JP5644388B2 - Cermet and coated cermet - Google Patents

Cermet and coated cermet Download PDF

Info

Publication number
JP5644388B2
JP5644388B2 JP2010249267A JP2010249267A JP5644388B2 JP 5644388 B2 JP5644388 B2 JP 5644388B2 JP 2010249267 A JP2010249267 A JP 2010249267A JP 2010249267 A JP2010249267 A JP 2010249267A JP 5644388 B2 JP5644388 B2 JP 5644388B2
Authority
JP
Japan
Prior art keywords
phase
area
cermet
tungsten carbide
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010249267A
Other languages
Japanese (ja)
Other versions
JP2012101288A (en
Inventor
大輔 竹澤
大輔 竹澤
泰朗 谷口
泰朗 谷口
宏爾 林
宏爾 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2010249267A priority Critical patent/JP5644388B2/en
Publication of JP2012101288A publication Critical patent/JP2012101288A/en
Application granted granted Critical
Publication of JP5644388B2 publication Critical patent/JP5644388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、サーメットおよび被覆サーメットに関するものである。 The present invention relates to a cermet and a coated cermet.

サーメットの従来技術として、サーメット表面部の硬度を高めて耐摩耗性を向上させたサーメットがある(例えば、特許文献1参照。)。 As a conventional cermet technology, there is a cermet in which the hardness of the cermet surface portion is increased to improve the wear resistance (see, for example, Patent Document 1).

特許第2628200号公報Japanese Patent No. 2628200

しかしながら、上記特許文献1の発明では、耐欠損性が不十分であり、切削工具として用いると工具寿命が短いという問題があった。本発明は、上記問題を解決するためになされたもので、耐欠損性を高め、切削工具として用いると従来よりも切削工具の寿命を長くすることができるサーメットを提供することを目的とする。 However, the invention of the above-mentioned Patent Document 1 has a problem that the fracture resistance is insufficient and the tool life is short when used as a cutting tool. The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cermet that can improve fracture resistance and can prolong the life of a cutting tool as compared with the prior art when used as a cutting tool.

本発明は上記の課題を解決するためになされ、その要旨は次のとおりである。
(1)表面から内部に向って2〜200μmの厚さで、板状炭化タングステンを主成分とする炭化タングステン相と、鉄族金属を主成分とする結合相とからなる表面領域が形成され、表面領域よりも内部に、粒状炭化タングステンを主成分とする炭化タングステン相と、Ti、Wの炭化物、窒化物、炭窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる硬質相と、鉄族金属を主成分とする結合相とからなる内部領域が形成されたサーメット。
(2)硬質相がコアとリムからなる有芯構造のコアリム相を含む硬質相である(1)に記載のサーメット。
(3)表面領域の断面組織における、炭化タングステン相の面積率は75〜99面積%、結合相の面積率は1〜25面積%、これらの合計は100面積%であり、内部領域の断面組織における、炭化タングステン相の面積率は10〜90面積%、硬質相の面積率は5〜75面積%、結合相の面積率は5〜25面積%、これらの合計は100面積%である(1)または(2)に記載のサーメット。
(4)表面領域と内部領域の間に、表面領域の直下から内部に向って2〜500μmの厚さがあり、炭化タングステン相と硬質相と結合相とからなり、サーメットの断面組織における、硬質相のコアリム相のリムの面積率が内部領域にある硬質相のコアリム相のリムの面積率よりも増加し、硬質相のコアリム相のコアの面積率が内部領域にある硬質相のコアリム相のコアの面積率よりも減少し、炭化タングステン相の面積率が内部領域にある炭化タングステン相の面積率よりも減少した中間領域が形成された(2)または(3)に記載のサーメット。
(5)中間領域の断面組織における、炭化タングステン相の面積率は0〜80面積%、硬質相の面積率は20〜80面積%、結合相の面積率は0〜15面積%、これらの合計は100面積%である(1)〜(4)のいずれかに記載のサーメット。
(6)サーメットの表面からX線回折測定したときのWC(001)面のピーク強度h(001)とWC(100)面のピーク強度h(100)は、(h(001)/h(100))≧0.6を満足し、サーメットの内部領域をX線回折測定したときのWC(001)面のピーク強度h(001)とWC(100)面のピーク強度h(100)は(h(001)/h(100))<0.6を満足する(1)〜(5)のいずれかに記載のサーメット。
(7)炭化タングステンの最長辺に平行な直線で炭化タングステンを横切る直線の最大長さをA(μm)と表し、炭化タングステンの最長辺に垂直な直線で炭化タングステンを横切る直線の最大長さをB(μm)と表したとき、Bに対するAの比(A/B)が2以上であり、かつ、AとBとを乗じた値C(C=A×B)が2×10-122以上である炭化タングステンが表面領域に含まれる(1)〜(6)のいずれかに記載のサーメット。
(8)(1)〜(7)のいずれかに記載のサーメットの表面に、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Siの金属、炭化物、窒化物、酸化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の被膜を被覆した被覆サーメット。
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) A surface region composed of a tungsten carbide phase mainly composed of plate-like tungsten carbide and a binder phase mainly composed of an iron group metal is formed with a thickness of 2 to 200 μm from the surface toward the inside. A hard phase comprising at least one selected from a tungsten carbide phase mainly composed of granular tungsten carbide and Ti, W carbides, nitrides, carbonitrides, and their mutual solid solutions inside the surface region. And a cermet having an internal region composed of a binder phase mainly composed of an iron group metal.
(2) The cermet according to (1), wherein the hard phase is a hard phase including a core rim phase having a core structure composed of a core and a rim.
(3) In the cross-sectional structure of the surface region, the area ratio of the tungsten carbide phase is 75 to 99 area%, the area ratio of the binder phase is 1 to 25 area%, and the total of these is 100 area%. The area ratio of the tungsten carbide phase is 10 to 90 area%, the area ratio of the hard phase is 5 to 75 area%, the area ratio of the binder phase is 5 to 25 area%, and the total of these is 100 area% (1 ) Or cermet according to (2).
(4) Between the surface region and the internal region, there is a thickness of 2 to 500 μm from directly under the surface region to the inside, and it consists of a tungsten carbide phase, a hard phase, and a binder phase, and is hard in the cross-sectional structure of the cermet. The area ratio of the rim of the core rim phase of the phase is greater than the area ratio of the rim of the core rim phase of the hard phase in the inner area, and the area ratio of the core of the hard rim phase of the hard phase in the inner area is The cermet according to (2) or (3), wherein an intermediate region is formed in which the area ratio of the tungsten carbide phase is smaller than the area ratio of the tungsten carbide phase in the inner region.
(5) In the cross-sectional structure of the intermediate region, the area ratio of the tungsten carbide phase is 0 to 80 area%, the area ratio of the hard phase is 20 to 80 area%, the area ratio of the binder phase is 0 to 15 area%, and the total of these Is 100 area%, The cermet in any one of (1)-(4).
(6) The peak intensity h (001) of the WC (001) plane and the peak intensity h (100) of the WC (100) plane when X-ray diffraction measurement is performed from the surface of the cermet are (h (001) / h (100 )) ≧ 0.6, and the peak intensity h (001) of the WC (001) plane and the peak intensity h (100) of the WC (100) plane when the internal region of the cermet is measured by X-ray diffraction are (h) The cermet according to any one of (1) to (5), which satisfies (001) / h (100)) <0.6.
(7) A (μm) represents the maximum length of a straight line that crosses tungsten carbide on a straight line parallel to the longest side of tungsten carbide, and the maximum length of a straight line that crosses tungsten carbide on a straight line perpendicular to the longest side of tungsten carbide. When expressed as B (μm), the ratio of A to B (A / B) is 2 or more, and the value C (C = A × B) obtained by multiplying A and B is 2 × 10 −12 m The cermet according to any one of (1) to (6), wherein tungsten carbide that is 2 or more is contained in the surface region.
(8) On the surface of the cermet according to any one of (1) to (7), Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si metal, carbide, nitride, A coated cermet coated with at least one film selected from oxides and their mutual solid solutions.

本発明のサーメットは、サーメットの表面側に形成された表面領域と、その表面領域よりも内部に形成された内部領域とを含む。本発明のサーメットは、表面領域と内部領域との間に中間領域が形成されてもよい。 The cermet of the present invention includes a surface region formed on the surface side of the cermet and an internal region formed inside the surface region. In the cermet of the present invention, an intermediate region may be formed between the surface region and the internal region.

本発明の内部領域は、粒状炭化タングステンを主成分とする炭化タングステン相と、Ti、Wの炭化物、窒化物、炭窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる硬質相と、鉄族金属を主成分とする結合相とからなる。 The internal region of the present invention includes a hard phase comprising at least one selected from a tungsten carbide phase mainly composed of granular tungsten carbide, and Ti, W carbide, nitride, carbonitride, and their mutual solid solutions. And a binder phase mainly composed of an iron group metal.

本発明において粒状炭化タングステンとは、断面組織における、炭化タングステンの最長辺に平行な直線で炭化タングステンを横切る直線の最大長さをA(μm)と表し、炭化タングステン相の最長辺に垂直な直線で炭化タングステン相を横切る直線の最大長さをB(μm)と表したとき、Bに対するAの比(A/B)が2未満の炭化タングステンを意味する。なお、本発明において、粒状炭化タングステンを主成分とする炭化タングステン相とは、断面組織において、炭化タングステン全体の面積に対する粒状炭化タングステンの面積の割合が51面積%以上である炭化タングステン相を意味する。 In the present invention, granular tungsten carbide refers to the maximum length of a straight line that crosses tungsten carbide in a cross-sectional structure parallel to the longest side of tungsten carbide as A (μm), and is a straight line perpendicular to the longest side of the tungsten carbide phase. When the maximum length of the straight line crossing the tungsten carbide phase is represented by B (μm), it means tungsten carbide having a ratio of A to B (A / B) of less than 2. In the present invention, the tungsten carbide phase mainly composed of granular tungsten carbide means a tungsten carbide phase in which the ratio of the area of the granular tungsten carbide to the area of the entire tungsten carbide is 51 area% or more in the cross-sectional structure. .

本発明の硬質相は、Ti、Wの炭化物、窒化物、炭窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる。具体的には、TiC、TiN、TiCN、(TiW)C、(TiW)N、(TiW)CNなどを挙げることができる。硬質相は、TiC、TiN、TiCN、(TiW)C、(TiW)N、(TiW)CNなどの単一相のみからなる場合よりも、TiC、TiN、TiCNなどのコアと(TiW)C、(TiW)N、(TiW)CNなどのリムとから構成された有芯構造のコアリム相を含むと、耐摩耗性および耐欠損性が向上するため、さらに好ましい。 The hard phase of the present invention comprises at least one selected from Ti, W carbides, nitrides, carbonitrides, and their mutual solid solutions. Specific examples include TiC, TiN, TiCN, (TiW) C, (TiW) N, and (TiW) CN. The hard phase has a core such as TiC, TiN, TiCN and (TiW) C, rather than a single phase such as TiC, TiN, TiCN, (TiW) C, (TiW) N, (TiW) CN, etc. It is more preferable to include a core rim phase having a core structure composed of rims such as (TiW) N and (TiW) CN, since the wear resistance and fracture resistance are improved.

本発明において鉄族金属を主成分とする結合相とは、Co、NiおよびFeの少なくとも1種、または、Co、NiおよびFeの少なくとも1種にTiおよびWの少なくとも1種を30質量%未満固溶させたものである。その中でも、CoおよびNiの1種または2種を主成分とする結合相であると、機械的強度が向上するのでさらに好ましく、その中でもCoを主成分とする結合相であると、サーメットと被膜との密着性が向上するのでさらに好ましい。 In the present invention, the binder phase containing iron group metal as the main component is less than 30% by mass of at least one of Co, Ni and Fe, or at least one of Ti and W in at least one of Co, Ni and Fe. It is a solid solution. Among them, a binder phase mainly composed of one or two of Co and Ni is more preferable because mechanical strength is improved, and among them, a cermet and a coating are preferably bonded phases mainly composed of Co. This is more preferable because the adhesion to the surface is improved.

本発明の表面領域は、表面から内部に向って2〜200μmの厚さがあり、板状炭化タングステンを主成分とする炭化タングステン相と、鉄族金属を主成分とする結合相とからなる。 The surface region of the present invention has a thickness of 2 to 200 μm from the surface to the inside, and is composed of a tungsten carbide phase mainly composed of plate-like tungsten carbide and a binder phase mainly composed of an iron group metal.

本発明において板状炭化タングステンとは、断面組織における、炭化タングステンの最長辺に平行な直線で炭化タングステンを横切る直線の最大長さをA(μm)と表し、炭化タングステン相の最長辺に垂直な直線で炭化タングステン相を横切る直線の最大長さをB(μm)と表したとき、Bに対するAの比(A/B)が2以上の炭化タングステンを意味する。なお、本発明において板状炭化タングステンを主成分とする炭化タングステン相とは、断面組織において、炭化タングステン全体の面積に対する板状炭化タングステンの面積の割合が51面積%以上である炭化タングステン相を意味する。具体的には、炭化タングステンのAとBは、断面組織を走査型電子顕微鏡で3000倍に拡大し、34μm×24μmの長方形の断面組織写真から測定することができる。 In the present invention, plate-like tungsten carbide is represented by A (μm) as the maximum length of a straight line parallel to the longest side of tungsten carbide in the cross-sectional structure, and perpendicular to the longest side of the tungsten carbide phase. When the maximum length of a straight line that crosses the tungsten carbide phase in a straight line is expressed as B (μm), it means tungsten carbide having a ratio of A to B (A / B) of 2 or more. In the present invention, the tungsten carbide phase mainly composed of plate-like tungsten carbide means a tungsten carbide phase in which the ratio of the area of the plate-like tungsten carbide to the area of the entire tungsten carbide is 51 area% or more in the cross-sectional structure. To do. Specifically, tungsten carbides A and B can be measured from a 34 μm × 24 μm rectangular cross-sectional structure photograph by magnifying the cross-sectional structure 3000 times with a scanning electron microscope.

本発明の表面領域の厚さが2μm未満になると、サーメットの耐欠損性を高める効果が十分に得られず、本発明の表面領域の厚さが200μmを超えて厚くなるとサーメットの耐摩耗性が低下するので、本発明の表面領域の厚さを2〜200μmの範囲とした。 When the thickness of the surface region of the present invention is less than 2 μm, the effect of increasing the fracture resistance of the cermet is not sufficiently obtained, and when the thickness of the surface region of the present invention exceeds 200 μm, the wear resistance of the cermet is reduced. Therefore, the thickness of the surface region of the present invention is set in the range of 2 to 200 μm.

本発明の表面領域の断面組織における、炭化タングステン相の面積率は75〜99面積%、結合相の面積率は1〜25面積%であって、これらの合計は100面積%であり、内部領域の断面組織における、炭化タングステン相の面積率は10〜90面積%、硬質相の面積率は5〜75面積%、結合相の面積率は5〜25面積%であって、これらの合計は100面積%であると好ましい。これは、表面領域の断面組織における、炭化タングステン相の面積率が75面積%未満になり結合相の面積率が25面積%を超えて多くなるとサーメットの耐摩耗性が低下し、炭化タングステン相の面積率が99面積%を超えて多くなり結合相の面積率が1面積%未満になると耐欠損性が低下するためである。また、内部領域の断面組織における、炭化タングステン相の面積率が10面積%未満になると耐欠損性が低下し、炭化タングステン相の面積率が90面積%を超えて多くなると耐摩耗性が低下し、硬質相の面積率が5面積%未満になると耐摩耗性が低下し、硬質相の面積率が75面積%を超えて多くなると耐欠損性が低下し、結合相の面積率が5面積%未満になると耐欠損性が低下し、結合相の面積率が25面積%を超えて多くなると耐摩耗性が低下するためである。 In the cross-sectional structure of the surface region of the present invention, the area ratio of the tungsten carbide phase is 75 to 99 area%, the area ratio of the binder phase is 1 to 25 area%, and the total of these is 100 area%, In the cross-sectional structure, the area ratio of the tungsten carbide phase is 10 to 90 area%, the area ratio of the hard phase is 5 to 75 area%, and the area ratio of the binder phase is 5 to 25 area%. Area% is preferred. This is because, when the area ratio of the tungsten carbide phase in the cross-sectional structure of the surface region is less than 75 area% and the area ratio of the binder phase is more than 25 area%, the wear resistance of the cermet decreases, and the tungsten carbide phase This is because if the area ratio exceeds 99 area% and the area ratio of the binder phase is less than 1 area%, the chipping resistance decreases. In addition, when the area ratio of the tungsten carbide phase in the cross-sectional structure of the internal region is less than 10 area%, the chipping resistance decreases, and when the area ratio of the tungsten carbide phase exceeds 90 area%, the wear resistance decreases. When the area ratio of the hard phase is less than 5% by area, the wear resistance decreases, and when the area ratio of the hard phase exceeds 75% by area, the chipping resistance decreases and the area ratio of the binder phase is 5% by area. This is because the chipping resistance decreases when the ratio is less than 1, and the wear resistance decreases when the area ratio of the binder phase exceeds 25 area%.

本発明のサーメットにおいて、表面領域と内部領域の間に、表面領域の直下から内部に向って2〜500μmの厚さがあり、炭化タングステン相と硬質相と結合相とからなり、サーメットの断面組織における、硬質相のコアリム相のリムの面積率が内部領域にある硬質相のリムの面積率よりも増加し、硬質相のコアリム相のコアの面積率が内部領域にある硬質相のコアリム相のコアの面積率よりも減少し、炭化タングステン相の面積率が内部領域にある炭化タングステン相の面積率よりも減少した中間領域が形成されると、耐摩耗性が向上するので、さらに好ましい。中間領域の厚さが2μm以上になるとさらに耐摩耗性を向上させる効果が得られるが、中間領域の厚さが500μmを超えて厚くなると耐欠損性が低下する傾向を示す。 In the cermet of the present invention, between the surface region and the internal region, there is a thickness of 2 to 500 μm from directly below the surface region to the inside, and it comprises a tungsten carbide phase, a hard phase, and a binder phase, and the cermet cross-sectional structure The area ratio of the rim of the core rim phase of the hard phase is larger than the area ratio of the rim of the hard phase in the inner region, and the area ratio of the core of the hard phase rim phase of the hard phase in the inner region is It is more preferable that an intermediate region is formed in which the area ratio of the tungsten carbide phase is smaller than the area ratio of the tungsten carbide phase in the inner region because the wear resistance is improved. When the thickness of the intermediate region is 2 μm or more, an effect of further improving the wear resistance can be obtained. However, when the thickness of the intermediate region exceeds 500 μm, the fracture resistance tends to decrease.

本発明の中間領域の断面組織における、炭化タングステン相の面積率は0〜80面積%、硬質相の面積率は20〜100面積%、結合相の面積率は0〜15面積%であり、これらの合計は100面積%であると耐摩耗性が向上するので、さらに好ましい。これは、中間領域の断面組織における、炭化タングステン相の面積率は80面積%が超えて多くなると耐摩耗性が低下し、硬質相の面積率が20面積%未満になると耐摩耗性が低下し、結合相の面積率が15面積%を超えて多くなると耐摩耗性が低下するためである。 In the cross-sectional structure of the intermediate region of the present invention, the area ratio of the tungsten carbide phase is 0 to 80 area%, the area ratio of the hard phase is 20 to 100 area%, and the area ratio of the binder phase is 0 to 15 area%. The total of 100% by area is more preferable because the wear resistance is improved. This is because, when the area ratio of the tungsten carbide phase in the cross-sectional structure of the intermediate region exceeds 80 area%, the wear resistance decreases, and when the hard phase area ratio is less than 20 area%, the wear resistance decreases. This is because the wear resistance decreases when the area ratio of the binder phase exceeds 15 area%.

本発明のサーメットの表面をX線回折測定したときのWC(001)面のピーク強度h(001)とWC(100)面のピーク強度h(100)は、(h(001)/h(100))≧0.6を満足し、本発明のサーメットの内部領域をX線回折測定したときのWC(001)面のピーク強度h(001)とWC(100)面のピーク強度h(100)は(h(001)/h(100))<0.6を満足すると、耐欠損性が向上するので、さらに好ましい。本発明の表面領域に多く含まれる板状炭化タングステンは、(001)面が優先的に成長したもので、表面領域の(h(001)/h(100))の比は、粒状炭化タングステンを多く含む内部領域の(h(001)/h(100))の比よりも高くなる。具体的には、サーメットの表面にCu−Kα線を照射して、2θ/θ法により表面をX線回折測定したときのWC(001)面のピーク強度h(001)およびWC(100)面のピーク強度h(100)を測定して、表面領域の(h(001)/h(100))の比を求めることができる。また、表面領域および中間領域を研削や鏡面研磨などで除去して得られた内部領域にCu−Kα線を照射して、2θ/θ法により内部領域をX線回折測定したときのWC(001)面のピーク強度h(001)およびWC(100)面のピーク強度h(100)を測定して、内部領域の(h(001)/h(100))の比を求めることができる。 The peak intensity h (001) of the WC (001) plane and the peak intensity h (100) of the WC (100) plane when the surface of the cermet of the present invention is measured by X-ray diffraction are (h (001) / h (100 )) ≧ 0.6, and the peak intensity h (001) of the WC (001) plane and the peak intensity h (100) of the WC (100) plane when the internal region of the cermet of the present invention is measured by X-ray diffraction. If (h (001) / h (100)) <0.6 is satisfied, the fracture resistance is improved, which is more preferable. The plate-like tungsten carbide contained in a large amount in the surface region of the present invention has a (001) plane preferentially grown, and the ratio of (h (001) / h (100)) in the surface region is that of granular tungsten carbide. The ratio is higher than the ratio (h (001) / h (100)) of the inner region including a large amount. Specifically, the peak intensity h (001) and WC (100) plane of the WC (001) plane when the surface of the cermet is irradiated with Cu-Kα rays and the surface is subjected to X-ray diffraction measurement by the 2θ / θ method. The peak intensity h (100) can be measured to determine the ratio (h (001) / h (100)) of the surface region. Further, when the inner region obtained by removing the surface region and the intermediate region by grinding or mirror polishing is irradiated with Cu-Kα rays and the inner region is subjected to X-ray diffraction measurement by the 2θ / θ method, WC (001 ) Plane peak intensity h (001) and WC (100) plane peak intensity h (100) can be measured to determine the ratio of (h (001) / h (100)) in the internal region.

炭化タングステンの最長辺に平行な直線で炭化タングステンを横切る直線の最大長さをA(μm)と表し、炭化タングステンの最長辺に垂直な直線で炭化タングステンを横切る直線の最大長さをB(μm)と表したとき、Bに対するAの比(A/B)が2以上であり、かつ、AとBとを乗じた値C(C=A×B)が2×10-122以上である炭化タングステンが表面領域に含まれると、耐欠損性が向上するので、さらに好ましい。 The maximum length of a straight line that crosses tungsten carbide on a straight line parallel to the longest side of tungsten carbide is represented by A (μm), and the maximum length of a straight line that intersects tungsten carbide on a straight line perpendicular to the longest side of tungsten carbide is B (μm). ), The ratio of A to B (A / B) is 2 or more, and the value C (C = A × B) obtained by multiplying A and B is 2 × 10 −12 m 2 or more. It is more preferable that certain tungsten carbide is included in the surface region since the fracture resistance is improved.

本発明のサーメットの表面に、PVD法やCVD法によりTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Siの金属、炭化物、窒化物、酸化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の被膜を被覆した被覆サーメットは耐摩耗性に優れる。本発明の被膜としては、具体的に、TiN、TiC、TiCN、TiCNO、TiAlN、TiSiN、AlCrN、Al23などを挙げることができる。被膜の総膜厚の平均値は0.1μm以上になると耐摩耗性が向上し、30μmを超えて厚くなると耐欠損性が低下する傾向が見られるので、0.1〜30μmが好ましい。 On the surface of the cermet of the present invention, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si metal, carbide, nitride, oxide, and their mutual solid solutions are obtained by PVD or CVD. A coated cermet coated with at least one film selected from among the above is excellent in wear resistance. Specific examples of the coating of the present invention include TiN, TiC, TiCN, TiCNO, TiAlN, TiSiN, AlCrN, and Al 2 O 3 . When the average value of the total thickness of the coating is 0.1 μm or more, the wear resistance is improved, and when the thickness exceeds 30 μm, the chipping resistance tends to decrease. Therefore, 0.1 to 30 μm is preferable.

本発明のサーメットを製造する方法としては、
(A)TiN、TiCN、金属元素がTiおよびWである炭化物、窒化物、炭窒化物およびこれらの相互固溶体の中の少なくとも1種:50〜80体積%と、WC:15〜30体積%と、鉄族金属:5〜20体積%とからなり合計で100体積%となる混合物を準備する混合工程と、
(B)混合物を非酸化雰囲気中で常温から1150〜1350℃の第1加熱温度まで昇温させる第1昇温工程と、
(C)混合物を窒素雰囲気中で1150〜1350℃の第1加熱温度から1450〜1650℃の第2加熱温度まで圧力2kPa以上の窒素雰囲気中で昇温させる第2昇温工程と、
(D)混合物を1450〜1650℃の第2加熱温度にて第2昇温工程よりも低い圧力の窒素雰囲気中または真空中で保持する保持工程と、
(E)混合物を1450〜1650℃の第2加熱温度から1000〜1300℃の第1冷却温度まで保持工程よりも低い圧力の窒素雰囲気中または真空中で冷却する第1冷却工程と、
(F)混合物を1000〜1300℃の第1冷却温度から常温に冷却する第2冷却工程と
を含むサーメットの製造方法により得ることができる。
As a method for producing the cermet of the present invention,
(A) TiN, TiCN, at least one of carbides, nitrides, carbonitrides and their mutual solid solutions whose metal elements are Ti and W: 50 to 80% by volume; WC: 15 to 30% by volume A mixing step of preparing a mixture of iron group metal: 5 to 20% by volume and totaling 100% by volume;
(B) a first temperature raising step for raising the temperature of the mixture from normal temperature to a first heating temperature of 1150 to 1350 ° C. in a non-oxidizing atmosphere;
(C) a second heating step in which the mixture is heated in a nitrogen atmosphere at a pressure of 2 kPa or more from a first heating temperature of 1150 to 1350 ° C. to a second heating temperature of 1450 to 1650 ° C. in a nitrogen atmosphere;
(D) a holding step of holding the mixture at a second heating temperature of 1450 to 1650 ° C. in a nitrogen atmosphere or a vacuum at a pressure lower than that of the second heating step;
(E) a first cooling step of cooling the mixture from a second heating temperature of 1450 to 1650 ° C. to a first cooling temperature of 1000 to 1300 ° C. in a nitrogen atmosphere or a vacuum lower than the holding step;
(F) It can obtain by the manufacturing method of a cermet including the 2nd cooling process which cools a mixture from 1st cooling temperature of 1000-1300 degreeC to normal temperature.

第1昇温工程において、混合物を非酸化雰囲気中で昇温させることにより混合物の酸化を防いでいる。非酸化雰囲気として具体的には、真空、窒素雰囲気、不活性雰囲気、水素雰囲気などを挙げることができる。第2昇温工程における窒素雰囲気の圧力は2kPa以上であるが、窒素雰囲気の圧力が100kPaを超えて高くなるとサーメットの焼結性が低下する傾向を示すので、第2昇温工程における窒素雰囲気の圧力は2〜100kPaであると好ましい。 In the first temperature raising step, the mixture is heated in a non-oxidizing atmosphere to prevent oxidation of the mixture. Specific examples of the non-oxidizing atmosphere include a vacuum, a nitrogen atmosphere, an inert atmosphere, and a hydrogen atmosphere. The pressure of the nitrogen atmosphere in the second temperature raising step is 2 kPa or more. However, when the pressure of the nitrogen atmosphere is higher than 100 kPa, the cermet sinterability tends to decrease. The pressure is preferably 2 to 100 kPa.

本発明のサーメットの具体的な製造方法としては、以下の方法が挙げられる。TiN、TiCN、金属元素がTiおよびWである炭化物、窒化物、炭窒化物およびこれらの相互固溶体の中の少なくとも1種の粉末と、WC粉と、鉄族金属の粉末を用意する。これらの粉末は、市販のものまたは固溶化高温熱処理により調製されたものであり、その平均粒径等は特に制限されないが、例えば、米国材料試験協会(ASTM)規格B330に記載のフィッシャー法(Fisher Sub-Sieve Sizer(FSSS))により測定した平均粒径が0.1〜10μmであることが好ましく、さらに好ましくは0.5〜8μmである。これらの粉末を所定比率に秤量し、溶媒とともに湿式ボールミルにて混合し、混合後に溶媒を蒸発させて混合物を得る。得られた混合物にパラフィン等の成形用ワックスを添加して所定の形状に成形する。なお、所定の形状に成形する方法としては、プレス成形、押出成形、射出成形などを挙げることができる。成形した混合物を焼結炉に入れて、真空中で350〜500℃まで昇温してワックスを除去させた後、真空中または窒素雰囲気で350〜500℃から1150〜1350℃の第1加熱温度まで昇温させる。さらに、混合物を1150〜1350℃の第1加熱温度から1450〜1650℃の第2加熱温度まで圧力2kPa以上の窒素雰囲気中で昇温させ、1450〜1650℃の第2加熱温度にて、第2加熱温度まで昇温させる昇温工程よりも低い圧力の窒素雰囲気中または真空中で10〜60分間保持する。その後、第2加熱温度まで昇温させる工程よりも低い圧力の窒素雰囲気中または真空中で1000〜1300℃の第1冷却温度まで冷却し、その後、常温まで冷却すると本発明のサーメットを製造することができる。 The following method is mentioned as a specific manufacturing method of the cermet of this invention. At least one powder among TiN, TiCN, carbides, nitrides, carbonitrides and their mutual solid solutions whose metal elements are Ti and W, WC powder, and iron group metal powder are prepared. These powders are commercially available or prepared by solution heat treatment at high temperatures, and the average particle size and the like are not particularly limited. For example, the Fisher method (Fisher method described in American Society for Testing and Materials (ASTM) standard B330) The average particle size measured by Sub-Sieve Sizer (FSSS) is preferably 0.1 to 10 μm, more preferably 0.5 to 8 μm. These powders are weighed at a predetermined ratio, mixed with a solvent by a wet ball mill, and after mixing, the solvent is evaporated to obtain a mixture. A molding wax such as paraffin is added to the obtained mixture to form a predetermined shape. In addition, as a method of shape | molding in a predetermined shape, press molding, extrusion molding, injection molding, etc. can be mentioned. The molded mixture is put in a sintering furnace and heated to 350 to 500 ° C. in vacuum to remove the wax, and then the first heating temperature of 350 to 500 ° C. to 1150 to 1350 ° C. in vacuum or in a nitrogen atmosphere. Let the temperature rise. Furthermore, the mixture was heated from a first heating temperature of 1150 to 1350 ° C. to a second heating temperature of 1450 to 1650 ° C. in a nitrogen atmosphere having a pressure of 2 kPa or more, and at a second heating temperature of 1450 to 1650 ° C., It hold | maintains for 10 to 60 minutes in the nitrogen atmosphere or the vacuum of a pressure lower than the temperature rising process heated up to heating temperature. Then, it cools to 1000-1300 degreeC 1st cooling temperature in a nitrogen atmosphere or a vacuum lower than the process of heating up to 2nd heating temperature, and manufactures the cermet of this invention when it cools to normal temperature after that. Can do.

本発明のサーメットおよび被覆サーメットは耐摩耗性と耐欠損性に優れる。本発明のサーメットおよび被覆サーメットは、切削工具として用いると切削工具の寿命を長くするという効果を奏する。 The cermet and coated cermet of the present invention are excellent in wear resistance and fracture resistance. The cermet and coated cermet of the present invention have an effect of prolonging the life of the cutting tool when used as a cutting tool.

サーメットの原料粉末として、平均粒径4.3μmのTi(C0.50.5)粉、平均粒径3.2μmのTi(C0.30.7)粉、平均粒径1.5μmのTiN粉、平均粒径1.5μmの(Ti0.90.1)(C0.50.5)粉、平均粒径1.5μmのWC粉、平均粒径2.0μmのW粉、平均粒径6μmの黒鉛粉(Gと記す)、平均粒径1.0μmの(W,Ti)C粉(重量比でWC:TiC=70:30)、平均粒径3.2μmのMo2C粉、平均粒径1.5μmのTaC粉、平均粒径1.1μmのNbC粉、平均粒径3.1μmのZrC粉、平均粒径1.4μmのCr32粉、平均粒径1.4μmのCo粉、平均粒径1.3μmのNi粉を用意した。これらを用いて表1に示す配合組成に秤量した。 As raw material powder of cermet, Ti (C 0.5 N 0.5 ) powder with an average particle size of 4.3 μm, Ti (C 0.3 N 0.7 ) powder with an average particle size of 3.2 μm, TiN powder with an average particle size of 1.5 μm, average particle (Ti 0.9 W 0.1 ) (C 0.5 N 0.5 ) powder having a diameter of 1.5 μm, WC powder having an average particle diameter of 1.5 μm, W powder having an average particle diameter of 2.0 μm, graphite powder having an average particle diameter of 6 μm (denoted as G) ), (W, Ti) C powder with an average particle size of 1.0 μm (weight ratio WC: TiC = 70: 30), Mo 2 C powder with an average particle size of 3.2 μm, TaC powder with an average particle size of 1.5 μm NbC powder having an average particle size of 1.1 μm, ZrC powder having an average particle size of 3.1 μm, Cr 3 C 2 powder having an average particle size of 1.4 μm, Co powder having an average particle size of 1.4 μm, 1.3 μm of average particle size Ni powder was prepared. These were weighed to the composition shown in Table 1.

Figure 0005644388
Figure 0005644388

秤量した原料粉末を溶媒とともに湿式ボールミルにより混合した。なお、スラリー状の混合物の総重量に対して1〜2重量%のパラフィンを混合時に入れた。湿式ボールミル後に溶媒を蒸発させた混合物を、焼結後の大きさがISO規格TNMG160408のインサート形状になるようにプレス成形した。 The weighed raw material powder was mixed with a solvent by a wet ball mill. In addition, 1-2 weight% of paraffin with respect to the total weight of a slurry-like mixture was put at the time of mixing. The mixture obtained by evaporating the solvent after the wet ball mill was press-molded so that the size after sintering became an insert shape of ISO standard TNMG160408.

発明品1〜5および比較品1については、プレス成形した混合物を焼結炉に入れて、真空中で常温から450℃まで徐々に昇温してパラフィンを蒸発させた後、真空中で450℃から1220℃の第1加熱温度まで昇温させた。さらに、混合物を1220℃の第1加熱温度から1530℃の第2加熱温度まで圧力10kPaの窒素雰囲気中にて昇温させ、さらに1530℃の第2加熱温度にて圧力10.0Paの真空中で60分間保持した後、1530℃の第2加熱温度から1200℃の第1冷却温度まで圧力10.0Paの真空雰囲気中にて冷却させ、さらに1200℃の第1冷却温度から常温まで圧力250kPaのアルゴン雰囲気中にて冷却した。 For invention products 1 to 5 and comparative product 1, the press-molded mixture was placed in a sintering furnace and gradually heated from room temperature to 450 ° C. in vacuum to evaporate paraffin, and then 450 ° C. in vacuum. To 1220 ° C. to the first heating temperature. Further, the mixture was heated from a first heating temperature of 1220 ° C. to a second heating temperature of 1530 ° C. in a nitrogen atmosphere at a pressure of 10 kPa, and further in a vacuum at a pressure of 10.0 Pa at a second heating temperature of 1530 ° C. After holding for 60 minutes, cooling is performed in a vacuum atmosphere at a pressure of 10.0 Pa from a second heating temperature of 1530 ° C. to a first cooling temperature of 1200 ° C., and argon at a pressure of 250 kPa from the first cooling temperature of 1200 ° C. to room temperature. Cooled in the atmosphere.

比較品2については、プレス成形した混合物を焼結炉に入れて、真空中で常温から450℃まで徐々に昇温してパラフィンを蒸発させた後、真空中で450℃から1300℃の第1加熱温度まで昇温させた。さらに、混合物を1300℃の第1加熱温度から1450℃の第2加熱温度まで圧力10kPaのアルゴン雰囲気中で昇温させ、さらに1450℃の第2加熱温度にて圧力10kPaのアルゴン雰囲気中で60分間保持した。その後、真空中で1450℃の第2加熱温度から常温まで冷却した。 For the comparative product 2, the press-molded mixture was put in a sintering furnace and gradually heated from room temperature to 450 ° C. in a vacuum to evaporate the paraffin, and then the first of 450 ° C. to 1300 ° C. in vacuum. The temperature was raised to the heating temperature. Further, the mixture was heated from a first heating temperature of 1300 ° C. to a second heating temperature of 1450 ° C. in an argon atmosphere at a pressure of 10 kPa, and further in an argon atmosphere at a pressure of 10 kPa at a second heating temperature of 1450 ° C. for 60 minutes. Retained. Then, it cooled from the 2nd heating temperature of 1450 degreeC to normal temperature in the vacuum.

比較品3については、プレス成形した混合物を焼結炉に入れて、真空中で常温から500℃まで徐々に昇温してパラフィンを蒸発させた後、真空中で500℃から1200℃の第1加熱温度まで昇温させた。さらに、混合物を1200℃の第1加熱温度から1530℃の第2加熱温度まで圧力0.1kPaの窒素雰囲気中で昇温させ、さらに1530℃の第2加熱温度にて圧力0.1kPaの窒素雰囲気中で60分間保持した後、1530℃の第2加熱温度から1200℃の第1冷却温度まで圧力0.1kPaの窒素雰囲気中にて冷却させ、さらに真空中で1200℃の第1冷却温度から常温まで冷却した。 For Comparative Product 3, the press-molded mixture was placed in a sintering furnace and gradually heated from room temperature to 500 ° C. in a vacuum to evaporate paraffin. The temperature was raised to the heating temperature. Further, the mixture was heated in a nitrogen atmosphere at a pressure of 0.1 kPa from a first heating temperature of 1200 ° C. to a second heating temperature of 1530 ° C., and further a nitrogen atmosphere at a pressure of 0.1 kPa at the second heating temperature of 1530 ° C. In a nitrogen atmosphere at a pressure of 0.1 kPa from a second heating temperature of 1530 ° C. to a first cooling temperature of 1200 ° C., and further from a first cooling temperature of 1200 ° C. to room temperature in a vacuum. Until cooled.

比較品4については、プレス成形した混合物を焼結炉に入れて、真空中で常温から450℃まで徐々に昇温してパラフィンを蒸発させた後、真空中で450℃から1420℃まで昇温させ、さらに1420℃にて真空中で60分間保持した後、真空中で1420℃から常温まで冷却した。 For the comparative product 4, the press-molded mixture is put in a sintering furnace, and the temperature is gradually raised from room temperature to 450 ° C. in a vacuum to evaporate paraffin, and then the temperature is raised from 450 ° C. to 1420 ° C. in a vacuum. The mixture was further held at 1420 ° C. in a vacuum for 60 minutes, and then cooled from 1420 ° C. to room temperature in a vacuum.

得られたサーメットの断面組織から走査型電子顕微鏡付属のEDSおよび透過型電子顕微鏡付属のEDSを用いて表面領域、中間領域および内部領域に含まれる各相の組成を分析した。また、サーメットの断面組織写真から画像処理ソフトImage Pro−Plusを用いて表面領域、中間領域および内部領域に含まれる各相の面積率を測定した。さらに、サーメットの断面組織から走査型電子顕微鏡により表面領域、中間領域および内部領域に含まれる炭化タングステン相の形状を調べた。得られた結果は、表2〜10に示した。ここで、表面領域とはサーメットの表面近傍にある、炭化タングステン相と結合相とからなる領域のことであり、内部領域とは、表面領域よりも内部にある、炭化タングステン相と硬質相と結合相とからなる領域のことである。また、表面領域と内部領域との間に中間領域が形成される場合がある。中間領域は、炭化タングステン相と硬質相と結合相とからなり、サーメットの断面組織における、硬質相のコアリム相のリムの面積率が内部領域にある硬質相のコアリム相のリムの面積率よりも増加し、硬質相のコアリム相のコアの面積率が内部領域にある硬質相のコアリム相のコアの面積率よりも減少し、炭化タングステン相の面積率が内部領域にある炭化タングステン相の面積率よりも減少した領域である。中間領域においては、表面側から内部側に向かって各相の組成と面積率が漸減または漸増しているので、中間領域の表面側と中間領域の内部側における各相の組成と面積率を表2〜7に示した。また、発明品1〜5、比較品1〜4に含まれる炭化タングステン相の組成はWCのみであったので、以下、発明品1〜5、比較品1〜4のサーメットに含まれる炭化タングステン相はWC相と記載した。 From the cross-sectional structure of the obtained cermet, the composition of each phase contained in the surface region, the intermediate region and the internal region was analyzed using EDS attached to the scanning electron microscope and EDS attached to the transmission electron microscope. Moreover, the area ratio of each phase contained in the surface region, the intermediate region and the internal region was measured from the cross-sectional structure photograph of the cermet using image processing software Image Pro-Plus. Further, the shape of the tungsten carbide phase contained in the surface region, the intermediate region and the internal region was examined from the cross-sectional structure of the cermet by a scanning electron microscope. The obtained results are shown in Tables 2 to 10. Here, the surface region is a region composed of a tungsten carbide phase and a binder phase in the vicinity of the surface of the cermet, and the inner region is a bond between the tungsten carbide phase and the hard phase inside the surface region. It is an area consisting of phases. In addition, an intermediate region may be formed between the surface region and the internal region. The intermediate region is composed of a tungsten carbide phase, a hard phase, and a binder phase, and the area ratio of the rim of the hard phase core rim phase in the cross-sectional structure of the cermet is larger than the area ratio of the rim of the hard phase core rim phase in the inner region. The area ratio of the core of the hard rim phase of the hard phase is increased and the area ratio of the core of the core rim phase of the hard phase in the inner region is decreased, and the area ratio of the tungsten carbide phase in the inner region is increased. This is a reduced area. In the intermediate region, the composition and area ratio of each phase gradually decrease or increase from the surface side to the inner side, so the composition and area ratio of each phase on the surface side of the intermediate region and the inner side of the intermediate region are displayed. Shown in 2-7. Moreover, since the composition of the tungsten carbide phase contained in the inventive products 1 to 5 and the comparative products 1 to 4 was only WC, hereinafter, the tungsten carbide phase contained in the cermets of the inventive products 1 to 5 and the comparative products 1 to 4 Was described as WC phase.

Figure 0005644388
Figure 0005644388

Figure 0005644388
Figure 0005644388

Figure 0005644388
Figure 0005644388

Figure 0005644388
Figure 0005644388

Figure 0005644388
Figure 0005644388

Figure 0005644388
Figure 0005644388

Figure 0005644388
Figure 0005644388

Figure 0005644388
Figure 0005644388

Figure 0005644388
Figure 0005644388

また、得られたサーメットの表面領域、中間領域および内部領域の断面組織を走査型電子顕微鏡にて観察し、3000倍に拡大して長さ34μm×幅24μmの長方形の断面組織写真を撮影し、画像処理ソフトImage Pro−Plusを用いて、表面領域、中間領域および内部領域の断面組織を含まれるWC相について、WC相全体の面積に対する、Bに対するAの比(A/B)が2以上である板状WCの面積率と、WC相全体の面積に対する、Bに対するAの比(A/B)が2未満である粒状WCの面積率とを測定した。その結果を表11に示す。 Further, the cross-sectional structure of the surface region, the intermediate region and the internal region of the obtained cermet was observed with a scanning electron microscope, and a photograph of a rectangular cross-sectional structure having a length of 34 μm and a width of 24 μm was taken at a magnification of 3000 times, Using the image processing software Image Pro-Plus, the ratio of A to B (A / B) with respect to the area of the entire WC phase is 2 or more for the WC phase including the cross-sectional structures of the surface region, the intermediate region, and the internal region. The area ratio of a certain plate-like WC and the area ratio of granular WC in which the ratio of A to B (A / B) with respect to the area of the entire WC phase was less than 2 were measured. The results are shown in Table 11.

Figure 0005644388
Figure 0005644388

得られたサーメットの逃げ面側の表面に対してCu−Kα線を用いたX線回折測定を行って、WC(100)面のピーク強度に対するWC(001)面のピーク強度比(h(001)/h(100))を測定した。また、得られたサーメットの表面から深さ方向に2mmまで研削し、さらに鏡面研磨してサーメット内部領域の鏡面研磨面を得た。内部領域の鏡面研磨面に対してCu−Kα線を用いたX線回折測定を行って、内部領域のWC(100)面のピーク強度に対するWC(001)面のピーク強度比(h(001)/h(100))を測定した。その結果を表12に示す。 X-ray diffraction measurement using Cu—Kα rays was performed on the flank side surface of the obtained cermet, and the peak intensity ratio of the WC (001) plane to the peak intensity of the WC (100) plane (h (001 ) / H (100)). Moreover, it grind | polished to 2 mm from the surface of the obtained cermet to the depth direction, and also mirror-polished and obtained the mirror-polished surface of the cermet internal area | region. The X-ray diffraction measurement using Cu—Kα ray is performed on the mirror-polished surface in the inner region, and the peak intensity ratio of the WC (001) surface to the peak intensity of the WC (100) surface in the inner region (h (001) / H (100)). The results are shown in Table 12.

Figure 0005644388
Figure 0005644388

サーメットの表面領域と内部領域の断面組織を走査型電子顕微鏡により3000倍に拡大した長さ34μm×幅24μmの長方形の断面組織について、WC相の最も長い辺に平行な直線でWC相を横切る直線の最大長さをA(μm)と表し、炭化タングステンの最長辺に垂直な直線で炭化タングステンを横切る直線の最大長さをB(μm)と表したとき、Bに対するAの比(A/B)が2以上であり、かつ、AとBとを乗じた値C(C=A×B)が2×10-122以上であるWC相の有無を調べた。各試料の表面領域と内部領域の34μm×24μmの断面組織写真中に、(A/B)が2以上であり、かつ、Cが2×10-122以上であるWC相が含まれているときは表13に○印で表し、写真の中に含まれていないときは表13に×印で表した。 A straight line crossing the WC phase with a straight line parallel to the longest side of the WC phase of a rectangular cross-sectional structure of length 34 μm × width 24 μm obtained by magnifying the cross-sectional structure of the surface region and the internal region of the cermet 3000 times with a scanning electron microscope Is expressed as A (μm), and when the maximum length of a straight line perpendicular to the longest side of tungsten carbide and crossing tungsten carbide is expressed as B (μm), the ratio of A to B (A / B) ) Is 2 or more, and the presence or absence of a WC phase in which a value C (C = A × B) obtained by multiplying A and B is 2 × 10 −12 m 2 or more was examined. The 34 μm × 24 μm cross-sectional structure photograph of the surface region and internal region of each sample includes a WC phase in which (A / B) is 2 or more and C is 2 × 10 −12 m 2 or more. When it is present, it is represented by a circle in Table 13, and when it is not included in the photograph, it is represented by a cross in Table 13.

Figure 0005644388
Figure 0005644388

ISO規格TNMG160408形状の発明品1〜5、比較品1〜4のサーメットの拘束面に研削を施し、刃先にホーニングを施した。さらに膜構成が、(基材側)平均膜厚1.0μmTiN−平均膜厚8.0μmTi(C,N)−平均膜厚0.5μmTi(C,N,O)−平均膜厚1.5μmAl23−平均膜厚0.2μmTiN(表面側)、総膜厚の平均値が11.2μmである被膜をCVD法により被覆した。CVD被覆して得られた被覆サーメットを用いて切削試験1,2を行った。 The constraining surfaces of the cermets of inventions 1 to 5 and comparative products 1 to 4 having the ISO standard TNMG160408 shape were ground and the blade edge was honed. Further, the film structure is (base material side) average film thickness 1.0 μmTiN−average film thickness 8.0 μmTi (C, N) −average film thickness 0.5 μmTi (C, N, O) −average film thickness 1.5 μm Al 2 A film having an O 3 -average film thickness of 0.2 μm TiN (surface side) and an average value of the total film thickness of 11.2 μm was coated by a CVD method. Cutting tests 1 and 2 were performed using a coated cermet obtained by CVD coating.

[切削試験1]
耐欠損性評価試験
試料形状:TNMG160408
被削材:S45C(形状:円柱に4本の溝を入れた略円柱状)
切削速度:150m/min
切り込み:2.0mm
送り量:0.25mm/rev
雰囲気:湿式切削
試験回数:3回
寿命の判定基準:欠損するまでの衝撃回数を寿命とする。なお、衝撃回数が25000回になるまでに欠損しない場合は、その時点で試験を終了する。
[Cutting test 1]
Fracture resistance evaluation test sample shape: TNMG160408
Work material: S45C (shape: substantially cylindrical shape with four grooves in a cylinder)
Cutting speed: 150 m / min
Cutting depth: 2.0mm
Feed amount: 0.25mm / rev
Atmosphere: Number of wet cutting tests: 3 times Judgment criteria of life: The number of impacts until chipping is regarded as the life. In addition, a test is complete | finished at that time, when it does not lose | delete by the frequency | count of impact reaching 25000 times.

Figure 0005644388
Figure 0005644388

[切削試験2]
耐摩耗性評価試験
試料形状:TNMG160408
被削材:S45C(形状:円柱)
切削速度:200m/min
切り込み:2.0mm
送り量:0.25mm/rev
雰囲気:湿式切削
寿命の判定基準:欠損したとき、または、最大逃げ面摩耗量VBmaxが0.3mm以上になったときを寿命とする。
[Cutting test 2]
Abrasion resistance evaluation test sample shape: TNMG160408
Work material: S45C (shape: cylinder)
Cutting speed: 200 m / min
Cutting depth: 2.0mm
Feed amount: 0.25mm / rev
Atmosphere: Criteria for wet cutting life: Life is defined as when it is missing or when the maximum flank wear amount V Bmax is 0.3 mm or more.

Figure 0005644388
Figure 0005644388

切削試験1、2の結果を点数化した。すなわち、切削試験1の衝撃回数について、25000回以上を3点、20000回以上25000回未満を2点、15000回以上20000回未満を1点、15000回未満を0点とし、1回目から3回目までの結果を平均した。また、切削試験2の加工長について、4.5km以上を3点、3.0km以上4.5km未満を2点、1.5km以上3.0km未満を1点、1.5km未満を0点とした。切削試験1の点数の平均値と切削試験2の点数とを合計し、その値を総合評価の結果とした。点数が大きいほど切削性能に優れる。得られた総合評価の結果を表16に示した。 The results of cutting tests 1 and 2 were scored. That is, the number of impacts in the cutting test 1 is 3 times from 25000 times, 2 points from 20000 times to less than 25000 times, 1 point from 15000 times to less than 20000 times, and 0 points from less than 15000 times. The results were averaged. Moreover, about the processing length of the cutting test 2, 4.5 km or more is 3 points, 3.0 km or more and less than 4.5 km is 2 points, 1.5 km or more and less than 3.0 km is 1 point, and less than 1.5 km is 0 point did. The average value of the score of the cutting test 1 and the score of the cutting test 2 were totaled, and the value was used as the result of comprehensive evaluation. The larger the score, the better the cutting performance. The obtained comprehensive evaluation results are shown in Table 16.

Figure 0005644388
Figure 0005644388

発明品の総合評価はすべて5点以上となり、総合評価において比較品よりも優れることが分かる。 The overall evaluation of the invention products is all 5 points or more, and it is understood that the overall evaluation is superior to the comparative product.

Claims (6)

表面から内部に向って2〜200μmの厚さで、板状炭化タングステンを主成分とする炭化タングステン相と、鉄族金属を主成分とする結合相とからなる表面領域が形成され、表面領域よりも内部に、粒状炭化タングステンを主成分とする炭化タングステン相と、Ti、Wの炭化物、窒化物、炭窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる硬質相と、鉄族金属を主成分とする結合相とからなる内部領域が形成されたサーメットであり、表面領域と内部領域の間に、表面領域の直下から内部に向って2〜500μmの厚さがあり、炭化タングステン相と硬質相と結合相とからなり、硬質相はコアとリムからなる有芯構造のコアリム相を含み、サーメットの断面組織における、硬質相のコアリム相のリムの面積率が内部領域にある硬質相のコアリム相のリムの面積率よりも増加し、硬質相のコアリム相のコアの面積率が内部領域にある硬質相のコアリム相のコアの面積率よりも減少し、炭化タングステン相の面積率が内部領域にある炭化タングステン相の面積率よりも減少した中間領域が形成されたサーメット。 A surface region having a thickness of 2 to 200 μm from the surface to the inside and composed of a tungsten carbide phase mainly composed of plate-like tungsten carbide and a binder phase mainly composed of an iron group metal is formed. Inside, a tungsten carbide phase mainly composed of granular tungsten carbide, a hard phase composed of at least one selected from Ti, W carbides, nitrides, carbonitrides and their mutual solid solutions, and iron. A cermet in which an internal region composed of a binder phase composed mainly of a group metal is formed , and has a thickness of 2 to 500 μm between the surface region and the internal region from directly under the surface region to the inside, and is carbonized. It consists of a tungsten phase, a hard phase, and a binder phase. The hard phase includes a cored rim phase with a core and a rim, and the area ratio of the rim of the core rim phase of the hard phase in the cermet cross-sectional structure is internal. The area ratio of the rim of the hard phase core rim phase of the hard phase in the inner region is increased, the area ratio of the core of the core rim phase of the hard phase is decreased than the area ratio of the core of the core rim phase of the hard phase in the inner area, A cermet in which an intermediate region in which the area ratio of the tungsten phase is smaller than the area ratio of the tungsten carbide phase in the inner region is formed . 表面領域の断面組織における、炭化タングステン相の面積率は75〜99面積%、結合相の面積率は1〜25面積%、これらの合計は100面積%であり、内部領域の断面組織における、炭化タングステン相の面積率は10〜90面積%、硬質相の面積率は5〜75面積%、結合相の面積率は5〜25面積%、これらの合計は100面積%である請求項1に記載のサーメット。 The area ratio of the tungsten carbide phase in the cross-sectional structure of the surface region is 75 to 99 area%, the area ratio of the binder phase is 1 to 25 area%, and the total of these is 100 area%. The area ratio of the tungsten phase is 10 to 90 area%, the area ratio of the hard phase is 5 to 75 area%, the area ratio of the binder phase is 5 to 25 area%, and the total of these is 100 area%. Cermet. 中間領域の断面組織における、炭化タングステン相の面積率は0〜80面積%、硬質相の面積率は20〜100面積%、結合相の面積率は0〜15面積%、これらの合計は100面積%である請求項1または2に記載のサーメット。 In the cross-sectional structure of the intermediate region, the area ratio of the tungsten carbide phase is 0 to 80 area%, the area ratio of the hard phase is 20 to 100 area%, the area ratio of the binder phase is 0 to 15 area%, and the total of these is 100 areas The cermet according to claim 1 or 2 , wherein the cermet is%. サーメットの表面をX線回折測定したときのWC(001)面のピーク強度h(001)とWC(100)面のピーク強度h(100)は、(h(001)/h(100))≧0.6を満足し、サーメットの内部領域をX線回折測定したときのWC(001)面のピーク強度h(001)とWC(100)面のピーク強度h(100)は(h(001)/h(100))<0.6を満足する請求項1〜のいずれか1項に記載のサーメット。 The peak intensity h (001) of the WC (001) plane and the peak intensity h (100) of the WC (100) plane when the surface of the cermet is measured by X-ray diffraction are (h (001) / h (100)) ≧ 0.6, and the peak intensity h (001) of the WC (001) plane and the peak intensity h (100) of the WC (100) plane when the internal region of the cermet is measured by X-ray diffraction are (h (001) The cermet according to any one of claims 1 to 3 , which satisfies /h(100))<0.6. 炭化タングステンの最長辺に平行な直線で炭化タングステンを横切る直線の最大長さをA(μm)と表し、炭化タングステンの最長辺に垂直な直線で炭化タングステンを横切る直線の最大長さをB(μm)と表したとき、Bに対するAの比(A/B)が2以上であり、かつ、AとBとを乗じた値C(C=A×B)が2×10-122以上である炭化タングステンが表面領域に含まれる請求項1〜のいずれか1項に記載のサーメット。 The maximum length of a straight line that crosses tungsten carbide on a straight line parallel to the longest side of tungsten carbide is represented by A (μm), and the maximum length of a straight line that intersects tungsten carbide on a straight line perpendicular to the longest side of tungsten carbide is B (μm). ), The ratio of A to B (A / B) is 2 or more, and the value C (C = A × B) obtained by multiplying A and B is 2 × 10 −12 m 2 or more. cermet according to any one of claims 1 to 4 in tungsten carbide in the surface region. 請求項1〜のいずれか1項に記載のサーメットの表面に、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Siの金属、炭化物、窒化物、酸化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の被膜を被覆した被覆サーメット。
The surface of the cermet according to any one of claims 1 to 5 , Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si metal, carbide, nitride, oxide and A coated cermet coated with at least one film selected from these mutual solid solutions.
JP2010249267A 2010-11-08 2010-11-08 Cermet and coated cermet Active JP5644388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010249267A JP5644388B2 (en) 2010-11-08 2010-11-08 Cermet and coated cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249267A JP5644388B2 (en) 2010-11-08 2010-11-08 Cermet and coated cermet

Publications (2)

Publication Number Publication Date
JP2012101288A JP2012101288A (en) 2012-05-31
JP5644388B2 true JP5644388B2 (en) 2014-12-24

Family

ID=46392332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249267A Active JP5644388B2 (en) 2010-11-08 2010-11-08 Cermet and coated cermet

Country Status (1)

Country Link
JP (1) JP5644388B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037121B2 (en) * 2018-09-28 2022-03-16 三菱マテリアル株式会社 Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2628200B2 (en) * 1988-09-27 1997-07-09 京セラ株式会社 TiCN-based cermet and method for producing the same
JPH0929508A (en) * 1995-07-12 1997-02-04 Toshiba Tungaloy Co Ltd High tenacity surface-coated hard metal
JP3359221B2 (en) * 1996-03-04 2002-12-24 日本特殊陶業株式会社 TiCN-based cermet tool and its manufacturing method
JP5284684B2 (en) * 2008-05-12 2013-09-11 ダイジ▲ェ▼ット工業株式会社 Super hard alloy
JP2010031308A (en) * 2008-07-25 2010-02-12 Sumitomo Electric Ind Ltd Cermet
JP4974980B2 (en) * 2008-08-25 2012-07-11 京セラ株式会社 TiCN-based cermet

Also Published As

Publication number Publication date
JP2012101288A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JPWO2011002008A1 (en) Cermet and coated cermet
JP6703757B2 (en) Cermet and cutting tool
JP5454678B2 (en) Cermet and coated cermet
WO2017191744A1 (en) Cemented carbide and cutting tool
JP5807851B1 (en) Cermets and cutting tools
JP5559575B2 (en) Cermet and coated cermet
WO2012053237A1 (en) Wc-based cemented carbide cutting tool having high defect resistance for heat-resistant alloy cutting, and surface-coated wc-based cemented carbide cutting tool
WO2019116614A1 (en) Cemented carbide and cutting tool
JP2004292842A (en) Cermet
JP5381616B2 (en) Cermet and coated cermet
JP5644388B2 (en) Cermet and coated cermet
JP7388431B2 (en) Cemented carbide and cutting tools containing it as a base material
JP6172382B2 (en) Cermet tool
JP6380016B2 (en) Cermet tools and coated cermet tools
JP2016020538A (en) Super hard alloy and cutting tool
JP6770692B2 (en) Carbide and coated cemented carbide
WO2022172729A1 (en) Cemented carbide and cutting tool which comprises same as base material
JP7336062B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
WO2022172730A1 (en) Cemented carbide and cutting tool comprising same as base material
JP7170965B2 (en) Cemented Carbide and Coated Cemented Carbide
JP5888428B2 (en) Cermet tool
JP2014077178A (en) Cermet and coated cermet
WO2016114190A1 (en) Cermet, cutting tool, and method for manufacturing cermet
JPWO2019116614A1 (en) Cemented carbide and cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5644388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250