JP2007331032A - Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping and abrasion resistance in high-speed intermittent cutting processing - Google Patents
Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping and abrasion resistance in high-speed intermittent cutting processing Download PDFInfo
- Publication number
- JP2007331032A JP2007331032A JP2006161899A JP2006161899A JP2007331032A JP 2007331032 A JP2007331032 A JP 2007331032A JP 2006161899 A JP2006161899 A JP 2006161899A JP 2006161899 A JP2006161899 A JP 2006161899A JP 2007331032 A JP2007331032 A JP 2007331032A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- crystal
- coating layer
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この発明は、硬質被覆層の上部層を構成する酸化アルミニウム(以下、Al2O3で示す)層がすぐれた高温強度を有し、さらに同じく硬質被覆層を構成する炭化タングステン(以下、WCで示す)層が硬質被覆層の高温硬さ低下を一段と抑制するように作用することから、特に各種の鋼や鋳鉄などの被削材の切削加工を、高い機械的熱的衝撃および熱発生を伴う高速断続切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 In the present invention, the aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer constituting the upper layer of the hard coating layer has excellent high-temperature strength, and tungsten carbide (hereinafter referred to as WC) constituting the hard coating layer. Since the layer acts to further suppress the decrease in the high-temperature hardness of the hard coating layer, cutting of various materials such as steel and cast iron is accompanied by high mechanical thermal shock and heat generation. The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance and wear resistance even when performed under high-speed intermittent cutting conditions.
従来、一般に、WC基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有するAl2O3層(以下、α型Al2O3層で示す)、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, in general, on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a WC-based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer consisting of one or two or more layers of carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
(B) an Al 2 O 3 layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state where chemical vapor deposition is performed,
A coated cermet tool formed by chemical vapor deposition of the hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is well known to be used in
また、上記の被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。 In the above-mentioned coated cermet tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a mixed gas containing organic carbonitride is used as a reaction gas, and it is formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
さらに、上記の被覆サーメット工具の硬質被覆層を構成するα型Al2O3層が、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造、すなわち図1にα型Al2O3の単位格子の原子配列が模式図[(a)は斜視図、(b)は横断面1〜9の平面図]で示される結晶構造を有する結晶粒で構成されることも知られている。
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高い機械的熱的衝撃および発熱を伴う高速断続切削加工に用いた場合には、硬質被覆層を構成するα型Al2O3層が十分な高温強度を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易く、さらに硬質被覆層形成時の高温環境下で工具基体の構成成分、特にこれの結合相形成成分であるCoやNi、さらにCrやVなどの成分が硬質被覆層中に拡散含有するようになり、この結果硬質被覆層の高温硬さの低下が避けられなくなり、これらが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. In cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron, but this is especially high-speed interrupted cutting with high mechanical thermal shock and heat generation. When used in the above, since the α-type Al 2 O 3 layer constituting the hard coating layer does not have sufficient high-temperature strength, chipping (slight chipping) is likely to occur in the hard coating layer, and it is harder. In the high temperature environment when forming the coating layer, the constituent components of the tool base, especially the components such as Co and Ni, and further the components such as Cr and V, diffused into the hard coating layer. Hard coating layer The decrease in the high-temperature hardness is unavoidable, and due to these, the service life is reached in a relatively short time.
