JPH04218640A - Die stock - Google Patents

Die stock

Info

Publication number
JPH04218640A
JPH04218640A JP9076491A JP9076491A JPH04218640A JP H04218640 A JPH04218640 A JP H04218640A JP 9076491 A JP9076491 A JP 9076491A JP 9076491 A JP9076491 A JP 9076491A JP H04218640 A JPH04218640 A JP H04218640A
Authority
JP
Japan
Prior art keywords
continuous casting
aluminum alloy
mold material
water
casting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9076491A
Other languages
Japanese (ja)
Other versions
JP3286982B2 (en
Inventor
Yoshiharu Ito
伊藤 良晴
Shuzo Kiyono
清野 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Kasei Naoetsu Industries Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Naoetsu Industries Ltd, Mitsubishi Kasei Corp filed Critical Kasei Naoetsu Industries Ltd
Priority to JP09076491A priority Critical patent/JP3286982B2/en
Publication of JPH04218640A publication Critical patent/JPH04218640A/en
Application granted granted Critical
Publication of JP3286982B2 publication Critical patent/JP3286982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain inexpensive die stock light in weight and having good heat conductivity by subjecting an Al alloy having a specified compsn. constituted of Mg, Mn, Be, Ti, B and Al to water cooling continuous casting. CONSTITUTION:An Al alloy contg. 2.0 to 7.0% Mg, 0.1 to 1.0% Mn, 0.001 to 0.01% Be, 0.003 to 0.15% Ti and 0.001 to 0.2xTi, furthermore contg., at need, 0 to 2.0% Si, 0 to 1.0% Fe, 0 to 5.0% Zn, 0 to 1.0% Ni and 0 to 1.0% Cr and the balance substantial Al, with impurities is cast by a water cooling continuous casting method. After that, this casting is preferably subjected to heat treatment of holding it at 400 to 550 deg.C for >=4 hr and thereafter executing cooling at a cooling rate slower than 200 deg.C/H and is furthermore machined according to necessary. In this way, the die stock of high quality occupied with fine crystalline grains having <=1mm grain size can be obtd. without executing rolling and forging.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はアルミニウム合金で作ら
れた樹脂成形やプレス成形用等の新規な金型素材に関す
る。詳しくは本発明は、最近とみに要求の高まって来て
いる軽量、良好な熱伝導性等のアルミニウム合金の特徴
を生かし、かつ、大型、複雑形状で一体化された成形品
を安価に得るための樹脂成形やプレス成形用等の金型素
材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new mold material for resin molding, press molding, etc. made of aluminum alloy. Specifically, the present invention aims to take advantage of the characteristics of aluminum alloys, such as light weight and good thermal conductivity, which have recently been in increasing demand, and to obtain large, complex-shaped, integrated molded products at low cost. It relates to mold materials for resin molding, press molding, etc.

【0002】0002

【従来の技術】従来、金型素材としては量産生産用には
鉄鋼、鋳鋼等が、また試作用に、亜鉛合金鋳物材、アル
ミニウム合金鋳物材等が使用されているが、最近、多品
種少量化の傾向から、アルミニウム合金の圧延あるいは
鍛造材(以下展伸材と称する。)が中少量生産用として
普及し始めている。これらの中でアルミニウム合金鋳物
材はピンホール等の内部欠陥が生じ易く、成形品の外観
、光沢を不良ならしめ、かつ型寿命を極端に短くするの
で改善が望まれている。
[Prior Art] Traditionally, as mold materials, steel, cast steel, etc. have been used for mass production, and zinc alloy casting materials, aluminum alloy casting materials, etc. have been used for prototyping. Due to the trend of increasing demand for aluminum alloys, rolled or forged aluminum alloy materials (hereinafter referred to as wrought materials) are becoming popular for use in small to medium-sized production. Among these, aluminum alloy casting materials are susceptible to internal defects such as pinholes, which impair the appearance and gloss of the molded product and extremely shorten the life of the mold, so improvements are desired.

【0003】一方、アルミニウム合金鋳物材の中でアル
ミニウム−マグネシウム系は凝固温度範囲が広いので鋳
造性や溶接性に難点はあるが、熱処理なしで強度が優れ
、切削性、研磨性、表面処理性等に優れるので微細化な
どによる鋳造性、溶接性等の改善検討が試みられている
。たとえば、アルミニウム−マンガン−マグネシウム系
合金で、ベリリウム、チタン及び硼素を含有する鋳造用
アルミニウム合金としては、特開昭57−207152
及び特公昭62−45303のものがある。しかしなが
ら該公報に記載ある鋳物合金を素材としては良好な金型
を製作することはできない。
On the other hand, among aluminum alloy casting materials, the aluminum-magnesium type has a wide solidification temperature range, so it has difficulties in castability and weldability, but it has excellent strength without heat treatment and has excellent machinability, polishability, and surface treatment properties. Because of its excellent properties, attempts are being made to improve castability, weldability, etc. by making it finer. For example, an aluminum-manganese-magnesium alloy containing beryllium, titanium, and boron for casting is disclosed in JP-A-57-207152.
There is also one published by Special Publication No. 62-45303. However, good molds cannot be manufactured using the casting alloy described in this publication as a raw material.

