01 1984-05-01 Mold for centrifugal casting Pending JPS60230958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8816284A JPS60230958A (en) 1984-05-01 1984-05-01 Mold for centrifugal casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8816284A JPS60230958A (en) 1984-05-01 1984-05-01 Mold for centrifugal casting

Publications (1)

Publication Number Publication Date
JPS60230958A true JPS60230958A (en) 1985-11-16

Family

ID=13935227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8816284A Pending JPS60230958A (en) 1984-05-01 1984-05-01 Mold for centrifugal casting

Country Status (1)

Country Link
JP (1) JPS60230958A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146468A (en) * 2000-11-02 2002-05-22 Kitagawa Iron Works Co Ltd Cast iron having high vibration damping capacity and its production method
JP2008195993A (en) * 2007-02-09 2008-08-28 Kimura Chuzosho:Kk Flake graphite cast iron material having excellent weldability
EP3512975A4 (en) * 2016-09-13 2020-04-01 Tupy S.A. Vermicular cast iron alloy and internal combustion engine head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146468A (en) * 2000-11-02 2002-05-22 Kitagawa Iron Works Co Ltd Cast iron having high vibration damping capacity and its production method
JP2008195993A (en) * 2007-02-09 2008-08-28 Kimura Chuzosho:Kk Flake graphite cast iron material having excellent weldability
EP3512975A4 (en) * 2016-09-13 2020-04-01 Tupy S.A. Vermicular cast iron alloy and internal combustion engine head

Similar Documents

Publication Publication Date Title
JP3435162B2 (en) Method for producing alloy which is high chromium hypereutectic white cast iron
JP3632640B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
WO1995024513A1 (en) Steel alloys and rolling mill rolls produced therefrom
JPS6014095B2 (en) Alloy chilled roll material with excellent crack resistance and wear resistance
JP4354718B2 (en) Composite roll for hot rolling made by centrifugal casting
JPS60230958A (en) Mold for centrifugal casting
US6013141A (en) Cast iron indefinite chill roll produced by the addition of niobium
US20040079450A1 (en) Nodular graphite cast iron with high strength and high toughness
JP3971217B2 (en) Ductile cast iron pipe by centrifugal casting method and manufacturing method thereof
JPH0121862B2 (en)
JPH0823060B2 (en) High chromium composite roll with graphite
US5370752A (en) Cast steel suitable for machining
US2974035A (en) Nodular graphite steel
JPS6051548B2 (en) Wear-resistant alloy cast iron
JPS6126758A (en) Material for composite roll having superior seizing resistance
JPS6018250B2 (en) Rolling roll with strong neck part
JPS6116329B2 (en)
JPS6142774B2 (en)
JP3268238B2 (en) Graphite crystallized high-speed cast iron material with excellent skin roughness resistance
JPH0413825A (en) Wear resistant cu alloy
JPS6116331B2 (en)
JPS641203B2 (en)
JP2795557B2 (en) Composite roll
JPS6363507A (en) Tough roll
JPS5928620B2 (en) Hot rolled roll material