そこで、本発明者等は、上述のような観点から、上記のα型Al2O3層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記α型Al2O3層の高温強度向上を図るべく研究を行った結果、
(a)従来被覆サーメット工具の硬質被覆層を構成する上部層としてのα型Al2O3層(以下、「従来α型Al2O3層」という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:2〜4%、CO2:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、AlCl3:6〜10%、CO2:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、AlCl3、CO2、およびHClの含有割合を相対的に高く、かつ雰囲気圧力を相対的に低くした条件(反応ガス成分高含有調整低圧条件)で蒸着形成すると、この結果の反応ガス成分高含有調整低圧条件で形成したα型Al2O3層(以下、「改質α型Al2O3層」という)は、高温強度が一段と向上し、すぐれた耐機械的熱的衝撃性を具備するようになること。
The present inventors have, from the viewpoint as described above, focuses on coated cermet tool α type the Al 2 O 3 layer described above constituting the upper layer of the hard coating layer, in particular the α-type the Al 2 O 3 layer As a result of research to improve the high temperature strength of
(A) An α-type Al 2 O 3 layer (hereinafter referred to as “conventional α-type Al 2 O 3 layer”) as an upper layer constituting a hard coating layer of a conventional coated cermet tool is used, for example, in an ordinary chemical vapor deposition apparatus. And
Reaction gas composition: volume%, AlCl 3 : 2 to 4%, CO 2 : 6 to 8%, HCl: 1.5 to 3%, H 2 S: 0.05 to 0.2%, H 2 : remaining ,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: by volume%, AlCl 3: 6~10%, CO 2: 10~15%, HCl: 3~5%, H 2 S: 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
In other words, in the reaction gas composition, the content ratio of AlCl 3 , CO 2 , and HCl is relatively high and the atmospheric pressure is relatively low (reaction gas component high). When the vapor deposition is carried out under the content-adjusted low-pressure conditions), the resulting α-type Al 2 O 3 layer (hereinafter referred to as “modified α-type Al 2 O 3 layer”) formed under the high-reacted gas content-adjusted low-pressure conditions has a high temperature. Strength will be further improved and it will have excellent mechanical and thermal shock resistance.
(b)上記の従来被覆サーメット工具の硬質被覆層の上部層を構成する従来α型Al2O3層と上記(a)の改質α型Al2O3層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角[図2(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来α型Al2O3層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質α型Al2O3層は、図4に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するAlCl3、CO2、およびHClの含有割合、さらに雰囲気反応圧力によって変化すること。
なお、上記の改質α型Al2O3層および従来α型Al2O3層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図3(a)〜(c)に示される通りとなる。
(B) About the conventional α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the conventional coated cermet tool and the modified α-type Al 2 O 3 layer of (a) above,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the polished surface [FIG. 2 (a) shows the tilt angle of the crystal plane. (B) shows the case where the inclination angle is 45 degrees, all the inclination angles of the individual crystal grains including these angles are measured. In this case, the crystal grains Has a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al and oxygen are present at lattice points as described above, and based on the measured tilt angle, crystal grains adjacent to each other are obtained. Each of the constituent atoms shares one constituent atom between the crystal grains at the interface The distribution of child points (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is two or more on the crystal structure of the corundum hexagonal close-packed crystal) Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist), and the existing constituent atomic shared lattice point form is expressed as ΣN + 1, When a constituent atom shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1 is created (in this case, there are constituent atomic shared lattice point forms of Σ5, Σ9, Σ15, Σ25, and Σ27) In contrast to the conventional α-type Al 2 O 3 layer, as shown in FIG. 5, the distribution ratio of Σ3 shows a relatively low constituent atom shared lattice point distribution graph of 30% or less. The modified α-type Al 2 O 3 As shown in FIG. 4, the layer shows a very high constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 60% or more, and this high distribution ratio of Σ3 indicates AlCl 3 , CO 2 constituting the reaction gas. , And the content of HCl, and also the atmospheric reaction pressure.
In the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer, units of Σ3, Σ7, and Σ11 among constituent atomic shared lattice point forms at the interface between crystal grains adjacent to each other When the form is illustrated by a schematic diagram, it is as shown in FIGS.
(c)一般に、被覆サーメット工具の硬質被覆層の構成層としてのWC層は、通常の化学蒸着装置にて、
反応ガス組成:容量%で、WF6:0.5〜5%、C6H6:0.5〜10%、H2:10〜35%、Ar:残り、
反応雰囲気温度:500〜900℃、
反応雰囲気圧力:5〜15kPa、
の条件で蒸着形成されるが、WC層を、同じく通常の化学蒸着装置にて、例えば、
反応ガス組成:容量%で、WF6:0.04〜0.4%、CH3CN:0.06〜0.6%、NH3:0.1〜1%、H2:40〜80%、Ar:残り、
反応雰囲気温度:980〜1100℃、
反応雰囲気圧力:5〜30kPa、
の高温条件で蒸着形成すると、この結果形成されたWC層(以下、改質WC層という)には、すぐれた密着性を有すると共に、上記硬質被覆層形成時の高温環境下においても隣接層の構成成分が拡散侵入できない性質があり、したがって、これを前記工具基体と硬質被覆層の下部層との間に下地介在層として存在させると、前記工具基体および下部層の両方と強固に密着接合すると共に、特に硬質被覆層形成時の高温環境下できわめて高い活性を発揮する成分、すなわち前記工具基体の結合相形成成分であるCoやNi、さらにCrやVなどの成分の硬質被覆層中への拡散侵入が阻止され、前記硬質被覆層は、これ本来の具備する特性、すなわちすぐれた高温硬さを保持することになり、この結果切削加工に際して、すぐれた耐摩耗性を満足に発揮するようになること。
(C) Generally, the WC layer as a constituent layer of the hard coating layer of the coated cermet tool is a normal chemical vapor deposition apparatus.
