JP5077758B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP5077758B2
JP5077758B2 JP2008003795A JP2008003795A JP5077758B2 JP 5077758 B2 JP5077758 B2 JP 5077758B2 JP 2008003795 A JP2008003795 A JP 2008003795A JP 2008003795 A JP2008003795 A JP 2008003795A JP 5077758 B2 JP5077758 B2 JP 5077758B2
Authority
JP
Japan
Prior art keywords
layer
granular
vapor deposition
carbonitride
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008003795A
Other languages
Japanese (ja)
Other versions
JP2009166141A (en
Inventor
亨 長谷川
哲彦 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008003795A priority Critical patent/JP5077758B2/en
Publication of JP2009166141A publication Critical patent/JP2009166141A/en
Application granted granted Critical
Publication of JP5077758B2 publication Critical patent/JP5077758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

この発明は、高い発熱を伴うとともに切刃に対して断続的に大きな衝撃的負荷がかかる鋼や鋳鉄などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a surface-coated cutting tool that exhibits excellent chipping resistance with a high hard coating layer in high-speed intermittent cutting of steel, cast iron, etc. that is accompanied by high heat generation and intermittently has a large impact load on the cutting edge. (Hereinafter referred to as a coated tool).

従来、炭化タングステン基(WC基)超硬合金または炭窒化チタン基(TiCN基)サーメットで構成された工具基体の表面に、硬質被覆層として、
(a)下部層として、0.1〜2μmの平均層厚を有する粒状結晶組織のTiC層、TiN層、TiCN層(以下、粒状Ti化合物層という)、
(b)中間層として、0.5〜3μmの平均層厚を有する縦長成長結晶組織のTiCNO層(以下、縦長TiCNO層という)、
(c)上部層として、2〜20μmの平均層厚を有する縦長成長結晶組織のTiCN層(以下、縦長TiCN層という)、
(d)最表面層として、0.2〜15μmの平均層厚を有するAl層、
上記の各層を化学蒸着により形成してなる被覆工具(以下、従来被覆工具という)が知られており、そして、この従来被覆工具は、高速切削ですぐれた耐摩耗性を発揮することが知られている。
なお、上記従来被覆工具における中間層(縦長TiCN層)は、例えば、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成することができ、そしてこれがすぐれた高温強度を有することも知られている。
特開平11−172464号公報 特開平6−8010号公報
Conventionally, as a hard coating layer on the surface of a tool base composed of a tungsten carbide base (WC base) cemented carbide or a titanium carbonitride base (TiCN base) cermet,
(A) As a lower layer, a TiC layer having a mean grain thickness of 0.1 to 2 μm, a TiN layer, a TiN layer, a TiCN layer (hereinafter referred to as a granular Ti compound layer),
(B) As an intermediate layer, a vertically grown TiCNO layer having an average layer thickness of 0.5 to 3 μm (hereinafter referred to as a vertically elongated TiCNO layer),
(C) As an upper layer, a TiCN layer having a vertically grown crystal structure having an average layer thickness of 2 to 20 μm (hereinafter referred to as a vertically elongated TiCN layer),
(D) As an outermost surface layer, an Al 2 O 3 layer having an average layer thickness of 0.2 to 15 μm,
A coated tool formed by chemical vapor deposition of each of the above layers (hereinafter referred to as a conventional coated tool) is known, and this conventional coated tool is known to exhibit excellent wear resistance at high speed cutting. ing.
The intermediate layer (longitudinal TiCN layer) in the conventional coated tool is, for example, a normal chemical vapor deposition apparatus, using a mixed gas containing organic carbonitride as a reaction gas, and at a medium temperature range of 700 to 950 ° C. It can also be formed by chemical vapor deposition and it is also known to have excellent high temperature strength.
JP-A-11-172464 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化、省エネ化、高効率化、低コスト化の要求は強く、これに伴い、切削加工は一段と過酷な条件下で行われる傾向にあり、被覆工具の長寿命化を図るため、最表面のAl層を厚膜化する試みもなされているが、上記従来被覆工具は、これを鋼や鋳鉄などの高速連続切削や高速断続切削に用いた場合には、耐摩耗性について特段の問題は生じないが、特にこれを高速断続切削に用いた場合には、硬質被覆層の高温強度が十分でないため、切削加工時に切刃に対してかかる断続的な衝撃的負荷によりチッピングが発生しやすく、その結果、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable, while demands for labor saving, energy saving, high efficiency, and low cost for cutting are strong, and accordingly, cutting tends to be performed under more severe conditions. In order to extend the life of the coated tool, an attempt has been made to increase the thickness of the outermost Al 2 O 3 layer. However, the above-mentioned conventional coated tool is applied to high-speed continuous cutting such as steel and cast iron. When used for high-speed interrupted cutting, there is no particular problem with wear resistance. However, when this is used for high-speed interrupted cutting, the high temperature strength of the hard coating layer is not sufficient, so cutting is difficult during cutting. Chipping is likely to occur due to the intermittent impact load applied to the blade, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、硬質被覆層の耐チッピング性の向上をはかるべく、硬質被覆層の構成層であるTi化合物層、特に、上記従来被覆工具の中間層である縦長TiCNO層に着目し、研究を行った結果、以下のような知見を得た。
(a)上記従来被覆工具の硬質被覆層の下部層(粒状Ti化合物層)と上部層(縦長TiCN層)の間に介在形成された中間層(縦長TiCNO層)は、化学蒸着によって微細結晶組織を有する層として形成され、この上に更に縦長TiCN層を形成した場合に、縦長TiCN層の結晶微細化を促進するという作用を有しており、その結果、すぐれた靭性を有する縦長TiCN層からなる上部層が形成されて被覆工具の特性改善が図られていたが、縦長TiCNO層からなる中間層にかえて、硬質被覆層の下部層(粒状Ti化合物層)と上部層(縦長TiCN層)の間に粒状結晶組織を有するCrCNO層(以下、粒状CrCNO層という)を中間層として化学蒸着で形成すると、粒状CrCNO層からなる中間層は、縦長TiCNO層に比して、すぐれた高温強度を備えるため、硬質被覆層の耐チッピング性向上に寄与すること。
(b)また、例えば、上記従来被覆工具において、耐摩耗性向上、長寿命化のためにAl層からなる最表面層の厚膜化を図った場合、化学蒸着装置内に配置された工具基体は長時間高温に曝されるため、工具基体を構成する成分元素の拡散が生じやすく、特に、高温強度、耐熱塑性変形性等を向上させるためにCr酸化物、Cr炭化物等のCr成分を含有するWC基超硬合金の場合には、工具基体表面に蒸着形成された下部層(粒状Ti化合物層)へのCrの拡散が生じ、しかも、下部層(粒状Ti化合物層)にはCrの拡散を抑制する機能がないため、上部層である縦長TiCN層にまでCrが拡散し、その結果、縦長TiCN層において高温硬さの低下が生じ、また同時に、工具基体中のCr量が基体表面で減少し、そして、工具基体に形成されたこの低Cr領域は耐熱塑性変形性に劣るため、被覆工具には偏摩耗等が生じやすくなり、耐摩耗性が大幅に低下するため、Al層の厚膜化を行ったとしても、被覆工具の耐摩耗性向上、長寿命化を達成することは非常に困難である。
しかし、粒状Ti化合物層からなる下部層と、縦長TiCN層からなる上部層との間に、粒状CrCNO層からなる中間層を化学蒸着で介在形成すると、粒状CrCNO層はCrの拡散抑制作用を有しているため、化学蒸着時に工具基体が高温で長時間曝されたとしても、工具基体からのCr成分の拡散を抑え、したがって、Cr成分が縦長TiCN層へ拡散することが防止され、その結果として、縦長TiCN層の硬度低下が抑えられ、同時に、工具基体からCrが拡散することによって生じていた工具基体表面近傍の低Cr領域の形成も防止されるため、工具基体自体の耐熱塑性変形性の低下も防止されること。
(c)さらに、粒状Ti化合物層(下部層)の上に粒状CrCNO層(中間層)を蒸着し、さらに、この上に縦長TiCN層(上部層)を蒸着形成すると、縦長TiCNO層の場合と同様に、この粒状CrCNO層からなる中間層は、縦長TiCN層(上部層)の結晶微細化を促進するという作用を有しているため、微細結晶の縦長TiCN層が上部層として形成され、その結果、該縦長TiCN層(上部層)はすぐれた靭性を備えるようになること。
(d)したがって、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、粒状Ti化合物層からなる下部層、粒状CrCNO層からなる中間層、縦長TiCN層からなる上部層、さらに、Al層からなる最表面層を硬質被覆層として蒸着形成した被覆工具は、たとえ、高温で長時間曝されたとしても、工具基体からの上部層側へのCrの拡散が抑制され、そのため、工具基体表面近傍の低Cr領域の形成による耐熱塑性変形性の低下が防止され、また、縦長TiCN層(上部層)の硬度低下も防止され、さらに、粒状CrCNO層からなる中間層がすぐれた高温強度を有することから、高い発熱を伴うとともに切刃に対して断続的に大きな衝撃的負荷がかかる鋼や鋳鉄などの高速断続切削加工に用いた場合であっても、すぐれた耐熱塑性変形性とともにすぐれた耐チッピング性を示し、長期にわたってすぐれた耐摩耗性を発揮するようになること。
In view of the above, the present inventors, in order to improve the chipping resistance of the hard coating layer, in the Ti compound layer that is a constituent layer of the hard coating layer, in particular, the intermediate layer of the conventional coating tool. As a result of conducting research while paying attention to a certain longitudinal TiCNO layer, the following findings were obtained.
(A) The intermediate layer (longitudinal TiCNO layer) formed between the lower layer (granular Ti compound layer) and the upper layer (vertical TiCN layer) of the hard coating layer of the conventional coated tool has a fine crystal structure by chemical vapor deposition. When a vertical TiCN layer is further formed thereon, it has the effect of promoting crystal refinement of the vertical TiCN layer, and as a result, from the vertical TiCN layer having excellent toughness. The upper layer was formed to improve the characteristics of the coated tool, but instead of the intermediate layer consisting of the vertically long TiCNO layer, the lower layer (granular Ti compound layer) and the upper layer (longitudinal TiCN layer) of the hard coating layer When a CrCNO layer having a granular crystal structure (hereinafter referred to as a granular CrCNO layer) is formed by chemical vapor deposition as an intermediate layer, the intermediate layer composed of the granular CrCNO layer is compared with a vertically long TiCNO layer. Te, good order with a high-temperature strength, thereby contributing to chipping resistance improving hard coating layer.
(B) For example, in the conventional coated tool, when the outermost surface layer composed of the Al 2 O 3 layer is increased in order to improve wear resistance and extend the life, it is disposed in the chemical vapor deposition apparatus. Since the tool base is exposed to a high temperature for a long time, diffusion of component elements constituting the tool base is likely to occur. In particular, Cr oxide such as Cr oxide and Cr carbide is used to improve high-temperature strength, heat-resistant plastic deformation and the like. In the case of a WC-based cemented carbide containing components, Cr diffuses to the lower layer (granular Ti compound layer) deposited on the surface of the tool base, and the lower layer (granular Ti compound layer) Since there is no function to suppress the diffusion of Cr, Cr diffuses to the vertical TiCN layer, which is the upper layer. As a result, the high-temperature hardness is reduced in the vertical TiCN layer, and at the same time, the amount of Cr in the tool base is reduced. Reduced at the substrate surface and Since this low-Cr region formed in the substrate inferior in heat plastic deformation resistance, such uneven wear is liable to occur in the coated tool, since the wear resistance is greatly reduced, the thickening of the Al 2 O 3 layer Even if it is done, it is very difficult to achieve improved wear resistance and long life of the coated tool.
However, if an intermediate layer made of a granular CrCNO layer is interposed between the lower layer made of a granular Ti compound layer and the upper layer made of a vertically long TiCN layer by chemical vapor deposition, the granular CrCNO layer has an effect of suppressing Cr diffusion. Therefore, even if the tool base is exposed to a high temperature for a long time during chemical vapor deposition, the diffusion of the Cr component from the tool base is suppressed, and therefore, the Cr component is prevented from diffusing into the vertically long TiCN layer. As described above, the hardness reduction of the longitudinal TiCN layer is suppressed, and at the same time, the formation of a low Cr region in the vicinity of the tool base surface caused by the diffusion of Cr from the tool base is also prevented. It is also possible to prevent a decrease in
(C) Furthermore, when a granular CrCNO layer (intermediate layer) is vapor-deposited on the granular Ti compound layer (lower layer), and further a vertical TiCN layer (upper layer) is formed thereon by vapor deposition, Similarly, since the intermediate layer made of the granular CrCNO layer has an action of promoting the crystal refinement of the vertical TiCN layer (upper layer), the fine vertical crystal TiN layer is formed as the upper layer. As a result, the vertically long TiCN layer (upper layer) has excellent toughness.
(D) Therefore, on the surface of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, a lower layer composed of a granular Ti compound layer, an intermediate layer composed of a granular CrCNO layer, and an upper portion composed of a vertically long TiCN layer The coated tool formed by vapor-depositing the outermost layer consisting of the Al 2 O 3 layer as a hard coating layer, even if exposed at high temperature for a long time, Cr diffuses from the tool base to the upper layer side Therefore, it is possible to prevent a decrease in heat-resistant plastic deformation due to the formation of a low Cr region in the vicinity of the surface of the tool base, to prevent a decrease in the hardness of the vertically long TiCN layer (upper layer), and to further comprise a granular CrCNO layer. Since the intermediate layer has excellent high-temperature strength, high-speed intermittent cutting such as steel and cast iron, which is accompanied by high heat generation and intermittently imposes a heavy impact on the cutting edge, is applied. Even in a case of using, superior exhibited excellent chipping resistance with heat plastic deformation resistance, to become to exert wear resistance with excellent long-term.

この発明は、上記の研究結果に基づいてなされたものであって、
「(1)炭化タングステン基(WC基)超硬合金または炭窒化チタン基(TiCN基)サーメットで構成された工具基体の表面に、
(a)下部層が、0.1〜2μmの合計平均層厚を有する化学蒸着で形成された、粒状結晶組織のTiの炭化物層(粒状TiC層)、窒化物層(粒状TiN層)、炭窒化物層(粒状TiCN層)のうちの少なくとも1層、
(b)中間層が、0.5〜3μmの平均層厚を有する化学蒸着で形成された粒状結晶組織のCrの炭窒酸化物層(粒状CrCNO層)、
(c)上部層が、2〜20μmの平均層厚を有する化学蒸着で形成された、縦長成長結晶組織のTiの炭窒化物層(縦長TiCN層)、
(d)最表面層が、0.2〜15μmの平均層厚を有する化学蒸着で形成された酸化アルミニウム層(Al層)、
以上(a)〜(d)で構成された硬質被覆層を形成してなる表面被覆切削工具(被覆工具)。
(2) 前記(1)記載の表面被覆切削工具(被覆工具)において、
上記(c)の縦長成長結晶組織のTiの炭窒化物層(縦長TiCN層)と、上記(d)の酸化アルミニウム層(Al層)との間に、0.1〜3μmの平均層厚を有する化学蒸着で形成された粒状結晶組織のTiの炭化物層(粒状TiC層)、窒化物層(粒状TiN層)、炭窒化物層(粒状TiCN層)、炭酸化物層(粒状TiCO層)、炭窒酸化物層(粒状TiCNO層)のうちの少なくとも1層からなる密着層を介在してなる前記(1)記載の表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
“(1) On the surface of a tool base made of tungsten carbide group (WC group) cemented carbide or titanium carbonitride group (TiCN group) cermet,
(A) Ti carbide layer (granular TiC layer), nitride layer (granular TiN layer), charcoal of granular crystal structure formed by chemical vapor deposition in which the lower layer has a total average layer thickness of 0.1 to 2 μm At least one of the nitride layers (granular TiCN layers);
(B) Cr carbonitride oxide layer (granular CrCNO layer) having a granular crystal structure formed by chemical vapor deposition having an average layer thickness of 0.5 to 3 μm,
(C) Ti carbonitride layer (longitudinal TiCN layer) having a vertically grown crystal structure, wherein the upper layer is formed by chemical vapor deposition having an average layer thickness of 2 to 20 μm,
(D) an aluminum oxide layer (Al 2 O 3 layer) formed by chemical vapor deposition in which the outermost surface layer has an average layer thickness of 0.2 to 15 μm;
A surface-coated cutting tool (coated tool) formed by forming a hard coating layer composed of (a) to (d) above.
(2) In the surface-coated cutting tool (coated tool) described in (1) above,
An average of 0.1 to 3 μm between the Ti carbonitride layer (longitudinal TiCN layer) having the vertically elongated crystal structure (c) and the aluminum oxide layer (Al 2 O 3 layer) (d). Ti carbide layer (granular TiC layer), nitride layer (granular TiN layer), carbonitride layer (granular TiCN layer), carbonate layer (granular TiCO layer) of granular crystal structure formed by chemical vapor deposition having a layer thickness ), A surface-coated cutting tool (coated tool) according to (1) above, wherein an adhesion layer comprising at least one of a carbonitride oxide layer (a granular TiCNO layer) is interposed. "
It has the characteristics.

つぎに、この発明の被覆工具について、詳細に説明する。
(a)工具基体
工具基体としては、従来から汎用されているWC基超硬合金、TiCN基サーメットを用いることができる。特に、工具基体としてWC基超硬合金を用いた場合、通常、WC基超硬合金は硬質相成分と結合相成分からなり、硬質相の主要構成成分としてはWCを含有し、これに加えてさらに、周期律表の4a、5a、6a族の金属炭化物、窒化物、炭窒化物を含有し、また、結合相の主要構成成分としては、鉄族金属元素の少なくとも1種、特にCo、を含有し、これらの構成成分からなるWC基超硬合金は硬質材料であってすぐれた耐摩耗性を有するが、Crの炭化物、窒化物、炭窒化物が含有されている場合には、工具基体表面へ硬質被覆層を蒸着形成する際、特に、厚膜Al層を形成するような場合、長時間高温に曝されるため、Crが硬質被覆層中へ拡散し、工具基体の表面近傍には低Cr領域が形成され、工具基体の耐熱塑性変形性が低下して偏摩耗を生じやすくなり、結果として被覆工具の耐摩耗性が劣化し、一方、硬質被覆層中に拡散Crが含有されることにより、硬質被覆層の高温強度は増大するが、その反面、特に、縦長TiCN層の高温硬さが低下し、これも被覆工具の耐摩耗性低下の原因となる。
Next, the coated tool of the present invention will be described in detail.
(A) Tool substrate As the tool substrate, a conventionally used WC-based cemented carbide or TiCN-based cermet can be used. In particular, when a WC-based cemented carbide is used as the tool base, the WC-based cemented carbide is usually composed of a hard phase component and a binder phase component, and WC is contained as a main component of the hard phase. Furthermore, it contains 4a, 5a, 6a group metal carbides, nitrides, carbonitrides of the periodic table, and the main component of the binder phase is at least one iron group metal element, especially Co. WC-based cemented carbide containing these constituents is a hard material and has excellent wear resistance. However, when Cr carbide, nitride, carbonitride is contained, a tool substrate When vapor-depositing a hard coating layer on the surface, especially when a thick Al 2 O 3 layer is formed, Cr is diffused into the hard coating layer and exposed to a high temperature for a long time. A low Cr region is formed in the vicinity, and the heat-resistant plastic deformation of the tool base However, the wear resistance of the coated tool is deteriorated as a result, while the diffusion of Cr in the hard coating layer increases the high-temperature strength of the hard coating layer. On the other hand, in particular, the high-temperature hardness of the vertically long TiCN layer decreases, which also causes a decrease in the wear resistance of the coated tool.

しかし、この発明では、硬質被覆層の中間層として、それ自体高温強度にすぐれ、さらに、Crの拡散抑制作用を有する粒状CrCNO層を蒸着形成したことによって、WC基超硬合金からなる工具基体の構成成分としてCr成分を含有する工具基体であっても、これを高温下で長時間曝したとしても、特にCrの拡散防止が図られることにより、被覆工具の耐熱塑性変形性の低下が防止されるとともに、耐摩耗性の維持向上が図られる。
(b)下部層(粒状TiC層、粒状TiN層、粒状TiCN層)
粒状TiC層、粒状TiN層、粒状TiCN層からなる下部層は、それ自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と中間層である粒状CrCNO層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.1μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が2μmを越えると、特に高速断続切削ではチッピングを起し易くなることから、その合計平均層厚を0.1〜2μmと定めた。
(c)中間層(粒状CrCNO層)
通常の化学蒸着装置にて、
反応ガス組成:容量%で、CrCl:1〜8%、CO:0.3〜3%、N:10〜40%、H2:残り、
反応雰囲気温度: 900〜1020 ℃、
反応雰囲気圧力: 6 〜20 kPa、
の条件で化学蒸着を行うと、平均層厚が0.5〜3μmの粒状結晶構造のCrCNO層を蒸着形成できるが、この粒状CrCNO層は、縦長TiCNO層に比して、すぐれた高温強度を有し、また、Crの拡散抑制機能を有するため、硬質被覆層の化学蒸着時に、Cr成分が工具基体から硬質被覆層側へと拡散し、工具基体の表面近傍に低クロム領域が形成されることによる耐熱塑性変形性の低下を防止すると同時に、粒状CrCNO層の上面に設けられた縦長TiCN層中へCrが拡散し、含有されることによる縦長TiCN層の硬度低下を防止し、その結果として、被覆工具の偏摩耗の発生を防ぎ、もって、高い発熱を伴う鋼や鋳鉄などの高速断続切削加工における被覆工具の耐摩耗性向上、長寿命化に寄与する。さらに、粒状CrCNO層は、縦長TiCN層を蒸着形成する際に、縦長TiCN層の結晶微細化を促進するという作用も有しているため、微細結晶の縦長TiCN層が上部層として形成され、その結果、該縦長TiCN層(上部層)は高速断続切削加工においてすぐれた靭性を発揮するようになる。
However, according to the present invention, the intermediate layer of the hard coating layer is itself excellent in high-temperature strength, and further, a granular CrCNO layer having a Cr diffusion suppression effect is formed by vapor deposition, so that a tool base made of a WC-based cemented carbide is formed. Even if it is a tool base containing a Cr component as a constituent component, even if it is exposed to a high temperature for a long time, the diffusion of Cr is prevented in particular, thereby preventing the heat resistant plastic deformation of the coated tool from being lowered. In addition, the wear resistance can be maintained and improved.
(B) Lower layer (granular TiC layer, granular TiN layer, granular TiCN layer)
The lower layer composed of the granular TiC layer, the granular TiN layer, and the granular TiCN layer itself has a high temperature strength, and the presence of the lower layer makes the hard coating layer have a high temperature strength. It adheres firmly to any granular CrCNO layer, and thus has the effect of contributing to improved adhesion of the hard coating layer to the tool substrate. However, when the total average layer thickness is less than 0.1 μm, the above effect is sufficiently exhibited. On the other hand, if the total average layer thickness exceeds 2 μm, chipping is likely to occur particularly in high-speed intermittent cutting. Therefore, the total average layer thickness is set to 0.1 to 2 μm.
(C) Intermediate layer (granular CrCNO layer)
With normal chemical vapor deposition equipment,
Reaction gas composition:% by volume, CrCl 3 : 1 to 8%, CO: 0.3 to 3 %, N 2 : 10 to 40%, H 2 : remaining,
Reaction atmosphere temperature: 900 to 1020 ° C.
Reaction atmosphere pressure: 6 to 20 kPa,
When chemical vapor deposition is performed under the above conditions, a CrCNO layer having a granular crystal structure with an average layer thickness of 0.5 to 3 μm can be formed by vapor deposition. However, this granular CrCNO layer has excellent high-temperature strength as compared with a vertically long TiCNO layer. In addition, since it has a Cr diffusion suppression function, during chemical vapor deposition of the hard coating layer, the Cr component diffuses from the tool substrate to the hard coating layer side, and a low chromium region is formed near the surface of the tool substrate. As a result, Cr is diffused into the vertically elongated TiCN layer provided on the upper surface of the granular CrCNO layer, and the hardness of the vertically elongated TiCN layer due to inclusion is prevented. This prevents the occurrence of uneven wear of the coated tool and contributes to the improvement of the wear resistance and long life of the coated tool in high-speed intermittent cutting of steel or cast iron with high heat generation. Furthermore, since the granular CrCNO layer also has an effect of promoting the crystal refinement of the vertical TiCN layer when the vertical TiCN layer is formed by vapor deposition, the fine vertical crystal TiCN layer is formed as an upper layer. As a result, the vertically long TiCN layer (upper layer) exhibits excellent toughness in high-speed intermittent cutting.

粒状CrCNO層の平均層厚については、その平均層厚が0.5μm未満では、Crの拡散抑制作用が十分に機能せず、高温強度向上効果も少なく、また、その平均層厚が3μmを超えると、チッピングを発生する恐れがあるので、粒状CrCNO層の平均層厚は0.5〜3μmと定めた。
(d)上部層(縦長TiCN層)
上部層としての、縦長TiCN層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件で蒸着形成されるが、粒状CrCNO層上に形成されることによって、微細結晶かつ縦長成長結晶組織を有する縦長TiCN層として形成され、さらに、工具基体からのCr成分の拡散も防止されるため、その靭性に優れるばかりか、粒状TiCN層に比して、一段とすぐれた高温強度を具備し、高速断続切削加工において、耐チッピング性を一段と向上させる。
With respect to the average layer thickness of the granular CrCNO layer, if the average layer thickness is less than 0.5 μm, the Cr diffusion suppressing action does not sufficiently function, the effect of improving the high-temperature strength is small, and the average layer thickness exceeds 3 μm. Therefore, the average layer thickness of the granular CrCNO layer was determined to be 0.5 to 3 μm.
(D) Upper layer (vertical TiCN layer)
The vertical TiCN layer as the upper layer is, for example, a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
However, by forming on the granular CrCNO layer, it is formed as a vertically elongated TiCN layer having fine crystals and a vertically elongated crystal structure, and further, diffusion of Cr components from the tool base is also prevented. Therefore, not only the toughness is excellent, but also has a higher high-temperature strength than the granular TiCN layer, and the chipping resistance is further improved in high-speed intermittent cutting.

そして、上記縦長TiCN層の平均層厚が2μm未満では、靭性向上、高温強度向上効果を十分に発揮することができず、また、平均層厚が20μmを超えるとチッピングを発生しやすくなることから、縦長TiCN層の平均層厚を2〜20μmと定めた。
(e)密着層(粒状Ti化合物層)
上部層である上記l−TiCN層と、最表面層であるAl層の間に、粒状結晶組織のTi化合物層(例えば、粒状結晶組織のTiC層、TiN層、TiCN層、TiCO層、TiCNO層)を0.1〜3μmの合計層厚で蒸着形成し、密着層として介在させると、上記l−TiCN層と、最表面層であるAl層の密着性が向上するようになり、この結果、被覆工具は、高熱発生を伴い、かつ、切刃に対して断続的・衝撃的負荷が作用する鋼や鋳鉄などの高速断続切削加工においても、硬質被覆層の層間剥離の発生およびチッピングの発生がなく、すぐれた切削性能を長期に亘って発揮する。
(f)最表面層(Al層)
Al層からなる上部層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が0.2μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を0.2〜15μmと定めた。
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよい。これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。
And, if the average layer thickness of the longitudinal TiCN layer is less than 2 μm, the effect of improving toughness and high temperature strength cannot be sufficiently exerted, and if the average layer thickness exceeds 20 μm, chipping tends to occur. The average layer thickness of the vertically long TiCN layer was determined to be 2 to 20 μm.
(E) Adhesion layer (granular Ti compound layer)
Between the l-TiCN layer as the upper layer and the Al 2 O 3 layer as the outermost layer, a Ti compound layer having a granular crystal structure (eg, a TiC layer, TiN layer, TiCN layer, TiCO layer having a granular crystal structure) , TiCNO layer) is deposited with a total layer thickness of 0.1 to 3 μm and interposed as an adhesion layer, the adhesion between the l-TiCN layer and the Al 2 O 3 layer as the outermost surface layer is improved. As a result, the coated tool is accompanied by high heat generation, and the delamination of the hard coating layer is possible even in high-speed intermittent cutting such as steel and cast iron where intermittent and impact loads are applied to the cutting edge. No generation or chipping occurs, and excellent cutting performance is demonstrated over a long period of time.
(F) Outermost surface layer (Al 2 O 3 layer)
The upper layer composed of the Al 2 O 3 layer has excellent high-temperature hardness and heat resistance and contributes to improving the wear resistance of the hard coating layer. However, if the average layer thickness is less than 0.2 μm, Sufficient wear resistance cannot be exhibited. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness is set to 0.2 to 15 μm. .
A TiN layer having a golden color tone may be vapor-deposited as necessary for the purpose of identifying the cutting tool before and after use, but the average layer thickness in this case may be 0.1 to 1 μm. This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明の被覆工具は、硬質被覆層の中間層として形成した粒状CrCNO層が、それ自身すぐれた高温強度を有するとともに、縦長TiCN層の靭性、高温強度を向上させ、さらに、工具基体表面近傍に低Cr領域が形成されることを防止し、拡散により縦長TiCN層中にCrが拡散・含有されることを防止し、もって、高い発熱を伴い切刃に対して繰り返し断続的に大きな衝撃的負荷がかかる鋼や鋳鉄などの高速断続切削加工に用いた場合でも、被覆工具のすぐれた耐チッピング性、耐摩耗性が長期の使用に亘って確保されるものである。   In the coated tool of the present invention, the granular CrCNO layer formed as an intermediate layer of the hard coating layer has excellent high-temperature strength itself, and improves the toughness and high-temperature strength of the longitudinal TiCN layer. Prevents formation of a low Cr region, prevents diffusion and inclusion of Cr in the vertically long TiCN layer due to diffusion, and thus repeatedly and intermittently has a large impact load on the cutting edge with high heat generation. Even when used for high-speed intermittent cutting of such steel and cast iron, excellent chipping resistance and wear resistance of the coated tool are ensured over a long period of use.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of WC-based cemented carbide having an insert shape specified in ISO · CNMG120408 were manufactured.

つぎに、これらの工具基体A〜Fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、粒状TiC層、粒状TiN層、粒状TiCN層のうちの少なくとも1層を表2に示される条件、かつ、表3に示される組み合わせ、目標層厚で蒸着形成し、
ついで、中間層としての粒状CrCNO層を、表2に示される条件にて、表3に示される目標層厚で蒸着形成し、
ついで、上部層としての縦長TiCN層を、表2に示される条件にて、表3に示される目標層厚で蒸着形成し、
ついで、密着層としての粒状Ti化合物層を、表2に示される条件にて、表3に示される組み合わせ、目標層厚で蒸着形成し、
さらに、最表面層としてのAl層を、表2に示される条件にて、表3に示される目標層厚で蒸着形成して本発明被覆工具1〜13をそれぞれ製造した。
Next, at least one of a granular TiC layer, a granular TiN layer, and a granular TiCN layer is formed on the surface of these tool bases A to F as a lower layer of the hard coating layer using a normal chemical vapor deposition apparatus. And the combination shown in Table 3 with the target layer thickness,
Next, a granular CrCNO layer as an intermediate layer is formed by vapor deposition with the target layer thickness shown in Table 3 under the conditions shown in Table 2.
Then, a vertically long TiCN layer as an upper layer is formed by vapor deposition with the target layer thickness shown in Table 3 under the conditions shown in Table 2.
Next, a granular Ti compound layer as an adhesion layer is formed by vapor deposition with the combination shown in Table 3 and the target layer thickness under the conditions shown in Table 2.
Furthermore, the Al 2 O 3 layer as the outermost surface layer was vapor-deposited with the target layer thickness shown in Table 3 under the conditions shown in Table 2, and the inventive coated tools 1 to 13 were respectively produced.

また、比較の目的で、硬質被覆層の中間層として、縦長TiCNO層を表2に示される条件で、表4に示される目標層厚で蒸着形成した以外は、実施例と同様にして、表2に示される条件で、表4に示される下部層、中間層、上部層、密着層、最表面層を、表4に示される目標層厚で蒸着形成することにより比較被覆工具1〜13をそれぞれ製造した。   For comparison purposes, a vertical TiCNO layer was deposited as an intermediate layer of the hard coating layer under the conditions shown in Table 2 with the target layer thickness shown in Table 4. Comparative coating tools 1 to 13 are formed by depositing the lower layer, the intermediate layer, the upper layer, the adhesion layer, and the outermost surface layer shown in Table 4 with the target layer thickness shown in Table 4 under the conditions shown in Table 2. Each was manufactured.

そして、上記の本発明被覆工具1〜13および従来被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、いずれも目標組成と実質的に同じ組成を有することが確認された。   And about the said this invention coated tool 1-13 and the conventional coated tools 1-13, the structural layer of this hard coating layer is observed using an electron beam microanalyzer (EPMA) and an Auger spectrometer (longitudinal section of a layer) Were observed), and it was confirmed that both had substantially the same composition as the target composition.

また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness (5 The average value of point measurement) was shown.

つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および従来被覆工具1〜13について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入の丸棒、
切削速度: 350 m/min、
切り込み: 1.5 mm、
送り: 0.40 mm/rev、
切削時間: 5 分、
の条件(切削条件A)での合金鋼の乾式高速断続高送り切削試験(通常の切削速度は、200m/min、送りは、0.25mm/rev)、
被削材:JIS・S40Cの長さ方向等間隔4本縦溝入の丸棒、
切削速度: 350 m/min、
切り込み: 2.5 mm、
送り: 0.15 mm/rev、
切削時間: 5 分、
の条件(切削条件B)での炭素鋼の乾式高速断続切削試験(通常の切削速度は、200m/min)、
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入の丸棒、
切削速度: 350 m/min、
切り込み: 1.5 mm、
送り: 0.3 mm/rev、
切削時間: 5 分、
の条件(切削条件C)でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は、300m/min)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where all of the above various coated tools are screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 1 to 13 and the conventional coated tools 1 to 13,
Work material: JIS / SCM440 lengthwise equidistantly four round bars with vertical grooves,
Cutting speed: 350 m / min,
Cutting depth: 1.5 mm,
Feed: 0.40 mm / rev,
Cutting time: 5 minutes,
Dry high-speed intermittent high-feed cutting test of alloy steel under the conditions (cutting condition A) (normal cutting speed is 200 m / min, feed is 0.25 mm / rev),
Work material: JIS / S40C lengthwise equidistant 4 round grooved round bars,
Cutting speed: 350 m / min,
Cutting depth: 2.5 mm,
Feed: 0.15 mm / rev,
Cutting time: 5 minutes,
Dry high-speed intermittent cutting test of carbon steel under the conditions (cutting condition B) (normal cutting speed is 200 m / min),
Work material: JIS / FCD700 round bar with four equal grooves in the longitudinal direction,
Cutting speed: 350 m / min,
Cutting depth: 1.5 mm,
Feed: 0.3 mm / rev,
Cutting time: 5 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 300 m / min) of ductile cast iron under the above conditions (cutting condition C),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 5.

Figure 0005077758
Figure 0005077758

Figure 0005077758
Figure 0005077758

Figure 0005077758
Figure 0005077758

Figure 0005077758
Figure 0005077758

Figure 0005077758
表3〜5に示される結果から、本発明被覆工具1〜13は、硬質被覆層の中間層が粒状CrCNO層で構成されていることから、高い発熱を伴うとともに切刃に対して断続的に大きな衝撃的負荷がかかる高速断続切削加工でも、前記粒状CrCNO層が一段とすぐれた高温強度を備えるとともに、基体からのCr拡散抑制作用を有するので、基体の耐熱塑性変形性の低下はなく、また、縦長TiCN層においては靭性が向上し硬度の低下もないため、すぐれた耐チッピング性と耐摩耗性を示すのに対して、硬質被覆層の中間層が縦長TiCNO層で構成されている比較被覆工具1〜13においては、硬質被覆層の高温強度が不十分であり、さらに、基体の表面にCr欠乏層が生じるため耐熱塑性変形性に劣り、加えて、縦長TiCN層の硬度低下も生じるため、高速断続切削加工では耐チッピング性に劣り、比較的短時間で使用寿命に至ることが明らかである。
Figure 0005077758
From the results shown in Tables 3 to 5, the present invention coated tools 1 to 13 are accompanied by high heat generation and intermittently with respect to the cutting blade because the intermediate layer of the hard coating layer is composed of a granular CrCNO layer. Even in a high-speed intermittent cutting process where a large impact load is applied, the granular CrCNO layer has an excellent high-temperature strength and has an effect of suppressing Cr diffusion from the substrate, so there is no decrease in the heat-resistant plastic deformation property of the substrate. Compared to the long-length TiCN layer, which has improved toughness and no decrease in hardness, it exhibits excellent chipping resistance and wear resistance, whereas the intermediate layer of the hard coating layer is composed of a vertical TiCNO layer. In Nos. 1 to 13, the high temperature strength of the hard coating layer is insufficient, and further, a Cr-deficient layer is formed on the surface of the substrate, resulting in poor heat-resistant plastic deformation. In addition, the hardness of the longitudinal TiCN layer To produce even lower, inferior in chipping resistance in a high-speed intermittent cutting work, it is clear that lead to a relatively short time service life.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、大きな発熱を伴い、かつ、切刃に対して断続的に大きな衝撃的負荷がかかる高速断続切削加工でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only continuous and intermittent cutting under normal conditions such as various steels and cast irons, but also generates a large amount of heat and has a large impact on the cutting edge. It exhibits excellent chipping resistance even during high-speed intermittent cutting with a heavy load, and exhibits excellent cutting performance over a long period of time. It can cope with cost reduction sufficiently satisfactorily.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、0.1〜2μmの合計平均層厚を有する化学蒸着で形成された、粒状結晶組織のTiの炭化物層、窒化物層、炭窒化物層のうちの少なくとも1層、
(b)中間層が、0.5〜3μmの平均層厚を有する化学蒸着で形成された粒状結晶組織のCrの炭窒酸化物層、
(c)上部層が、2〜20μmの平均層厚を有する化学蒸着で形成された、縦長成長結晶組織のTiの炭窒化物層、
(d)最表面層が、0.2〜15μmの平均層厚を有する化学蒸着で形成された酸化アルミニウム層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) the lower layer is formed by chemical vapor deposition having a total average layer thickness of 0.1 to 2 μm, at least one of a Ti carbide layer, a nitride layer, and a carbonitride layer having a granular crystal structure;
(B) an intermediate layer of a Cr carbonitride oxide layer of granular crystal structure formed by chemical vapor deposition having an average layer thickness of 0.5 to 3 μm,
(C) The upper layer is formed by chemical vapor deposition having an average layer thickness of 2 to 20 μm, and a Ti carbonitride layer having a vertically grown crystal structure,
(D) an aluminum oxide layer formed by chemical vapor deposition in which the outermost surface layer has an average layer thickness of 0.2 to 15 μm;
A surface-coated cutting tool formed by forming a hard coating layer composed of (a) to (d) above.
請求項1記載の表面被覆切削工具において、
上記(c)の縦長成長結晶組織のTiの炭窒化物層と、上記(d)の酸化アルミニウム層との間に、0.1〜3μmの平均層厚を有する化学蒸着で形成された粒状結晶組織のTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、炭窒酸化物層のうちの少なくとも1層からなる密着層を介在してなる請求項1に記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 1,
Granular crystals formed by chemical vapor deposition having an average layer thickness of 0.1 to 3 μm between the Ti carbonitride layer having the vertically elongated crystal structure (c) and the aluminum oxide layer (d). 2. The surface-coated cutting tool according to claim 1, comprising an adhesion layer comprising at least one of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer of the structure. .
JP2008003795A 2008-01-11 2008-01-11 Surface coated cutting tool Expired - Fee Related JP5077758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008003795A JP5077758B2 (en) 2008-01-11 2008-01-11 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008003795A JP5077758B2 (en) 2008-01-11 2008-01-11 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2009166141A JP2009166141A (en) 2009-07-30
JP5077758B2 true JP5077758B2 (en) 2012-11-21

Family

ID=40967925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008003795A Expired - Fee Related JP5077758B2 (en) 2008-01-11 2008-01-11 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5077758B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220012854A (en) * 2019-05-27 2022-02-04 에이비 산드빅 코로만트 clad cutting tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2946911B2 (en) * 1992-02-06 1999-09-13 セイコーエプソン株式会社 Method of manufacturing decorative member
JPH09302472A (en) * 1996-05-09 1997-11-25 Mitsubishi Materials Corp Manufacture of cutting tool made of surface coated cemented carbide, excellent in chipping resistance
JPH1158104A (en) * 1997-08-26 1999-03-02 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide excellent in chip resistance
JP3282592B2 (en) * 1997-09-18 2002-05-13 三菱マテリアル株式会社 Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP2000246511A (en) * 1999-03-04 2000-09-12 Mitsubishi Materials Corp Throw-away cutting tip made of surface coated super hard alloy exhibiting excellent initial conformity at its hard coated layer

Also Published As

Publication number Publication date
JP2009166141A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023839B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5088481B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in heavy cutting
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023896B2 (en) Surface coated cutting tool
JP4863071B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5077758B2 (en) Surface coated cutting tool
JP5023897B2 (en) Surface coated cutting tool
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP5023895B2 (en) Surface coated cutting tool
JP5110376B2 (en) Surface coated cutting tool
JP5110377B2 (en) Surface coated cutting tool
JP5077759B2 (en) Surface coated cutting tool
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5170830B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4193053B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP2009018362A (en) Surface coated cutting tool
JP4210931B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2010207930A (en) Surface coated cutting tool
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP2010274330A (en) Surface coated cutting tool
JP4857949B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5077758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees