JP5534567B2 - Hard materials and cutting tools - Google Patents

Hard materials and cutting tools Download PDF

Info

Publication number
JP5534567B2
JP5534567B2 JP2012140177A JP2012140177A JP5534567B2 JP 5534567 B2 JP5534567 B2 JP 5534567B2 JP 2012140177 A JP2012140177 A JP 2012140177A JP 2012140177 A JP2012140177 A JP 2012140177A JP 5534567 B2 JP5534567 B2 JP 5534567B2
Authority
JP
Japan
Prior art keywords
phase
compound
hard
compound phase
hard material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012140177A
Other languages
Japanese (ja)
Other versions
JP2014005485A (en
Inventor
友幸 石田
秀樹 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012140177A priority Critical patent/JP5534567B2/en
Publication of JP2014005485A publication Critical patent/JP2014005485A/en
Application granted granted Critical
Publication of JP5534567B2 publication Critical patent/JP5534567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、Tiを含む化合物を硬質相に含む硬質材料、及び切削工具に関する。特に、熱伝導率が高く、耐熱性に優れる切削工具、及び耐熱性に優れる切削工具を構築することができる硬質材料に関するものである。   The present invention relates to a hard material containing a compound containing Ti in a hard phase, and a cutting tool. In particular, the present invention relates to a cutting tool having high thermal conductivity and excellent heat resistance, and a hard material capable of constructing a cutting tool excellent in heat resistance.

従来、切削工具の本体材料にサーメットと呼ばれる硬質材料が利用されている。サーメットは、代表的には、Tiの炭化物(炭化チタン:TiC)やTiの炭窒化物(炭窒化チタン:TiCN)といったTiを含有する化合物を硬質相とし、CoやNiといった鉄族金属を結合相とした焼結体である。特許文献1は、TiCを主たる硬質相としたサーメット、特許文献2は、TiCNを主たる硬質相としたサーメットを開示している。サーメットは、炭化タングステン(WC)を主たる硬質相とする超硬合金と比較して、1.希少資源であるWの使用量を低減できる、2.耐摩耗性に優れる、3.鋼の切削加工における仕上げ面が美麗である、4.軽量である、といった利点を有する。   Conventionally, a hard material called cermet has been used as a main material of a cutting tool. Cermets typically use Ti-containing compounds such as Ti carbide (titanium carbide: TiC) and Ti carbonitride (titanium carbonitride: TiCN) as the hard phase and bond iron group metals such as Co and Ni. It is a sintered body as a phase. Patent Document 1 discloses a cermet having TiC as a main hard phase, and Patent Document 2 discloses a cermet having TiCN as a main hard phase. Cermet is 1. Compared with cemented carbide with tungsten carbide (WC) as the main hard phase, 1. Can reduce the amount of W, a rare resource, 2. Excellent wear resistance, 3. Cutting of steel It has the advantage that the finished surface is beautiful and light weight.

一般的なサーメットでは、硬質相を構成する粒子として、TiCやTiCNを中心組織(コア)とし、TiとTi以外の別の金属元素(例えば、W)との双方を含む複合化合物を、コアの周囲を囲う周辺組織(リム)としたコアリム構造と呼ばれる粒子を含む(特許文献2の図1,図2参照)。   In a general cermet, a composite compound containing TiC and TiCN as a central structure (core) and both Ti and another metal element other than Ti (for example, W) is used as a particle constituting the hard phase. It contains particles called a core rim structure that surrounds the surrounding structure (rim) (see FIGS. 1 and 2 of Patent Document 2).

特開平06-172913号公報Japanese Patent Laid-Open No. 06-172913 特開2010-031308号公報JP 2010-031308

従来のサーメットでは、熱伝導率が低く、耐熱性を改善することが望まれている。   Conventional cermets have low thermal conductivity and are desired to improve heat resistance.

本発明者らが調べたところ、TiとWとの炭窒化物といった、Tiと、周期表4族、5族、6族の金属元素(Tiを除く)とを含むTi複合化合物は、WCに比較して熱伝導率が著しく低く、TiCやTiNに比較しても熱伝導率が低い、との知見を得た。主としてリムを構成するTi複合化合物は、固溶体構造をとることで、熱伝導を支配するフォノンの散乱が起こり易いため、熱伝導性に劣ると考えられる。そして、このような低熱伝導率の複合化合物を多く含むことで、サーメットの熱伝導率が大きく低下する、との知見を得た。特に、TiCを主たる硬質相としたサーメットを製造するにあたり、原料にTiC粉末を用いると、Ti複合化合物を生成し易く、コアリム構造の粒子では、リムが厚く(大きく)なり易い。また、TiCNを主たる硬質相としたサーメットにおいてもTi複合化合物が多いと、熱伝導率が低下する。   As a result of investigation by the inventors, Ti composite compounds containing Ti and periodic table Group 4, Group 5 and Group 6 metal elements (excluding Ti), such as carbonitrides of Ti and W, are WC. It was found that the thermal conductivity is significantly lower than that of TiC and TiN, and that the thermal conductivity is lower than that of TiC and TiN. The Ti composite compound that mainly constitutes the rim is considered to be inferior in thermal conductivity because it takes a solid solution structure and scatters phonons that govern thermal conduction. And the knowledge that the heat conductivity of a cermet falls significantly by including many such low thermal conductivity complex compounds was acquired. In particular, when TiC powder is used as a raw material in producing a cermet containing TiC as a main hard phase, a Ti composite compound is easily generated, and the core rim structure particles tend to be thick (large). Further, even in a cermet containing TiCN as a main hard phase, if the Ti composite compound is large, the thermal conductivity is lowered.

Ti複合化合物が多いサーメットからなる切削工具では、温度が最も高くなる刃先の熱を、切削工具の内部を経て放熱できず、刃先及びその近傍に熱がこもり易くなる。そのため、例えば、刃先温度の影響が大きいすくい面摩耗(クレーター摩耗)や熱亀裂、これらに起因する欠損が増大し易くなり、性能の低下が生じ得る。従って、高速切削(例えば、切削速度200m/min以上)を行う場合などといった刃先温度が高くなり易い切削条件や、加熱と冷却とが繰り返される切削条件などであっても、耐摩耗性や耐欠損性などの性能の低下を抑制でき、耐熱性に優れる切削工具の開発が望まれる。また、このような耐熱性に優れる切削工具を構築することができる素材の開発が望まれる。   In a cutting tool made of cermet with a large amount of Ti composite compound, the heat of the cutting edge at the highest temperature cannot be radiated through the inside of the cutting tool, and the heat tends to be trapped in the cutting edge and the vicinity thereof. Therefore, for example, rake face wear (crater wear) and thermal cracks that are greatly affected by the temperature of the blade edge, and cracks due to these are likely to increase, resulting in performance degradation. Therefore, even in cutting conditions where the cutting edge temperature tends to be high, such as when performing high-speed cutting (for example, cutting speed of 200 m / min or more), and cutting conditions where heating and cooling are repeated, wear resistance and chipping resistance It is desired to develop a cutting tool that can suppress deterioration in performance such as heat resistance and is excellent in heat resistance. Moreover, development of the material which can construct | assemble the cutting tool which is excellent in such heat resistance is desired.

一方、WCは、一般に熱伝導率が高い。従って、サーメットの原料にWCを用いて、焼結体中にWCを再析出させることが考えられる。しかし、原料にWCを用いても、このWCが分解してWを含むTi複合化合物が生成される。WCの添加量によっては、Ti複合化合物にWが含有されて、WCが実質的に析出されず、焼結体中にWCが存在しない、又は少ない場合がある。Ti複合化合物が多い上に、WCが存在しない又は少ないことで、サーメットの熱伝導率が低くなる。   On the other hand, WC generally has a high thermal conductivity. Therefore, it is conceivable to use WC as a raw material for cermet to reprecipitate WC in the sintered body. However, even if WC is used as a raw material, this WC decomposes and a Ti composite compound containing W is produced. Depending on the amount of WC added, W may be contained in the Ti composite compound, WC may not be substantially precipitated, and WC may not be present or small in the sintered body. In addition to the large amount of Ti composite compound and the absence or small amount of WC, the thermal conductivity of the cermet is lowered.

そこで、本発明の目的の一つは、耐熱性に優れる切削工具を構築することができる硬質材料を提供することにある。また、本発明の別の目的は、耐熱性に優れる切削工具を提供することにある。   Then, one of the objectives of this invention is providing the hard material which can construct | assemble the cutting tool excellent in heat resistance. Another object of the present invention is to provide a cutting tool having excellent heat resistance.

本発明者らは、サーメットのような、Tiを含む化合物を硬質相として含有する硬質材料を対象として、耐熱性に優れる構成を検討した。そして、原料を調整して、種々の組織の硬質材料を作製して検討した結果、熱伝導率が非常に低いTi複合化合物相の存在割合を特定の範囲に抑えることで、硬質材料の熱伝導率を大幅に高められる、との知見を得た。また、Ti複合化合物相の存在割合は、原料に用いる組成を調整することで特定の範囲に抑えられる、との知見を得た。本発明は、上記知見に基づくものである。   The inventors of the present invention have studied a configuration excellent in heat resistance for a hard material containing a compound containing Ti as a hard phase, such as cermet. As a result of preparing and studying hard materials with various structures by adjusting the raw materials, the heat conductivity of hard materials is suppressed by keeping the ratio of Ti composite compound phases with very low thermal conductivity within a specific range. We obtained knowledge that the rate could be greatly increased. Moreover, the knowledge that the abundance ratio of the Ti composite compound phase can be suppressed to a specific range by adjusting the composition used for the raw material was obtained. The present invention is based on the above findings.

本発明の硬質材料は、Tiを含有する化合物を硬質相として具え、上記硬質相として、以下のTi化合物相と、Ti複合化合物相とを具える。
Ti化合物相:Tiの窒化物、及びTiの炭窒化物の少なくとも1種のTi化合物からなる相
Ti複合化合物相:Tiと、周期表4族、5族、及び6族から選択される1種以上の金属元素(Tiを除く)とを含むTi複合化合物からなる相
そして、上記硬質材料の断面をとり、この断面に対する上記Ti化合物相の面積率をa、上記Ti複合化合物相の面積率をbとするとき、0.5≦(a/b)を満たす。
The hard material of the present invention includes a compound containing Ti as a hard phase, and includes the following Ti compound phase and Ti composite compound phase as the hard phase.
Ti compound phase: a phase composed of at least one Ti compound of Ti nitride and Ti carbonitride
Ti composite compound phase: a phase composed of a Ti composite compound containing Ti and one or more metal elements (excluding Ti) selected from Group 4, Group 5 and Group 6 of the periodic table. Where the area ratio of the Ti compound phase relative to this cross section is a, and the area ratio of the Ti composite compound phase is b, 0.5 ≦ (a / b) is satisfied.

本発明の硬質材料は、熱伝導率が低いTi複合化合物相の面積率が、Ti化合物相の面積率の2倍以下、更に同等以下である(好ましくはTi化合物よりも少ない)ため、熱伝導性を高められる。従って、本発明の硬質材料から構成される切削工具は、刃先が高温となるような切削条件(例えば、切削速度が200m/min以上といった高速切削)や、冷熱サイクルを行う切削条件(例えば、被削材との接触と切削液による冷却とが繰り返されるフライス加工やエンドミル加工等)などを利用する場合にも、刃先及びその近傍の熱を良好に逃すことができる。そのため、この切削工具は、刃先及びその近傍に熱がこもることを効果的に抑制できる。このように本発明の硬質材料は、刃先及びその近傍が長時間高温に保持されることや、冷熱サイクルが繰り返されることによる切削性能の低下を招き難く、耐熱性に優れる切削工具を構築することができる。特に、WCを含有する形態では、熱伝導率をより高め易い。   In the hard material of the present invention, the area ratio of the Ti composite compound phase having a low thermal conductivity is not more than twice the area ratio of the Ti compound phase, and more or less equivalent (preferably less than the Ti compound). Increases sex. Therefore, the cutting tool composed of the hard material of the present invention has a cutting condition in which the cutting edge becomes high temperature (for example, high speed cutting with a cutting speed of 200 m / min or more) and a cutting condition in which a cooling cycle is performed (for example, the target is cut). Even when milling, end milling, or the like in which contact with the cutting material and cooling with the cutting fluid are repeated, the heat at the cutting edge and its vicinity can be released well. Therefore, this cutting tool can effectively suppress heat accumulation in the cutting edge and the vicinity thereof. As described above, the hard material of the present invention constructs a cutting tool having excellent heat resistance, in which the cutting edge and the vicinity thereof are kept at a high temperature for a long time and the cutting performance is not easily deteriorated due to repeated cooling and heating cycles. Can do. In particular, in the form containing WC, it is easier to increase the thermal conductivity.

本発明の一形態として、上記硬質相として、WCを含有し、上記硬質材料の断面をとったとき、この断面に対する上記WCの面積率が10面積%以上60面積%以下である形態が挙げられる。   As one form of the present invention, there is a form in which, as the hard phase, containing WC and taking a cross section of the hard material, the area ratio of the WC with respect to the cross section is 10 area% or more and 60 area% or less. .

上記形態は、熱伝導率が高いWCを十分に含有することで、熱伝導率を高め易い。また、上記形態は、WCの析出量が上述の特定の範囲を満たすように原料に用いるWCをある程度少なくすることで、(1)WCが十分に存在しながらも、TiとWとを含むTi複合化合物の過剰な生成を抑制できる、(2)原料に用いるWCの量を低減でき、希少資源であるWの使用量を低減できる、という効果を奏する。   The said form is easy to raise thermal conductivity by fully containing WC with high thermal conductivity. In addition, the above-described embodiment reduces the amount of WC used as a raw material to a certain extent so that the amount of WC deposited satisfies the above-mentioned specific range. (1) Ti containing Ti and W even though WC is sufficiently present It is possible to suppress excessive formation of the composite compound, (2) to reduce the amount of WC used as a raw material, and to reduce the amount of W used as a rare resource.

本発明の一形態として、上記硬質材料の熱伝導率が20W/m・K以上70W/m・K以下である形態が挙げられる。   As an embodiment of the present invention, an embodiment in which the thermal conductivity of the hard material is 20 W / m · K or more and 70 W / m · K or less can be given.

上記形態は、熱伝導率が十分に高く、耐熱性に優れる。また、上記形態は、熱伝導率を上述の特定の範囲とすることで、原料に用いるWCの量を低減でき、希少資源であるWの使用量を低減できる。   The above form has a sufficiently high thermal conductivity and excellent heat resistance. Moreover, the said form can reduce the amount of WC used for a raw material, and can reduce the usage-amount of W which is a scarce resource by making heat conductivity into the above-mentioned specific range.

本発明の一形態として、Moの含有量が5質量%以下である形態が挙げられる。   As one form of this invention, the form whose content of Mo is 5 mass% or less is mentioned.

原料にMo2CといったMoを含む化合物を用いた場合、例えば、Ti化合物相と結合相との濡れ性を高められ、焼結性を向上でき、緻密な焼結体を得易い。しかし、Moを過剰に含むと、TiとMoとを含むTi複合化合物が生成され易く、リムの増大を招き、ひいては熱伝導性の低下を招く。上記形態は、原料に用いるMoを含む化合物の含有量を制限することで、Ti複合化合物の存在割合を低減でき、熱伝導性の低下を抑制できる。 When a Mo-containing compound such as Mo 2 C is used as the raw material, for example, the wettability between the Ti compound phase and the binder phase can be improved, the sinterability can be improved, and a dense sintered body can be easily obtained. However, when Mo is excessively contained, a Ti composite compound containing Ti and Mo is likely to be generated, which causes an increase in the rim and a decrease in thermal conductivity. The said form can reduce the content rate of Ti composite compound by restrict | limiting content of the compound containing Mo used for a raw material, and can suppress the heat conductive fall.

本発明の一形態として、X線回折を行ったとき、TiN(220)のピーク及びTiWC2(220)のピークが検出され、上記TiN(220)のピークの積分強度をα、TiWC2(220)のピークの積分強度をβとするとき、(α/β)≧0.3を満たす形態が挙げられる。 As one embodiment of the present invention, when X-ray diffraction is performed, a TiN (220) peak and a TiWC 2 (220) peak are detected, and the integrated intensity of the TiN (220) peak is α, TiWC 2 (220 When the integrated intensity of the peak of) is β, a form satisfying (α / β) ≧ 0.3 can be mentioned.

上記形態は、原料にTiNを多めに使用し、焼結条件を調整してTiNを析出させることで製造できる。原料にTiNを多めに使用することでTiWC2などのTi複合化合物の生成を低減し易く、上記形態は、熱伝導率が低いTi複合化合物が比較的少なく、耐熱性に優れる。 The said form can be manufactured by using TiN abundantly as a raw material, adjusting sintering conditions, and depositing TiN. By using a large amount of TiN as a raw material, the production of Ti composite compounds such as TiWC 2 can be easily reduced, and the above form has relatively few Ti composite compounds with low thermal conductivity and is excellent in heat resistance.

本発明の一形態として、上記Ti化合物相の平均粒径が1μm以上である形態が挙げられる。   As one form of this invention, the form whose average particle diameter of the said Ti compound phase is 1 micrometer or more is mentioned.

上記形態は、Ti化合物相が大きいことで、微粒の場合よりも熱伝導性を高められる。また、上記形態は、原料にある程度大きなTi化合物粉末を使用することで製造されることから、微細な粉末を用いた場合に比較して、焼結時に化合物の溶解や析出が行われ難い。従って、上記形態は、Ti複合化合物の存在割合を低減でき、熱伝導性の低下を抑制できる。この点からも、上記形態は、耐熱性に優れる。   In the above embodiment, the Ti compound phase is large, so that the thermal conductivity can be improved as compared with the case of fine particles. Moreover, since the said form is manufactured by using Ti compound powder large to some extent as a raw material, compared with the case where fine powder is used, melt | dissolution and precipitation of a compound are hard to be performed at the time of sintering. Therefore, the said form can reduce the presence rate of Ti complex compound, and can suppress the heat conductive fall. Also from this point, the said form is excellent in heat resistance.

本発明の一形態として、上記硬質相として、WCを含有し、上記WCの平均粒径が2μm以上である形態が挙げられる。   As an embodiment of the present invention, there may be mentioned an embodiment in which the hard phase contains WC and the average particle diameter of the WC is 2 μm or more.

上記形態は、熱伝導率が高いWCを含有する上に、WCが大きいことで熱伝導率を向上でき、耐熱性により優れる。また、上記形態は、原料にある程度大きなWC粉末を使用することで製造されることから、微細な粉末を用いた場合に比較して、焼結時にWCの溶解やWを含む複合化合物の析出が行われ難い。従って、上記形態は、TiとWとを含むTi複合化合物の存在割合を低減でき、熱伝導性の低下を抑制できる。この点からも、上記形態は、耐熱性に優れる。   In addition to containing WC having a high thermal conductivity, the above form can improve the thermal conductivity due to the large WC, and is more excellent in heat resistance. In addition, since the above form is manufactured by using a certain amount of WC powder as a raw material, compared with the case of using a fine powder, dissolution of WC and precipitation of a composite compound containing W during sintering are performed. It is hard to be done. Therefore, the said form can reduce the presence rate of Ti composite compound containing Ti and W, and can suppress the heat conductive fall. Also from this point, the said form is excellent in heat resistance.

本発明の一形態として、上記断面における上記Ti化合物相の合計面積に対して50%以上がTiの窒化物(TiN)である形態が挙げられる。   As one form of this invention, the form whose 50% or more is a nitride of Ti (TiN) with respect to the total area of the said Ti compound phase in the said cross section is mentioned.

上記形態は、原料にTiNを一定量以上使用し(多めに使用し)、焼結条件を調整してTiNを析出させることで製造できる。原料にTiNを多めに使用することで、Ti複合化合物の生成を低減し易く、上記形態は、熱伝導率が低いTi複合化合物の存在割合を低減できて、耐熱性に優れる。   The said form can be manufactured by using TiN as a raw material more than a fixed amount (it uses a lot), and precipitating TiN by adjusting sintering conditions. By using a large amount of TiN as a raw material, it is easy to reduce the production of Ti composite compounds, and the above form can reduce the abundance of Ti composite compounds with low thermal conductivity, and is excellent in heat resistance.

本発明の一形態として、上記硬質相は、上記Ti化合物相を中心組織とし、上記Ti複合化合物相を周辺組織としたコアリム構造の粒子を含む形態が挙げられる。   As an embodiment of the present invention, the hard phase may include a core rim structure particle having the Ti compound phase as a central structure and the Ti composite compound phase as a peripheral structure.

コアリム構造の粒子は、結合相との濡れ性に優れるTi複合化合物相を具えることで、結合相との濡れ性を高められて焼結性を向上できる。上記形態は、コアリム構造の粒子が存在することで、緻密な焼結体とすることができる。   The particles of the core rim structure include a Ti composite compound phase that is excellent in wettability with the binder phase, so that the wettability with the binder phase can be enhanced and the sinterability can be improved. The said form can be set as a precise | minute sintered compact because the particle | grains of a core rim structure exist.

本発明の一形態として、上記硬質相は、上記Ti化合物相の外周が上記Ti複合化合物相に囲まれていない単体Ti化合物相を20%以下含有する形態が挙げられる。   As an aspect of the present invention, the hard phase includes a form containing 20% or less of a single Ti compound phase in which the outer periphery of the Ti compound phase is not surrounded by the Ti composite compound phase.

上記形態は、熱伝導率が低いリム:Ti複合化合物を有しない単体Ti化合物相を含有することで、熱伝導性を高められる。また、単体Ti化合物相の含有量が特定の範囲であることで、上記形態は、焼結性の低下を抑制できる。   The said form can improve thermal conductivity by containing the simple substance Ti compound phase which does not have a rim: Ti compound compound with low thermal conductivity. Moreover, the said form can suppress the fall of sinterability because content of a simple substance Ti compound phase is a specific range.

本発明の一形態として、上記硬質相は、上記Ti複合化合物相の内部に上記Ti化合物相を含んでいない単体Ti複合化合物相を20%以下含有する形態が挙げられる。   As one form of this invention, the said hard phase includes the form which contains 20% or less of the simple substance Ti compound compound phase which does not contain the said Ti compound phase inside the said Ti compound compound phase.

上記形態は、結合相との濡れ性に優れる単体Ti複合化合物相を含むことで焼結性に優れ、緻密な焼結体にし易い。また、熱伝導率が低い単体Ti複合化合物相の含有量が特定の範囲であることで、上記形態は、単体Ti複合化合物相を含有することによる熱伝導性の低下を抑制できる。   The said form is excellent in sinterability by including the single-piece | unit Ti compound compound phase excellent in the wettability with a binder phase, and it is easy to make it a precise | minute sintered compact. Moreover, since the content of the single Ti composite compound phase having a low thermal conductivity is in a specific range, the above form can suppress a decrease in thermal conductivity due to the inclusion of the single Ti composite compound phase.

本発明の切削工具は、上述の本発明の硬質材料から構成されている。   The cutting tool of this invention is comprised from the hard material of the above-mentioned this invention.

本発明の切削工具は、耐熱性に優れる本発明の硬質材料から構成されることで、耐熱性に優れ、長期に亘り、良好な切れ味を有することができる。   Since the cutting tool of the present invention is composed of the hard material of the present invention having excellent heat resistance, the cutting tool is excellent in heat resistance and can have a good sharpness over a long period of time.

本発明の硬質材料は、耐熱性に優れる切削工具を構築することができる。本発明の切削工具は、耐熱性に優れる。   The hard material of the present invention can construct a cutting tool having excellent heat resistance. The cutting tool of the present invention is excellent in heat resistance.

(A)は、本発明の硬質材料の組織を説明する模式図、(B)は、一般的なサーメットの組織を説明する模式図である。(A) is a schematic diagram illustrating the structure of the hard material of the present invention, and (B) is a schematic diagram illustrating the structure of a general cermet.

以下、本発明の実施の形態をより詳細に説明する。
[硬質材料]
本発明の硬質材料は、セラミックスからなる硬質相と、鉄族金属を主成分として硬質相を結合する結合相とを含み、残部が不可避不純物から構成される焼結体である。硬質相として、Ti化合物相、及びTi複合化合物相の少なくとも二つの相を含む。
Hereinafter, embodiments of the present invention will be described in more detail.
[Hard material]
The hard material of the present invention is a sintered body that includes a hard phase made of ceramics and a binder phase that combines an iron group metal as a main component and bonds the hard phase, and the balance is composed of inevitable impurities. The hard phase includes at least two phases of a Ti compound phase and a Ti composite compound phase.

<硬質相>
(Ti化合物相)
Ti化合物は、Tiの窒化物:TiN、及びTiの炭窒化物:TiCNの少なくとも1種とし、好ましくはTiCを実質的に含有しない。本発明者らが調べた結果、原料にTiCを利用すると、TiNやTiCNを利用する場合よりもTiとWとを含む複合化合物といったTi複合化合物を形成し易く、Ti複合化合物の存在割合が増加し易い、との知見を得た。そこで、原料に用いるTiCの使用量をできるだけ少なくする、好ましくは用いない。その結果、焼結体は、TiCが少ない(焼結体を100質量%として20質量%以下)、又は実質的に存在しない。一方、原料にTiNを利用すると、好ましくはTiNを多く用いると、上述のTi複合化合物を形成し難く、リムの生成を抑制し易い、との知見を得た。また、TiN以外ではTiCNが好ましい、との知見を得た。そこで、硬質相として、積極的に存在させるTi化合物相は、TiN及びTiCNの少なくとも1種とする。
<Hard phase>
(Ti compound phase)
The Ti compound is at least one of Ti nitride: TiN and Ti carbonitride: TiCN, and preferably contains substantially no TiC. As a result of investigations by the present inventors, when TiC is used as a raw material, it is easier to form a Ti composite compound such as a composite compound containing Ti and W than when TiN or TiCN is used, and the existence ratio of the Ti composite compound increases. It was easy to do. Therefore, the amount of TiC used as a raw material is reduced as much as possible, preferably not used. As a result, the sintered body is low in TiC (20% by mass or less with the sintered body being 100% by mass) or substantially absent. On the other hand, when TiN was used as a raw material, it was found that if TiN is used in a large amount, it is difficult to form the Ti composite compound described above, and rim formation is easily suppressed. Moreover, the knowledge that TiCN was preferable other than TiN was obtained. Therefore, the Ti compound phase actively present as the hard phase is at least one of TiN and TiCN.

特に、硬質材料の断面をとり、後述するようにTi化合物相(TiN,TiCN,TiC)を抽出してその合計面積をとったとき、この合計面積を100%として、50%以上、更に70%以上がTiNである形態が好ましい。   In particular, when taking a cross section of a hard material and extracting the Ti compound phase (TiN, TiCN, TiC) and taking the total area as described later, this total area is taken as 100%, and more than 50%, and further 70% The form in which the above is TiN is preferable.

また、X線回折を行ったとき、TiN(220)のピーク及びTiWC2(220)のピークを有しており、TiN(220)のピークの積分強度:αがTiWC2(220)のピークの積分強度:βに対して大きいこと、具体的には、(α/β)≧0.3を満たすことが好ましい。TiWC2は、後述するTi複合化合物の一つである。種々の組成のTi複合化合物について調べた結果、Ti複合化合物の組成比が多少変化しても、TiWC2のピークは近い位置に検出される(概ね同じ位置である)との知見を得た。そこで、Ti複合化合物の指標として、TiWC2を採用する。ピーク強度比:α/βが大きいほど、熱伝導率が低いTiWC2が相対的に少ないといえ、熱伝導性に優れる。(α/β)は、TiNが多い形態であると大きくなる傾向にあり、0.5以上、更に1.0以上がより好ましい。 Further, when X-ray diffraction was performed, it had a TiN (220) peak and a TiWC 2 (220) peak, and the integrated intensity of the TiN (220) peak: α was the peak of TiWC 2 (220). It is preferable that the integrated intensity is larger than β, specifically, (α / β) ≧ 0.3 is satisfied. TiWC 2 is one of Ti composite compounds described later. As a result of investigating the Ti composite compounds having various compositions, it was found that even if the composition ratio of the Ti composite compounds slightly changed, the TiWC 2 peak was detected at a close position (substantially the same position). Therefore, TiWC 2 is adopted as an index of the Ti composite compound. As the peak intensity ratio: α / β is larger, it can be said that TiWC 2 having a lower thermal conductivity is relatively less, and the thermal conductivity is superior. (α / β) tends to increase when the TiN content is high, and is preferably 0.5 or more, more preferably 1.0 or more.

なお、硬質相や結合相、元素の含有量の測定は、例えば、XRDなどで化合物や金属元素の同定を行い、EDX,EPMA,蛍光X線,IPC-AESなどを用いて組成を分析することで行える。   For the measurement of hard phase, binder phase, and element content, for example, identify compounds and metal elements using XRD and analyze the composition using EDX, EPMA, X-ray fluorescence, IPC-AES, etc. You can do it.

(Ti複合化合物相)
Ti複合化合物は、Tiと、周期表4族、5族、及び6族から選択される1種以上の金属元素(Tiを除く)と、炭素(C)、窒素(N)、及び酸素(O)から選択される1種以上の元素との化合物から選択される1種以上が挙げられる。代表的には、Tiと上記金属元素とを含む炭化物、窒化物、酸化物、炭窒酸化物及び炭窒化物から選択される1種以上が挙げられる。具体的には、(Ti,W,Mo,Ta,Nb)(C,N)、(Ti,W,Nb)(C,N)、(Ti,W,Mo,Ta)(C,N)、(Ti,W,Mo,Zr)(C,N)、(Ti,W,Mo)(C,N)、(Ti,W,Mo)N、TiWC2などが挙げられる。特に、炭窒化物が挙げられる。
(Ti compound phase)
The Ti composite compound is composed of Ti, one or more metal elements selected from Group 4, Group 5 and Group 6 (except Ti), carbon (C), nitrogen (N), and oxygen (O 1) or more selected from compounds with one or more elements selected from Typically, at least one selected from carbides, nitrides, oxides, carbonitrides, and carbonitrides containing Ti and the above metal elements can be given. Specifically, (Ti, W, Mo, Ta, Nb) (C, N), (Ti, W, Nb) (C, N), (Ti, W, Mo, Ta) (C, N), (Ti, W, Mo, Zr) (C, N), (Ti, W, Mo) (C, N), (Ti, W, Mo) N, TiWC 2 and the like. In particular, carbonitride is mentioned.

(存在形態)
Ti化合物相とTi複合化合物相とは、代表的には、コアとなるTi化合物の周囲を囲むように、リムとなるTi複合化合物が存在するコアリム構造で存在する。コアリム構造の粒子は、結合相との濡れ性に優れるリムを具えることで、焼結性を高められ、緻密な焼結体とすることができる。また、コアリム構造の粒子は、相対的に熱伝導性に優れるTi化合物相を内包するため、熱伝導性にも優れる。従って、硬質材料の断面をとり、この断面に存在するTi化合物相及びTi複合化合物相の合計面積を後述するように求めたとき、この合計面積を100%として、コアリム構造の粒子を60%以上含有することが好ましい。製造条件などによっては、Ti化合物相は、Ti複合化合物に覆われず露出された単体相(単体Ti化合物相)でも存在し得る。Ti複合化合物相は、Ti化合物相を内包していない単体相(単体Ti複合化合物相)でも存在し得る。単体Ti化合物相は、熱伝導性に優れるものの焼結性に劣ることから、その含有量は、上述の断面におけるTi化合物相の合計面積(コアリム構造の粒子中のTi化合物相の面積と単体Ti化合物相の面積との合計面積)を100%として20%以下、更に10%以下が好ましい(0%を含む)。単体Ti複合化合物相は、焼結性に優れるものの熱伝導性に劣ることから、その含有量は、上述の断面におけるTi複合化合物相の合計面積(コアリム構造の粒子中のTi複合化合物相の面積と単体Ti複合化合物相の面積との合計面積)を100%として20%以下、更に10%以下が好ましい(0%を含む)。
(Existence form)
The Ti compound phase and the Ti composite compound phase typically exist in a core rim structure in which a Ti composite compound serving as a rim exists so as to surround the periphery of the Ti compound serving as a core. The particles having the core rim structure are provided with a rim having excellent wettability with the binder phase, so that the sinterability can be enhanced and a dense sintered body can be obtained. Moreover, since the core rim structure particles enclose a Ti compound phase that is relatively excellent in thermal conductivity, the thermal conductivity is also excellent. Therefore, when taking the cross section of the hard material and calculating the total area of the Ti compound phase and Ti composite compound phase existing in this cross section as described later, the total area is 100% and the core rim structure particles are 60% or more. It is preferable to contain. Depending on the manufacturing conditions, the Ti compound phase may exist even as a single phase (single Ti compound phase) exposed without being covered with the Ti composite compound. The Ti composite compound phase may exist even as a single phase that does not include the Ti compound phase (single Ti composite compound phase). Since the simple Ti compound phase is excellent in thermal conductivity but inferior in sinterability, its content is the total area of the Ti compound phase in the above cross section (the area of the Ti compound phase in the core rim structure particles and the simple Ti compound phase). 20% or less, more preferably 10% or less (including 0%), where 100% is the total area with the area of the compound phase. Since the single Ti composite compound phase is excellent in sinterability but inferior in thermal conductivity, its content is the total area of the Ti composite compound phase in the above-mentioned cross section (the area of the Ti composite compound phase in the core rim structure particles) And the area of the elemental Ti composite compound phase) as 100%, it is preferably 20% or less, more preferably 10% or less (including 0%).

(Ti化合物相とTi複合化合物相との存在割合)
本発明では、Ti複合化合物相の含有量がある程度少ない。具体的には、硬質材料の断面において、Ti化合物相の面積率:aとTi複合化合物相の面積率:bとの比:a/bが0.5以上を満たす。熱伝導率が低いTi複合化合物相が少なめであることで、熱伝導率の低下を抑制できる。上述の面積率の比:a/bの値が大きいほど、Ti複合化合物相が十分に少なく、熱伝導率の低下を抑制でき、1≦(a/b)、更に2≦(a/b)を満たすことが好ましい。但し、a/bが大き過ぎると、結合相との濡れ性に劣る単体Ti化合物相が多く存在することになり、焼結性の低下を招くことから、(a/b)≦10を満たすことが好ましい。
(Existence ratio of Ti compound phase and Ti compound phase)
In the present invention, the content of the Ti composite compound phase is somewhat low. Specifically, in the cross section of the hard material, the ratio of the area ratio of the Ti compound phase: a and the area ratio of the Ti composite compound phase: b: a / b satisfies 0.5 or more. Since there are few Ti composite compound phases with low heat conductivity, the fall of heat conductivity can be suppressed. Ratio of the above-mentioned area ratio: The larger the value of a / b, the smaller the Ti composite compound phase, the lower the thermal conductivity can be suppressed, 1 ≦ (a / b), and further 2 ≦ (a / b) It is preferable to satisfy. However, if a / b is too large, there will be many simple Ti compound phases that are inferior in wettability with the binder phase, leading to a decrease in sinterability, so (a / b) ≦ 10 must be satisfied. Is preferred.

上述の面積率の測定は、以下のように行う。硬質材料の断面を電子顕微鏡や光学顕微鏡といった組織観察が可能な手法で断面像を撮影した後、市販の画像解析ソフトを用いて、取得した画像を画像解析して、硬質相(主としてTi化合物相、Ti複合化合物相、適宜WCなど)及び結合相をそれぞれ抽出する。抽出した各相の面積を求め、更に、求めた面積を用いて面積率を求める。特に、走査型電子顕微鏡:SEMによる画像を用いると、画像解析を行い易く作業性に優れる。観察時の倍率は、硬質相の粒径によって適宜選択できるが、1000倍〜5000倍が利用し易い。SEM像では、代表的には、WCが白、Ti化合物が黒、Ti複合化合物と結合相とがグレー、といったコントラストで表わされる。そのため、Ti複合化合物相と結合相とを分離し難い場合がある。この場合、Ti複合化合物相と結合相との双方を含む面積率から、結合相の配合比率を差し引くことで、Ti複合化物相の面積率を計算する。結合相の配合比率は、上述のEDX,EPMAなどの組成分析を利用することで求められる。例えば、取得した画像において、黒領域(Ti化合物相)の面積率をa、グレー領域(Ti複合化合物相及び結合相の合計領域)の面積率をx、結合相の配合比率(面積率)をcとすると、Ti複合化合物相の面積率:bは、b=x-cと求められ、a/bが求められる。   The measurement of the area ratio is performed as follows. After taking a cross-sectional image of the cross-section of the hard material using a technique that enables observation of the structure, such as an electron microscope or an optical microscope, the obtained image is analyzed using a commercially available image analysis software, and the hard phase (mainly the Ti compound phase) is obtained. , Ti composite compound phase, WC etc. as appropriate) and binder phase. The area of each extracted phase is obtained, and the area ratio is obtained using the obtained area. In particular, when an image obtained by a scanning electron microscope (SEM) is used, it is easy to perform image analysis and excellent workability. The magnification at the time of observation can be appropriately selected depending on the particle size of the hard phase, but it is easy to use 1000 to 5000 times. In the SEM image, typically, the WC is white, the Ti compound is black, and the Ti composite compound and the binder phase are gray. Therefore, it may be difficult to separate the Ti composite compound phase and the binder phase. In this case, the area ratio of the Ti composite phase is calculated by subtracting the compounding ratio of the binder phase from the area ratio including both the Ti composite compound phase and the binder phase. The compounding ratio of the binder phase can be obtained by using the composition analysis such as EDX, EPMA described above. For example, in the acquired image, the area ratio of the black area (Ti compound phase) is a, the area ratio of the gray area (total area of the Ti composite compound phase and the binder phase) is x, the compounding ratio (area ratio) of the binder phase is Assuming c, the area ratio of the Ti composite compound phase: b is obtained as b = xc, and a / b is obtained.

上記面積率の測定は、硬質材料の断面において、表層領域を除く内部領域について行う。表層領域とは、硬質材料の最表面から内部に向かって厚さ1mmまでの領域、及び硬質材料の最表面から内部に向かって、硬質材料の平均厚さの10%までの領域のいずれか小さい方とする。硬質材料の表面及びその近傍には、使用する原料や焼結条件によっては、改質層が生成される可能性がある。そのため、上記断面において少なくとも表層領域を除いた領域=内部領域から測定領域を選択する。上記断面における硬質材料の中心及びその近傍などの十分に内部に位置する箇所を測定領域とすることが好ましい。上述の結合相の面積率は、結合相の体積率を以下のようにして求め、求めた体積率と等価とする。組成分析によって各元素の質量割合を求め、各元素の質量割合やX線回折などから、硬質材料中の化合物の組成及び質量割合を決定する(推定する)。そして、結合相の質量割合及び密度と、化合物の質量割合及び密度とを用いて、結合相の体積率を算出する。   The measurement of the area ratio is performed on the internal region excluding the surface layer region in the cross section of the hard material. The surface layer region is the smaller of the region from the outermost surface of the hard material up to a thickness of 1 mm and the region from the outermost surface of the hard material to the inside up to 10% of the average thickness of the hard material. And Depending on the raw materials used and sintering conditions, a modified layer may be formed on the surface of the hard material and in the vicinity thereof. Therefore, the measurement region is selected from the region excluding at least the surface layer region in the cross section = the internal region. It is preferable that a location located sufficiently inside such as the center of the hard material in the cross section and the vicinity thereof is set as the measurement region. The above-mentioned area ratio of the binder phase is equivalent to the volume ratio obtained by determining the volume ratio of the binder phase as follows. The mass ratio of each element is obtained by composition analysis, and the composition and mass ratio of the compound in the hard material are determined (estimated) from the mass ratio of each element and X-ray diffraction. And the volume ratio of a binder phase is computed using the mass ratio and density of a binder phase, and the mass ratio and density of a compound.

(その他の硬質相)
硬質相として熱伝導率が高いWCを含む形態は、熱伝導性を高められて好ましい。WCの含有量が多いほど、熱伝導率を高められるが、上述のように希少資源であるWの使用量の増大を招く上に、Ti複合化合物を生成し易くなり、好ましくない。従って、WCの含有量は、硬質材料の断面をとったとき、この断面に対する面積率が10面積%以上60面積%以下が好ましく、20面積%以上50面積%以下がより好ましい。
(Other hard phases)
A form containing WC having a high thermal conductivity as the hard phase is preferable because the thermal conductivity is enhanced. As the WC content increases, the thermal conductivity can be increased. However, as described above, the amount of W, which is a rare resource, is increased, and a Ti composite compound is easily generated. Accordingly, the content of WC is preferably 10 area% or more and 60 area% or less, and more preferably 20 area% or more and 50 area% or less when the cross section of the hard material is taken.

(粒子径)
硬質相を構成する粒子は、一般に、その粒径が大きいほど、熱伝導性を高め易く好ましい。特に、Ti化合物相の平均粒径(コアリム構造の場合、コアの平均粒径)は、1μm以上が好ましく、1μm〜4μm程度がより好ましい。Ti複合化合物相の平均粒径(コアリム構造の場合、コアを含むリムの平均粒径)が1.5μm〜4.5μm程度が好ましい。WCを含有する場合、WCの平均粒径は、2μm以上が好ましく、2μm〜6μm程度がより好ましい。
(Particle size)
In general, the larger the particle size of the particles constituting the hard phase, the easier it is to increase the thermal conductivity, and the more preferable. In particular, the average particle size of the Ti compound phase (in the case of a core rim structure, the average particle size of the core) is preferably 1 μm or more, and more preferably about 1 μm to 4 μm. The average particle size of the Ti composite compound phase (in the case of the core rim structure, the average particle size of the rim including the core) is preferably about 1.5 μm to 4.5 μm. When WC is contained, the average particle diameter of WC is preferably 2 μm or more, and more preferably about 2 μm to 6 μm.

<結合相>
結合相は、結合相を100質量%として、80質量%以上が鉄族金属であることが好ましく、特に、焼結時の液相移動が生じ難いCoが好ましい。その他、原料に起因すると考えられる元素が含有(固溶)されることを許容する。結合相の含有量は、硬質材料を100質量%として、8質量%以上20質量%以下が挙げられる。
<Binder phase>
The binder phase is preferably 80% by mass or more of an iron group metal with the binder phase being 100% by mass, and particularly Co, which is less liable to cause liquid phase transfer during sintering. In addition, it is allowed to contain (solid solution) an element considered to be caused by the raw material. The content of the binder phase is 8% by mass to 20% by mass with 100% by mass of the hard material.

<その他の含有物>
その他、硬質材料は、Cr,Ta,Nb,Zr,V,Moなどの金属、(Ta,Nb)C,VC,Cr3C2,NbC,Mo2Cなどの金属化合物を合計で20質量%以下の範囲で含有することができる。これらの金属や金属化合物を含有する形態は、粒成長の抑制効果や、結合相への固溶による靭性の向上効果が期待できる。但し、Mo2CといったMoを含む化合物を多く用いると、Ti複合化合物を生成し易く、リムが厚くなり易い。従って、硬質材料中のMoの含有量は、5質量%以下、更に3質量%以下が好ましい。MoやMoを含む化合物を含有していなくてもよい。
<Other contents>
In addition, hard materials include metals such as Cr, Ta, Nb, Zr, V, and Mo, and metal compounds such as (Ta, Nb) C, VC, Cr 3 C 2 , NbC, and Mo 2 C in total 20% by mass It can contain in the following ranges. The form containing these metals and metal compounds can be expected to have an effect of suppressing grain growth and an effect of improving toughness due to solid solution in the binder phase. However, if a large amount of a compound containing Mo such as Mo 2 C is used, a Ti composite compound is likely to be generated, and the rim tends to be thick. Accordingly, the Mo content in the hard material is preferably 5% by mass or less, and more preferably 3% by mass or less. It does not have to contain Mo or a compound containing Mo.

組成や各相の含有量、後述する熱伝導率が所望のものとなるように原料の組成や含有量、平均粒径を調整する。   The composition, content, and average particle size of the raw materials are adjusted so that the composition, the content of each phase, and the thermal conductivity described later are desired.

<熱伝導率>
本発明では、Ti複合化合物相が比較的少ないことで、熱伝導率が高い。硬質相の組成や含有量、粒径にもよるが、例えば、熱伝導率が20W/m・K以上を満たす形態が挙げられる。熱伝導率が高いほど刃先及びその近傍からの熱を外部に伝え易く、刃先及びその近傍に熱がこもることを抑制でき、耐熱性に優れる切削工具を構築できる。従って、熱伝導率は、30W/m・K以上、更に40W/m・K以上が好ましい。但し、熱伝導率は、硬質材料中のWCの含有量に相関があり、WCを多く含むほど熱伝導率が高くなるものの、原料に用いるWの使用量が増加することから、70W/m・K以下が好ましい。
<Thermal conductivity>
In the present invention, the thermal conductivity is high because the Ti composite compound phase is relatively small. Although depending on the composition, content and particle size of the hard phase, for example, a form satisfying a thermal conductivity of 20 W / m · K or more can be mentioned. The higher the thermal conductivity, the easier it is to transfer the heat from the cutting edge and its vicinity to the outside, and it is possible to prevent the heat from being trapped in the cutting edge and its vicinity, and it is possible to construct a cutting tool with excellent heat resistance. Accordingly, the thermal conductivity is preferably 30 W / m · K or more, more preferably 40 W / m · K or more. However, the thermal conductivity has a correlation with the content of WC in the hard material, and the higher the amount of WC, the higher the thermal conductivity, but the amount of W used as a raw material increases, so 70 W / m K or less is preferable.

<用途>
本発明の硬質材料は、後述するような種々の切削工具の素材に好適に利用することができる。
<Application>
The hard material of the present invention can be suitably used for various cutting tool materials as described later.

[切削工具]
本発明の切削工具は、上述の特定の硬質相を具える本発明の硬質材料から構成される。この切削工具は、種々の形状、大きさを有することができる。代表的には、フライス加工用刃先交換型チップ、旋削用刃先交換型チップ、ドリル、フライス、エンドミル、メタルソー、歯切工具、リーマ、タップなどが挙げられる。
[Cutting tools]
The cutting tool of this invention is comprised from the hard material of this invention which provides the above-mentioned specific hard phase. This cutting tool can have various shapes and sizes. Representatively, there are a cutting edge exchangeable tip for milling, a cutting edge exchangeable tip for turning, a drill, a milling cutter, an end mill, a metal saw, a gear cutting tool, a reamer, a tap, and the like.

[製造方法]
本発明の硬質材料は、一般的なサーメットと同様な製造方法によって製造することができる。具体的には、原料粉末を用意して混合した後、適宜造粒を行い、造粒粉末を金型に供給して押圧し、所望の形状のプレス成形体を作製し、このプレス成形体を焼結することで得られる。
[Production method]
The hard material of the present invention can be produced by the same production method as that for general cermets. Specifically, after preparing and mixing raw material powders, granulation is performed as appropriate, and the granulated powder is supplied to a mold and pressed to produce a press-molded body having a desired shape. Obtained by sintering.

原料粉末は、TiN,TiCN,TiCといったTiを含む化合物の合計を100質量%とするとき、50質量%以上、更に70質量%以上、特に75質量%以上がTiNからなる粉末とすると、熱伝導率が低いTi複合化合物を形成し難く好ましい。Tiを含む化合物からなる原料粉末は、TiN粉末とTiCN粉末との混合粉末、又はTiN粉末のみが好ましく、Ti複合化合物を形成し易いTiCは用いないことが好ましい。原料に用いるTiNが多いほど、TiNが多く存在する形態を製造し易い。また、TiとWとを含む複合化合物(代表的には炭窒化物)を原料粉末に用いると、Ti複合化合物を形成し易く、焼結体の熱伝導率が低下し易い。そのため、TiとWとを含む複合化合物も原料粉末に用いないことが好ましい。   When the total amount of Ti-containing compounds such as TiN, TiCN, and TiC is 100% by mass, the raw material powder has a thermal conductivity of 50% by mass or more, more than 70% by mass, especially 75% by mass or more. It is preferable that a Ti composite compound having a low rate is difficult to form. The raw material powder made of a compound containing Ti is preferably a mixed powder of TiN powder and TiCN powder, or TiN powder alone, and TiC that easily forms a Ti composite compound is preferably not used. The more TiN used as a raw material, the easier it is to produce a form in which more TiN exists. Further, when a composite compound containing Ti and W (typically carbonitride) is used as the raw material powder, the Ti composite compound is easily formed and the thermal conductivity of the sintered body is likely to be lowered. Therefore, it is preferable not to use a composite compound containing Ti and W as the raw material powder.

WCを含有する硬質材料とする場合、原料にWC粉末を比較的多めに用いる(好ましくは原料粉末中の20質量%超)。後述する試験例に示すように原料に用いるWC粉末が少ないと、焼結体中にWCが実質的に存在せず、原料のWC粉末はTi複合化合物相の形成にのみ利用される傾向にある。その他、周期表4族,5族,及び6族から選択される1種以上の金属元素の炭化物、窒化物、及び炭窒化物から選択される1種以上の化合物(上述のTiN,TiCN,TiC及びWCを除く)からなる粉末を原料に添加することができる。上述のようにMo2CといったMo化合物の添加量は少ない方が好ましく、原料粉末の合計を100質量%として、5質量%以下が好ましく、用いなくてもよい。 When a hard material containing WC is used, a relatively large amount of WC powder is used as a raw material (preferably more than 20% by mass in the raw material powder). As shown in the test examples to be described later, when the WC powder used for the raw material is small, WC is not substantially present in the sintered body, and the WC powder of the raw material tends to be used only for the formation of the Ti composite compound phase. . In addition, one or more compounds selected from carbides, nitrides, and carbonitrides of one or more metal elements selected from Group 4, Group 5, and Group 6 of the periodic table (TiN, TiCN, TiC described above) And WC) can be added to the raw material. As described above, the addition amount of Mo compound such as Mo 2 C is preferably small, and the total amount of the raw material powder is 100% by mass, preferably 5% by mass or less, and may not be used.

更に、所定量を秤量した原料粉末を混合する工程では、混合時間が短い方がTi複合化合物の生成を抑制し易い、との知見を得た。混合時間を短くすることで、原料粉末を構成する金属化合物が過度に粉砕されることを抑制できる。その結果、金属化合物の微粉末を低減でき、焼結工程においてこの微粉末の溶解(固溶)及び再析出を抑制できるため、Ti複合化合物の生成を抑制し易い。また、混合時間を短くすることで、原料粉末の粒径を維持し易くなり、硬質相を比較的大きくすることができ(平均粒径:1μm〜4.5μm程度)、放熱性を高められる。混合にボールミルなどを利用する場合、具体的な混合時間は、2時間〜15時間程度が挙げられる。又は、粉砕メディアを用いないメディアレス混合とすると、原料粉末の粒径を更に維持し易い。メディアレス混合は、例えば、原料粉末にエタノールやアセトンなどの有機溶媒を合わせてスラリーとし、このスラリーに超音波を照射しながら、粉砕メディアを用いることなく混合する手法が挙げられる。   Furthermore, in the process of mixing the raw material powders weighed in a predetermined amount, it was found that the shorter the mixing time, the easier the generation of the Ti composite compound is suppressed. By shortening the mixing time, the metal compound constituting the raw material powder can be prevented from being excessively pulverized. As a result, the fine powder of the metal compound can be reduced, and the dissolution (solid solution) and reprecipitation of the fine powder can be suppressed in the sintering step, and thus the formation of the Ti composite compound can be easily suppressed. Also, by shortening the mixing time, it becomes easy to maintain the particle size of the raw material powder, the hard phase can be made relatively large (average particle size: about 1 μm to 4.5 μm), and heat dissipation can be improved. When a ball mill or the like is used for mixing, the specific mixing time is about 2 to 15 hours. Or if it is medialess mixing which does not use a grinding | pulverization media, it will be easier to maintain the particle size of raw material powder. Medialess mixing includes, for example, a method in which raw material powder is mixed with an organic solvent such as ethanol or acetone to form a slurry, and the slurry is mixed without pulverizing media while being irradiated with ultrasonic waves.

焼結条件は、例えば、真空雰囲気で1300℃〜1500℃に0.5時間〜3.0時間保持することが挙げられる。   Examples of the sintering condition include holding at 1300 ° C. to 1500 ° C. for 0.5 hours to 3.0 hours in a vacuum atmosphere.

その他、ホーニングといった刃先処理、CVD法やPVD法による被覆膜の形成などを適宜行うことができる。   In addition, blade edge processing such as honing, and formation of a coating film by a CVD method or a PVD method can be appropriately performed.

[試験例1]
種々の組成の原料粉末を用いて、硬質相としてTiを含有する化合物からなる相を含む焼結体を作製し、組織観察を行った。また、この焼結体を切削工具として、切削性能を調べた。
[Test Example 1]
Using raw material powders of various compositions, sintered bodies containing phases composed of compounds containing Ti as hard phases were prepared, and the structure was observed. Further, cutting performance was examined using this sintered body as a cutting tool.

この試験では、原料粉末として表1に示す組成の粉末を用意した。試料No.1-200は、比較試料であり、WC-Co基超硬合金のみからなる焼結体である。用意した各粉末の平均粒径は、WC:3μm、TiCN:3μm、TiN:2μm、TiC:3μmである。原料粉末に用いたTiを含む化合物:TiN,TiCN,TiCの合計を100質量%とするときのTiNの質量割合(%)を表1に示す。   In this test, a powder having the composition shown in Table 1 was prepared as a raw material powder. Sample No. 1-200 is a comparative sample, which is a sintered body made of only a WC-Co based cemented carbide. The average particle diameters of the prepared powders are WC: 3 μm, TiCN: 3 μm, TiN: 2 μm, and TiC: 3 μm. Table 1 shows the mass ratio (%) of TiN when the total of Ti-containing compounds: TiN, TiCN, and TiC used as the raw material powder is 100 mass%.

表1に示す各組成の粉末をエタノール中、ボールミルによって混合した。混合時間は、表1に示す時間(時間)とした。混合後、各組成の粉末を造粒して、平均粒径100μmの造粒粉末を得る。造粒粉末を秤取り、金型(型番:SNGN120408)に各粉末を供給して、1ton/cm2の圧力でプレス成形し、プレス成形体を作製する。得られたプレス成形体を真空雰囲気、1430℃×60minの条件で焼結して焼結体を得る。 Powders having the respective compositions shown in Table 1 were mixed in ethanol by a ball mill. The mixing time was the time (time) shown in Table 1. After mixing, the powder of each composition is granulated to obtain a granulated powder having an average particle size of 100 μm. The granulated powder is weighed, each powder is supplied to a mold (model number: SNGN120408), and press-molded at a pressure of 1 ton / cm 2 to produce a press-molded body. The obtained press-molded body is sintered under a vacuum atmosphere at 1430 ° C. for 60 minutes to obtain a sintered body.

Figure 0005534567
Figure 0005534567

得られた各焼結体について、組成をSEM-EDX装置を用いて調べた。その結果、試料No.1-1〜No.1-8は、TiN及びTiCNの少なくとも一方:Ti化合物相と、TiとWとを含有する複合化合物:Ti複合化合物相とが存在し、試料No.1-110は、Ti化合物相が実質的に存在しなかった。また、試料No.1-6を除く試料No.1-1〜No.1-5,No.1-7,No.1-8は、WCが存在した。更に、試料No.1-1〜No.1-8はいずれも、Moの含有量が5質量%以下であり、原料に用いたMo2Cの添加量と同等以下であった。 About each obtained sintered compact, the composition was investigated using the SEM-EDX apparatus. As a result, samples No. 1-1 to No. 1-8 have at least one of TiN and TiCN: a Ti compound phase and a composite compound containing Ti and W: a Ti composite compound phase. .1-110 was substantially free of Ti compound phase. In addition, WC was present in samples No. 1-1 to No. 1-5, No. 1-7, and No. 1-8 except for sample No. 1-6. Furthermore, in all of Samples No. 1-1 to No. 1-8, the Mo content was 5% by mass or less, which was equal to or less than the addition amount of Mo 2 C used as a raw material.

得られた各焼結体を切断し、焼結体の断面をSEMによって観察した。その結果、試料No.1-1〜No.1-8の焼結体(硬質材料1)はいずれも、図1(A)に示すように、硬質相として、Ti化合物相12を中心組織とし、Ti複合化合物相13を周辺組織とするコアリム構造の粒子10が存在する。そして、これらの焼結体はいずれも、コアリム構造の粒子10におけるコア:Ti化合物相12が大きく、リム:Ti複合化合物相13が薄い。また、試料No.1-1〜No.1-8は、Ti化合物相12のみからなる単体Ti化合物相20の粒子やTi複合化合物相13のみからなる単体Ti複合化合物相30の粒子が若干存在する。一方、原料にTiNを用いずTiCを用いた試料No.1-100,No.1-110の焼結体(硬質材料100)は、図1(B)に示すように、リム:Ti複合化合物相13が厚いコアリム構造の粒子110が存在する上に、単体Ti複合化合物相30が比較的多く存在する。   Each obtained sintered body was cut, and the cross section of the sintered body was observed by SEM. As a result, all of the sintered bodies (hard materials 1) of Samples No. 1-1 to No. 1-8, as shown in FIG. 1 (A), have a Ti compound phase 12 as a central structure as a hard phase. In addition, there are core rim structured particles 10 having the Ti composite compound phase 13 as a surrounding structure. Each of these sintered bodies has a large core: Ti compound phase 12 and a thin rim: Ti compound compound phase 13 in the core rim structure particle 10. Samples No.1-1 to No.1-8 have some particles of the single Ti compound phase 20 consisting of only the Ti compound phase 12 and some particles of the single Ti compound compound phase 30 consisting of only the Ti composite compound phase 13. To do. On the other hand, the sintered bodies (hard material 100) of samples No. 1-100 and No. 1-110 using TiC without using TiN as a raw material are rim: Ti composite compound as shown in FIG. In addition to the presence of the core rim structure particles 110 having a thick phase 13, there are a relatively large amount of the simple Ti composite compound phase 30.

上述の焼結体の断面のSEM像を用いて、Ti化合物とTi複合化合物とをそれぞれ抽出し、各断面におけるTi化合物相の面積率をa、Ti複合化合物相の面積率をbとし、その比:a/bを求めた。その結果を表3に示す。また、断面におけるTi化合物相の合計面積に対するTiNの面積割合(%)を求めた。その結果も表3に示す。   Using the SEM image of the cross section of the sintered body described above, each of the Ti compound and the Ti composite compound was extracted, and the area ratio of the Ti compound phase in each cross section was a, and the area ratio of the Ti composite compound phase was b, Ratio: a / b was determined. The results are shown in Table 3. Moreover, the area ratio (%) of TiN with respect to the total area of the Ti compound phase in a cross section was calculated | required. The results are also shown in Table 3.

更に、上述の焼結体の断面のSEM像を用いてWCを抽出し、上述の断面におけるWCの面積率(%)を求めた。その結果を表3に示す。   Furthermore, WC was extracted using the SEM image of the cross section of the sintered body, and the area ratio (%) of WC in the cross section was obtained. The results are shown in Table 3.

更に、上述の焼結体の断面のSEM像を用いて、Ti化合物相の合計面積に対する単体Ti化合物相の面積率(%)、Ti複合化合物相の合計面積に対する単体Ti複合化合物相の面積率(%)を求めた。これらの結果も表3に示す。   Furthermore, using the SEM image of the cross section of the sintered body described above, the area ratio (%) of the single Ti compound phase relative to the total area of the Ti compound phase, the area ratio of the single Ti compound phase relative to the total area of the Ti compound phase (%) Was calculated. These results are also shown in Table 3.

更に、抽出したTi化合物相の平均粒径(μm)、WCの平均粒径(μm)を求めた。これらの結果も表3に示す。平均粒径は、上述の焼結体の断面のSEM像(5000倍)と、画像解析装置:Mac-VIEW(株式会社マウンテック製)とを用いて、各粒子(n≧30)について水平方向のferet径及び垂直方向のferet径のそれぞれを測定し、測定した水平方向のferet径と垂直方向のferet径との平均とした。   Further, the average particle size (μm) of the extracted Ti compound phase and the average particle size (μm) of WC were determined. These results are also shown in Table 3. The average particle diameter is determined by using the SEM image (5000 times) of the cross section of the sintered body described above and an image analyzer: Mac-VIEW (manufactured by Mountec Co., Ltd.) for each particle (n ≧ 30) in the horizontal direction. Each of the feret diameter and the vertical feret diameter was measured, and the average of the measured horizontal feret diameter and the vertical feret diameter was taken.

更に、上述の焼結体の断面に対してX線回折を行い、TiN(220)のピーク及びTiWC2(220)のピークの有無を調べた。そして、TiN(220)のピークの積分強度をα、TiWC2(220)のピークの積分強度をβとするときの比:α/βを求めた。その結果も表3に示す。この試験では、X線回折の対象を焼結体の断面としたが、焼結体の表面でもよい。 Further, X-ray diffraction was performed on the cross section of the sintered body, and the presence or absence of the TiN (220) peak and TiWC 2 (220) peak was examined. Then, a ratio α / β when the integrated intensity of the peak of TiN (220) is α and the integrated intensity of the peak of TiWC 2 (220) is β was obtained. The results are also shown in Table 3. In this test, the object of X-ray diffraction was the cross section of the sintered body, but the surface of the sintered body may be used.

得られた各焼結体から熱特性を測定するための試験片を作製し、熱伝導率(W/m・K)を調べた。その結果を表3に示す。ここでは、熱伝導率は、熱伝導率=比熱×熱拡散率×密度によって算出する。比熱及び熱拡散率の測定には、市販の測定器を利用できる。例えば、アルバック理工株式会社製 TC-7000を用いる場合、各焼結体から測定用試料(8mm×8mm×1.5mm)を切り出し、レーザーフラッシュ法にて、比熱と熱拡散率とを測定できる。密度は、アルキメデス法にて求められる。上記測定用試料の切り出しが難しい形状や大きさの焼結体である場合には、例えば、市販のサーマルマイクロスコープにて熱浸透率を測定したり、示差走査熱量測定(DSC)を用いて比熱を測定したりして、熱浸透率=(熱伝導率×密度×比熱)1/2を用いて、熱伝導率を算出することができる。 Test pieces for measuring thermal properties were prepared from the obtained sintered bodies, and the thermal conductivity (W / m · K) was examined. The results are shown in Table 3. Here, the thermal conductivity is calculated by thermal conductivity = specific heat × thermal diffusivity × density. A commercially available measuring instrument can be used for the measurement of specific heat and thermal diffusivity. For example, when using TC-7000 manufactured by ULVAC-RIKO, a sample for measurement (8 mm × 8 mm × 1.5 mm) can be cut out from each sintered body, and specific heat and thermal diffusivity can be measured by a laser flash method. The density is determined by the Archimedes method. In the case of a sintered body having a shape or size that makes it difficult to cut out the measurement sample, for example, the thermal permeability is measured with a commercially available thermal microscope, or the specific heat is measured using differential scanning calorimetry (DSC). Or the thermal conductivity can be calculated using the thermal permeability = (thermal conductivity × density × specific heat) 1/2 .

得られた各焼結体に研削加工(平面研磨)を施した後、刃先処理加工を施し、切削工具を得る。得られた切削工具を表2に示す条件で切削試験(旋削加工)を行って、切削性能を調べた。その結果を表3に示す。この試験では、切削性能として、10分間の切削試験後における欠損の有無を目視及び顕微鏡を利用して確認した。   Each of the obtained sintered bodies is subjected to grinding processing (planar polishing), and then subjected to blade edge processing to obtain a cutting tool. The obtained cutting tool was subjected to a cutting test (turning) under the conditions shown in Table 2 to examine the cutting performance. The results are shown in Table 3. In this test, the presence or absence of defects after a 10-minute cutting test was confirmed visually and using a microscope as cutting performance.

Figure 0005534567
Figure 0005534567

Figure 0005534567
Figure 0005534567

表3に示すように、Ti化合物相の面積率とTi複合化合物の面積率との比:a/bが0.5以上である硬質材料から構成された試料No.1-1〜No.1-8の切削工具は、刃先が高温となるような切削(ここでは、切削速度が200m/min以上といった高速切削)を行った場合でも、耐摩耗性に優れる上に、欠損し難く、靭性にも優れることが分かる。また、試料No.1-1〜No.1-8は、WC-Co基超硬合金である試料No.1-200よりも熱伝導率が低いもののある程度高いことが分かる。具体的には、試料No.1-1〜No.1-8は、熱伝導率が20W/m・K以上であり、組成によっては更に熱伝導率が高い。更に、試料No.1-1〜No.1-8は、単体Ti複合化合物相も少ないことが分かる。これらのことから、上述のような刃先が高温となる切削条件であっても、試料No.1-1〜No.1-8の切削工具が優れた切削性能を有していた理由は、熱伝導率が低いTi複合化合物が少なく、硬質材料の熱伝導率の低下を抑制でき、切削時に生じた刃先の熱を外部に逃して、刃先及びその近傍に熱がこもることを抑制できたため、と考えられる。   As shown in Table 3, the ratio between the area ratio of the Ti compound phase and the area ratio of the Ti composite compound: Samples No. 1-1 to No. 1-8 composed of a hard material having a / b of 0.5 or more This cutting tool is excellent in wear resistance, hard to chip, and tough even when performing cutting that causes the cutting edge to become hot (here, cutting speed is 200 m / min or more). I understand that. It can also be seen that Samples No. 1-1 to No. 1-8 have a lower thermal conductivity than Sample No. 1-200, which is a WC—Co based cemented carbide, but are somewhat higher. Specifically, samples No. 1-1 to No. 1-8 have a thermal conductivity of 20 W / m · K or more, and the thermal conductivity is higher depending on the composition. Further, it can be seen that Samples No. 1-1 to No. 1-8 also have a small amount of the single Ti composite compound phase. From these facts, the reason why the cutting tools of Sample No. 1-1 to No. 1-8 had excellent cutting performance even under the cutting conditions in which the cutting edge becomes high temperature as described above is that Because there are few Ti composite compounds with low conductivity, it is possible to suppress the decrease in the thermal conductivity of hard materials, escape the heat of the cutting edge generated at the time of cutting to the outside, it is possible to suppress the accumulation of heat in the cutting edge and its vicinity, Conceivable.

特に、試料No.1-1〜No.1-8においてWCを含有する場合、WCの含有量が多いほど、硬質材料の熱伝導率が高く、面積率が10%以上であると、25W/m・K以上であるものも得られることが分かる。また、試料No.1-1〜No.1-8においてTi化合物相やWCの平均粒径が大きいほど、熱伝導率が高い傾向にあることが分かる。更に、試料No.1-1〜No.1-8は、単体Ti複合化合物相及び単体Ti化合物相の双方が少ないことから、両相の多くはコアリム構造の粒子として存在し、コアリム構造の粒子は、Ti複合化合物相が薄い、といえる。   In particular, when WC is contained in Samples No. 1-1 to No. 1-8, the greater the WC content, the higher the thermal conductivity of the hard material, and the area ratio is 10% or more. It can be seen that those with m · K or more can also be obtained. In Samples No. 1-1 to No. 1-8, it can be seen that the larger the average particle size of Ti compound phase and WC, the higher the thermal conductivity. Furthermore, since Samples No. 1-1 to No. 1-8 have both a simple Ti composite compound phase and a simple Ti compound phase, most of both phases exist as core rim structured particles. It can be said that the Ti composite compound phase is thin.

そして、このような耐熱性に優れる試料No.1-1〜No.1-8は、原料にTiCやTi複合化合物を用いず、TiNやTiCNを用いること、好ましくはTiNを多く利用する(具体的にはTiNの割合を50質量%以上、更に70質量%以上とする)ことで、製造できるといえる。原料にTiNを多く用いるほど、また原料の混合時間を短くするほど、焼結体中のTiNの面積割合が多くなったり(例えば、TiNの面積割合が50%以上)、焼結体におけるTiN(220)のピークの積分強度の比:α/βが大きくなったりしている(例えば、α/βが0.3以上)。また、MoやMo化合物の添加量を5質量%以下、好ましくは用いないことでも、α/βを大きくすることができる。更に、原料にWC粉末を用いる場合、使用量が少ないと(ここでは原料全体に対して20質量%以下)、焼結体中にWC相が存在し難く、原料粉末中のWは、Ti複合化合物相として存在し得ると考えられる。一方、WC粉末の使用量がある程度多いと、WC相が析出されて、熱伝導性に優れるといえる。従って、WC粉末を原料に用いる場合には、少なくともWC相が析出可能な量(原料粉末の20質量%超、更に30質量%以上)とすることが好ましいといえる。このように原料粉末の組成を調整することで、焼結体の組織を変化させて、Ti複合化合物の生成を抑制することで、熱伝導率をより高めることができるといえる。   Samples No. 1-1 to No. 1-8 having excellent heat resistance do not use TiC or Ti composite compounds as raw materials but use TiN or TiCN, and preferably use a lot of TiN (specifically In particular, it can be said that the TiN ratio can be 50% by mass or more, and further 70% by mass or more). The more TiN is used as the raw material, and the shorter the mixing time of the raw material, the larger the area ratio of TiN in the sintered body (for example, the area ratio of TiN is 50% or more), TiN in the sintered body ( 220) The peak integrated intensity ratio: α / β is increased (for example, α / β is 0.3 or more). Further, α / β can be increased even when the amount of Mo or Mo compound added is 5 mass% or less, preferably not used. Furthermore, when WC powder is used as a raw material, if the amount used is small (here, 20% by mass or less based on the whole raw material), the WC phase hardly exists in the sintered body, and W in the raw material powder is Ti composite. It is believed that it can exist as a compound phase. On the other hand, when the amount of WC powder used is large to some extent, it can be said that the WC phase is precipitated and the thermal conductivity is excellent. Therefore, when WC powder is used as a raw material, it can be said that it is preferable to make it at least an amount capable of precipitating the WC phase (more than 20% by mass of the raw material powder and more than 30% by mass). By adjusting the composition of the raw material powder in this manner, it can be said that the thermal conductivity can be further increased by changing the structure of the sintered body and suppressing the formation of the Ti composite compound.

なお、試料No.1-1〜No.1-8について、Ti化合物相の平均粒径と同様にして基材中のTi複合化合物の平均粒径を求めたところ(コアリム構造の粒子については、リムの外径を測定)、Ti複合化合物:1.5μm〜2.5μmであった。   For samples No. 1-1 to No. 1-8, the average particle size of the Ti composite compound in the substrate was determined in the same manner as the average particle size of the Ti compound phase (for the core rim structure particles, The outer diameter of the rim was measured), Ti composite compound: 1.5 μm to 2.5 μm.

[試験例2]
原料粉末として、平均粒径が異なる粉末を用意して、試験例1と同様に焼結体を作製して組織を調べた。
[Test Example 2]
As raw material powders, powders having different average particle diameters were prepared, and sintered bodies were produced in the same manner as in Test Example 1 to examine the structure.

この試験では、表4に示す平均粒径の粉末を用意し、表4に示す配合比とした以外の点は、試験例1と同様にして焼結体を作製した。得られた焼結体を試験例1と同様に断面をとり、SEMによって組織観察を行った。その結果を表5に示す。   In this test, a powder having an average particle diameter shown in Table 4 was prepared, and a sintered body was produced in the same manner as in Test Example 1 except that the blending ratio shown in Table 4 was used. The obtained sintered body was cut in the same manner as in Test Example 1, and the structure was observed by SEM. The results are shown in Table 5.

Figure 0005534567
Figure 0005534567

Figure 0005534567
Figure 0005534567

表5に示すように、同じ組成の原料粉末であっても、大きな粉末とすると共に、混合時間を短めにすることで、硬質相が大きい焼結体(例えば、Ti化合物相の平均粒径が1μm以上、WCの平均粒径が2μm以上の焼結体)が得られることが分かる。また、硬質相の平均粒径が大きな焼結体は、熱伝導率が高いことが分かる。更に、WCの平均粒径が焼結体の熱伝導率に大きく影響していることが分かる。大きな粉末を原料に用意しても、混合時間が長いと、焼結体中の硬質相が微細になり、熱伝導率が低下することが分かる。従って、Tiを含有する化合物からなる相を硬質相とする硬質材料であって、熱伝導率が高いものを製造するには、原料にTiN粉末を多めに用いると共に比較的大きな粉末とし、混合時間を短くすることが好ましいといえる。   As shown in Table 5, even if it is a raw material powder of the same composition, it is a large powder, and by shortening the mixing time, a sintered body with a large hard phase (for example, the average particle size of the Ti compound phase is It can be seen that a sintered body having 1 μm or more and an average particle diameter of WC of 2 μm or more is obtained. Moreover, it turns out that the sintered compact with a large average particle diameter of a hard phase has high heat conductivity. Furthermore, it can be seen that the average particle diameter of WC greatly affects the thermal conductivity of the sintered body. Even when a large powder is prepared as a raw material, it can be seen that if the mixing time is long, the hard phase in the sintered body becomes fine and the thermal conductivity decreases. Therefore, in order to produce a hard material with a hard phase consisting of a compound containing Ti and a high thermal conductivity, use a large amount of TiN powder as a raw material and make a relatively large powder, mixing time It can be said that shortening is preferable.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能である。例えば、工具形状、組成などを適宜変更することができる。   Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, a tool shape, a composition, etc. can be changed suitably.

本発明の硬質材料は、切削工具の素材に好適に利用できる。本発明の切削工具は、特に、刃先が高温となるような条件(例えば、高速切削など)や冷熱サイクルが行われる条件での切削加工に好適に利用することができる。   The hard material of the present invention can be suitably used as a cutting tool material. In particular, the cutting tool of the present invention can be suitably used for cutting under conditions where the cutting edge is hot (for example, high-speed cutting) or under conditions where a thermal cycle is performed.

1,100 硬質材料 10,110 コアリム構造の粒子
12 Ti化合物相 13 Ti複合化合物相
20 単体Ti化合物相 30 単体Ti複合化合物相
1,100 Hard material 10,110 Core rim structure particles
12 Ti compound phase 13 Ti compound phase
20 Single Ti compound phase 30 Single Ti compound phase

Claims (11)

Tiを含有する化合物を硬質相として具える硬質材料であって、
前記硬質相として、
Tiの窒化物、及びTiの炭窒化物の少なくとも1種のTi化合物からなるTi化合物相と、
Tiと、周期表4族、5族、及び6族から選択される1種以上の金属元素(Tiを除く)とを含むTi複合化合物からなるTi複合化合物相とを含有し、
前記硬質材料の断面をとり、この断面に対する前記Ti化合物相の面積率をa、前記Ti複合化合物相の面積率をbとするとき、0.5≦(a/b)を満たし、
前記断面における前記Ti化合物相の合計面積に対して50%以上がTiの窒化物である硬質材料。
A hard material comprising a compound containing Ti as a hard phase,
As the hard phase,
Ti compound phase composed of at least one Ti compound of Ti nitride and Ti carbonitride, and
Containing Ti and a Ti composite compound phase composed of a Ti composite compound containing one or more metal elements selected from Group 4, Group 5 and Group 6 (excluding Ti) of the periodic table,
Said taking a cross-section of hard material, the area ratio of the Ti compound phase for this section a, wherein, when the area ratio of Ti composite compound phase to is b, meets 0.5 ≦ (a / b),
A hard material in which 50% or more of the total area of the Ti compound phase in the cross section is Ti nitride .
前記硬質相として、WCを含有し、
前記硬質材料の断面をとったとき、この断面に対する前記WCの面積率が10面積%以上60面積%以下である請求項1に記載の硬質材料。
As the hard phase, containing WC,
2. The hard material according to claim 1, wherein when the cross section of the hard material is taken, the area ratio of the WC with respect to the cross section is 10 area% or more and 60 area% or less.
前記硬質材料の熱伝導率が20W/m・K以上70W/m・K以下である請求項1又は請求項2に記載の硬質材料。 3. The hard material according to claim 1, wherein the thermal conductivity of the hard material is 20 W / m · K or more and 70 W / m · K or less. Moの含有量が5質量%以下である請求項1〜請求項3のいずれか1項に記載の硬質材料。 4. The hard material according to claim 1, wherein the Mo content is 5% by mass or less. X線回折を行ったとき、TiN(220)のピーク及びTiWC2(220)のピークが検出され、
前記TiN(220)のピークの積分強度をα、TiWC2(220)のピークの積分強度をβとするとき、(α/β)≧0.3を満たす請求項1〜請求項4のいずれか1項に記載の硬質材料。
When X-ray diffraction was performed, the peak of TiN (220) and the peak of TiWC 2 (220) were detected,
The integrated intensity of the peak of the TiN (220) α, when the integrated intensity of the peak of TiWC 2 (220) β, any one of claims 1 to 4 satisfying (α / β) ≧ 0.3 Hard material as described in 1.
前記Ti化合物相の平均粒径が1μm以上である請求項1〜請求項5のいずれか1項に記載の硬質材料。 6. The hard material according to claim 1, wherein an average particle diameter of the Ti compound phase is 1 μm or more. 前記硬質相として、WCを含有し、
前記WCの平均粒径が2μm以上である請求項1〜請求項6のいずれか1項に記載の硬質材料。
As the hard phase, containing WC,
7. The hard material according to claim 1, wherein the average particle diameter of the WC is 2 μm or more.
前記硬質相は、前記Ti化合物相を中心組織とし、前記Ti複合化合物相を周辺組織としたコアリム構造の粒子を含む請求項1〜請求項7のいずれか1項に記載の硬質材料。 8. The hard material according to claim 1 , wherein the hard phase includes particles having a core rim structure in which the Ti compound phase is a central structure and the Ti composite compound phase is a peripheral structure. 前記硬質相は、前記Ti化合物相の外周が前記Ti複合化合物相に囲まれていない単体Ti化合物相を20%以下含有する請求項8に記載の硬質材料。 9. The hard material according to claim 8 , wherein the hard phase contains 20% or less of a single Ti compound phase in which an outer periphery of the Ti compound phase is not surrounded by the Ti composite compound phase. 前記硬質相は、前記Ti複合化合物相の内部に前記Ti化合物相を含んでいない単体Ti複合化合物相を20%以下含有する請求項8又は請求項9に記載の硬質材料。 The hard phase, a hard material as claimed in claim 8 or claim 9 containing elemental Ti composite compound phase does not include the Ti compound phase in the interior of the Ti complex compound phase 20% or less. 請求項1〜請求項10のいずれか1項に記載の硬質材料から構成された切削工具。 11. A cutting tool composed of the hard material according to claim 1 .
JP2012140177A 2012-06-21 2012-06-21 Hard materials and cutting tools Active JP5534567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140177A JP5534567B2 (en) 2012-06-21 2012-06-21 Hard materials and cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140177A JP5534567B2 (en) 2012-06-21 2012-06-21 Hard materials and cutting tools

Publications (2)

Publication Number Publication Date
JP2014005485A JP2014005485A (en) 2014-01-16
JP5534567B2 true JP5534567B2 (en) 2014-07-02

Family

ID=50103472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140177A Active JP5534567B2 (en) 2012-06-21 2012-06-21 Hard materials and cutting tools

Country Status (1)

Country Link
JP (1) JP5534567B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443207B2 (en) * 2014-06-17 2018-12-26 住友電気工業株式会社 Cemented carbide and cutting tools
CN109207944A (en) * 2017-07-06 2019-01-15 深圳先进技术研究院 A kind of wire nipper and preparation method thereof with titanium-containing compound coating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4280048B2 (en) * 2002-09-27 2009-06-17 京セラ株式会社 Method for producing TiCN-based cermet
JP5381616B2 (en) * 2009-10-27 2014-01-08 株式会社タンガロイ Cermet and coated cermet

Also Published As

Publication number Publication date
JP2014005485A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
EP3130685B1 (en) Cermet, method for producing cermet, and cutting tool
JP4690475B2 (en) Cermet and coated cermet tools
JP6796266B2 (en) Cemented carbide and cutting tools
EP3130686B1 (en) Cermet and cutting tool
KR102452868B1 (en) Cemented carbide and cutting tools
JP6439975B2 (en) Cermet manufacturing method
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
WO2019116614A1 (en) Cemented carbide and cutting tool
JP5534567B2 (en) Hard materials and cutting tools
JP7388431B2 (en) Cemented carbide and cutting tools containing it as a base material
JP2019157182A (en) Super hard alloy, cutting tool containing the same, manufacturing method of super hard alloy, and manufacturing method of cutting tool
JP6443207B2 (en) Cemented carbide and cutting tools
JP5472659B2 (en) Composite structure tool
JP6066365B2 (en) Cemented carbide and cutting tools
JP5969363B2 (en) WC-based cemented carbide and cutting tool
JP6459106B1 (en) Cemented carbide and cutting tools
JP6278232B2 (en) cermet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5534567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140420

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250