Reaction gas composition: volume%, WF 6 : 0.5 to 5%, C 6 H 6 : 0.5 to 10%, H 2 : 10 to 35%, Ar: remaining,
Reaction atmosphere temperature: 500 to 900 ° C.
Reaction atmosphere pressure: 5 to 15 kPa,
The WC layer is formed by the same chemical vapor deposition apparatus, for example,
Reaction gas composition:% by volume, WF 6 : 0.04 to 0.4%, CH 3 CN: 0.06 to 0.6%, NH 3 : 0.1 to 1%, H 2 : 40 to 80% , Ar: rest,
Reaction atmosphere temperature: 980-1100 ° C.,
Reaction atmosphere pressure: 5 to 30 kPa,
As a result, the formed WC layer (hereinafter referred to as a modified WC layer) has excellent adhesion, and even in a high temperature environment when the hard coating layer is formed, There is a property that the constituent components cannot diffuse and penetrate. Therefore, when this component is present as a base intervening layer between the tool base and the lower layer of the hard coating layer, both the tool base and the lower layer are firmly adhered to each other. In addition, a component that exhibits extremely high activity in a high-temperature environment at the time of forming a hard coating layer, that is, a component such as Co or Ni that is a binder phase forming component of the tool base, and further a component such as Cr or V into the hard coating layer. Diffusion penetration is prevented, and the hard coating layer retains its inherent characteristics, that is, excellent high-temperature hardness. As a result, it satisfies excellent wear resistance during cutting. To become able to exert.
(d)したがって、上記工具基体と硬質被覆層の下部層との間に上記改質WC層を下地介在層として設け、さらにすぐれた高温硬さおよび耐熱性に加えて、一段とすぐれた高温強度を有する前記改質α型Al2O3層を硬質被覆層の上部層として、下部層の上記Ti化合物層と共に、前記工具基体の表面に蒸着形成してなる被覆サーメット工具は、前記改質WC層が工具基体と硬質被覆層との密着性を一段と強固なものにすると共に、前記工具基体の構成成分の前記硬質被覆層中への拡散侵入を阻止することと相俟って、特に激しい機械的熱的衝撃および高熱発生を伴なう高速断続切削加工でも、前記硬質被覆層にチッピングの発生なく、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) Therefore, the modified WC layer is provided as a base intervening layer between the tool base and the lower layer of the hard coating layer, and in addition to excellent high temperature hardness and heat resistance, further improved high temperature strength is achieved. The coated cermet tool formed by depositing the modified α-type Al 2 O 3 layer having the upper layer of the hard coating layer on the surface of the tool base together with the lower Ti compound layer is the modified WC layer. In addition to strengthening the adhesion between the tool base and the hard coating layer, and in combination with preventing diffusion and penetration of the constituent components of the tool base into the hard coating layer, particularly severe mechanical Even in high-speed intermittent cutting with thermal shock and generation of high heat, the hard coating layer exhibits excellent wear resistance over a long period without occurrence of chipping.
The research results shown in (a) to (d) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有するα型Al2O3層、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる、被覆サーメット工具において、
(1)上記工具基体と下部層の間に下地介在層として、0.1〜2μmの平均層厚を有する改質WC層、
を化学蒸着形成すると共に、
(2)上記上部層としてのα型Al2O3層を、同じく化学蒸着した状態でα型の結晶構造を有すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質α型Al2O3層、
で構成してなる、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) a Ti compound layer in which the lower layer is composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and has an overall average layer thickness of 3 to 20 μm,
(B) an α-type Al 2 O 3 layer whose upper layer has an average layer thickness of 1 to 15 μm;
In the coated cermet tool formed by chemical vapor deposition of the hard coating layer constituted by (a) and (b) above,
(1) A modified WC layer having an average layer thickness of 0.1 to 2 μm as a base intervening layer between the tool base and the lower layer;
With chemical vapor deposition,
(2) The α-type Al 2 O 3 layer as the upper layer has an α-type crystal structure in the same chemical vapor deposition state, and exists within the measurement range of the surface polished surface using a field emission scanning electron microscope. The crystal grains having a hexagonal crystal lattice are irradiated with electron beams, and the (0001) plane and the (10-10) plane are the crystal planes of the crystal grains with respect to the normal line of the surface polished surface. The inclination angle formed by the line is measured. In this case, the crystal grains have a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al and oxygen are present at lattice points. Based on the angle, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains is calculated, Share constituent atoms between constituent atomic lattice points There are N lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 in terms of distribution frequency, 4, 8, 14, 24 In the constituent atomic shared lattice distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 when the existing constituent atomic shared lattice point form is expressed by ΣN + 1, the highest peak is at Σ3. And a modified α-type Al 2 O 3 layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio of the Σ3 to the entire ΣN + 1 is 60% or more,
The hard coating layer is characterized by a coated cermet tool that exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting.
以下に、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を説明する。
(a)改質WC層(下地介在層)
改質WC層は、上記の通り、工具基体および下部層のTi化合物層と強固に密着接合して、前記工具基体に対する硬質被覆層の密着性向上に寄与するほか、特に前記工具基体における活性度の高い結合相構成成分の硬質被覆層への拡散侵入を阻止して、前記硬質被覆層が本来具備するすぐれた高温硬さを保持し、耐摩耗性の低下を抑制する作用を有するが、その平均層厚が0.1μm未満では、前記作用を十分に発揮させることができず、一方前記作用は2μmまでの平均層厚で十分であることから、その平均層厚を0.1〜2μmと定めた。
Hereinafter, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described.
(A) Modified WC layer (underlying intervening layer)
As described above, the modified WC layer is tightly bonded to the tool base and the lower Ti compound layer to contribute to improving the adhesion of the hard coating layer to the tool base. It prevents the diffusion and penetration of high binder phase components into the hard coating layer, maintains the excellent high-temperature hardness inherently possessed by the hard coating layer, and has the effect of suppressing a decrease in wear resistance. If the average layer thickness is less than 0.1 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, the average layer thickness up to 2 μm is sufficient, so that the average layer thickness is 0.1-2 μm. Determined.
(b)Ti化合物層(下部層)
Ti化合物層は、基本的には上部層である改質α型Al2O3層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、改質WC層および改質α型Al2O3層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上にも寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう難削材の高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
(B) Ti compound layer (lower layer)
The Ti compound layer basically exists as a lower layer of the modified α-type Al 2 O 3 layer, which is the upper layer, and contributes to improving the high temperature strength of the hard coating layer by its excellent high temperature strength. It adheres firmly to both the modified WC layer and the modified α-type Al 2 O 3 layer, thus contributing to improving the adhesion of the hard coating layer to the tool substrate, but the total average layer thickness is 3 μm. If the total thickness is less than 20 μm, it is likely to cause thermoplastic deformation especially in high-speed cutting of difficult-to-cut materials with high heat generation. Since it causes uneven wear, the total average layer thickness was determined to be 3 to 20 μm.
(b)改質α型Al2O3層(上部層)
上記の改質α型Al2O3層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り反応ガスを構成するAlCl3、CO2、およびHClの含有割合、さらに雰囲気反応圧力を調整することによって60%以上とすることができるが、この場合Σ3の分布割合が60%未満では、高速断続切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。このように前記改質α型Al2O3層は、上記の通りα型Al2O3層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が1μm未満では前記改質α型Al2O3層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を1〜15μmと定めた。
(B) modified α type the Al 2 O 3 layer (upper layer)
The distribution ratio of Σ3 in the constituent atomic shared lattice point distribution graph of the modified α-type Al 2 O 3 layer described above is the content ratio of AlCl 3 , CO 2 and HCl constituting the reaction gas as described above, and the atmospheric reaction pressure. However, in this case, if the distribution ratio of Σ3 is less than 60%, high-temperature intermittent cutting will ensure no excellent chipping in the hard coating layer, ensuring an excellent high-temperature strength improvement effect. Therefore, the distribution ratio of Σ3 is determined to be 60% or more. As described above, the modified α-type Al 2 O 3 layer has a further excellent high-temperature strength in addition to the excellent high-temperature hardness and heat resistance of the α-type Al 2 O 3 layer itself as described above. However, if the average layer thickness is less than 1 μm, the above-mentioned properties of the modified α-type Al 2 O 3 layer cannot be sufficiently provided to the hard coating layer, while if the average layer thickness exceeds 15 μm, The average layer thickness was determined to be 1 to 15 μm because thermoplastic deformation that causes uneven wear tends to occur and wear accelerates.
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。 In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.
この発明被覆サーメット工具は、硬質被覆層の上部層を構成する改質α型Al2O3層がα型Al2O3自身のもつすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、さらに下地介在層としての改質WC層が工具基体と硬質被覆層の下部層との密着性向上に寄与すると共に、硬質被覆層形成時における工具基体の構成成分、特に結合相形成成分の硬質被覆層中への拡散侵入を防止し、もって前記硬質被覆層自身の本来具備する性質を保持する作用を発揮することから、下部層のTi化合物層のもつすぐれた高温強度と相俟って、各種の鋼や鋳鉄などの切削加工を、特に強い機械的熱的衝撃を伴なう断続切削加工を高速切削条件で行うのに用いた場合にも、すぐれた耐チッピング性および耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。 In this invention-coated cermet tool, the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer has an excellent high temperature hardness and heat resistance in addition to the excellent high-temperature hardness and heat resistance of the α-type Al 2 O 3 itself. Further, the modified WC layer as an underlying intervening layer contributes to improving the adhesion between the tool base and the lower layer of the hard coating layer, and the components of the tool base during the formation of the hard coating layer, particularly the binder phase It prevents the diffusion of the forming components into the hard coating layer, and thus maintains the properties inherent to the hard coating layer itself, so that the excellent high temperature strength and phase of the lower Ti compound layer can be achieved. In other words, excellent chipping resistance and resistance when cutting various types of steel and cast iron, especially when used for intermittent cutting with high mechanical thermal shock under high-speed cutting conditions. Demonstrate wear and further extend service life It is intended to enable reduction.
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.
ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される組み合わせおよび目標層厚で改質WC層およびTi化合物層を硬質被覆層の下地介在層および下部層として蒸着形成し、ついで、同じく表3に示される条件で改質α型Al2O3層(a)〜(f)のうちのいずれかを同じく表4に示される組み合わせおよび目標層厚で硬質被覆層の上部層として蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 4 under the conditions shown in Table 4 below are the conditions for forming the TiCN layer having the vertically elongated crystal structure described, and other conditions for forming the normal granular crystal structure. Then, a modified WC layer and a Ti compound layer are formed by vapor deposition as a base intervening layer and a lower layer of a hard coating layer with a target layer thickness, and then a modified α-type Al 2 O 3 layer (a The coated cermet tools 1 to 13 of the present invention were produced by vapor-depositing any one of the above-described (f) to (f) as an upper layer of the hard coating layer with the combinations and target layer thicknesses shown in Table 4, respectively.
また、比較の目的で、表5に示される通り、硬質被覆層の上部層として、表3に示される条件で従来α型Al2O3層(a)〜(f)のうちのいずれかを同じく表4に示される組み合わせおよび目標層厚で蒸着形成し、かつ、下地介在層である改質WC層の形成を行なわない以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Table 5, as the upper layer of the hard coating layer, any one of the conventional α-type Al 2 O 3 layers (a) to (f) under the conditions shown in Table 3 is used. Similarly, the conventional coated cermet tools 1 to 13 were manufactured under the same conditions except that the vapor deposition was performed with the combinations and target layer thicknesses shown in Table 4 and the modified WC layer as the underlying intervening layer was not formed.
ついで、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する改質α型Al2O3層および従来α型Al2O3層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質α型Al2O3層および従来α型Al2O3層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
Subsequently, each of the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above-described coated cermet tool 1-13 of the present invention and the conventional coated cermet tool 1-13, respectively. Constituent atom shared lattice point distribution graphs were respectively prepared using a field emission scanning electron microscope.
That is, the constituent atomic shared lattice point distribution graph shows a mirror of a field emission scanning electron microscope in a state where the surfaces of the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer are polished surfaces. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA to each crystal grain existing within the measurement range of the surface polished surface. Using a backscatter diffraction image apparatus, a region of 30 × 50 μm is spaced at a spacing of 0.1 μm / step with respect to the normal line of the surface polished surface (0001) plane and (10 − 10) Measure the tilt angle formed by the normals of the surface, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains, each of the constituent atoms is one between the crystal grains. The number of lattice points that share constituent atoms (constituent atom shared lattice points) N is the number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but in terms of distribution frequency) When the upper limit of N is 28, the even number of 4, 8, 14, 24, and 26 does not exist.) When the existing constituent atomic shared lattice point form is expressed as ΣN + 1, each ΣN + 1 occupies the entire ΣN + 1 Created by determining the percentage.
この結果得られた各種の改質α型Al2O3層および従来α型Al2O3層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ表4,5にそれぞれ示した。 As a result, in the constituent atomic share lattice point distribution graphs of various modified α-type Al 2 O 3 layers and conventional α-type Al 2 O 3 layers obtained as a result, the entire ΣN + 1 (from the above results, Σ3, Σ7, Σ11, Σ13, The distribution ratios of Σ3 in the total distribution ratios of Σ17, Σ19, Σ21, Σ23, and Σ29) are shown in Tables 4 and 5, respectively.
上記の各種の構成原子共有格子点分布グラフにおいて、表4,5にそれぞれ示される通り、本発明被覆サーメット工具の改質α型Al2O3層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、従来被覆サーメット工具の従来α型Al2O3層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆サーメット工具3の改質α型Al2O3層の構成原子共有格子点分布グラフ、図5は、従来被覆サーメット工具5の従来α型Al2O3層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Tables 4 and 5, each of the modified α-type Al 2 O 3 layer of the coated cermet tool of the present invention has a distribution ratio of Σ3 of 60%. In contrast to the above constituent atomic shared lattice point distribution graph, the conventional α-type Al 2 O 3 layer of the conventional coated cermet tool has a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less. Was shown.
FIG. 4 is a graph showing the distribution of constituent atomic shared lattice points of the modified α-type Al 2 O 3 layer of the coated cermet tool 3 of the present invention, and FIG. 5 is a graph of the conventional α-type Al 2 O 3 layer of the conventional coated
また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement). , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.
つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S48Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:3mm、
送り:0.2mm/rev、
切削時間:10分、
の条件(切削条件Aという)での炭素鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min、
切り込み:4mm、
送り:0.15mm/rev、
切削時間:10分、
の条件(切削条件Bという)での合金鋼の乾式高速断続切削試験(通常の切削速度は150m/min)、さらに、
被削材:JIS・FCD600の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:4mm、
送り:0.2mm/rev、
切削時間:10分、
の条件(切削条件Cという)でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は180m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, for the various coated cermet tools of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS / S48C lengthwise equidistant four round grooved round bars,
Cutting speed: 350 m / min,
Incision: 3mm,
Feed: 0.2mm / rev,
Cutting time: 10 minutes,
A dry high-speed intermittent cutting test of carbon steel under the conditions (referred to as cutting condition A) (normal cutting speed is 200 m / min),
Work material: JIS / SNCM439 round direction bar with four equal intervals in the length direction,
Cutting speed: 300 m / min,
Incision: 4mm,
Feed: 0.15mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 150 m / min) of alloy steel under the conditions (referred to as cutting conditions B),
Work material: JIS / FCD600 lengthwise equal 4 round bars with longitudinal grooves,
Cutting speed: 350 m / min,
Incision: 4mm,
Feed: 0.2mm / rev,
Cutting time: 10 minutes,
A dry high-speed intermittent cutting test (normal cutting speed is 180 m / min) of ductile cast iron under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.
表4〜6に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層である改質α型Al2O3層が、Σ3の分布割合が60%以上の構成原子共有格子点分布グラフを示し、この結果前記改質α型Al2O3層はすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有するようになり、さらに下地介在層として設けた改質WC層が工具基体と硬質被覆層の下部層との密着性向上に寄与すると共に、工具基体の構成成分、特に結合相形成成分の硬質被覆層中への拡散侵入を防止し、もって前記硬質被覆層自身の本来具備するすぐれた高温硬さが保持されることから、下部層のTi化合物層のもつすぐれた高温強度と相俟って、特に機械的熱的衝撃が高い鋼や鋳鉄の高速断続切削でも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来α型Al2O3層で構成され、この結果前記従来α型Al2O3層は十分満足する高温強度を具備しないものとなり、さらに工具基体における結合相形成成分の硬質被覆層中への拡散侵入を満足に防止することができない従来被覆サーメット工具1〜13においては、いずれも高速断続切削では硬質被覆層の耐機械的衝撃性が不十分であるために、硬質被覆層にチッピングが発生し、かつ摩耗進行も相対的に速くなることから、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 6, the coated cermet tools 1 to 13 of the present invention have a modified α-type Al 2 O 3 layer that is the upper layer of the hard coating layer, and the distribution ratio of Σ3 is 60% or more. As shown in the graph, the modified α-type Al 2 O 3 layer has excellent high-temperature strength in addition to excellent high-temperature hardness and heat resistance. The provided modified WC layer contributes to improving the adhesion between the tool substrate and the lower layer of the hard coating layer, and prevents the diffusion of the constituent components of the tool substrate, particularly the binder phase forming component, into the hard coating layer. Therefore, the excellent high-temperature hardness inherently possessed by the hard coating layer itself is maintained. Therefore, in combination with the excellent high-temperature strength of the lower Ti compound layer, steel having a particularly high mechanical thermal shock or Chipping hard coating even in high-speed intermittent cutting of cast iron Conventional α-type Al 2 O 3 layer in which the upper layer of the hard coating layer shows a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less, while exhibiting excellent wear resistance without occurrence of As a result, the conventional α-type Al 2 O 3 layer does not have a sufficiently satisfying high-temperature strength, and it is possible to satisfactorily prevent diffusion penetration of the binder phase forming component into the hard coating layer in the tool base. In the conventional coated cermet tools 1 to 13 that cannot be used, the mechanical impact resistance of the hard coating layer is insufficient in high-speed interrupted cutting, so that chipping occurs in the hard coating layer and the wear progress is relative. It is clear that the service life is reached in a relatively short time because the speed becomes faster.
上述のように、この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い高温強度が要求される高速断続切削でも硬質被覆層がすぐれた耐チッピング性および耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool of the present invention has a hard coating layer not only for continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron, but also for high-speed intermittent cutting that requires particularly high high-temperature strength. Since it exhibits excellent chipping resistance and wear resistance, and exhibits excellent cutting performance over a long period of time, it is possible to improve the performance of cutting equipment, reduce the labor and energy of cutting, and reduce costs. It can respond satisfactorily.
Claims (1)
(a)下部層が、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有し、かつ1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を化学蒸着形成してなる、表面被覆サーメット製切削工具において、
(1)上記工具基体と下部層の間に下地介在層として、0.1〜2μmの平均層厚を有する改質炭化タングステン層、
を化学蒸着形成すると共に、
(2)上記上部層としての酸化アルミニウム層を、同じく化学蒸着した状態でα型の結晶構造を有すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質酸化アルミニウム層、
で構成したことを特徴とする、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具。 On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total average of 3 to 20 μm A Ti compound layer having a layer thickness,
(B) an aluminum oxide layer whose upper layer has an α-type crystal structure in the state of chemical vapor deposition and has an average layer thickness of 1 to 15 μm;
In the surface-coated cermet cutting tool formed by chemical vapor deposition of the hard coating layer composed of (a) and (b) above,
(1) A modified tungsten carbide layer having an average layer thickness of 0.1 to 2 μm as a base intervening layer between the tool base and the lower layer,
With chemical vapor deposition,
(2) A hexagonal crystal having an α-type crystal structure in the same chemical vapor deposition state as the upper layer and having a field-emission scanning electron microscope in the measurement range of the surface polished surface. The crystal grains having a lattice are irradiated with an electron beam, and the normals of the (0001) plane and (10-10) plane, which are crystal planes of the crystal grains, are inclined with respect to the normal line of the polished surface In this case, the crystal grains have a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al and oxygen are present at lattice points, respectively. Based on the measured tilt angle obtained as a result Calculating a distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains; Shared constituent atoms between points There are N lattice points (N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 from the point of distribution frequency, 4, 8, 14, 24 In the constituent atom shared lattice distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1 when the existing constituent atom shared lattice point form is expressed as ΣN + 1, the highest peak is at Σ3 And a modified aluminum oxide layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio of the Σ3 to the entire ΣN + 1 of the Σ3 is 60% or more,
A surface-coated cermet cutting tool with a hard coating layer that exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006161899A JP4853120B2 (en) | 2006-06-12 | 2006-06-12 | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006161899A JP4853120B2 (en) | 2006-06-12 | 2006-06-12 | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007331032A true JP2007331032A (en) | 2007-12-27 |
JP4853120B2 JP4853120B2 (en) | 2012-01-11 |
Family
ID=38931004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006161899A Expired - Fee Related JP4853120B2 (en) | 2006-06-12 | 2006-06-12 | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4853120B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008006511A (en) * | 2006-06-27 | 2008-01-17 | Mitsubishi Materials Corp | Surface coated cermet cutting tool having hard coated layer exhibiting excellent chipping resistance and wear resistance in high speed intermittent cutting |
JP2009125902A (en) * | 2007-11-27 | 2009-06-11 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer exerting excellent wear resistance in heavy cutting work |
JP2010017791A (en) * | 2008-07-09 | 2010-01-28 | Mitsubishi Materials Corp | Diamond-coated cemented carbide cutting tool |
JP2010064149A (en) * | 2008-09-08 | 2010-03-25 | Mitsubishi Materials Corp | Surface-coated cutting tool, with hard coating layer having excellent chipping resistance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173009A (en) * | 1992-12-04 | 1994-06-21 | Sumitomo Electric Ind Ltd | Coated cemented carbide excellent in wear resistance and its production |
JP2005205586A (en) * | 2003-12-26 | 2005-08-04 | Mitsubishi Materials Corp | Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer |
JP4518260B2 (en) * | 2005-01-21 | 2010-08-04 | 三菱マテリアル株式会社 | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting |
-
2006
- 2006-06-12 JP JP2006161899A patent/JP4853120B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173009A (en) * | 1992-12-04 | 1994-06-21 | Sumitomo Electric Ind Ltd | Coated cemented carbide excellent in wear resistance and its production |
JP2005205586A (en) * | 2003-12-26 | 2005-08-04 | Mitsubishi Materials Corp | Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer |
JP4518260B2 (en) * | 2005-01-21 | 2010-08-04 | 三菱マテリアル株式会社 | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008006511A (en) * | 2006-06-27 | 2008-01-17 | Mitsubishi Materials Corp | Surface coated cermet cutting tool having hard coated layer exhibiting excellent chipping resistance and wear resistance in high speed intermittent cutting |
JP2009125902A (en) * | 2007-11-27 | 2009-06-11 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer exerting excellent wear resistance in heavy cutting work |
JP2010017791A (en) * | 2008-07-09 | 2010-01-28 | Mitsubishi Materials Corp | Diamond-coated cemented carbide cutting tool |
JP2010064149A (en) * | 2008-09-08 | 2010-03-25 | Mitsubishi Materials Corp | Surface-coated cutting tool, with hard coating layer having excellent chipping resistance |
Also Published As
Publication number | Publication date |
---|---|
JP4853120B2 (en) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4518260B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4716251B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel | |
JP4822120B2 (en) | Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting | |
JP4518259B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5263514B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP4853121B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting | |
JP5326845B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent heavy cutting. | |
JP4853120B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting | |
JP4474643B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4720418B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP2008178943A (en) | Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work | |
JP2008080476A (en) | Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work | |
JP4811787B2 (en) | Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer | |
JP2006341320A (en) | SURFACE COATED CERMET CUTTING TOOL WHOSE THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE | |
JP4474644B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4730656B2 (en) | Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting | |
JP4857950B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting | |
JP5067963B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4822119B2 (en) | Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting | |
JP2008000882A (en) | Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance and abrasion resistance in high-speed cutting of material hard to cut | |
JP5019258B2 (en) | Surface coated cutting tool | |
JP4857949B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting | |
JP4730651B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys. | |
JP4756471B2 (en) | Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance in high-speed heavy cutting of hardened steel | |
JP2009101463A (en) | Surface-coated cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110927 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111010 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4853120 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |