JP5472659B2 - Composite structure tool - Google Patents

Composite structure tool Download PDF

Info

Publication number
JP5472659B2
JP5472659B2 JP2012140176A JP2012140176A JP5472659B2 JP 5472659 B2 JP5472659 B2 JP 5472659B2 JP 2012140176 A JP2012140176 A JP 2012140176A JP 2012140176 A JP2012140176 A JP 2012140176A JP 5472659 B2 JP5472659 B2 JP 5472659B2
Authority
JP
Japan
Prior art keywords
base material
phase
composite
compound
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012140176A
Other languages
Japanese (ja)
Other versions
JP2014004639A (en
Inventor
友幸 石田
秀樹 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012140176A priority Critical patent/JP5472659B2/en
Publication of JP2014004639A publication Critical patent/JP2014004639A/en
Application granted granted Critical
Publication of JP5472659B2 publication Critical patent/JP5472659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、WCを主たる硬質相とする超硬合金と、Tiを含む化合物を硬質相に含む硬質材料との双方を具える複合構造の焼結体から構成される複合構造工具に関する。特に、耐熱性に優れる複合構造工具に関するものである。   The present invention relates to a composite structure tool composed of a sintered body having a composite structure including both a cemented carbide containing WC as a main hard phase and a hard material containing a compound containing Ti in the hard phase. In particular, the present invention relates to a composite structure tool having excellent heat resistance.

従来、切削工具の本体材料に、セラミックス粒子を硬質相とし、CoやNiといった鉄族金属を結合相とした超硬合金やサーメットが利用されている。硬質相は、超硬合金では、WC(炭化タングステン)、サーメットでは、TiCN(炭窒化チタン)といったTi化合物が代表的である。   Conventionally, cemented carbides and cermets that use ceramic particles as the hard phase and iron group metals such as Co and Ni as the binder phase have been used as the main material of cutting tools. The hard phase is typically a Ti compound such as WC (tungsten carbide) for cemented carbide and TiCN (titanium carbonitride) for cermet.

特許文献1は、Ti化合物とWCとを硬質相に含むサーメットからなる基材の表面に、超硬合金からなる表面層を具える複合構造の焼結体からなる切削工具を開示している。この切削工具は、高硬度なサーメット表面に、靭性に優れる超硬合金からなる表面層を具えることで、靭性にも優れる。   Patent Document 1 discloses a cutting tool made of a composite structure sintered body having a surface layer made of cemented carbide on the surface of a base material made of cermet containing a Ti compound and WC in a hard phase. This cutting tool is excellent in toughness by providing a surface layer made of a cemented carbide excellent in toughness on a hard cermet surface.

国際公開第2009/034716号International Publication No. 2009/034716

切削対象の生産性の向上などを目的として、切削速度を速くするなど、刃先温度が高くなるような切削条件が要望されている。そのため、刃先温度が高くなるような切削条件であっても、耐摩耗性や靭性などといった切削性能が低下し難い切削工具、つまり耐熱性に優れる切削工具の開発が望まれる。   For the purpose of improving the productivity of cutting objects, cutting conditions that increase the cutting edge temperature, such as increasing the cutting speed, are desired. Therefore, it is desired to develop a cutting tool in which cutting performance such as wear resistance and toughness is not easily lowered even under cutting conditions in which the cutting edge temperature is high, that is, a cutting tool having excellent heat resistance.

一般的なサーメットでは、TiCNといったTi化合物を中心組織(コア)とし、(Ti,W)CNといったTiとTi以外の別の金属元素との双方を含むTi複合化合物を、コアを囲む周辺組織(リム)としたコアリム構造と呼ばれる硬質相を具える。本発明者らが調べたところ、主としてリムとして存在するTi複合化合物は、WCに比較して熱伝導率が著しく低く、TiCやTiNに比較しても熱伝導率が低い、との知見を得た。Ti複合化合物は、固溶体構造をとることで、熱伝導を支配するフォノンの散乱が起こり易いため、熱伝導性に劣ると考えられる。このような低熱伝導率のTi複合化合物を多く含むことから、サーメットの熱伝導率が大きく低下する、との知見を得た。一方、WCは、一般に熱伝導率が高い。従って、サーメットの原料にWCを用いて、焼結体中にWCを再析出させることが考えられる。しかし、原料にWCを用いても、このWCが分解してWを含むTi複合化合物が生成される。WCの添加量によっては、Ti複合化合物にWが含有されて、WCが実質的に析出されず、焼結体中にWCが存在しない、又は少ない場合がある。WCが存在しない又は少ないことで、サーメットの熱伝導率を十分に向上できない。   In a general cermet, a Ti compound such as TiCN is used as a central structure (core), and a Ti composite compound containing both Ti and another metal element other than Ti, such as (Ti, W) CN, is surrounded by a surrounding structure ( It has a hard phase called a core rim structure. As a result of investigations by the present inventors, it was found that a Ti composite compound mainly existing as a rim has a significantly lower thermal conductivity than WC, and a lower thermal conductivity than TiC or TiN. It was. The Ti composite compound is considered to be inferior in thermal conductivity because it takes a solid solution structure and scatters phonons that govern thermal conduction. Since many Ti composite compounds of such low thermal conductivity were included, the knowledge that the thermal conductivity of a cermet fell significantly was acquired. On the other hand, WC generally has a high thermal conductivity. Therefore, it is conceivable to use WC as a raw material for cermet to reprecipitate WC in the sintered body. However, even if WC is used as a raw material, this WC decomposes and a Ti composite compound containing W is produced. Depending on the amount of WC added, W may be contained in the Ti composite compound, WC may not be substantially precipitated, and WC may not be present or small in the sintered body. The absence or small amount of WC does not sufficiently improve the thermal conductivity of the cermet.

このようにTi複合化合物が多く、WCが存在しない又は少ないサーメットからなる切削工具では、温度が最も高くなる刃先の熱を、切削工具の内部を経て放熱できず、刃先及びその近傍に熱がこもり易くなる。そのため、刃先温度の影響が大きいすくい面摩耗(クレーター摩耗)や熱亀裂などが増大し易くなり、性能の低下が生じ得る。従って、高速切削(例えば、切削速度200m/min以上)を行う場合などといった刃先温度が高くなり易い切削条件や、加熱と冷却とが繰り返される切削条件などであっても、性能の低下を抑制でき、耐熱性に優れる切削工具の開発が望まれる。また、サーメットのみからなる切削工具では、靭性に劣ることから、靭性にも優れる切削工具が望まれる。   In such a cutting tool with a large amount of Ti composite compound and cermet with little or no WC, the heat of the cutting edge that has the highest temperature cannot be dissipated through the inside of the cutting tool, and heat accumulates in the cutting edge and its vicinity. It becomes easy. For this reason, rake face wear (crater wear), thermal cracks, and the like, which are greatly affected by the cutting edge temperature, are likely to increase, and performance may be degraded. Therefore, it is possible to suppress performance degradation even under cutting conditions where the cutting edge temperature tends to be high, such as when performing high-speed cutting (for example, at a cutting speed of 200 m / min or more), or cutting conditions where heating and cooling are repeated. Development of cutting tools with excellent heat resistance is desired. Moreover, since the cutting tool which consists only of cermets is inferior to toughness, the cutting tool which is excellent also in toughness is desired.

特許文献1に記載されるように、切削工具の表面を超硬合金で構成することで、靭性に優れる上に、刃先及びその近傍にWCが多く存在し、刃先及びその近傍の放熱性を高められる。しかし、基材が、上述のようにTi複合化合物が多く、WCが存在しない又は少ないサーメットから構成される場合、上述のように切削条件によっては、刃先及びその近傍の熱を、サーメット部分を利用して十分に逃しきれず、刃先の性能の低下を招く恐れがある。   As described in Patent Document 1, the surface of the cutting tool is made of cemented carbide, so that it has excellent toughness, and there are many WCs in the blade edge and its vicinity, improving the heat dissipation of the blade edge and its vicinity. It is done. However, when the base material is composed of cermets with a large amount of Ti composite compound and little or no WC as described above, depending on the cutting conditions as described above, the heat of the blade edge and its vicinity is used for the cermet part. As a result, it cannot be fully escaped, and the performance of the cutting edge may be degraded.

そこで、本発明の目的は、耐熱性に優れる複合構造工具を提供することにある。   Then, the objective of this invention is providing the composite structure tool which is excellent in heat resistance.

本発明者らは、サーメットのようなTiを含む化合物を硬質相として含有する硬質材料を基材とし、この表面に超硬合金を具える複合構造の焼結体を対象として、耐熱性に優れる構成を検討した。超硬合金に比較して、Wの含有量(特に、WCの含有量)が少ない基材の組織を改善することで、基材自体の熱伝導率を高められ、主として刃先が高温になり易い切削条件や冷熱サイクルが繰り返される切削条件などであっても、良好な性能が得られる、と考えられる。そこで、原料を調整して、種々の組織の基材を作製して検討した結果、熱伝導率が非常に低いTi複合化合物相の存在割合を特定の範囲に抑えることで、基材の熱伝導率を大幅に高められる、ひいては複合構造の焼結体全体の熱伝導率を高められる、との知見を得た。また、Ti複合化合物相の存在割合は、原料に用いる組成を調整することで特定の範囲に抑えられる、との知見を得た。本発明は、上記知見に基づくものである。   The present inventors are excellent in heat resistance for a sintered body having a composite structure in which a hard material containing a Ti-containing compound such as cermet as a hard phase is used as a base and a cemented carbide is provided on this surface. The configuration was examined. Compared to cemented carbide, by improving the structure of the base material with less W content (especially WC content), the thermal conductivity of the base material itself can be increased, and the cutting edge tends to be hot. It is considered that good performance can be obtained even under cutting conditions or cutting conditions in which a cooling / heating cycle is repeated. Therefore, as a result of preparing and examining base materials of various structures by adjusting the raw materials, the heat conductivity of the base material is suppressed by suppressing the existence ratio of the Ti composite compound phase having a very low thermal conductivity to a specific range. It was found that the thermal conductivity of the sintered body of the composite structure can be increased significantly, and that the thermal conductivity of the composite structure can be increased. Moreover, the knowledge that the abundance ratio of the Ti composite compound phase can be suppressed to a specific range by adjusting the composition used for the raw material was obtained. The present invention is based on the above findings.

本発明の複合構造工具は、Tiを含有する化合物を硬質相として具える硬質材料から構成された基材と、上記基材に一体に形成されて、刃先の少なくとも一部を構成する表層材とを具える。上記表層材は、WCを主たる硬質相とする超硬合金から構成される。上記基材は、Wを0質量%超、上記表層材中のWの含有量の80%以下の範囲で含有する。また、上記基材は、硬質相として、以下のTi化合物相と、Ti複合化合物相とを具える。
Ti化合物相:Tiの窒化物、及びTiの炭窒化物の少なくとも1種のTi化合物からなる相
Ti複合化合物相:Tiと、周期表4族、5族、及び6族から選択される1種以上の金属元素(Tiを除く)とを含むTi複合化合物からなる相
そして、本発明の複合構造工具は、上記基材の断面をとり、この断面に対する上記Ti化合物相の面積率をa、上記Ti複合化合物相の面積率をbとするとき、0.5≦(a/b)を満たす。
The composite structure tool of the present invention includes a base material composed of a hard material comprising a compound containing Ti as a hard phase, and a surface layer material formed integrally with the base material and constituting at least a part of the cutting edge. With The surface layer material is composed of a cemented carbide having WC as a main hard phase. The base material contains W in an amount exceeding 0% by mass and 80% or less of the W content in the surface layer material. Moreover, the said base material is provided with the following Ti compound phases and Ti composite compound phases as a hard phase.
Ti compound phase: a phase composed of at least one Ti compound of Ti nitride and Ti carbonitride
Ti composite compound phase: a phase composed of a Ti composite compound containing Ti and one or more metal elements (excluding Ti) selected from Group 4, Group 5 and Group 6 of the periodic table and the composite structure of the present invention The tool takes a cross section of the base material, and satisfies 0.5 ≦ (a / b) where a is the area ratio of the Ti compound phase relative to the cross section and b is the area ratio of the Ti composite compound phase.

本発明の複合構造工具は、Ti化合物相を具える硬質材料からなる基材の上に、超硬合金からなる表層材を具えており、高靭性及び高熱伝導率であるWCを多く含む超硬合金によって刃先の少なくとも一部が構成されることで、高靭性である上に、放熱性にも優れる。   The composite structure tool of the present invention has a surface layer material made of a cemented carbide on a base material made of a hard material having a Ti compound phase, and is a cemented carbide containing a large amount of WC having high toughness and high thermal conductivity. Since at least a part of the cutting edge is made of an alloy, it has high toughness and excellent heat dissipation.

かつ、本発明の複合構造工具は、硬質材料中において熱伝導率が低いTi複合化合物相の面積率が特定の範囲を満たす。具体的には、Ti複合化合物相は、面積割合でTi化合物相の2倍以下、更に同等以下である(好ましくはTi化合物よりも少ない)ため、基材自体の熱伝導性も高められる。従って、本発明の複合構造工具は、刃先が高温となるような切削条件(例えば、切削速度が200m/min以上といった高速切削)や、冷熱サイクルを行う切削条件(例えば、被削材との接触と切削液による冷却とが繰り返されるフライス加工やエンドミル加工等)などを利用する場合にも、刃先及びその近傍の熱を刃先自体及び基材の双方を利用して良好に逃すことができる。そのため、本発明の複合構造工具は、刃先及びその近傍に熱がこもることを効果的に抑制できる。その結果、本発明の複合構造工具は、刃先及びその近傍が長時間高温に保持されることや、冷熱サイクルが繰り返されることによる切削性能の低下を招き難く、耐熱性に優れる。特に、基材にもWCを含有する形態では、基材自体も熱伝導率を高め易い上に、表層材の熱膨張係数との差が小さくなり易く、熱膨張係数差に基づく表層材の変形や剥離も抑制できる。そのため、この形態は、耐熱性により優れる。   In the composite structure tool of the present invention, the area ratio of the Ti composite compound phase having a low thermal conductivity in the hard material satisfies a specific range. Specifically, the Ti composite compound phase is not more than twice the area of the Ti compound phase and more preferably equal to or less than the Ti compound phase (preferably less than the Ti compound), so that the thermal conductivity of the substrate itself is also improved. Therefore, the composite structure tool of the present invention is a cutting condition in which the cutting edge becomes high temperature (for example, high-speed cutting with a cutting speed of 200 m / min or more) and a cutting condition in which a cooling cycle is performed (for example, contact with a work material). In the case of using milling, end milling, etc. in which the cooling with the cutting fluid is repeated, the cutting edge and the heat in the vicinity thereof can be satisfactorily released using both the cutting edge itself and the substrate. Therefore, the composite structure tool of the present invention can effectively suppress heat accumulation in the blade edge and the vicinity thereof. As a result, the composite structure tool of the present invention is excellent in heat resistance because the cutting edge and the vicinity thereof are kept at a high temperature for a long time and the cutting performance is not lowered due to repeated cooling and heating cycles. In particular, in the form in which the base material also contains WC, the base material itself can easily increase the thermal conductivity, and the difference from the thermal expansion coefficient of the surface layer material tends to be small, and the deformation of the surface layer material based on the difference in the thermal expansion coefficient And peeling can be suppressed. Therefore, this form is more excellent in heat resistance.

本発明の一形態として、上記基材は、WCを含有し、上記基材の断面をとったとき、この断面に対する上記WCの面積率が10面積%以上60面積%以下である形態が挙げられる。   As one embodiment of the present invention, the base material contains WC, and when the cross section of the base material is taken, the area ratio of the WC with respect to the cross section is 10 area% or more and 60 area% or less. .

上記形態は、熱伝導率が高いWCを十分に含有することで、基材の熱伝導率を高め易い。また、上記形態は、WCの析出量が上述の特定の範囲を満たすように原料に用いるWCをある程度少なくすることで、(1)基材中にWCが十分に存在しながらも、TiとWとを含むTi複合化合物の過剰な生成を抑制できる、(2)原料に用いるWCの量を低減でき、希少資源であるWの使用量を低減できる、という効果を奏する。   The said form is easy to raise the heat conductivity of a base material by fully containing WC with high heat conductivity. In addition, in the above-described embodiment, by reducing the amount of WC used as a raw material to some extent so that the amount of WC deposited satisfies the above-described specific range, (1) Ti and W are sufficiently present while WC is sufficiently present in the base material. It is possible to suppress excessive generation of a Ti composite compound containing: (2) the amount of WC used as a raw material can be reduced, and the amount of W used as a rare resource can be reduced.

本発明の一形態として、上記表層材の熱伝導率が上記基材の熱伝導率よりも高い形態が挙げられる。   As one form of this invention, the form whose heat conductivity of the said surface layer material is higher than the heat conductivity of the said base material is mentioned.

上記形態は、刃先の少なくとも一部を構成する表層材の熱伝導率が高いことで、表層材自体が放熱性に優れ、刃先及びその近傍に熱をこもり難くすることができ、耐熱性に優れる。   The above-mentioned form has high heat conductivity of the surface layer material constituting at least a part of the blade edge, so that the surface layer material itself is excellent in heat dissipation, can prevent heat from being trapped in the blade edge and its vicinity, and is excellent in heat resistance. .

本発明の一形態として、上記基材の熱伝導率が20W/m・K以上70W/m・K以下である形態が挙げられる。   As an embodiment of the present invention, an embodiment in which the thermal conductivity of the substrate is 20 W / m · K or more and 70 W / m · K or less can be given.

上記形態は、基材の熱伝導率が十分に高く、耐熱性に優れる。また、上記形態は、基材の熱伝導率を上述の特定の範囲とすることで、原料に用いるWCの量を低減でき、希少資源であるWの使用量を低減できる。   The said form has the heat conductivity of a base material high enough, and is excellent in heat resistance. Moreover, the said form can reduce the quantity of WC used for a raw material, and can reduce the usage-amount of W which is a scarce resource by making the thermal conductivity of a base material into the above-mentioned specific range.

本発明の一形態として、上記表層材は、その平均厚さが0.1mm以上1.5mm以下である形態が挙げられる。   As one form of this invention, the said surface layer material has a form whose average thickness is 0.1 mm or more and 1.5 mm or less.

上記形態は、靭性に優れる表層材が十分に存在することで、高靭性であり、かつ、表層材の厚さを特定の範囲とすることで、希少資源であるWの使用量を低減できる。   The said form is high toughness because surface layer material excellent in toughness exists sufficiently, and can reduce the usage-amount of W which is a scarce resource by making the thickness of surface layer material into a specific range.

本発明の一形態として、上記表層材の熱膨張係数は、上記基材の熱膨張係数よりも低く、かつ、その差が0.5×10-6/K以上3×10-6/K以下である形態が挙げられる。 As one embodiment of the present invention, the thermal expansion coefficient of the surface material is lower than the thermal expansion coefficient of the base material, and the difference is 0.5 × 10 −6 / K or more and 3 × 10 −6 / K or less. A form is mentioned.

上記形態は、熱膨張量の差に基づいて表層材に圧縮応力を付与することができ、圧縮応力の存在によって耐欠損性の向上を期待できる。また、上記形態は、熱膨張係数の差を特定の範囲とすることで、焼結後、表層材が剥離したり、亀裂が発生したりすることなどを防止できる。   The said form can give a compressive stress to a surface layer material based on the difference of thermal expansion amount, and can anticipate the improvement of a fracture resistance by presence of a compressive stress. Moreover, the said form can prevent that a surface layer material peels or a crack generate | occur | produces after sintering by making the difference of a thermal expansion coefficient into a specific range.

本発明の一形態として、上記基材におけるMoの含有量が5質量%以下である形態が挙げられる。   As one form of this invention, the form whose content of Mo in the said base material is 5 mass% or less is mentioned.

基材の原料にMo2CといったMoを含む化合物を用いた場合、例えば、Ti化合物相と結合相との濡れ性を高められ、焼結性を向上でき、緻密な焼結体を得易い。しかし、Moを過剰に含むと、TiとMoとを含むTi複合化合物が生成され易く、リムの増大を招き、基材の熱伝導性ひいては複合構造工具の熱伝導性の低下を招く。上記形態は、基材の原料に用いるMoを含む化合物の含有量を制限することで、Ti複合化合物の存在割合を低減でき、基材の熱伝導性の低下を抑制できる。 When a compound containing Mo, such as Mo 2 C, is used as the raw material of the base material, for example, the wettability between the Ti compound phase and the binder phase can be improved, the sinterability can be improved, and a dense sintered body can be easily obtained. However, when Mo is contained excessively, a Ti composite compound containing Ti and Mo is likely to be generated, resulting in an increase in the rim, resulting in a decrease in the thermal conductivity of the base material and hence the thermal conductivity of the composite structure tool. The said form can reduce the content rate of Ti composite compound by restrict | limiting content of the compound containing Mo used for the raw material of a base material, and can suppress the heat conductive fall of a base material.

本発明の一形態として、上記基材についてX線回折を行ったとき、TiN(220)のピーク及びTiWC2(220)のピークが検出され、上記TiN(220)のピークの積分強度をα、TiWC2(220)のピークの積分強度をβとするとき、(α/β)≧0.3を満たす形態が挙げられる。 As one aspect of the present invention, when X-ray diffraction is performed on the substrate, a peak of TiN (220) and a peak of TiWC 2 (220) are detected, and the integrated intensity of the peak of TiN (220) is α, When the integrated intensity of the peak of TiWC 2 (220) is β, a form satisfying (α / β) ≧ 0.3 can be mentioned.

上記形態は、基材の原料にTiNを多めに使用し、焼結条件を調整してTiNを析出させることで製造できる。基材の原料にTiNを多めに使用することでTiWC2などのTi複合化合物の生成を低減し易く、上記形態は、熱伝導率が低いTi複合化合物が基材中に比較的少なく、耐熱性に優れる。 The said form can be manufactured by using TiN extra for the raw material of a base material, adjusting sintering conditions, and depositing TiN. By using a large amount of TiN as the raw material of the base material, it is easy to reduce the production of Ti composite compounds such as TiWC 2, and the above form has relatively few Ti composite compounds with low thermal conductivity in the base material, and heat resistance Excellent.

本発明の一形態として、上記Ti化合物相の平均粒径が1μm以上である形態が挙げられる。   As one form of this invention, the form whose average particle diameter of the said Ti compound phase is 1 micrometer or more is mentioned.

上記形態は、基材中のTi化合物相が大きいことで、微粒の場合よりも基材の熱伝導性を高められる。また、上記形態は、基材の原料にある程度大きなTi化合物粉末を使用することで製造されることから、微細な粉末を用いた場合に比較して、焼結時に化合物の溶解や析出が行われ難い。従って、上記形態は、基材中におけるTi複合化合物の存在割合を低減でき、基材の熱伝導性の低下を抑制できる。この点からも、上記形態は、耐熱性に優れる。   The said form can raise the thermal conductivity of a base material rather than the case of a fine particle because the Ti compound phase in a base material is large. In addition, since the above form is manufactured by using a somewhat large Ti compound powder as a raw material for the base material, the compound is dissolved and precipitated during sintering as compared with the case of using a fine powder. hard. Therefore, the said form can reduce the presence rate of Ti complex compound in a base material, and can suppress the fall of the heat conductivity of a base material. Also from this point, the said form is excellent in heat resistance.

本発明の一形態として、上記基材が、上記硬質相として、WCを含有し、上記WCの平均粒径が2μm以上である形態が挙げられる。   As an embodiment of the present invention, there is an embodiment in which the substrate contains WC as the hard phase, and the average particle diameter of the WC is 2 μm or more.

上記形態は、熱伝導率が高いWCを含有する上に、WCが大きいことで基材の熱伝導率を向上でき、耐熱性により優れる。また、上記形態は、基材の原料にある程度大きなWC粉末を使用することで製造されることから、微細な粉末を用いた場合に比較して、焼結時にWCの溶解やWを含む複合化合物の析出が行われ難い。従って、上記形態は、基材中におけるTiとWとを含むTi複合化合物の存在割合を低減でき、熱伝導性の低下を抑制できる。この点からも、上記形態は、耐熱性に優れる。   The above-described form contains WC having a high thermal conductivity, and can improve the thermal conductivity of the base material due to the large WC, and is more excellent in heat resistance. In addition, since the above form is manufactured by using a certain amount of WC powder as a raw material of the base material, compared with the case of using a fine powder, a composite compound containing WC dissolved and W during sintering Is difficult to deposit. Therefore, the said form can reduce the presence rate of Ti compound compound containing Ti and W in a base material, and can suppress the heat conductive fall. Also from this point, the said form is excellent in heat resistance.

本発明の一形態として、上記基材の断面における上記Ti化合物相の合計面積に対して50%以上がTiの窒化物(TiN)である形態が挙げられる。   As one form of this invention, the form whose 50% or more is a nitride of Ti (TiN) with respect to the total area of the said Ti compound phase in the cross section of the said base material is mentioned.

上記形態は、基材の原料にTiNを一定量以上使用し(多めに使用し)、焼結条件を調整してTiNを析出させることで製造できる。基材の原料にTiNを多めに使用することで、Ti複合化合物の生成を低減し易く、上記形態は、基材中において、熱伝導率が低いTi複合化合物の存在割合を低減できて、耐熱性に優れる。   The said form can be manufactured by using TiN more than a fixed amount for the raw material of a base material (it is using more), and precipitating TiN by adjusting sintering conditions. By using a large amount of TiN as a raw material for the base material, it is easy to reduce the production of Ti composite compounds, and the above form can reduce the proportion of Ti composite compounds with low thermal conductivity in the base material, and is heat resistant. Excellent in properties.

本発明の一形態として、上記基材における上記硬質相は、上記Ti化合物相を中心組織とし、上記Ti複合化合物相を周辺組織としたコアリム構造の粒子を含む形態が挙げられる。   As an embodiment of the present invention, the hard phase in the substrate may include a core rim-structured particle having the Ti compound phase as a central structure and the Ti composite compound phase as a peripheral structure.

コアリム構造の粒子は、結合相との濡れ性に優れるTi複合化合物相を具えることで、結合相との濡れ性を高められて焼結性を向上できる。上記形態は、基材中にコアリム構造の粒子が存在することで、緻密な焼結体とすることができる。   The particles of the core rim structure include a Ti composite compound phase that is excellent in wettability with the binder phase, so that the wettability with the binder phase can be enhanced and the sinterability can be improved. The said form can be set as a precise | minute sintered compact because the particle | grains of a core rim structure exist in a base material.

本発明の一形態として、上記基材における上記硬質相は、上記Ti化合物相の外周が上記Ti複合化合物相に囲まれていない単体Ti化合物相を20%以下含有する形態が挙げられる。   As one form of this invention, the said hard phase in the said base material has the form which contains 20% or less of single-piece | unit Ti compound phases in which the outer periphery of the said Ti compound phase is not enclosed by the said Ti compound compound phase.

上記形態は、熱伝導率が低いリム:Ti複合化合物を有しない単体Ti化合物相を基材中に含有することで、熱伝導性を高められる。また、単体Ti化合物相の含有量が特定の範囲であることで、上記形態は、基材の焼結性の低下を抑制できる。   The said form can improve thermal conductivity by containing the simple substance Ti compound phase which does not have a rim | limb: Ti composite compound with low heat conductivity in a base material. Moreover, the said form can suppress the fall of the sinterability of a base material because content of a simple substance Ti compound phase is a specific range.

本発明の一形態として、上記基材における上記硬質相は、上記Ti複合化合物相の内部に上記Ti化合物相を含んでいない単体Ti複合化合物相を20%以下含有する形態が挙げられる。   As one form of this invention, the said hard phase in the said base material has the form which contains 20% or less of single-piece | unit Ti compound compound phases which do not contain the said Ti compound phase inside the said Ti compound compound phase.

上記形態は、結合相との濡れ性に優れる単体Ti複合化合物相を含むことで基材の焼結性に優れ、緻密な焼結体にし易い。また、熱伝導率が低い単体Ti複合化合物相の含有量が特定の範囲であることで、上記形態は、単体Ti複合化合物相を含有することによる基材の熱伝導性の低下を抑制できる。   The said form is excellent in the sinterability of a base material by including the single-piece | unit Ti compound compound phase excellent in the wettability with a binder phase, and it is easy to make it a precise | minute sintered compact. Moreover, the said form can suppress the fall of the heat conductivity of the base material by containing a single-piece | unit Ti composite compound phase because content of the single-piece | unit Ti composite compound phase with low heat conductivity is a specific range.

本発明の複合構造工具は、耐熱性に優れる。   The composite structure tool of the present invention is excellent in heat resistance.

本発明の複合構造工具の形態を模式的に示す斜視図である。It is a perspective view which shows typically the form of the composite structure tool of this invention. (A)は、本発明の複合構造工具に具える基材の組織を説明する模式図、(B)は、一般的なサーメットの組織を説明する模式図である。(A) is a schematic diagram explaining the structure of the base material provided in the composite structure tool of the present invention, and (B) is a schematic diagram explaining the structure of a general cermet.

以下、本発明の実施の形態をより詳細に説明する。
[複合構造工具]
本発明の複合構造工具は、セラミックスからなる硬質相と、鉄族金属を主成分として硬質相を結合する結合相と、残部不可避不純物から構成される切削工具である。この工具は、刃先の少なくとも一部を構成する表層材と、表層材とは異なる材質からなる基材とが一体に焼結された焼結体から構成される。代表的な工具形態は、フライス加工用刃先交換型チップ、旋削用刃先交換型チップが挙げられる。
Hereinafter, embodiments of the present invention will be described in more detail.
[Composite structure tool]
The composite structure tool of the present invention is a cutting tool composed of a hard phase made of ceramics, a binder phase that binds a hard phase mainly composed of an iron group metal, and the balance unavoidable impurities. This tool is composed of a sintered body in which a surface layer material constituting at least a part of the cutting edge and a base material made of a material different from the surface layer material are integrally sintered. Typical tool forms include a cutting edge exchangeable tip for milling and a cutting edge exchangeable tip for turning.

表層材と基材との一体化状態は、例えば、図1(A)に示す複合構造工具1Aのように、柱状の基材20の一面に板状の表層材10を具える二層形態、図1(B)に示す複合構造工具1Bのように、柱状の基材20の一面及び対向する他面にそれぞれ板状の表層材11,13を具える三層形態といった多層構造形態、図1(C)に示す複合構造工具1Cのように、柱状の基材20の全周を覆うように表層材15を具える内包形態、図1(D)に示す複合構造工具1Dのように、柱状の基材20の表面の一部(ここでは外周面)を覆うように表層材17を具え、基材20の表面の他部(ここでは両端面)が表層材17から露出された囲み形態などが挙げられる。なお、図1では、分かり易いように表層材を厚く示している。図1は一例であり、図1に示す表層材を更に薄く、又は更に厚くすることができる。   The integrated state of the surface layer material and the base material is, for example, a two-layer form including a plate-shaped surface material 10 on one surface of a columnar base material 20 as in the composite structure tool 1A shown in FIG. Like the composite structure tool 1B shown in FIG. 1 (B), a multilayer structure form such as a three-layer form having plate-like surface layers 11 and 13 on one surface of the columnar substrate 20 and the other surface facing each other, FIG. (C) Composite structure tool 1C as shown in FIG. 1 (D), the inner form of the surface layer material 15 so as to cover the entire circumference of the columnar base material 20, as shown in FIG. 1 (D) composite structure tool 1D The surface layer material 17 is provided so as to cover a part of the surface of the base material 20 (here, the outer peripheral surface), and the other shape (both end surfaces here) of the base material 20 is exposed from the surface layer material 17 Is mentioned. In FIG. 1, the surface layer material is shown thick for easy understanding. FIG. 1 is an example, and the surface layer material shown in FIG. 1 can be made thinner or thicker.

上述のように本発明の複合構造工具は、外観上は、特許文献1に記載される切削工具と同様である。本発明の工具の特徴とするところは、基材の組織にある。以下、表層材及び基材の組成及び組織、両者の熱特性、工具の製造方法を順に説明する。   As described above, the composite structure tool of the present invention is the same as the cutting tool described in Patent Document 1 in appearance. The feature of the tool of the present invention resides in the structure of the base material. Hereinafter, the composition and structure of the surface layer material and the base material, the thermal characteristics of both, and the method for manufacturing the tool will be described in order.

<表層材>
表層材を構成する超硬合金は、特許文献1に記載されるような公知の組成・組織のWC基超硬合金が挙げられる。表層材は、表層材の断面をとったとき、WCを80面積%以上、更に85面積%以上含有することが好ましい(面積率の測定方法は、後述する基材におけるWCの含有量の測定方法と同様とする)。なお、表層材中のWの含有量は、60質量%以上、更に70質量%以上が好ましい。このWは、実質的にWCの状態で存在することが好ましい。また、表層材中のWCは、その粒径が大きいほど表層材の熱伝導性を高められて好ましい。具体的には、表層材中のWCの平均粒径は、1μm〜3μm程度が好ましい。表層材は、鉄族金属(好ましくはCo)を3質量%以上20質量%以下、更に5質量%以上15質量%以下含有することが好ましい。その他、WCの過剰な粒成長の抑制効果などを期待して、Cr,Ta,Ti,Nb,Zr,Vなどの金属、(Ta,Nb)C,VC,Cr3C2,NbC,TiCNなどの金属化合物を合計で10質量%以下の範囲で含有することができる。
<Surface material>
Examples of the cemented carbide constituting the surface layer material include WC-based cemented carbide having a known composition and structure as described in Patent Document 1. The surface layer material preferably contains 80% by area or more, and more preferably 85% by area or more when the cross section of the surface layer material is taken. (The method for measuring the area ratio is a method for measuring the content of WC in the substrate described later. The same). In addition, the content of W in the surface layer material is preferably 60% by mass or more, and more preferably 70% by mass or more. This W is preferably present in a substantially WC state. Further, the WC in the surface layer material is preferably as the particle size is larger because the thermal conductivity of the surface layer material is enhanced. Specifically, the average particle diameter of WC in the surface layer material is preferably about 1 μm to 3 μm. The surface layer material preferably contains an iron group metal (preferably Co) in an amount of 3% by mass to 20% by mass, and more preferably 5% by mass to 15% by mass. In addition, in anticipation of the effect of suppressing excessive grain growth of WC, metals such as Cr, Ta, Ti, Nb, Zr, V, (Ta, Nb) C, VC, Cr 3 C 2 , NbC, TiCN, etc. These metal compounds can be contained in a total amount of 10% by mass or less.

刃先の少なくとも一部を構成するように表層材が存在すれば、基材に対する表層材の被覆領域及びその形状は、特に問わない。図1(A)〜図1(C)に示すように表層材が板状である場合には、その厚さを調整することで、刃先全体が表層材で構成された形態にも、刃先の一部のみが表層材で構成された形態にも容易に調整できる。図1(D)に示す形態では、刃先全体が超硬合金からなる表層材で構成される。   If the surface layer material exists so as to constitute at least a part of the cutting edge, the covering region of the surface layer material on the substrate and the shape thereof are not particularly limited. When the surface layer material is plate-shaped as shown in FIG. 1 (A) to FIG. 1 (C), by adjusting the thickness of the surface layer material, the shape of the blade edge can be reduced to the form in which the entire blade edge is composed of the surface layer material. Only a part of the surface layer material can be easily adjusted. In the form shown in FIG. 1 (D), the entire cutting edge is made of a surface layer material made of cemented carbide.

表層材が薄過ぎると、超硬合金を具えることによる靭性の向上効果が十分に得られない上に、熱伝導率が高いWCを具える部分が相対的に少なくなることで耐熱性の低下も招き易くなる。一方、表層材が厚過ぎると、高靭性で耐熱性にも優れるものの、希少資源であるWの使用量が増加する。従って、表層材の平均厚さは、0.1mm以上1.5mm以下が好ましく、0.2mm以上1mm以下とすると製造性にも優れる。表層材の平均厚さは、図1(A)〜図1(C)などのように、目視確認にて、表層材の全体に亘って表層材が均一的な厚さで存在する場合(代表的には板状である場合)、断面又は表層材と基材との積層面において、表層材の厚さを5点以上測定し、これらの測定点の平均とする。   If the surface material is too thin, the effect of improving toughness due to the provision of cemented carbide will not be sufficiently obtained, and the heat resistance will decrease due to the relatively small number of parts having WC with high thermal conductivity. It becomes easy to invite. On the other hand, if the surface layer material is too thick, the toughness and heat resistance are excellent, but the amount of W that is a scarce resource increases. Accordingly, the average thickness of the surface layer material is preferably 0.1 mm or more and 1.5 mm or less, and if it is 0.2 mm or more and 1 mm or less, the productivity is excellent. The average thickness of the surface layer material is as shown in FIG. 1 (A) to FIG. 1 (C). In the case of a plate shape), the thickness of the surface layer material is measured at 5 points or more on the cross section or the laminated surface of the surface layer material and the base material, and the average of these measurement points is obtained.

<基材>
基材を構成する硬質材料は、Wを含有するものとする(0質量%超)。このWは、主として後述するWCやTi複合化合物相を構成する。Wの含有量が多いほど、WCの含有量が多くなり易く、後述するように熱伝導率の増大や、表層材の熱膨張係数差の低減を図ることができる。しかし、希少資源であるWの使用量の増大を招くことから、基材中のWの含有量は、質量割合で、表層材中のWの含有量の80%以下、更に70%以下が好ましい。基材中のWの含有量は、原料に用いるWCといったWを含む化合物の添加量によって調整することができる。
<Base material>
The hard material constituting the base material contains W (greater than 0% by mass). This W mainly constitutes a WC or Ti composite compound phase described later. As the W content increases, the WC content tends to increase, and as described later, it is possible to increase the thermal conductivity and reduce the difference in thermal expansion coefficient of the surface layer material. However, since the use amount of W, which is a rare resource, is increased, the W content in the base material is preferably 80% or less, more preferably 70% or less of the W content in the surface layer material in mass ratio. . The content of W in the substrate can be adjusted by the addition amount of a compound containing W such as WC used as a raw material.

また、基材を構成する硬質材料は、硬質相として、Ti化合物相、及びTi複合化合物相の少なくとも二つの相を含む。   Moreover, the hard material which comprises a base material contains at least 2 phase of Ti compound phase and Ti compound compound phase as a hard phase.

(Ti化合物相)
基材中のTi化合物は、Tiの窒化物:TiN、及びTiの炭窒化物:TiCNの少なくとも1種とし、好ましくはTiCを実質的に含有しない。本発明者らが調べた結果、原料にTiCを利用すると、TiNやTiCNを利用する場合よりもTiとWとを含む複合化合物といったTi複合化合物を形成し易く、Ti複合化合物の存在割合が増加し易い、との知見を得た。そこで、原料に用いるTiCの使用量をできるだけ少なくする、好ましくは用いない。その結果、焼結後に得られる基材中には、TiCが少ない(基材を100質量%として20質量%以下)、又は実質的に存在しない。一方、原料にTiNを利用すると、好ましくはTiNを多く用いると、上述のTi複合化合物を形成し難く、リムの生成を抑制し易い、との知見を得た。また、TiN以外ではTiCNが好ましい、との知見を得た。そこで、基材の硬質相として、積極的に存在させるTi化合物相は、TiN及びTiCNの少なくとも1種とする。
(Ti compound phase)
The Ti compound in the base material is at least one of Ti nitride: TiN and Ti carbonitride: TiCN, and preferably contains substantially no TiC. As a result of investigations by the present inventors, when TiC is used as a raw material, it is easier to form a Ti composite compound such as a composite compound containing Ti and W than when TiN or TiCN is used, and the existence ratio of the Ti composite compound increases. It was easy to do. Therefore, the amount of TiC used as a raw material is reduced as much as possible, preferably not used. As a result, the TiC obtained after sintering is low in TiC (20% by mass or less with the substrate being 100% by mass) or substantially absent. On the other hand, when TiN was used as a raw material, it was found that if TiN is used in a large amount, it is difficult to form the Ti composite compound described above, and rim formation is easily suppressed. Moreover, the knowledge that TiCN was preferable other than TiN was obtained. Therefore, the Ti compound phase actively present as the hard phase of the substrate is at least one of TiN and TiCN.

特に、基材の断面をとり、後述するようにTi化合物相(TiN,TiCN,TiC)を抽出してその合計面積をとったとき、この合計面積を100%として、50%以上、更に70%以上がTiNである形態が好ましい。   In particular, when taking a cross-section of the substrate and extracting the Ti compound phase (TiN, TiCN, TiC) and taking the total area as described later, this total area is taken as 100%, 50% or more, and further 70% The form in which the above is TiN is preferable.

また、基材についてX線回折を行ったとき、TiN(220)のピーク及びTiWC2(220)のピークを有しており、TiN(220)のピークの積分強度:αがTiWC2(220)のピークの積分強度:βに対して大きいこと、具体的には、(α/β)≧0.3を満たすことが好ましい。TiWC2は、後述するTi複合化合物の一つである。種々の組成のTi複合化合物について調べた結果、Ti複合化合物の組成比が多少変化しても、TiWC2のピークは近い位置に検出される(概ね同じ位置である)との知見を得た。そこで、Ti複合化合物の指標として、TiWC2を採用する。ピーク強度比:α/βが大きいほど、熱伝導率が低いTiWC2が相対的に少ないといえ、熱伝導性に優れる。(α/β)は、TiNが多い形態であると大きくなる傾向にあり、0.5以上、更に1.0以上がより好ましい。 Further, when X-ray diffraction was performed on the substrate, it had a TiN (220) peak and a TiWC 2 (220) peak, and the integrated intensity of the TiN (220) peak: α is TiWC 2 (220) It is preferable that the integrated intensity of the peak is larger than β, specifically, (α / β) ≧ 0.3 is satisfied. TiWC 2 is one of Ti composite compounds described later. As a result of investigating the Ti composite compounds having various compositions, it was found that even if the composition ratio of the Ti composite compounds slightly changed, the TiWC 2 peak was detected at a close position (substantially the same position). Therefore, TiWC 2 is adopted as an index of the Ti composite compound. As the peak intensity ratio: α / β is larger, it can be said that TiWC 2 having a lower thermal conductivity is relatively less, and the thermal conductivity is superior. (α / β) tends to increase when the TiN content is high, and is preferably 0.5 or more, more preferably 1.0 or more.

なお、上述の表層材や基材中の硬質相や結合相、元素の含有量の測定は、例えば、XRDなどで化合物や金属元素の同定を行い、EDX,EPMA,蛍光X線,IPC-AESなどを用いて組成を分析することで行える。   In addition, the measurement of the content of the hard phase, the binder phase, and the element in the surface layer material and the substrate described above is performed by, for example, identifying compounds and metal elements by XRD or the like, EDX, EPMA, fluorescent X-ray, IPC-AES This can be done by analyzing the composition using, for example.

(Ti複合化合物相)
基材中のTi複合化合物は、Tiと、周期表4族、5族、及び6族から選択される1種以上の金属元素(Tiを除く)と、炭素(C)、窒素(N)、及び酸素(O)から選択される1種以上の元素との化合物から選択される1種以上が挙げられる。代表的には、Tiと上記金属元素とを含む炭化物、窒化物、酸化物、炭窒酸化物及び炭窒化物から選択される1種以上が挙げられる。具体的には、(Ti,W,Mo,Ta,Nb)(C,N)、(Ti,W,Nb)(C,N)、(Ti,W,Mo,Ta)(C,N)、(Ti,W,Mo,Zr)(C,N)、(Ti,W,Mo)(C,N)、(Ti,W,Mo)N、TiWC2などが挙げられる。特に、炭窒化物が挙げられる。
(Ti compound phase)
Ti composite compound in the base material is Ti, one or more metal elements selected from Group 4, Group 5 and Group 6 (except Ti), carbon (C), nitrogen (N), And one or more selected from compounds with one or more elements selected from oxygen (O). Typically, at least one selected from carbides, nitrides, oxides, carbonitrides, and carbonitrides containing Ti and the above metal elements can be given. Specifically, (Ti, W, Mo, Ta, Nb) (C, N), (Ti, W, Nb) (C, N), (Ti, W, Mo, Ta) (C, N), (Ti, W, Mo, Zr) (C, N), (Ti, W, Mo) (C, N), (Ti, W, Mo) N, TiWC 2 and the like. In particular, carbonitride is mentioned.

(存在形態)
Ti化合物相とTi複合化合物相とは、代表的には、コアとなるTi化合物の周囲を囲むように、リムとなるTi複合化合物が存在するコアリム構造で存在する。コアリム構造の粒子は、結合相との濡れ性に優れるリムを具えることで、焼結性を高められ、緻密な焼結体とすることができる。また、コアリム構造の粒子は、相対的に熱伝導性に優れるTi化合物相を内包するため、熱伝導性にも優れる。従って、基材の断面をとり、この断面に存在するTi化合物相及びTi複合化合物相の合計面積を後述するように求めたとき、この合計面積を100%として、コアリム構造の粒子を60%以上含有することが好ましい。製造条件などによっては、Ti化合物相は、Ti複合化合物に覆われず露出された単体相(単体Ti化合物相)でも存在し得る。Ti複合化合物相は、Ti化合物相を内包していない単体相(単体Ti複合化合物相)でも存在し得る。単体Ti化合物相は、熱伝導性に優れるものの焼結性に劣ることから、その含有量は、上述の断面におけるTi化合物相の合計面積(コアリム構造の粒子中のTi化合物相の面積と単体Ti化合物相の面積との合計面積)を100%として20%以下、更に10%以下が好ましい(0%を含む)。単体Ti複合化合物相は、焼結性に優れるものの熱伝導性に劣ることから、その含有量は、上述の断面におけるTi複合化合物相の合計面積(コアリム構造の粒子中のTi複合化合物相の面積と単体Ti複合化合物相の面積との合計面積)を100%として20%以下、更に10%以下が好ましい(0%を含む)。
(Existence form)
The Ti compound phase and the Ti composite compound phase typically exist in a core rim structure in which a Ti composite compound serving as a rim exists so as to surround the periphery of the Ti compound serving as a core. The particles having the core rim structure are provided with a rim having excellent wettability with the binder phase, so that the sinterability can be enhanced and a dense sintered body can be obtained. Moreover, since the core rim structure particles enclose a Ti compound phase that is relatively excellent in thermal conductivity, the thermal conductivity is also excellent. Therefore, when the cross section of the substrate is taken and the total area of the Ti compound phase and Ti composite compound phase existing in the cross section is determined as described later, the total area is 100% and the core rim structure particles are 60% or more. It is preferable to contain. Depending on the manufacturing conditions, the Ti compound phase may exist even as a single phase (single Ti compound phase) exposed without being covered with the Ti composite compound. The Ti composite compound phase may exist even as a single phase that does not include the Ti compound phase (single Ti composite compound phase). Since the simple Ti compound phase is excellent in thermal conductivity but inferior in sinterability, its content is the total area of the Ti compound phase in the above cross section (the area of the Ti compound phase in the core rim structure particles and the simple Ti compound phase). 20% or less, more preferably 10% or less (including 0%), where 100% is the total area with the area of the compound phase. Since the single Ti composite compound phase is excellent in sinterability but inferior in thermal conductivity, its content is the total area of the Ti composite compound phase in the above-mentioned cross section (the area of the Ti composite compound phase in the core rim structure particles) And the area of the elemental Ti composite compound phase) as 100%, it is preferably 20% or less, more preferably 10% or less (including 0%).

(Ti化合物相とTi複合化合物相との存在割合)
本発明では、Ti複合化合物相の含有量がある程度少ない。具体的には、基材の断面において、Ti化合物相の面積率:aとTi複合化合物相の面積率:bとの比:a/bが0.5以上を満たす。熱伝導率が低いTi複合化合物相が少なめであることで、基材の熱伝導率の低下を抑制できる。上述の面積率の比:a/bの値が大きいほど、Ti複合化合物相が十分に少なく、基材の熱伝導率の低下を抑制でき、1≦(a/b)、更に2≦(a/b)を満たすことが好ましい。但し、a/bが大き過ぎると、結合相との濡れ性に劣る単体Ti化合物相が多く存在することになり、焼結性の低下を招くことから、(a/b)≦10を満たすことが好ましい。
(Existence ratio of Ti compound phase and Ti compound phase)
In the present invention, the content of the Ti composite compound phase is somewhat low. Specifically, in the cross section of the substrate, the ratio of the area ratio of the Ti compound phase: a and the area ratio of the Ti composite compound phase: b: a / b satisfies 0.5 or more. A decrease in the thermal conductivity of the substrate can be suppressed by having a small Ti composite compound phase having a low thermal conductivity. The ratio of the above-mentioned area ratios: The larger the value of a / b, the smaller the Ti composite compound phase, and the lowering of the thermal conductivity of the substrate can be suppressed. 1 ≦ (a / b), and further 2 ≦ (a It is preferable to satisfy / b). However, if a / b is too large, there will be many simple Ti compound phases that are inferior in wettability with the binder phase, leading to a decrease in sinterability, so (a / b) ≦ 10 must be satisfied. Is preferred.

上述の面積率の測定は、以下のように行う。基材の断面を電子顕微鏡や光学顕微鏡といった組織観察が可能な手法で断面像を撮影した後、市販の画像解析ソフトを用いて、取得した画像を画像解析して、硬質相(主としてTi化合物相、Ti複合化合物相、適宜WCなど)及び結合相をそれぞれ抽出する。抽出した各相の面積を求め、更に求めた面積を用いて面積率を求める。特に、走査型電子顕微鏡:SEMによる画像を用いると、画像解析を行い易く作業性に優れる。観察時の倍率は、硬質相の粒径によって適宜選択できるが、1000倍〜5000倍が利用し易い。SEM像では、代表的には、WCが白、Ti化合物が黒、Ti複合化合物と結合相とがグレー、といったコントラストで表わされる。そのため、Ti複合化合物相と結合相とを分離し難い場合がある。この場合、Ti複合化合物相と結合相との双方を含む面積率から、結合相の配合比率を差し引くことで、Ti複合化物相の面積率を計算する。結合相の配合比率は、上述のEDX,EPMAなどの組成分析を利用することで求められる。例えば、取得した画像において、黒領域(Ti化合物相)の面積率をa、グレー領域(Ti複合化合物相及び結合相の合計領域)の面積率をx、結合相の配合比率(面積率)をcとすると、Ti複合化合物相の面積率:bは、b=x-cと求められ、a/bが求められる。   The measurement of the area ratio is performed as follows. After taking a cross-sectional image of the cross-section of the substrate using a technique that allows observation of the structure, such as an electron microscope or an optical microscope, the obtained image is analyzed using a commercially available image analysis software, and the hard phase (mainly the Ti compound phase) , Ti composite compound phase, WC etc. as appropriate) and binder phase. The area of each extracted phase is obtained, and the area ratio is obtained using the obtained area. In particular, when an image obtained by a scanning electron microscope (SEM) is used, it is easy to perform image analysis and excellent workability. The magnification at the time of observation can be appropriately selected depending on the particle size of the hard phase, but it is easy to use 1000 to 5000 times. In the SEM image, typically, the WC is white, the Ti compound is black, and the Ti composite compound and the binder phase are gray. Therefore, it may be difficult to separate the Ti composite compound phase and the binder phase. In this case, the area ratio of the Ti composite phase is calculated by subtracting the compounding ratio of the binder phase from the area ratio including both the Ti composite compound phase and the binder phase. The compounding ratio of the binder phase can be obtained by using the composition analysis such as EDX, EPMA described above. For example, in the acquired image, the area ratio of the black area (Ti compound phase) is a, the area ratio of the gray area (total area of the Ti composite compound phase and the binder phase) is x, the compounding ratio (area ratio) of the binder phase is Assuming c, the area ratio of the Ti composite compound phase: b is obtained as b = xc, and a / b is obtained.

上記面積率の測定は、基材の断面において、十分に内部に位置する領域について行う。具体的には、基材の一部が複合構造工具の外表面を構成している場合(例えば、図1(A),図1(B),図1(D)に示す形態)、測定領域は、この外表面を含む表層領域を除いた領域とする。表層領域とは、基材の最表面から内部に向かって厚さ1mmまでの領域、及び基材の最表面から内部に向かって、基材の平均厚さの10%までの領域のいずれか小さい方とする。基材の全面が表層材で覆われている場合(例えば、図1(C)に示す形態)では、測定領域は、基材と表層材との境界近傍の領域を除いた領域とする。境界近傍の領域とは、上記境界から内部に向かって厚さ1mmまでの領域、及び上記境界から内部に向かって、基材の平均厚さの10%までの領域のいずれか小さい方とする。基材の外表面及びその近傍や、表層材との境界及びその近傍には、使用する原料や焼結条件によっては、改質層が生成される可能性がある。そのため、上記断面において少なくとも表層領域又は境界近傍の領域を除いた領域=内部領域から測定領域を選択する。上記断面における基材の中心及びその近傍などの十分に内部に位置する箇所を測定領域とすることが好ましい。上述の結合相の面積率は、結合相の体積率を以下のようにして求め、求めた体積率と等価とする。組成分析によって各元素の質量割合を求め、各元素の質量割合やX線回折などから、基材中の化合物の組成及び質量割合を決定する(推定する)。そして、結合相の質量割合及び密度と、化合物の質量割合及び密度とを用いて、結合相の体積率を算出する。   The area ratio is measured for a region located sufficiently inside in the cross section of the substrate. Specifically, when a part of the base material constitutes the outer surface of the composite structure tool (for example, the form shown in FIG. 1 (A), FIG. 1 (B), FIG. 1 (D)), the measurement region Is a region excluding the surface layer region including the outer surface. The surface layer region is the smaller one of the region from the outermost surface of the substrate up to 1 mm in thickness and the region from the outermost surface of the substrate toward the inside up to 10% of the average thickness of the substrate. And When the entire surface of the base material is covered with the surface layer material (for example, the form shown in FIG. 1C), the measurement region is a region excluding the region near the boundary between the base material and the surface layer material. The region in the vicinity of the boundary is defined as the smaller one of the region up to 1 mm thick from the boundary to the inside and the region up to 10% of the average thickness of the base material from the boundary to the inside. Depending on the raw materials used and the sintering conditions, a modified layer may be formed on the outer surface of the substrate and its vicinity, or on the boundary with the surface layer material and its vicinity. Therefore, a measurement region is selected from a region excluding at least a surface layer region or a region near the boundary in the cross section = an internal region. It is preferable to make the measurement region a location located sufficiently inside such as the center of the substrate and its vicinity in the cross section. The above-mentioned area ratio of the binder phase is equivalent to the volume ratio obtained by determining the volume ratio of the binder phase as follows. The mass ratio of each element is obtained by composition analysis, and the composition and mass ratio of the compound in the substrate are determined (estimated) from the mass ratio of each element, X-ray diffraction, and the like. And the volume ratio of a binder phase is computed using the mass ratio and density of a binder phase, and the mass ratio and density of a compound.

(その他の硬質相)
基材の硬質相として熱伝導率が高いWCを含む形態は、熱伝導性を高められる上に、超硬合金からなる表層材との熱膨張係数の差を小さくして、焼結後の熱収縮量の差に起因する変形を低減できて好ましい。WCの含有量が多いほど、基材の熱伝導率を高められるが、上述のように希少資源であるWの使用量の増大を招く上にTi複合化合物を生成し易くなり、好ましくない。従って、WCの含有量は、基材の断面をとったとき、この断面に対する面積率が10面積%以上60面積%以下が好ましく、20面積%以上50面積%以下がより好ましい。
(Other hard phases)
The form containing WC having a high thermal conductivity as the hard phase of the base material can improve the thermal conductivity and reduce the difference in thermal expansion coefficient from the surface layer material made of cemented carbide to reduce the heat after sintering. The deformation due to the difference in shrinkage can be reduced, which is preferable. The higher the WC content, the higher the thermal conductivity of the substrate. However, as described above, the amount of W, which is a rare resource, is increased, and a Ti composite compound is easily generated, which is not preferable. Therefore, the content of WC is preferably 10 area% or more and 60 area% or less, and more preferably 20 area% or more and 50 area% or less when the cross section of the substrate is taken.

(粒子径)
硬質相を構成する粒子は、一般に、その粒径が大きいほど、熱伝導性を高め易く好ましい。特に、Ti化合物相の平均粒径(コアリム構造の場合、コアの平均粒径)は、1μm以上が好ましく、1μm〜4μm程度がより好ましい。Ti複合化合物相の平均粒径(コアリム構造の場合、コアを含むリムの平均粒径)が1.5μm〜4.5μm程度が好ましい。WCを含有する場合、WCの平均粒径は、2μm以上が好ましく、2μm〜6μm程度がより好ましい。
(Particle size)
In general, the larger the particle size of the particles constituting the hard phase, the easier it is to increase the thermal conductivity, and the more preferable. In particular, the average particle size of the Ti compound phase (in the case of a core rim structure, the average particle size of the core) is preferably 1 μm or more, and more preferably about 1 μm to 4 μm. The average particle size of the Ti composite compound phase (in the case of the core rim structure, the average particle size of the rim including the core) is preferably about 1.5 μm to 4.5 μm. When WC is contained, the average particle diameter of WC is preferably 2 μm or more, and more preferably about 2 μm to 6 μm.

(結合相)
基材中の結合相は、結合相を100質量%として、80質量%以上が鉄族金属であることが好ましく、特に、焼結時の液相移動が生じ難いCoが好ましい。その他、原料に起因すると考えられる元素が含有(固溶)されることを許容する。結合相の含有量は、基材を100質量%として、8質量%以上20質量%以下が挙げられる。
(Binder phase)
The binder phase in the substrate is preferably iron group metal, with 80% by mass or more of the binder phase being 100% by mass, and particularly preferably Co which hardly causes liquid phase movement during sintering. In addition, it is allowed to contain (solid solution) an element considered to be caused by the raw material. The content of the binder phase is 8% by mass or more and 20% by mass or less, based on 100% by mass of the base material.

(その他の含有物)
その他、基材も、Cr,Ta,Nb,Zr,V,Moなどの金属、(Ta,Nb)C,VC,Cr3C2,NbC,Mo2Cなどの金属化合物を合計で20質量%以下の範囲で含有することができる。これらの金属や金属化合物を含有する形態は、粒成長の抑制効果や、結合相への固溶による靭性の向上効果が期待できる。但し、Mo2CといったMoを含む化合物を多く用いると、Ti複合化合物を生成し易く、リムが厚くなり易い。従って、基材中のMoの含有量は、5質量%以下、更に3質量%以下が好ましい。MoやMoを含む化合物を含有していなくてもよい。
(Other contents)
In addition, the base material is 20% by mass in total of metals such as Cr, Ta, Nb, Zr, V, and Mo, and metal compounds such as (Ta, Nb) C, VC, Cr 3 C 2 , NbC, and Mo 2 C. It can contain in the following ranges. The form containing these metals and metal compounds can be expected to have an effect of suppressing grain growth and an effect of improving toughness due to solid solution in the binder phase. However, if a large amount of a compound containing Mo such as Mo 2 C is used, a Ti composite compound is likely to be generated, and the rim tends to be thick. Therefore, the Mo content in the substrate is preferably 5% by mass or less, and more preferably 3% by mass or less. It does not have to contain Mo or a compound containing Mo.

表層材や基材の組成や各相の含有量、後述する熱伝導率や熱膨張係数といった熱特性が所望のものとなるように原料の組成や含有量、平均粒径を調整する。   The composition, content, and average particle size of the raw materials are adjusted so that the thermal properties such as the composition of the surface layer material and the base material, the content of each phase, the thermal conductivity and the thermal expansion coefficient described later are desired.

<熱伝導率>
表層材は、熱伝導率が高いWCを基材よりも多く含むことから、表層材の熱伝導率は、基材の熱伝導率よりも高い形態が代表的である。表層材の熱伝導率は、WCの含有量にもよるが、60W/m・K以上140W/m・K以下が挙げられる。刃先の少なくとも一部を構成する表層材の熱伝導率が高いことで、切削時に生じた刃先の熱を外部に逃がし易い。また、本発明では、Ti複合化合物相が比較的少ないことで、基材の熱伝導率もある程度高い形態とすることができる。硬質相の組成や含有量、粒径にもよるが、例えば、基材の熱伝導率が20W/m・K以上を満たす形態が挙げられる。基材の熱伝導率は、高いほど刃先及びその近傍からの熱を基材内部を経て外部に伝え易く、刃先及びその近傍に熱がこもることを抑制できて耐熱性に優れることから、30W/m・K以上、更に40W/m・K以上が好ましい。基材の熱伝導率は、基材中のWCの含有量に相関があり、WCを多く含むほど基材の熱伝導率が高くなるものの、原料に用いるWの使用量が増加することから、70W/m・K以下が好ましい。
<Thermal conductivity>
Since the surface layer material contains more WC having a higher thermal conductivity than the base material, the surface layer material typically has a higher thermal conductivity than the base material. The thermal conductivity of the surface layer material may be 60 W / m · K or more and 140 W / m · K or less, depending on the WC content. Since the surface layer material constituting at least a part of the cutting edge has a high thermal conductivity, the heat of the cutting edge generated during cutting can be easily released to the outside. In the present invention, since the Ti composite compound phase is relatively small, the thermal conductivity of the base material can be increased to some extent. Although depending on the composition, content and particle size of the hard phase, for example, a form in which the thermal conductivity of the substrate satisfies 20 W / m · K or more can be mentioned. The higher the thermal conductivity of the substrate, the easier it is to transfer the heat from the blade edge and its vicinity to the outside through the inside of the substrate, and it is possible to suppress heat accumulation in the blade edge and its vicinity, and it is excellent in heat resistance. m · K or more, more preferably 40 W / m · K or more. The thermal conductivity of the base material has a correlation with the content of WC in the base material, and although the thermal conductivity of the base material increases as the amount of WC increases, the amount of W used for the raw material increases. 70 W / m · K or less is preferable.

<熱膨張係数>
表層材と基材とが異なる組成から構成されることから、両者の熱膨張係数が異なる形態が代表的である。表層材の熱膨張係数が基材の熱膨張係数よりも低い形態であると、焼結後の熱収縮によって、熱収縮量が小さい表層材に圧縮応力を付与することができる。刃先の少なくとも一部を構成する表層部が圧縮応力を有する場合、耐欠損性を高められて、切削性能の向上を期待できる。この効果を得るには、両者の熱膨張係数の差が0.5×10-6/K以上であることが好ましい。一方、両者の熱膨張係数の差が3×10-6/K以下を満たすと、両者の原料を一体に焼結した後、両者の熱収縮量の差に起因する亀裂の発生、剥離、変形を低減して、寸法精度や形状精度に優れる複合構造の焼結体が得られて好ましい。
<Coefficient of thermal expansion>
Since the surface layer material and the base material are composed of different compositions, a form in which the thermal expansion coefficients of both are different is representative. When the thermal expansion coefficient of the surface layer material is lower than the thermal expansion coefficient of the base material, compressive stress can be applied to the surface layer material having a small amount of thermal shrinkage due to thermal shrinkage after sintering. When the surface layer part which comprises at least one part of a blade edge | tip has a compressive stress, fracture resistance can be improved and the improvement of cutting performance can be anticipated. In order to obtain this effect, the difference in thermal expansion coefficient between the two is preferably 0.5 × 10 −6 / K or more. On the other hand, if the difference in thermal expansion coefficient between the two satisfies 3 × 10 −6 / K or less, both raw materials are sintered together, and then cracking, peeling, and deformation are caused by the difference in the amount of thermal shrinkage between the two. It is preferable that a sintered body having a composite structure excellent in dimensional accuracy and shape accuracy is obtained.

[製造方法]
本発明の複合構造工具は、特許文献1に記載される手法を利用して製造できる。具体的には、表層材を構成する超硬合金を製造するための原料粉末、及び上述の基材を構成する硬質材料を製造するための原料粉末をそれぞれ用意する。そして、各原料粉末をそれぞれ別個に混合した後、適宜造粒を行う。所望の複合構造となるように各原料の造粒粉末を金型に順次供給して押圧し、複合構造のプレス成形体を作製し、このプレス成形体を焼結することで得られる。
[Production method]
The composite structure tool of the present invention can be manufactured using the technique described in Patent Document 1. Specifically, the raw material powder for manufacturing the cemented carbide which comprises surface layer material, and the raw material powder for manufacturing the hard material which comprises the above-mentioned base material are each prepared. And after mixing each raw material powder separately, it granulates suitably. It is obtained by supplying granulated powder of each raw material to a mold in order to obtain a desired composite structure and pressing it to produce a press-formed body having a composite structure and sintering the press-formed body.

特に、基材に具えるTi化合物相を製造するための原料粉末は、TiN,TiCN,TiCといったTiを含む化合物の合計を100質量%とするとき、50質量%以上、更に70質量%以上、特に75質量%以上がTiNからなる粉末とすると、熱伝導率が低いTi複合化合物を形成し難く好ましい。Tiを含む化合物からなる原料粉末は、TiN粉末とTiCN粉末との混合粉末、又はTiN粉末のみが好ましく、Ti複合化合物を形成し易いTiCは用いないことが好ましい。原料に用いるTiNが多いほど、TiNが多く存在する形態を製造し易い。また、TiとWとを含む複合化合物(代表的には炭窒化物)も上述のように熱伝導率が低いTi複合化合物を形成し易いことから、原料粉末に用いないことが好ましい。   In particular, the raw material powder for producing the Ti compound phase provided in the base material is 50% by mass or more, further 70% by mass or more, when the total of compounds containing Ti such as TiN, TiCN, and TiC is 100% by mass, In particular, it is preferable that 75% by mass or more of the powder is made of TiN because it is difficult to form a Ti composite compound having low thermal conductivity. The raw material powder made of a compound containing Ti is preferably a mixed powder of TiN powder and TiCN powder, or TiN powder alone, and TiC that easily forms a Ti composite compound is preferably not used. The more TiN used as a raw material, the easier it is to produce a form in which more TiN exists. Further, a composite compound containing Ti and W (typically carbonitride) is also preferably not used for the raw material powder because it easily forms a Ti composite compound having a low thermal conductivity as described above.

基材がWCを含有する形態とする場合、原料にWC粉末を比較的多めに用いる(好ましくは原料粉末中の20質量%超)。後述する試験例に示すように原料に用いるWC粉末が少ないと、焼結体中にWCが実質的に存在せず、原料のWC粉末はTi複合化合物相の形成にのみ利用される傾向にある。その他、周期表4族,5族,及び6族から選択される1種以上の金属元素の炭化物、窒化物、及び炭窒化物から選択される1種以上の化合物(上述のTiN,TiCN,TiC及びWCを除く)からなる粉末を原料に添加することができる。上述のようにMo2CといったMo化合物の添加量は少ない方が好ましく、基材の原料粉末の合計を100質量%として、5質量%以下が好ましく、用いなくてもよい。 When the substrate contains WC, a relatively large amount of WC powder is used as the raw material (preferably more than 20% by mass in the raw material powder). As shown in the test examples to be described later, when the WC powder used for the raw material is small, WC is not substantially present in the sintered body, and the WC powder of the raw material tends to be used only for the formation of the Ti composite compound phase. . In addition, one or more compounds selected from carbides, nitrides, and carbonitrides of one or more metal elements selected from Group 4, Group 5, and Group 6 of the periodic table (TiN, TiCN, TiC described above) And WC) can be added to the raw material. As described above, the addition amount of Mo compound such as Mo 2 C is preferably small. The total amount of the raw material powders of the base material is 100% by mass, preferably 5% by mass or less, and may not be used.

更に、所定量を秤量した原料粉末を混合する工程では、基材の混合時間が短い方がTi複合化合物の生成を抑制し易い、との知見を得た。混合時間を短くすることで、原料粉末を構成する金属化合物が過度に粉砕されることを抑制できる。その結果、金属化合物の微粉末を低減でき、焼結工程においてこの微粉末の溶解(固溶)及び再析出を抑制できるため、Ti複合化合物の生成を抑制し易い。また、混合時間を短くすることで、原料粉末の粒径を維持し易くなり、硬質相を比較的大きくすることができ(平均粒径:1μm〜4.5μm程度)、放熱性を高められる。混合にボールミルなどを利用する場合、具体的な混合時間は、例えば、表層材用超硬合金の原料粉末の混合時間の半分以下が挙げられる。より具体的には、表層材用の原料粉末の混合時間:20時間〜30時間程度、基材用の原料粉末の混合時間:2時間〜15時間程度が挙げられる。又は、粉砕メディアを用いないメディアレス混合とすると、原料粉末の粒径を更に維持し易い。メディアレス混合は、例えば、原料粉末にエタノールやアセトンなどの有機溶媒を合わせてスラリーとし、このスラリーに超音波を照射しながら、粉砕メディアを用いることなく混合する手法が挙げられる。なお、表層材用の原料粉末や基材用の原料粉末の所定量はそれぞれ、表層材や基材について、所望の形状や厚さ、各原料粉末の比重、各原料粉末の収縮率に基づいて算出する。   Furthermore, in the process of mixing the raw material powders weighed in a predetermined amount, it was found that the shorter the mixing time of the base material, the easier the generation of the Ti composite compound is suppressed. By shortening the mixing time, the metal compound constituting the raw material powder can be prevented from being excessively pulverized. As a result, the fine powder of the metal compound can be reduced, and the dissolution (solid solution) and reprecipitation of the fine powder can be suppressed in the sintering step, and thus the formation of the Ti composite compound can be easily suppressed. Also, by shortening the mixing time, it becomes easy to maintain the particle size of the raw material powder, the hard phase can be made relatively large (average particle size: about 1 μm to 4.5 μm), and heat dissipation can be improved. When a ball mill or the like is used for mixing, the specific mixing time is, for example, half or less of the mixing time of the raw material powder of the cemented carbide for the surface layer material. More specifically, the mixing time of the raw material powder for the surface layer material: about 20 hours to 30 hours and the mixing time of the raw material powder for the base material: about 2 hours to 15 hours can be mentioned. Or if it is medialess mixing which does not use a grinding | pulverization media, it will be easier to maintain the particle size of raw material powder. Medialess mixing includes, for example, a method in which raw material powder is mixed with an organic solvent such as ethanol or acetone to form a slurry, and the slurry is mixed without pulverizing media while being irradiated with ultrasonic waves. In addition, the predetermined amount of the raw material powder for the surface layer material and the raw material powder for the base material is determined based on the desired shape and thickness, the specific gravity of each raw material powder, and the shrinkage rate of each raw material powder, respectively. calculate.

上記焼結は、焼結体の形成と共に、表層材と基材との一体接合も兼ねる。焼結条件は、一般的なものを利用でき、例えば、真空雰囲気で1300℃〜1500℃に0.5時間〜3.0時間保持することが挙げられる。   The above-mentioned sintering also serves as integral bonding of the surface layer material and the substrate together with the formation of the sintered body. As the sintering conditions, general ones can be used, for example, holding at 1300 ° C. to 1500 ° C. in a vacuum atmosphere for 0.5 hours to 3.0 hours.

その他、ホーニングといった刃先処理、CVD法やPVD法による被覆膜の形成などを適宜行うことができる。   In addition, blade edge processing such as honing, and formation of a coating film by a CVD method or a PVD method can be appropriately performed.

[試験例1]
種々の組成の原料粉末を用いて、超硬合金からなる表層材と、硬質相としてTiを含有する化合物からなる相を含む基材とを具える複合構造の焼結体を作製し、組織観察を行った。また、この焼結体を切削工具として、切削性能を調べた。
[Test Example 1]
Using raw material powders of various compositions, a composite structure sintered body comprising a surface layer material made of cemented carbide and a base material containing a phase made of a compound containing Ti as a hard phase was prepared, and the structure was observed. Went. Further, cutting performance was examined using this sintered body as a cutting tool.

この試験では、原料粉末として表1に示す組成の粉末を用意した。用意した各粉末の平均粒径は、WC:3μm、TiCN:3μm、TiN:2μm、TiC:3μmである。試料No.1-1〜No.1-8、及び試料No.1-100,No.1-110は、表1に示す組成の粉末を基材の製造に用い、表1の試料No.1-200に示す組成の粉末を表層材の製造に用いた。試料No.1-200は、表1に示す組成の粉末のみを用いて作製した比較試料であり、超硬合金のみからなる焼結体である。   In this test, a powder having the composition shown in Table 1 was prepared as a raw material powder. The average particle diameters of the prepared powders are WC: 3 μm, TiCN: 3 μm, TiN: 2 μm, and TiC: 3 μm. Samples No.1-1 to No.1-8, and Samples No.1-100 and No.1-110 were prepared using the powder having the composition shown in Table 1 for the production of the base material. The powder having the composition shown in -200 was used for producing the surface layer material. Sample No. 1-200 is a comparative sample produced using only the powder having the composition shown in Table 1, and is a sintered body made of cemented carbide only.

表1に示す各組成の粉末を秤量し、各組成の粉末をエタノール中、ボールミルによって混合した。混合時間は、表1に示す時間(時間)とした。混合後、各組成の粉末を造粒して、平均粒径100μmの表層材用粉末(造粒粉末)、及び基材用粉末(造粒粉末)、並びに比較試料用粉末(造粒粉末)を得る。原料粉末に用いたTiを含む化合物:TiN,TiCN,TiCの合計を100質量%とするときのTiNの質量割合(%)を表1に示す。   The powders of each composition shown in Table 1 were weighed, and the powders of each composition were mixed in ethanol by a ball mill. The mixing time was the time (time) shown in Table 1. After mixing, the powder of each composition is granulated, and the powder for the surface layer material (granulated powder) having an average particle diameter of 100 μm, the powder for the base material (granulated powder), and the powder for the comparative sample (granulated powder) obtain. Table 1 shows the mass ratio (%) of TiN when the total of Ti-containing compounds: TiN, TiCN, and TiC used as the raw material powder is 100 mass%.

Figure 0005472659
Figure 0005472659

表層材及び基材が所望の厚さとなるように(ここでは表層材の狙い厚さ:0.3mm)、得られた表層材用粉末、及び基材用粉末を秤取り、金型(型番:SNGN120408(厚さ:4.76mm))に各粉末を順次供給して、1ton/cm2の圧力でプレス成形し、多層構造のプレス成形体を作製する。ここでは、基材用粉末からなる直方体において、対向する二面を覆うように、表層材用粉末からなる矩形板状の層が存在する三層構造の積層プレス成形体とした。得られた積層プレス成形体を真空雰囲気、1430℃×60minの条件で焼結して焼結体を得る。 The surface layer material powder and the base material powder were weighed out so that the surface layer material and the base material had a desired thickness (here the target thickness of the surface layer material: 0.3 mm), and the mold (model number: SNGN120408 (Thickness: 4.76 mm)) is sequentially supplied and press-molded at a pressure of 1 ton / cm 2 to produce a multi-layer press-molded body. Here, in the rectangular parallelepiped made of the base material powder, a laminated press-molded body having a three-layer structure in which a rectangular plate-like layer made of the surface layer material powder is present so as to cover two opposing surfaces. The obtained laminated press-molded body is sintered under a condition of 1430 ° C. × 60 min in a vacuum atmosphere to obtain a sintered body.

上述のようにして得られた焼結体(試料No.1-200を除く)は、超硬合金から構成される層と、超硬合金とは異なる組成の硬質材料からなる層とを具え、直方体状の硬質材料からなる基材において対向する二面を挟むように矩形板状の超硬合金からなる表層材が一体化された三層構造である(図1(B)参照)。表層材の平均厚さを測定したところ、いずれの試料も0.3mm(二層の合計:0.6mm)である。   The sintered body obtained as described above (excluding sample No. 1-200) includes a layer composed of a cemented carbide and a layer composed of a hard material having a composition different from that of the cemented carbide. This is a three-layer structure in which a surface layer material made of a cemented carbide of a rectangular plate shape is integrated so as to sandwich two opposing surfaces of a base material made of a cuboidal hard material (see FIG. 1 (B)). When the average thickness of the surface layer material was measured, all the samples were 0.3 mm (total of two layers: 0.6 mm).

得られた各焼結体について、基材の組成をSEM-EDX装置を用いて調べた。その結果、試料No.1-1〜No.1-8は、TiN及びTiCNの少なくとも一方:Ti化合物相と、TiとWとを含有する複合化合物:Ti複合化合物相とが存在し、試料No.1-100は、Ti化合物相が実質的に存在しなかった。また、試料No.1-6を除く試料No.1-1〜No.1-5,No.1-7,No.1-8の焼結体は、WCが存在した。更に、試料No.1-1〜No.1-8,No.1-100,No.1-110について、SEM-EDX装置を用いて表層材中のW量及び基材中のW量を調べ、表層材中のW量に対する基材中のW量の質量割合(%)を求めた。その結果を表3に示す。加えて、試料No.1-1〜No.1-8はいずれも、基材中のMoの含有量が5質量%以下であり、原料に用いたMo2Cの添加量と同等以下であった。 About each obtained sintered compact, the composition of the base material was investigated using the SEM-EDX apparatus. As a result, samples No. 1-1 to No. 1-8 have at least one of TiN and TiCN: a Ti compound phase and a composite compound containing Ti and W: a Ti composite compound phase. .1-100 was substantially free of Ti compound phase. In addition, WC was present in the sintered bodies of Samples No. 1-1 to No. 1-5, No. 1-7, and No. 1-8 except Sample No. 1-6. Furthermore, for samples No.1-1 to No.1-8, No.1-100, No.1-110, we investigated the amount of W in the surface material and the amount of W in the base material using the SEM-EDX equipment. The mass ratio (%) of the amount of W in the base material to the amount of W in the surface layer material was determined. The results are shown in Table 3. In addition, samples No. 1-1 to No. 1-8 all have a Mo content of 5% by mass or less in the base material, which is equal to or less than the addition amount of Mo 2 C used as a raw material. It was.

得られた各焼結体について基材を切断し、基材の断面をSEMによって観察した。その結果、試料No.1-1〜No.1-8の基材20はいずれも、図2(A)に示すように、硬質相として、Ti化合物相22を中心組織とし、Ti複合化合物相23を周辺組織とするコアリム構造の粒子21が存在する。そして、これらの基材20はいずれも、コアリム構造の粒子21におけるコア:Ti化合物相22が大きく、リム:Ti複合化合物相23が薄い。また、試料No.1-1〜No.1-8は、Ti化合物相22のみからなる単体Ti化合物相220の粒子やTi複合化合物相23のみからなる単体Ti複合化合物相230の粒子が若干存在する。一方、原料にTiNを用いずTiCを用いた試料No.1-100の基材(サーメット200)は、図2(B)に示すように、リム:Ti複合化合物相23が厚いコアリム構造の粒子210が存在する上に、単体Ti複合化合物相230が比較的多く存在する。   The base material was cut | disconnected about each obtained sintered compact, and the cross section of the base material was observed by SEM. As a result, as shown in FIG. 2 (A), each of the base materials 20 of samples No. 1-1 to No. 1-8 has a hard structure, a Ti compound phase 22 as a central structure, and a Ti composite compound phase. There are core rim-structured particles 21 having 23 as a surrounding tissue. Each of these base materials 20 has a large core: Ti compound phase 22 and a thin rim: Ti composite compound phase 23 in the core rim structure particle 21. Samples No. 1-1 to No. 1-8 also have a single Ti compound phase 220 particle consisting of only the Ti compound phase 22 and a single Ti compound compound phase 230 particle consisting of only the Ti compound compound phase 23. To do. On the other hand, the base material (cermet 200) of sample No. 1-100 using TiC without using TiN as a raw material is a core rim structure particle with a thick rim: Ti composite compound phase 23, as shown in FIG. In addition to the presence of 210, there are relatively many simple Ti composite compound phases 230.

上述の基材の断面のSEM像を用いて、Ti化合物とTi複合化合物とをそれぞれ抽出し、基材の断面におけるTi化合物相の面積率をa、Ti複合化合物相の面積率をbとし、その比:a/bを求めた。その結果を表3に示す。また、基材の断面におけるTi化合物相の合計面積に対するTiNの面積割合(%)を求めた。その結果も表3に示す。   Using the SEM image of the cross section of the base material described above, each of the Ti compound and the Ti composite compound was extracted, and the area ratio of the Ti compound phase in the cross section of the base material was a, and the area ratio of the Ti composite compound phase was b, The ratio: a / b was determined. The results are shown in Table 3. Moreover, the area ratio (%) of TiN with respect to the total area of the Ti compound phase in the cross section of the substrate was determined. The results are also shown in Table 3.

更に、上述の基材の断面のSEM像を用いてWCを抽出し、基材の断面におけるWCの面積率(%)を求めた。その結果を表3に示す。また、比較試料用粉末を用いて、上述の条件と同様にして成形及び焼結して、比較試料No.1-200の焼結体(超硬合金)も作製し、同様にしてWCの面積率(%)を求めた。その結果を表3に示す。なお、試料No.1-1〜No.1-8,No.100,No.110における表層材のWCの面積率は、比較試料No.1-200におけるWCの面積率と等価である。   Furthermore, WC was extracted using the SEM image of the cross section of the base material described above, and the area ratio (%) of WC in the cross section of the base material was determined. The results are shown in Table 3. In addition, using the powder for the comparative sample, molding and sintering in the same manner as described above to produce a sintered body (hard metal) of comparative sample No. 1-200, and the area of WC in the same manner The rate (%) was determined. The results are shown in Table 3. In addition, the area ratio of WC of the surface layer material in samples No. 1-1 to No. 1-8, No. 100, and No. 110 is equivalent to the area ratio of WC in comparative sample No. 1-200.

更に、上述の基材の断面のSEM像を用いて、Ti化合物相の合計面積に対する単体Ti化合物相の面積率(%)、Ti複合化合物相の合計面積に対する単体Ti複合化合物相の面積率(%)を求めた。これらの結果も表3に示す。   Furthermore, using the SEM image of the cross-section of the substrate described above, the area ratio of the single Ti compound phase relative to the total area of the Ti compound phase (%), the area ratio of the single Ti compound compound phase relative to the total area of the Ti compound compound phase ( %). These results are also shown in Table 3.

更に、基材において抽出したTi化合物相の平均粒径(μm)、WCの平均粒径(μm)を求めた。これらの結果も表3に示す。平均粒径は、上述の基材の断面のSEM像(5000倍)と、画像解析装置:Mac-VIEW(株式会社マウンテック製)とを用いて、各粒子(n≧30)について水平方向のferet径及び垂直方向のferet径のそれぞれを測定し、測定した水平方向のferet径と垂直方向のferet径との平均とした。   Furthermore, the average particle diameter (μm) of the Ti compound phase extracted from the substrate and the average particle diameter (μm) of WC were determined. These results are also shown in Table 3. The average particle size is determined by using the SEM image (5000 times) of the cross-section of the base material described above and an image analyzer: Mac-VIEW (manufactured by Mountec Co., Ltd.), and the horizontal feret for each particle (n ≧ 30). Each of the diameter and the vertical feret diameter was measured, and the average of the measured horizontal feret diameter and the vertical feret diameter was taken.

更に、上述の基材の断面に対してX線回折を行い、TiN(220)のピーク及びTiWC2(220)のピークの有無を調べた。そして、TiN(220)のピークの積分強度をα、TiWC2(220)のピークの積分強度をβとするときの比:α/βを求めた。その結果も表3に示す。この試験では、X線回折の対象を基材の断面としたが、基材の外表面でもよい。 Further, X-ray diffraction was performed on the cross-section of the above-mentioned substrate, and the presence or absence of a TiN (220) peak and a TiWC 2 (220) peak was examined. Then, a ratio α / β when the integrated intensity of the peak of TiN (220) is α and the integrated intensity of the peak of TiWC 2 (220) is β was obtained. The results are also shown in Table 3. In this test, the target of X-ray diffraction was the cross section of the base material, but the outer surface of the base material may be used.

得られた各焼結体から熱特性を測定するための試験片を作製した。また、比較試料No.1-200の超硬合金についても同様に試験片を作製した。そして、作製した試験片を用いて、熱伝導率(W/m・K)及び熱膨張係数(10-6/K)を測定した。その結果を表3に示す。試料No.1-1〜No.1-8,No.1-100,No.1-110は、基材の熱特性を示し、試料No.1-200は、超硬合金の熱特性(=表層材の熱特性)を示す。ここでは、熱伝導率は、熱伝導率=比熱×熱拡散率×密度によって算出する。比熱及び熱拡散率の測定には、市販の測定器を利用できる。例えば、アルバック理工株式会社製 TC-7000を用いる場合、各焼結体から測定用試料(8mm×8mm×1.5mm)を切り出し、レーザーフラッシュ法にて、比熱と熱拡散率とを測定できる。密度は、アルキメデス法にて求められる。上記測定用試料の切り出しが難しい形状や大きさの焼結体である場合には、例えば、市販のサーマルマイクロスコープにて熱浸透率を測定したり、示差走査熱量測定(DSC)を用いて比熱を測定したりして、熱浸透率=(熱伝導率×密度×比熱)1/2を用いて、熱伝導率を算出することができる。熱膨張率は、30℃〜200℃の範囲について測定した。 A test piece for measuring thermal characteristics was prepared from each of the obtained sintered bodies. In addition, a test piece was similarly prepared for the cemented carbide of Comparative Sample No. 1-200. And the thermal conductivity (W / m * K) and the thermal expansion coefficient (10 <-6 > / K) were measured using the produced test piece. The results are shown in Table 3. Samples No.1-1 to No.1-8, No.1-100, No.1-110 show the thermal properties of the substrate, and Sample No.1-200 shows the thermal properties of the cemented carbide (= The thermal properties of the surface material are shown. Here, the thermal conductivity is calculated by thermal conductivity = specific heat × thermal diffusivity × density. A commercially available measuring instrument can be used for the measurement of specific heat and thermal diffusivity. For example, when using TC-7000 manufactured by ULVAC-RIKO, a sample for measurement (8 mm × 8 mm × 1.5 mm) can be cut out from each sintered body, and specific heat and thermal diffusivity can be measured by a laser flash method. The density is determined by the Archimedes method. In the case of a sintered body having a shape or size that makes it difficult to cut out the measurement sample, for example, the thermal permeability is measured with a commercially available thermal microscope, or the specific heat is measured using differential scanning calorimetry (DSC). Or the thermal conductivity can be calculated using the thermal permeability = (thermal conductivity × density × specific heat) 1/2 . The coefficient of thermal expansion was measured in the range of 30 ° C to 200 ° C.

なお、複合構造の焼結体から、表面層(ここでは表層材に相当)と、表面層に覆われた中間層(ここでは基材に相当)とを切断するなどして分割し、所定の形状に加工後、それぞれについて熱特性などの物性値を評価してもよい。又は、複合構造のままの状態で物性値を評価した後、表面層又は中間層を除去して、再度、表面層又は中間層の物性評価を行った結果から、表面層又は中間層の物性値を算出してもよい。   Note that the surface layer (corresponding to the surface layer material here) and the intermediate layer (corresponding to the base material here) covered with the surface layer are divided from the sintered body of the composite structure by cutting, etc. After processing into a shape, physical property values such as thermal characteristics may be evaluated for each. Or, after evaluating the physical property values in the state of the composite structure, the surface layer or the intermediate layer is removed, and the physical property values of the surface layer or the intermediate layer are obtained again from the results of the physical property evaluation of the surface layer or the intermediate layer. May be calculated.

得られた各焼結体に研削加工(平面研磨)を施した後、刃先処理加工を施し、試料No.1-1〜No.1-8,No.1-100,No.1-110では、複合構造の切削工具、試料No.1-200では超硬合金からなる切削工具を得る。得られた切削工具を表2に示す条件で切削試験(旋削加工)を行って、切削性能を調べた。その結果を表3に示す。この試験では、切削性能として、クレーター摩耗幅(mm)を測定した。   Each of the obtained sintered bodies was ground (planar polishing), and then subjected to cutting edge processing.In samples No.1-1 to No.1-8, No.1-100, No.1-110 In addition, a cutting tool made of cemented carbide is obtained with a composite structure cutting tool, sample No. 1-200. The obtained cutting tool was subjected to a cutting test (turning) under the conditions shown in Table 2 to examine the cutting performance. The results are shown in Table 3. In this test, crater wear width (mm) was measured as cutting performance.

Figure 0005472659
Figure 0005472659

Figure 0005472659
Figure 0005472659

表3に示すように、超硬合金からなる表層材と、硬質相にTi化合物相及びTi複合化合物相を具える硬質材料からなる基材との複合構造の焼結体から構成され、Ti化合物相の面積率とTi複合化合物の面積率との比:a/bが0.5以上である基材を具える試料No.1-1〜No.1-8は、刃先が高温となるような切削(ここでは、切削速度が200m/min以上といった高速切削)を行った場合でも、クレーター摩耗が少ない上に、欠損し難く、靭性にも優れることが分かる。また、試料No.1-1〜No.1-8に具える基材は、表層材(ここでは試料No.1-200の特性と等価)よりも熱伝導率が低いもののある程度高いことが分かる。具体的には、試料No.1-1〜No.1-8に具える基材の熱伝導率は、20W/m・K以上であり、組成によっては更に熱伝導率が高い。更に、試料No.1-1〜No.1-8に具える基材は、単体Ti複合化合物相も少ないことが分かる。これらのことから、上述のような刃先が高温となる切削条件であっても、試料No.1-1〜No.1-8が優れた切削性能を有していた理由は、熱伝導率が低いTi複合化合物が少なく、基材の熱伝導率の低下を抑制でき、切削時に生じた刃先の熱を、基材の外部に逃して、刃先及びその近傍に熱がこもることを抑制できたため、と考えられる。また、試料No.1-1〜No.1-8はいずれも、基材よりも熱伝導率が高い表層材を具えることからも、刃先及びその近傍に熱がこもることを抑制できた、と考えられる。   As shown in Table 3, it is composed of a sintered body having a composite structure of a surface layer material made of a cemented carbide and a base material made of a hard material having a Ti compound phase and a Ti composite compound phase in the hard phase, and a Ti compound. The ratio of the area ratio of the phase to the area ratio of the Ti composite compound: Samples No.1-1 to No.1-8, which have a base material with a / b of 0.5 or more, are cut so that the cutting edge becomes hot. It can be seen that even when performing (high speed cutting such as a cutting speed of 200 m / min or more) here, crater wear is small, it is difficult to break, and excellent toughness. In addition, it can be seen that the base materials included in samples No. 1-1 to No. 1-8 have a somewhat higher thermal conductivity than the surface layer material (here, equivalent to the characteristics of sample No. 1-200). . Specifically, the thermal conductivity of the base materials included in Sample Nos. 1-1 to 1-8 is 20 W / m · K or more, and the thermal conductivity is higher depending on the composition. Further, it can be seen that the base materials included in Samples No. 1-1 to No. 1-8 have few simple Ti composite compound phases. From these facts, the reason why Samples No. 1-1 to No. 1-8 had excellent cutting performance even under cutting conditions in which the cutting edge as described above becomes high temperature is that the thermal conductivity is Because there are few low Ti compound compounds, it was possible to suppress a decrease in the thermal conductivity of the base material, and the heat of the blade edge generated during cutting was released to the outside of the base material, and it was possible to suppress the heat trapping in the blade edge and its vicinity, it is conceivable that. In addition, all of the samples No. 1-1 to No. 1-8 were provided with a surface layer material having a higher thermal conductivity than the base material, so that it was possible to suppress heat accumulation in the blade edge and the vicinity thereof, it is conceivable that.

特に、試料No.1-1〜No.1-8は、基材にWを含有しており、このWがWCとして存在する場合、とりわけWCの含有量が多いほど、基材の熱伝導率が高く、クレーター摩耗が少なくなっていることが分かる。特に、WCの面積率が10%以上であると、熱伝導率が25W/m・K以上であるものが得られることが分かる。また、試料No.1-1〜No.1-8において基材中のTi化合物相やWCの平均粒径が大きいほど、熱伝導率が高い傾向にあることが分かる。更に、基材中のWCの含有量が多いほど、基材と、超硬合金からなる表層材(試料No.1-200)とにおいて熱膨張係数の差が小さいことが分かる。ここではその差が3×10-6/K以下を満たす。加えて、試料No.1-1〜No.1-8の基材は、単体Ti複合化合物相及び単体Ti化合物相の双方が少ないことから、両相の多くはコアリム構造の粒子として存在し、コアリム構造の粒子は、Ti複合化合物相が薄い、といえる。 In particular, Samples No. 1-1 to No. 1-8 contain W in the base material. When this W is present as WC, the greater the WC content, the greater the thermal conductivity of the base material. It can be seen that crater wear is low. In particular, it can be seen that when the area ratio of WC is 10% or more, a product having a thermal conductivity of 25 W / m · K or more can be obtained. In Samples No. 1-1 to No. 1-8, it can be seen that the larger the average particle size of the Ti compound phase and WC in the base material, the higher the thermal conductivity. Furthermore, it can be seen that the greater the WC content in the base material, the smaller the difference in thermal expansion coefficient between the base material and the surface layer material (sample No. 1-200) made of cemented carbide. Here, the difference satisfies 3 × 10 −6 / K or less. In addition, since the base materials of Samples No. 1-1 to No. 1-8 are small in both the single Ti composite compound phase and the single Ti compound phase, many of both phases exist as core rim structure particles, It can be said that the core rim structure particles have a thin Ti composite compound phase.

そして、このような耐熱性に優れる基材を具える試料No.1-1〜No.1-8は、原料にTiCやTi複合化合物を用いず、TiNやTiCNを用いること、好ましくはTiNを多く利用する(具体的にはTiNの割合を50質量%以上、更に70質量%以上とする)ことで、製造できるといえる。原料にTiNを多く用いるほど、また原料の混合工程において、基材用粉末の混合時間を短くするほど、好ましくは表層材用粉末(超硬合金粉末)の半分以下の時間とすると、焼結体(基材)中のTiNの面積割合が多くなったり(例えば、TiNの面積割合が50%以上)、焼結体(基材)におけるTiN(220)のピークの積分強度の比:α/βが大きくなったりしている(例えば、α/βが0.3以上)。また、MoやMo化合物の添加量を5質量%以下、好ましくは用いないことでも、α/βを大きくすることができる。更に、基材用粉末にWC粉末を用いる場合、使用量が少ないと(ここでは原料全体に対して20質量%以下)、焼結後の基材中にWC相が存在し難く、原料粉末中のWは、Ti複合化合物相として存在し得ると考えられる。一方、WC粉末の使用量がある程度多いと、WC相が析出されて、熱伝導性に優れるといえる。従って、WC粉末を原料に用いる場合には、少なくともWC相が析出可能な量(基材用粉末の20質量%超、更に30質量%以上)とすることが好ましいといえる。このように基材用粉末の組成を調整して、基材の組織を変化させて、Ti複合化合物の生成を抑制することで、熱伝導率をより高めたり、表層材の熱膨張係数との差を小さくしたりすることができるといえる。   Samples No. 1-1 to No. 1-8 having such a heat-resistant substrate do not use TiC or a Ti composite compound, but use TiN or TiCN, preferably TiN. It can be said that it can be produced by using a large amount (specifically, the TiN ratio is 50 mass% or more, and further 70 mass% or more). The more the TiN is used as the raw material, and the shorter the mixing time of the base material powder in the raw material mixing step, the less the time required for the surface layer material powder (hard metal powder) is, The area ratio of TiN in the (base material) increases (for example, the area ratio of TiN is 50% or more), the ratio of the integrated intensity of the peak of TiN (220) in the sintered body (base material): α / β (For example, α / β is 0.3 or more). Further, α / β can be increased even when the amount of Mo or Mo compound added is 5 mass% or less, preferably not used. Furthermore, when WC powder is used as the base material powder, if the amount used is small (here, 20% by mass or less based on the entire raw material), the WC phase hardly exists in the sintered base material. It is considered that W of can exist as a Ti composite compound phase. On the other hand, when the amount of WC powder used is large to some extent, it can be said that the WC phase is precipitated and the thermal conductivity is excellent. Therefore, when WC powder is used as a raw material, it can be said that it is preferable to make it at least an amount capable of precipitating the WC phase (more than 20% by mass of the substrate powder, and more than 30% by mass). Thus, by adjusting the composition of the powder for the base material, changing the structure of the base material and suppressing the formation of the Ti composite compound, the thermal conductivity can be further increased or the thermal expansion coefficient of the surface layer material can be increased. It can be said that the difference can be reduced.

なお、試料No.1-1〜No.1-8について、Ti化合物相の平均粒径と同様にして基材中のTi複合化合物の平均粒径を求めたところ(コアリム構造の粒子については、リムの外径を測定)、Ti複合化合物:1.5μm〜2.5μmであった。   For samples No. 1-1 to No. 1-8, the average particle size of the Ti composite compound in the substrate was determined in the same manner as the average particle size of the Ti compound phase (for the core rim structure particles, The outer diameter of the rim was measured), Ti composite compound: 1.5 μm to 2.5 μm.

[試験例2]
試験例1で用いた試料No.1-3の基材用粉末と、表層材用粉末(組成は表1の試料No.1-200)とを用いて、試験例1と同様に、硬質材料からなる基材の表面に、超硬合金からなる表層材を具える三層構造の焼結体からなる切削工具を作製し、切削性能を調べた。
[Test Example 2]
Using the powder for the base material of sample No. 1-3 used in Test Example 1 and the powder for the surface layer material (the composition is Sample No. 1-200 in Table 1), the same as in Test Example 1, a hard material A cutting tool made of a sintered body having a three-layer structure including a surface layer material made of a cemented carbide was prepared on the surface of the base material made of and the cutting performance was examined.

この試験では、表層材の厚さ(一層の厚さ)を表4に示す厚さ(mm)とした以外の点は、試験例1と同様にした。そして、得られた多層構造の焼結体を試験例1と同様に切削工具に加工して、試験例1と同様の切削条件(表2)で切削試験(旋削加工)を行って、切削性能を調べた。その結果を表4に示す。この試験では、切削性能として、クレーター摩耗幅(mm)、及び逃げ面摩耗量(Vb摩耗量(mm))を測定した。   This test was performed in the same manner as in Test Example 1 except that the thickness of the surface layer material (thickness of one layer) was changed to the thickness (mm) shown in Table 4. Then, the multilayer structure sintered body was processed into a cutting tool in the same manner as in Test Example 1, and the cutting test (turning) was performed under the same cutting conditions as in Test Example 1 (Table 2) to determine the cutting performance. I investigated. The results are shown in Table 4. In this test, crater wear width (mm) and flank wear amount (Vb wear amount (mm)) were measured as cutting performance.

また、作製した複合構造の切削工具において、二層の表層材が占める割合:占有率を求めた。その結果も表4に示す。占有率は、切削工具の厚さ:4.76mmに対する二層の表層材の合計厚さが占める割合(%)とした。   Moreover, in the produced composite structure cutting tool, the ratio of the two-layer surface material: the occupation ratio was obtained. The results are also shown in Table 4. The occupation ratio was defined as a ratio (%) of the total thickness of the two-layer surface material with respect to the thickness of the cutting tool: 4.76 mm.

Figure 0005472659
Figure 0005472659

表4に示すように、超硬合金からなる表層材の厚さが0.1mm以上であると、クレーター摩耗と逃げ面摩耗との双方が少ないことが分かる。但し、表層材が厚く、占有率が高くなると、Wの使用量の増加を招く上に、表層材の厚さが1mm〜2mmの間では基材の影響を受け難くなって切削性能に差が無い(ここでは、表層材の厚さ>Vb摩耗量の場合に摩耗量がほぼ一定である)。従って、Wの使用量を考慮すると、表層材の厚さは1.5mm以下が好ましいといえる。   As shown in Table 4, it can be understood that both the crater wear and the flank wear are small when the thickness of the surface layer material made of the cemented carbide is 0.1 mm or more. However, if the surface material is thick and the occupancy rate is high, the amount of W used will increase, and if the surface material is between 1 mm and 2 mm, it will be less affected by the base material and there will be a difference in cutting performance. None (here, the amount of wear is almost constant when the thickness of the surface layer> Vb wear amount). Therefore, considering the amount of W used, it can be said that the thickness of the surface layer material is preferably 1.5 mm or less.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能である。例えば、工具形状、表層材の組成や厚さ、基材の組成などを適宜変更することができる。   Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the tool shape, the composition and thickness of the surface layer material, the composition of the base material, and the like can be appropriately changed.

本発明の複合構造工具は、切削加工、特に、刃先が高温となるような条件(例えば、高速切削など)や冷熱サイクルが行われる条件での加工に好適に利用することができる。また、本発明の複合構造工具は、上述の刃先交換型チップの他、ドリル、エンドミル、フライス、メタルソー、歯切工具、リーマ、タップなどの利用が期待できる。   The composite structure tool of the present invention can be suitably used for cutting, particularly for processing under conditions where the cutting edge is hot (for example, high-speed cutting) or conditions where a cooling cycle is performed. The composite structure tool of the present invention can be expected to be used for a drill, an end mill, a milling cutter, a metal saw, a gear cutting tool, a reamer, a tap, and the like in addition to the above-described blade tip replacement type tip.

1A,1B,1C,1D 複合構造工具 10,11,13,15,17 表層材 20 基材
21,210 コアリム構造の粒子 22 Ti化合物相 23 Ti複合化合物相
220 単体Ti化合物相 230 単体Ti複合化合物相 200 サーメット
1A, 1B, 1C, 1D Composite structure tool 10, 11, 13, 15, 17 Surface material 20 Base material
21,210 Corerim structure particles 22 Ti compound phase 23 Ti compound phase
220 Single Ti compound phase 230 Single Ti compound phase 200 Cermet

Claims (14)

Tiを含有する化合物を硬質相として具える硬質材料から構成された基材と、前記基材に一体に形成されて、刃先の少なくとも一部を構成する表層材とを具える複合構造工具であって、
前記表層材は、WCを主たる硬質相とする超硬合金から構成され、
前記基材は、
Wを0質量%超、前記表層材中のWの含有量の80%以下の範囲で含有し、
硬質相として、
Tiの窒化物、及びTiの炭窒化物の少なくとも1種のTi化合物からなるTi化合物相と、
Tiと、周期表4族、5族、及び6族から選択される1種以上の金属元素(Tiを除く)とを含むTi複合化合物からなるTi複合化合物相とを含有し、
前記基材の断面をとり、この断面に対する前記Ti化合物相の面積率をa、前記Ti複合化合物相の面積率をbとするとき、0.5≦(a/b)を満たす複合構造工具。
A composite structure tool comprising a base material composed of a hard material comprising a compound containing Ti as a hard phase, and a surface layer material formed integrally with the base material and constituting at least a part of the cutting edge. And
The surface layer material is composed of a cemented carbide having WC as a main hard phase,
The substrate is
W is contained in a range of more than 0% by mass and 80% or less of the content of W in the surface layer material,
As a hard phase,
Ti compound phase composed of at least one Ti compound of Ti nitride and Ti carbonitride, and
Containing Ti and a Ti composite compound phase composed of a Ti composite compound containing one or more metal elements selected from Group 4, Group 5 and Group 6 (excluding Ti) of the periodic table,
A composite structure tool satisfying 0.5 ≦ (a / b), where a cross-section of the substrate is taken and the area ratio of the Ti compound phase relative to the cross-section is a and the area ratio of the Ti composite compound phase is b.
前記基材は、WCを含有し、
前記基材の断面をとったとき、この断面に対する前記WCの面積率が10面積%以上60面積%以下である請求項1に記載の複合構造工具。
The base material contains WC,
2. The composite structure tool according to claim 1, wherein when the cross section of the base material is taken, the area ratio of the WC relative to the cross section is 10 area% or more and 60 area% or less.
前記表層材の熱伝導率は、前記基材の熱伝導率よりも高い請求項1又は2に記載の複合構造工具。   3. The composite structure tool according to claim 1, wherein a thermal conductivity of the surface layer material is higher than a thermal conductivity of the base material. 前記基材の熱伝導率が20W/m・K以上70W/m・K以下である請求項1〜3のいずれか1項に記載の複合構造工具。   The composite structure tool according to any one of claims 1 to 3, wherein the base material has a thermal conductivity of 20 W / m · K or more and 70 W / m · K or less. 前記表層材は、その平均厚さが0.1mm以上1.5mm以下である請求項1〜4のいずれか1項に記載の複合構造工具。   The composite structure tool according to any one of claims 1 to 4, wherein the surface layer material has an average thickness of 0.1 mm to 1.5 mm. 前記表層材の熱膨張係数は、前記基材の熱膨張係数よりも低く、かつ、その差が0.5×10-6/K以上3×10-6/K以下である請求項1〜5のいずれか1項に記載の複合構造工具。 The thermal expansion coefficient of the surface material is lower than the thermal expansion coefficient of the base material, and the difference is 0.5 × 10 −6 / K or more and 3 × 10 −6 / K or less. A composite structure tool according to claim 1. 前記基材におけるMoの含有量が5質量%以下である請求項1〜6のいずれか1項に記載の複合構造工具。   The composite structure tool according to any one of claims 1 to 6, wherein the Mo content in the substrate is 5 mass% or less. 前記基材についてX線回折を行ったとき、TiN(220)のピーク及びTiWC2(220)のピークが検出され、
前記TiN(220)のピークの積分強度をα、TiWC2(220)のピークの積分強度をβとするとき、(α/β)≧0.3を満たす請求項1〜7のいずれか1項に記載の複合構造工具。
When X-ray diffraction was performed on the substrate, TiN (220) peak and TiWC 2 (220) peak were detected,
The integrated intensity of the TiN (220) peak is α, and the integrated intensity of the TiWC 2 (220) peak is β, wherein (α / β) ≧ 0.3 is satisfied. Composite structure tool.
前記Ti化合物相の平均粒径が1μm以上である請求項1〜8のいずれか1項に記載の複合構造工具。   The composite structure tool according to any one of claims 1 to 8, wherein an average particle diameter of the Ti compound phase is 1 µm or more. 前記基材は、前記硬質相として、WCを含有し、
前記WCの平均粒径が2μm以上である請求項1〜9のいずれか1項に記載の複合構造工具。
The base material contains WC as the hard phase,
The composite structure tool according to any one of claims 1 to 9, wherein an average particle diameter of the WC is 2 µm or more.
前記基材の断面における前記Ti化合物相の合計面積に対して50%以上がTiの窒化物である請求項1〜10のいずれか1項に記載の複合構造工具。   The composite structure tool according to any one of claims 1 to 10, wherein 50% or more of the Ti compound phase in the cross section of the base material is Ti nitride. 前記基材における前記硬質相は、前記Ti化合物相を中心組織とし、前記Ti複合化合物相を周辺組織としたコアリム構造の粒子を含む請求項1〜11のいずれか1項に記載の複合構造工具。   The composite structure tool according to any one of claims 1 to 11, wherein the hard phase in the base material includes core rim structure particles having the Ti compound phase as a central structure and the Ti composite compound phase as a peripheral structure. . 前記基材における前記硬質相は、前記Ti化合物相の外周が前記Ti複合化合物相に囲まれていない単体Ti化合物相を20%以下含有する請求項12に記載の複合構造工具。   13. The composite structure tool according to claim 12, wherein the hard phase in the base material contains 20% or less of a single Ti compound phase in which an outer periphery of the Ti compound phase is not surrounded by the Ti composite compound phase. 前記基材における前記硬質相は、前記Ti複合化合物相の内部に前記Ti化合物相を含んでいない単体Ti複合化合物相を20%以下含有する請求項12又は13に記載の複合構造工具。   14. The composite structure tool according to claim 12, wherein the hard phase in the base material contains 20% or less of a single Ti composite compound phase that does not include the Ti compound phase inside the Ti composite compound phase.
JP2012140176A 2012-06-21 2012-06-21 Composite structure tool Active JP5472659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140176A JP5472659B2 (en) 2012-06-21 2012-06-21 Composite structure tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140176A JP5472659B2 (en) 2012-06-21 2012-06-21 Composite structure tool

Publications (2)

Publication Number Publication Date
JP2014004639A JP2014004639A (en) 2014-01-16
JP5472659B2 true JP5472659B2 (en) 2014-04-16

Family

ID=50102858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140176A Active JP5472659B2 (en) 2012-06-21 2012-06-21 Composite structure tool

Country Status (1)

Country Link
JP (1) JP5472659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433893B (en) * 2021-12-30 2023-12-01 山东大学 Cutting blade with different base structures in circumferential direction

Also Published As

Publication number Publication date
JP2014004639A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
KR101253853B1 (en) Cermet
EP3130686B1 (en) Cermet and cutting tool
EP3130685B1 (en) Cermet, method for producing cermet, and cutting tool
KR102452868B1 (en) Cemented carbide and cutting tools
JP6439975B2 (en) Cermet manufacturing method
JP2010517792A (en) Ti-based cermet
JP2010031308A (en) Cermet
JP5969364B2 (en) WC-based cemented carbide and cutting tool
WO2019116614A1 (en) Cemented carbide and cutting tool
JP5472659B2 (en) Composite structure tool
JP2005194573A (en) Cermet, coated cermet, and method for manufacturing them
JP5534567B2 (en) Hard materials and cutting tools
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP5969363B2 (en) WC-based cemented carbide and cutting tool
JP6380016B2 (en) Cermet tools and coated cermet tools
EP3505275B1 (en) Cemented carbide and coated cemented carbide
JP6459106B1 (en) Cemented carbide and cutting tools
JP2014077178A (en) Cermet and coated cermet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140121

R150 Certificate of patent or registration of utility model

Ref document number: 5472659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250