【0004】0004

【発明が解決しようとする課題】現在、アルミニウム合
金展伸材による金型素材は普及中ではあるが、断面サイ
ズの大きなものがなく、また高価である等の欠点を有し
ている。ところで、上記のアルミニウム−マグネシウム
系合金鋳物材は鋳造性を改善して内部欠陥をなくし、さ
らに溶接性やエッチング性を適度ならしめるために組織
(結晶粒)の規制を行えば、これらアルミニウム合金展
伸性の欠点を改善し、金型素材として使用可能であると
期待される。
[Problems to be Solved by the Invention] Mold materials made of aluminum alloy wrought materials are currently in widespread use, but they have drawbacks such as lack of large cross-sectional sizes and high costs. By the way, if the castability of the above aluminum-magnesium alloy casting materials is improved and internal defects are eliminated, and the structure (crystal grains) is controlled to make weldability and etching properties appropriate, these aluminum alloys can be easily expanded. It is expected that this material can be used as a mold material by improving its elasticity.

【0005】よって、本系合金をもとに金型素材として
、中少量生産用に必要な、 ・内部欠陥のないこと ・残留応力の小さいこと ・機械的性質、切削性、研磨性が適度であること・溶接
性、エッチング性が適度であることを満足させる合金成
分、鋳造法、熱処理法等につき検討を行った。
[0005] Therefore, using this alloy as a mold material, it is necessary for small to medium volume production to: - have no internal defects, have low residual stress, and have appropriate mechanical properties, machinability, and polishability. We investigated alloy components, casting methods, heat treatment methods, etc. that would satisfy the following requirements: Weldability and etching properties were appropriate.

【0006】[0006]

【課題を解決するための手段】以上の観点から本発明者
等はアルミニウム−マグネシウム系合金の微細化処理と
水冷式連続鋳造法及び熱処理について鋭意検討の結果、
圧延や鍛造を行わずに金型素材として十分な性質の得ら
れることを見出し、本発明に到達した。すなわち、本発
明はマグネシウム2.0〜7.0%、マンガン0.1〜
1.0%、ベリリウム0.001〜0.01%、チタン
0.003〜0.15%、及び最少0.001%からチ
タンに対し20%までの範囲の硼素を含有し、残余は実
質的に不純物とアルミニウムとからなるアルミニウム合
金を水冷式連続鋳造法により鋳造してなることを特徴と
する金型素材、並びに、マグネシウム2.0〜7.0%
、マンガン0.1〜1.0%、ベリリウム0.001〜
0.01%、チタン0.003〜0.15%、最少0.
001%からチタンに対し20%までの範囲の硼素、銅
0〜2.0%、珪素0〜2.0%、鉄0〜1.0%、亜
鉛0〜5.0%、ニッケル0〜1.0%及びクロム0〜
1.0%を含有し、残余は実質的に不純物とアルミニウ
ムとからなるアルミニウム合金を水冷式連続鋳造法によ
り鋳造してなることを特徴とする金型素材を要旨とする
ものである。
[Means for Solving the Problems] From the above points of view, the present inventors have conducted extensive studies on refinement treatment, water-cooled continuous casting method, and heat treatment of aluminum-magnesium alloys.
The present invention was achieved by discovering that sufficient properties as a mold material can be obtained without rolling or forging. That is, the present invention contains magnesium 2.0 to 7.0% and manganese 0.1 to 7.0%.
1.0%, beryllium 0.001-0.01%, titanium 0.003-0.15%, and boron ranging from a minimum of 0.001% to 20% with respect to titanium, with the remainder being substantially A mold material characterized by being made by casting an aluminum alloy consisting of impurities and aluminum by a water-cooled continuous casting method, and 2.0 to 7.0% magnesium.
, manganese 0.1~1.0%, beryllium 0.001~
0.01%, titanium 0.003-0.15%, minimum 0.01%.
Boron ranging from 0.001% to 20% relative to titanium, copper 0-2.0%, silicon 0-2.0%, iron 0-1.0%, zinc 0-5.0%, nickel 0-1 .0% and chromium 0~
The gist of the present invention is a mold material characterized in that it is made by casting an aluminum alloy containing 1.0% aluminum with the remainder consisting essentially of impurities and aluminum by a water-cooled continuous casting method.

【0007】以下本発明について詳細に説明する。本発
明の金型素材は後述する水冷式連続鋳造法による鋳塊に
より構成されるが、その中のアルミニウム合金にあって
、マグネシウムは機械的性質及び金型製作に不可欠の切
削性、研磨性の向上に寄与するが、その含有量は2.0
〜7.0%好ましくは3.0〜6.0%であることが必
要である。マグネシウムがこれよりも少ないと機械的強
度及び切削性、研磨性が劣り、また、マグネシウムがこ
れよりも多いと鋳造性が低下し、内部欠陥が発生し易く
なる。
The present invention will be explained in detail below. The mold material of the present invention is composed of an ingot made by the water-cooled continuous casting method described below. Among the aluminum alloys in the ingot, magnesium has mechanical properties and machinability and polishability that are essential for mold manufacturing. It contributes to improvement, but its content is 2.0
-7.0%, preferably 3.0-6.0%. If the amount of magnesium is less than this, the mechanical strength, machinability, and polishability will be poor, and if the amount of magnesium is more than this, the castability will be reduced and internal defects will be more likely to occur.

【0008】マンガンは鋳造性、機械的性質、切削性、
研磨性等の向上に寄与する。マンガン含有量は0.1〜
1.0%の範囲から選択し得るが、0.2〜0.6%の
範囲にあることが好ましい。ベリリウムは本系合金を溶
解する際のマグネシウムの酸化を防止し溶湯を清浄化す
る作用があり、内部欠陥の防止や組織の微細化による鋳
造性の向上に役立ち、さらに溶接性を向上させる。その
含有量は0.001〜0.01%の範囲にあればよいが
、好ましくは0.002〜0.04%である。
Manganese has good castability, mechanical properties, machinability,
Contributes to improving polishability, etc. Manganese content is 0.1~
It can be selected from a range of 1.0%, but preferably from a range of 0.2 to 0.6%. Beryllium has the effect of preventing magnesium from oxidizing and cleaning the molten metal when melting this alloy, helping to prevent internal defects and improve castability by refining the structure, and also improves weldability. Its content may be in the range of 0.001 to 0.01%, preferably 0.002 to 0.04%.

【0009】また、本発明のアルミニウム合金には組織
を微細化させる目的で、チタン及び硼素を特定割合で添
加し、内部欠陥を無くし、かつ組織を均一微細化し、機
械的性質、切削性、研磨性に加え、肉盛り時に必要な溶
接性及び金型成形品面に模様付けを行うエッチング性を
向上させる。チタン含有量は連続鋳造時の凝固速度によ
り異なるが、0.003〜0.15%、好ましくは0.
005〜0.10%の範囲にあることが必要であり、含
有量が少なすぎると内部欠陥を発生し、組織の微細化が
十分でなく機械的性質、切削性、研磨性、溶接性、エッ
チング性等を劣化させる。また、チタン含有量が多すぎ
ると硼素との関係で溶湯中でのTiB2 の沈降が著し
くなり、鋳造作業上問題を引き起こしがちである。硼素
は最少0.001からチタンに対し20%までの範囲で
存在させる。硼素はチタンの結晶微細化作用を確実にさ
せるがチタンに対し20%より多く含有させると、その
作用はかえって減退する。なお、TiB2 の沈降を防
ぎ、微細化効果を確実にするためにチタンの一定割合は
炉内で添加し、残量は炉と鋳型の間で特定割合のアルミ
ニウム−チタン−硼素母合金のワイヤで添加することが
好ましい。
In addition, titanium and boron are added in a specific proportion to the aluminum alloy of the present invention for the purpose of refining the structure, eliminating internal defects and uniformly refining the structure, improving mechanical properties, machinability, and polishability. In addition to the properties, it improves the weldability necessary for overlaying and the etching property for creating patterns on the surface of the molded product. The titanium content varies depending on the solidification rate during continuous casting, but is 0.003 to 0.15%, preferably 0.003 to 0.15%.
It is necessary that the content be in the range of 0.005 to 0.10%, and if the content is too low, internal defects will occur, and the structure will not be sufficiently refined, resulting in poor mechanical properties, machinability, polishability, weldability, and etching. Deterioration of sex, etc. Furthermore, if the titanium content is too high, TiB2 will significantly settle in the molten metal due to its relationship with boron, which tends to cause problems in casting operations. Boron is present in a range from a minimum of 0.001 to 20% with respect to titanium. Boron ensures the effect of refining the crystals of titanium, but if it is contained in an amount greater than 20% relative to titanium, this effect is rather diminished. In addition, in order to prevent settling of TiB2 and ensure the refining effect, a certain proportion of titanium is added in the furnace, and the remaining amount is added with a wire of aluminum-titanium-boron mother alloy of a certain proportion between the furnace and the mold. It is preferable to add.

【0010】以上、本発明のアルミニウム合金に含有さ
れるべき必須成分について記述したが本発明の合金には
その機能を損なわない範囲で更に他の特定成分を含有さ
せることができる。即ち、銅を0〜2.0%、珪素を0
〜2.0%、鉄を0〜1.0%、亜鉛を0〜5.0%、
ニッケルを0〜1.0%の範囲で一種または二種以上適
宜に組合せて含有させることができる。これらの金属成
分は後記実施例4〜11に示すように特別付加的な機能
を発揮するものではないが、上記の範囲内であれば充分
本発明の効果を奏するものである。
The essential components to be contained in the aluminum alloy of the present invention have been described above, but the alloy of the present invention may further contain other specific components within a range that does not impair its functions. That is, 0 to 2.0% copper and 0% silicon.
~2.0%, iron 0-1.0%, zinc 0-5.0%,
Nickel can be contained in the range of 0 to 1.0% either singly or in an appropriate combination of two or more. These metal components do not exhibit any special additional functions as shown in Examples 4 to 11 below, but as long as they are within the above range, they can sufficiently exhibit the effects of the present invention.

【0011】また、本系合金は水素ガスを含み、かつア
ルミニウムやマグネシウムの酸化物等の介在物が生じ易
いので、これらの成分調整と共に脱ガス、脱介在物等の
溶湯清浄化処理が必要であり、その方法として炉内での
塩素系フラックスやガスの挿入の他に、炉・鋳型間での
セラミックフィルター等による脱ガス、脱介在物等を行
い、水冷式連続鋳造法に移る。
[0011] In addition, this alloy contains hydrogen gas and tends to generate inclusions such as aluminum and magnesium oxides, so in addition to adjusting these components, molten metal cleaning treatment such as degassing and removal of inclusions is necessary. In addition to inserting chlorine-based flux or gas into the furnace, degassing and removal of inclusions are performed using a ceramic filter between the furnace and the mold, and the process moves to a water-cooled continuous casting method.

【0012】鋳造法として従来の砂型鋳造法ではバッチ
(不連続)式であり、周縁から凝固が進行し、かつ凝固
速度が遅いため鋳塊内部に欠陥を作り易い。これらの解
消のためには一方向凝固が望ましく、工業的手法として
は水冷式連続鋳造法が該当するのでこの鋳造法につき上
記成分及び微細化処理、溶湯清浄化処理との関連を追求
し、内部欠陥のない鋳塊を得ることが出来た。
The conventional sand casting method is a batch (discontinuous) casting method, in which solidification proceeds from the periphery and the solidification rate is slow, making it easy to create defects inside the ingot. In order to eliminate these problems, unidirectional solidification is desirable, and as an industrial method, water-cooled continuous casting is applicable, so we investigated the relationship between the above components, refinement treatment, and molten metal cleaning treatment for this casting method. We were able to obtain a defect-free ingot.

【0013】すなわち、水冷式連続鋳造法は前述のアル
ミニウム合金の溶湯を炉からロンダーを経て分配盤に覆
流方式で注入し、フロートの使用等により鋳型内の溶湯
の高さを一定に調節しながら分配盤に取付けられた管を
通って溶湯を底部に底金を有し、介在物混入防止のため
のスクリーン部をも付設した鋳型内に流量一定で注入す
る。注入された溶湯は冷却水により強制冷却された鋳型
の壁に接触し、その接触部分から溶湯内部に向かって薄
い凝固殻を形成しながら底金の下降により連続的に下方
に引き出され、それとともに該凝固殻に直接冷却水を噴
射して溶湯を完全に凝固させる方法であり、断面サイズ
を大きく取り易く、また同時に複数本の鋳塊をも製造す
ることが出来る。
That is, in the water-cooled continuous casting method, the above-mentioned molten aluminum alloy is injected from the furnace through the launder into the distribution plate in an overflow method, and the height of the molten metal in the mold is adjusted to a constant level by using a float or the like. Meanwhile, the molten metal is injected at a constant flow rate through a pipe attached to a distribution board into a mold that has a base metal at the bottom and is also equipped with a screen to prevent inclusions. The injected molten metal contacts the wall of the mold, which is forcibly cooled by cooling water, and forms a thin solidified shell from the contact area toward the inside of the molten metal, and is continuously drawn downward by the lowering of the bottom metal. This method completely solidifies the molten metal by injecting cooling water directly into the solidified shell, making it easy to obtain a large cross-sectional size, and also making it possible to produce multiple ingots at the same time.

【0014】以上の合金成分、微細化処理、溶湯清浄化
処理、鋳造法により、ピンホール、介在物等の内部欠陥
はなくなるが、本鋳造法では鋳塊表皮部と中央部の温度
は異なり、凝固収縮量の違いから応力が鋳塊断面サイズ
が大きければ大きい程残留し、このままでは金型切削時
に変形を起こす原因となる。この応力除去のためには4
00〜500℃までの温度で4時間以上、好ましくは6
〜10時間均熱保持し、その後200℃/H、好ましく
は50℃/Hより遅い速度で徐冷する熱処理を施す。均
熱保持温度が400℃より低くまた4時間未満であると
応力除去が十分でなくまた冷却速度が速いと熱処理によ
る残留応力が発生し、不都合である。
[0014] The above alloy components, refinement treatment, molten metal cleaning treatment, and casting method eliminate internal defects such as pinholes and inclusions, but in this casting method, the temperature of the ingot skin and center part is different, Due to the difference in the amount of solidification shrinkage, the larger the cross-sectional size of the ingot, the more stress remains, and if left as it is, it will cause deformation during mold cutting. To remove this stress, 4
4 hours or more, preferably 6 hours at a temperature of 00 to 500 °C
A heat treatment is performed by soaking for ~10 hours and then gradually cooling at a rate of 200°C/H, preferably slower than 50°C/H. If the soaking temperature is lower than 400°C and for less than 4 hours, stress relief will not be sufficient, and if the cooling rate is fast, residual stress will occur due to heat treatment, which is disadvantageous.

【0015】また、これらの鋳塊の熱処理は鋳造組織の
均質化にも役立ち、機械的性質、切削性、研磨性を向上
させる。そして、以上の如く製作された鋳塊を所要大き
さに切断し面削を行って、金型素材とするが、このよう
な合金成分、微細化処理、溶湯清浄化処理、水冷式連続
鋳造、熱処理により製作された金型素材は内部欠陥はな
く、結晶粒径も細く、さらに適度の機械的性質を有する
ので、中少量生産向金型に要求される切削性、研磨性、
溶接性、エッチング性等を満足するものである。
[0015] The heat treatment of these ingots also helps to homogenize the cast structure, improving mechanical properties, machinability, and polishability. The ingot produced as described above is then cut to the required size and subjected to face milling to obtain a mold material. The mold material manufactured by heat treatment has no internal defects, has a small crystal grain size, and has appropriate mechanical properties, so it has the machinability, polishability, and
It satisfies weldability, etching properties, etc.

【0016】また、本金型素材は耐蝕性、表面処理性に
も優れ、金型の防錆油が不要であることや硬質アルマイ
ト等の表面硬化処理を行い易い特徴も有する。
[0016] Furthermore, the present mold material has excellent corrosion resistance and surface treatment properties, and also has features such as no need for rust preventive oil for the mold and easy surface hardening treatment such as hard alumite.

【0017】[0017]

【実施例】次に実施例により本発明につき、さらに具体
的に説明するが、本発明はその要旨を超えない限り、以
下の実施例によって限定されるものではない。 実施例1〜3 断面サイズ(一本取り)150mm×300mm、鋳造
温度720℃、降下速度45mm/分、冷却水量20m
3 /Hで150mm長にわたり連続鋳造し、熱処理の
有無別に後記表1の金型素材を得た。また、同表1に挙
げる従来のアルミニウム合金展伸材及びアルミニウム合
金鋳物材との比較を行った。以下の(1)〜(8)の項
目について比較を行った結果を後記表2に示す。 (1)  内部欠陥は、断面中央部の10mm×10m
mを10倍で検鏡し、0.1mm以上の欠陥数を数えた
。 鋳物材(特にAC7A)で欠陥が認められるが、本発明
金型素材及び展伸材では見られなかった。 (2)  結晶粒径は(1)と同じ検鏡面で10倍に拡
大し測定した。本発明金型素材は鋳物材に比し粒状晶が
非常に細くなっていた。 (3)  機械的性質はJIS4号引張試験片を、JI
SZ2241により引張性質を、また、この引張試験後
のチャック部をJISZ2243により硬度を測定した
。 本発明金型素材は鋳物材より優れ、展伸材A5083以
上であった。 (4)  切削性は30mm径、2枚刃エレドミルで、
回転数3500rpm、切り込み35mm×30mm、
送り量1000m/分で切削した面の切粉形状と面粗さ
から評価した。本発明金型素材は展伸材A7075につ
いで良好であった。 (5)  研磨性は50mm×50mmの切断面をエン
ドミル15μまで加工後#400,#600のペーパー
仕上げ、酸化クロム及びダイヤモンドペーストでラップ
仕上げを行い、表面状況を比較した。本金型素材は鋳物
材よりは優れ、展伸材A7075に次いでいた。 (6)  溶接性は板状試料の200mm部を開先加工
し、溶加棒A5356WY−1.6mmφ材を使い、M
IG溶接機(条件:電流300A、電圧30V、溶接速
度350mm/分、アルゴン送り量25リットル/分)
にて付合わせ      溶接を行い、溶接部をX線透
過観察した。鋳物材の7A、4C及びA70     
 75では組織が粗く溶接部にブローホールが見られた
のに対し、本発明金      型素材及び展伸材(A
5083)では溶接部の欠陥は認められなかった。(7
)エッチング性は100mm×100mm板に3mm間
隔で0.3mm×      0.3mmの格子状リブ
の凸出度合いをフォトエッチングにより比較した   
   が、鋳物材では形状が十分出ないのに対し、本発
明金型素材では展伸材に      近く使用可能の状
況であった。 (8)  残留応力は300mm巾×700mm長×1
00mm厚の長手方向、短手方向の中央部に30mm×
70mmの溝をほり、反対側の面の変形量を測定し、本
発明金型素材は変形が極小であることを確認した。 実施例4〜11 後記表3に示す各合金を後記表4に示す条件で水冷式連
続鋳造を行い、表3の各熱処理条件で加熱及び冷却を行
ない金型素材とした。この素材を切削、研磨し後記表5
の条件の射出成形法にて評価を行ったところ、本発明金
型素材はアルミニウム合金鋳物材よりは、品質、耐久性
共に優れ、アルミニウム合金展伸材に近い素材であるこ
とが判明した。比較結果を後記表6に示す。
[Examples] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Examples 1 to 3 Cross-sectional size (single piece) 150 mm x 300 mm, casting temperature 720°C, descending speed 45 mm/min, cooling water amount 20 m
Continuous casting was performed over a length of 150 mm at 3/H to obtain mold materials shown in Table 1 below, with and without heat treatment. In addition, a comparison was made with conventional aluminum alloy wrought materials and aluminum alloy cast materials listed in Table 1. Table 2 below shows the results of comparisons regarding items (1) to (8) below. (1) The internal defect is 10mm x 10m at the center of the cross section.
m was examined under a microscope at 10 times magnification, and the number of defects larger than 0.1 mm was counted. Defects were observed in the cast material (especially AC7A), but were not observed in the mold material of the present invention and the wrought material. (2) The crystal grain size was measured using the same speculum plane as in (1) with 10 times magnification. The mold material of the present invention had much finer grains than the casting material. (3) Mechanical properties were measured using JIS No. 4 tensile test pieces,
The tensile properties were measured according to SZ2241, and the hardness of the chuck portion after this tensile test was measured according to JISZ2243. The mold material of the present invention was superior to casting materials and was better than wrought material A5083. (4) Cutting performance is 30mm diameter, 2-flute eredomiru,
Rotation speed 3500 rpm, cutting depth 35 mm x 30 mm,
Evaluation was made from the shape of chips and surface roughness of the surface cut at a feed rate of 1000 m/min. The mold material of the present invention had the second best performance after wrought material A7075. (5) Polishability was measured by processing a cut surface of 50 mm x 50 mm to 15 μm with an end mill, finishing with #400 and #600 paper, lapping with chromium oxide and diamond paste, and comparing the surface conditions. This mold material was superior to cast material and second only to wrought material A7075. (6) Weldability was measured by groove processing a 200 mm part of a plate-shaped sample, using a filler rod A5356WY-1.6 mmφ, and
IG welding machine (conditions: current 300A, voltage 30V, welding speed 350mm/min, argon feed rate 25 liters/min)
Garment welding was performed at , and the welded part was observed using X-ray transmission. Casting materials 7A, 4C and A70
In No. 75, the structure was coarse and blowholes were observed in the welded part, whereas in No. 75, the mold material of the present invention and the wrought material (A
5083), no defects were observed in the welds. (7
) Etching properties were compared by photo-etching to compare the degree of protrusion of 0.3 mm x 0.3 mm lattice ribs at 3 mm intervals on a 100 mm x 100 mm plate.
However, while the cast material did not have sufficient shape, the mold material of the present invention was similar to a wrought material and could be used. (8) Residual stress is 300mm width x 700mm length x 1
00mm thick, 30mm x 30mm in the center of the longitudinal and lateral directions
A 70 mm groove was dug and the amount of deformation on the opposite side was measured, and it was confirmed that the mold material of the present invention had minimal deformation. Examples 4 to 11 Each alloy shown in Table 3 below was subjected to water-cooled continuous casting under the conditions shown in Table 4 below, and heated and cooled under each heat treatment condition shown in Table 3 to obtain a mold material. After cutting and polishing this material, Table 5 is shown below.
When the mold material of the present invention was evaluated using the injection molding method under the following conditions, it was found that the mold material of the present invention has better quality and durability than an aluminum alloy casting material, and is a material close to a wrought aluminum alloy material. The comparison results are shown in Table 6 below.

【0018】[0018]

【発明の効果】本発明に係わる金型素材は軽量、良好な
熱伝導性等アルミニウム合金の利点を十分発揮し、かつ
大型で安価な素材であるので樹脂成形用やプレス用金型
及び治具等に広く利用できるものである。中でも今後伸
長の著しいと見られる大型で成形圧の比較的低い樹脂発
泡・注型・中空・リム成形用金型に好適である。
Effect of the invention: The mold material according to the present invention fully exhibits the advantages of aluminum alloy such as light weight and good thermal conductivity, and is a large and inexpensive material, so it is suitable for resin molding and press molds and jigs. It can be used widely. Among these, it is suitable for large-sized molds with relatively low molding pressure, molds for resin foaming, casting, hollow molds, and rim molding, which are expected to grow significantly in the future.

【0019】[0019]

【表1】[Table 1]

【0020】[0020]

【表2】[Table 2]

【0021】[0021]

【表3】[Table 3]

【0022】[0022]

【表4】[Table 4]

【0023】[0023]

【表5】[Table 5]

【0024】[0024]

【表6】[Table 6]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  マグネシウム2.0〜7.0%、マン
ガン0.1〜1.0%、ベリリウム0.001〜0.0
1%、チタン0.003〜0.15%、及び最少0.0
01%からチタンに対し20%までの範囲の硼素を含有
し、残余は実質的に不純物とアルミニウムとからなるア
ルミニウム合金を水冷式連続鋳造法により鋳造してなる
ことを特徴とする金型素材。
Claim 1: Magnesium 2.0-7.0%, manganese 0.1-1.0%, beryllium 0.001-0.0
1%, titanium 0.003-0.15%, and a minimum of 0.0
A mold material characterized in that it is made by casting an aluminum alloy containing boron in a range of 0.01% to 20% based on titanium, with the remainder consisting essentially of impurities and aluminum, using a water-cooled continuous casting method.
【請求項2】  マグネシウム2.0〜7.0%、マン
ガン0.1〜1.0%、ベリリウム0.001〜0.0
1%、チタン0.003〜0.15%、最少0.001
%からチタンに対し20%までの範囲の硼素、銅0〜2
.0%、珪素0〜2.0%、鉄0〜1.0%、亜鉛0〜
5.0%、ニッケル0〜1.0%及びクロム0〜1.0
%を含有し、残余は実質的に不純物とアルミニウムとか
らなるアルミニウム合金を水冷式連続鋳造法により鋳造
してなることを特徴とする金型素材。
Claim 2: Magnesium 2.0-7.0%, manganese 0.1-1.0%, beryllium 0.001-0.0
1%, titanium 0.003-0.15%, minimum 0.001
Boron ranging from % to 20% with respect to titanium, copper 0-2
.. 0%, silicon 0-2.0%, iron 0-1.0%, zinc 0-2.0%
5.0%, nickel 0-1.0% and chromium 0-1.0
%, with the remainder essentially consisting of impurities and aluminum, which is cast by a water-cooled continuous casting method.
【請求項3】  請求項1または2記載のアルミニウム
合金を水冷式連続鋳造法により鋳造した後に熱処理を施
してなることを特徴とする金型素材。
3. A mold material obtained by casting the aluminum alloy according to claim 1 or 2 by a water-cooled continuous casting method and then subjecting it to heat treatment.
【請求項4】  請求項1または2記載のアルミニウム
合金を水冷式連続鋳造法により鋳造した後に400〜5
50℃に4時間以上保持し、その後200℃/Hより遅
い冷却速度で冷却する熱処理を施してなることを特徴と
する金型素材。
4. After casting the aluminum alloy according to claim 1 or 2 by a water-cooled continuous casting method,
A mold material characterized by being heat-treated by holding it at 50°C for 4 hours or more and then cooling it at a cooling rate slower than 200°C/H.
【請求項5】  請求項1または2記載のアルミニウム
合金を水冷式連続鋳造法により鋳造してなり、該アルミ
ニウム合金が結晶粒径1mm以下の粒状晶で占有される
ことを特徴とする金型素材。
5. A mold material obtained by casting the aluminum alloy according to claim 1 or 2 by a water-cooled continuous casting method, and characterized in that the aluminum alloy is occupied by granular crystals with a crystal grain size of 1 mm or less. .
【請求項6】  請求項1または2記載のアルミニウム
合金を水冷式連続鋳造法により鋳造した金型素材を切削
加工してなることを特徴とする金型。
6. A mold, characterized in that it is formed by cutting a mold material obtained by casting the aluminum alloy according to claim 1 or 2 by a water-cooled continuous casting method.
JP09076491A 1990-04-25 1991-04-22 Mold material Expired - Fee Related JP3286982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09076491A JP3286982B2 (en) 1990-04-25 1991-04-22 Mold material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-109443 1990-04-25
JP10944390 1990-04-25
JP09076491A JP3286982B2 (en) 1990-04-25 1991-04-22 Mold material

Publications (2)

Publication Number Publication Date
JPH04218640A true JPH04218640A (en) 1992-08-10
JP3286982B2 JP3286982B2 (en) 2002-05-27

Family

ID=26432197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09076491A Expired - Fee Related JP3286982B2 (en) 1990-04-25 1991-04-22 Mold material

Country Status (1)

Country Link
JP (1) JP3286982B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523621A (en) * 1998-08-21 2002-07-30 ダイムラークライスラー・アクチェンゲゼルシャフト A new corrosion resistant weldable, high magnesium content aluminum-magnesium alloy, especially for automobiles
JP2002523622A (en) * 1998-08-21 2002-07-30 ダイムラークライスラー・アクチェンゲゼルシャフト Corrosion resistant weldable high magnesium content aluminum-magnesium alloy, especially for aircraft
EP1229140A1 (en) * 2001-02-01 2002-08-07 Ryobi Ltd. Aluminium alloy for high pressure die-casting
WO2003023080A1 (en) * 2001-09-04 2003-03-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy
JP2003526733A (en) * 1998-08-21 2003-09-09 ダイムラークライスラー・アクチェンゲゼルシャフト Corrosion resistant weldable aluminum-magnesium alloy, especially for traffic technology
CN105420564A (en) * 2015-12-15 2016-03-23 深圳市鑫雅豪精密五金有限公司 High-end aluminium alloy material MH-03 and preparation method thereof
JP2016514209A (en) * 2013-03-09 2016-05-19 アルコア インコーポレイテッド Heat-treatable aluminum alloy containing magnesium and zinc and method for producing the same
GB2568310A (en) * 2017-11-14 2019-05-15 Jaguar Land Rover Ltd Aluminium alloy for high presure die casting
JP2022528180A (en) * 2019-04-12 2022-06-08 ビーワイディー カンパニー リミテッド Die-cast aluminum alloy, its manufacturing method and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201402323D0 (en) 2014-02-11 2014-03-26 Univ Brunel A high strength cast aluminium alloy for high pressure die casting

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523621A (en) * 1998-08-21 2002-07-30 ダイムラークライスラー・アクチェンゲゼルシャフト A new corrosion resistant weldable, high magnesium content aluminum-magnesium alloy, especially for automobiles
JP2002523622A (en) * 1998-08-21 2002-07-30 ダイムラークライスラー・アクチェンゲゼルシャフト Corrosion resistant weldable high magnesium content aluminum-magnesium alloy, especially for aircraft
JP2003526733A (en) * 1998-08-21 2003-09-09 ダイムラークライスラー・アクチェンゲゼルシャフト Corrosion resistant weldable aluminum-magnesium alloy, especially for traffic technology
EP1229140A1 (en) * 2001-02-01 2002-08-07 Ryobi Ltd. Aluminium alloy for high pressure die-casting
WO2003023080A1 (en) * 2001-09-04 2003-03-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy
EP1477577A1 (en) * 2001-09-04 2004-11-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy
JP2016514209A (en) * 2013-03-09 2016-05-19 アルコア インコーポレイテッド Heat-treatable aluminum alloy containing magnesium and zinc and method for producing the same
CN105420564A (en) * 2015-12-15 2016-03-23 深圳市鑫雅豪精密五金有限公司 High-end aluminium alloy material MH-03 and preparation method thereof
GB2568310A (en) * 2017-11-14 2019-05-15 Jaguar Land Rover Ltd Aluminium alloy for high presure die casting
JP2022528180A (en) * 2019-04-12 2022-06-08 ビーワイディー カンパニー リミテッド Die-cast aluminum alloy, its manufacturing method and application

Also Published As

Publication number Publication date
JP3286982B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
KR102597784B1 (en) A aluminum alloy and for die casting and method for manufacturing the same, die casting method
JP3378342B2 (en) Aluminum casting alloy excellent in wear resistance and method for producing the same
JP4174524B2 (en) Aluminum alloy plate manufacturing method and aluminum alloy plate
TWI709650B (en) Aluminum alloy plate for battery cover for forming integral explosion-proof valve and manufacturing method thereof
JP2001220639A (en) Aluminum alloy for casting
CN113649415A (en) Preparation process of high-strength aluminum alloy welding wire
JP2009108409A (en) Al-Mg TYPE ALUMINUM ALLOY FOR FORGING, WITH EXCELLENT TOUGHNESS, AND CAST MEMBER COMPOSED THEREOF
TWI704234B (en) Aluminum alloy plate for battery cover for forming integral explosion-proof valve and manufacturing method thereof
JP2008255371A (en) Method for manufacturing aluminum alloy thick plate, and aluminum alloy thick plate
JPH04218640A (en) Die stock
JP4174526B2 (en) Aluminum alloy plate manufacturing method and aluminum alloy plate
TWI700377B (en) Aluminum alloy plate for battery cover for forming integral explosion-proof valve and manufacturing method thereof
TWI723464B (en) Aluminum alloy plate for battery cover for forming integral explosion-proof valve and manufacturing method thereof
JP4174527B2 (en) Aluminum alloy plate manufacturing method and aluminum alloy plate
JP2008255372A (en) Method for producing aluminum alloy thick plate, and aluminum alloy thick plate
JP3696844B2 (en) Aluminum alloy with excellent semi-melt formability
JP4174525B2 (en) Aluminum alloy plate manufacturing method and aluminum alloy plate
CN112941379A (en) Aluminum alloy plate for producing die and preparation process thereof
JP2008255411A (en) Method for producing aluminum alloy thick plate, and aluminum alloy thick plate
JP7533743B2 (en) Aluminum alloy forging material, aluminum alloy forging product and its manufacturing method
US3744997A (en) Metallurgical grain refinement process
JP7533745B2 (en) Aluminum alloy forging material, aluminum alloy forging product and manufacturing method thereof
JP3712338B2 (en) Method for producing spheroidal graphite cast iron
JP7533746B2 (en) Aluminum alloy forging material, aluminum alloy forging product and manufacturing method thereof
WO2024142830A1 (en) Aluminum alloy forging material, aluminum alloy forged product, and method for manufacturing same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees