JP7037121B2 - Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer - Google Patents

Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer Download PDF

Info

Publication number
JP7037121B2
JP7037121B2 JP2018185621A JP2018185621A JP7037121B2 JP 7037121 B2 JP7037121 B2 JP 7037121B2 JP 2018185621 A JP2018185621 A JP 2018185621A JP 2018185621 A JP2018185621 A JP 2018185621A JP 7037121 B2 JP7037121 B2 JP 7037121B2
Authority
JP
Japan
Prior art keywords
layer
tin
based cermet
substrate
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018185621A
Other languages
Japanese (ja)
Other versions
JP2020055050A (en
Inventor
誠 五十嵐
和崇 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018185621A priority Critical patent/JP7037121B2/en
Publication of JP2020055050A publication Critical patent/JP2020055050A/en
Application granted granted Critical
Publication of JP7037121B2 publication Critical patent/JP7037121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

この発明は、耐チッピング性にすぐれた表面被覆TiN基サーメット製切削工具に関する。 The present invention relates to a surface-coated TiN-based cermet cutting tool having excellent chipping resistance.

従来、炭窒化チタン(以下、TiCNで示す)基サーメット等で構成された基体の表面に、化学蒸着で形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなるTi化合物層を下部層とし、また、化学蒸着で形成された酸化アルミニウム(以下、Alで示す)層を上部層とする硬質被覆層を形成した表面被覆サーメット製切削工具が良く知られている。
ただ、上記の従来の表面被覆サーメット製切削工具は、切れ刃に高負荷が作用する切削加工条件では、チッピング、欠損等の異常損耗を発生しやすく、工具寿命が短命となるため、これを改善すべく、種々の提案がなされている。
Conventionally, on the surface of a substrate made of titanium carbonitride (hereinafter referred to as TiCN) -based cermet or the like, a carbide (hereinafter referred to as TiC) layer of Ti formed by chemical vapor deposition and a nitride (hereinafter also referred to as TiN) are used. A Ti compound layer consisting of two or more of a layer (shown), a carbide (hereinafter referred to as TiCN) layer, a carbide oxide (hereinafter referred to as TiCO) layer, and a carbonitride oxide (hereinafter referred to as TiCNO) layer. A surface-coated cermet cutting tool having a hard coating layer having an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer formed by chemical vapor deposition as an upper layer is well known.
However, the above-mentioned conventional surface-coated cermet cutting tool is prone to abnormal wear such as chipping and chipping under cutting conditions where a high load acts on the cutting edge, and the tool life is shortened. Various proposals have been made to this end.

例えば、特許文献1には、サーメット(Ti,Zr,Hr,Ta,Nb,W,Mo,Crの炭化物、窒化物、炭窒化物の1種または2種以上の硬質分散相形成成分:70~95重量%と、Co,Ni,Alの1種または2種以上の結合相形成成分:5~30重量%とからなるサーメット)からなる基体上にTiN層あるいはTiCN層を化学蒸着で形成した表面被覆サーメット製切削工具の作製にあたり、TiN層を形成する際には、NHを含有する混合ガスを用い、TiCN層を形成する際には、CHCNを含有する混合ガスを用いることによって、TiN層あるいはTiCN層中に、サーメット基体中の結合相形成成分が拡散し混入することがないようにすることによって、表面被覆サーメット製切削工具の耐摩耗性向上を図ることが提案されている。 For example, Patent Document 1 describes one or more hard dispersed phase forming components of cermet (Ti, Zr, Hr, Ta, Nb, W, Mo, Cr carbides, nitrides, and carbonitrides: 70 to A surface formed by chemical vapor deposition of a TiN layer or a TiCN layer on a substrate consisting of 95% by weight and a cermet consisting of one or more bonded phase forming components of Co, Ni, Al: 5 to 30% by weight). In the production of the coated cermet cutting tool, a mixed gas containing NH 3 is used when forming the TiN layer, and a mixed gas containing CH 3 CN is used when forming the TiCN layer. It has been proposed to improve the wear resistance of a surface-coated cermet cutting tool by preventing the bonded phase-forming component in the cermet substrate from diffusing and mixing into the TiN layer or the TiCN layer.

また、特許文献2には、CoおよびNiを主体とする結合相形成成分を12~20重量%含有するTiCN基サーメット基体の表面に、化学蒸着法または物理蒸着法を用いて、Tiの炭化物、窒化物、および炭窒化物、並びに酸化アルミニウムのうちの2種以上で構成された複層の硬質被覆層を形成してなる表面被覆サーメット製切削工具において、前記基体の表面部を、0.5~1.5μmの平均層厚を有し、かつ結合相構成成分からなる軟質の溶出合金層で構成すると共に、前記基体表面部の溶出合金層に接する硬質被覆層を、0.5~5μmの平均層厚を有する窒化チタンからなる結合相構成成分拡散防止層で構成することが提案されており、そしてこの表面被覆サーメット製切削工具は、基体表面部に形成された溶出合金層によってすぐれた靭性をもつようになるため、切刃に欠けやチッピングが発生することを抑制し得るとされている。 Further, in Patent Document 2, a carbide of Ti is described on the surface of a TiCN-based cermet substrate containing 12 to 20% by weight of a bonded phase forming component mainly composed of Co and Ni by using a chemical vapor deposition method or a physical vapor deposition method. In a surface-coated cermet cutting tool formed by forming a multi-layered hard coating layer composed of two or more of nitrides, carbonitrides, and aluminum oxide, the surface portion of the substrate is set to 0.5. The hard coating layer having an average layer thickness of about 1.5 μm and being composed of a soft elution alloy layer composed of bonded phase constituents and in contact with the elution alloy layer on the surface of the substrate is 0.5 to 5 μm. It has been proposed to construct a bonded phase component diffusion-preventing layer made of titanium nitride with an average layer thickness, and this surface-coated cermet cutting tool has excellent toughness due to the elution alloy layer formed on the surface of the substrate. It is said that it is possible to suppress the occurrence of chipping and chipping on the cutting edge.

また、特許文献3には、W、Moを含有するTiCN基サーメット基体表面に、第一層として、Ti化合物層を蒸着形成した表面被覆サーメット製切削工具において、基体のTiCN相と硬質被覆層との界面に、0.5~10nmの平均厚さのMo濃化層あるいはさらにW濃化層が形成され、該濃化層のMo含有量、W含有量は5~50原子%であり、好ましくは、基体のTiCN相と硬質被覆層との界面の長さの60%以上の界面には、濃化層が形成されている表面被覆サーメット製切削工具が提案されている。
そして、この表面被覆サーメット製切削工具は、TiCN基サーメット基体と硬質被覆層のケミカルボンドが高められるため、硬質被覆層と基体との付着強度が優れ、切刃に高負荷が作用する高速断続切削加工に用いた場合であっても、すぐれた耐チッピング性、耐摩耗性を発揮するとされている。
Further, in Patent Document 3, in a surface-coated cermet cutting tool in which a Ti compound layer is vapor-deposited and formed as a first layer on the surface of a TiCN-based cermet substrate containing W and Mo, the TiCN phase and the hard coating layer of the substrate are described. A Mo-enriched layer having an average thickness of 0.5 to 10 nm or a W-enriched layer is further formed at the interface between the two, and the Mo content and W content of the concentrated layer are preferably 5 to 50 atomic%. Proposes a surface-coated cermet cutting tool in which a concentrated layer is formed at an interface of 60% or more of the interface length between the TiCN phase of the substrate and the hard coating layer.
Since this surface-coated cermet cutting tool enhances the chemical bond between the TiCN-based cermet substrate and the hard coating layer, the adhesion strength between the hard coating layer and the substrate is excellent, and high-speed intermittent cutting in which a high load acts on the cutting edge. Even when used for processing, it is said to exhibit excellent chipping resistance and wear resistance.

非特許文献1には、サーメット基体に対してCVD法で被膜を形成した際の、基体と被膜との界面近傍組織の影響についての考察がなされており、TiC-MoC-Ni系サーメット基体表面に、TiCをCVD法によって被覆した場合には、CVD初期段階では、基体と被膜の界面近傍の基体側にはミクロポアが形成されること、また、Niは被膜中に取り込まれ、基体と被膜の界面近傍の被膜側にはNiTi化合物相が形成されること、また、被膜の成長とともに、NiTi化合物相は被膜表面近傍へ移動するが、その抜け殻として、基体と被膜の界面近傍の被膜側にはミクロポアが形成されることが記載されている。
そして、被覆サーメットの強度の低下は被膜の厚さ増加とともに低下したが、この強度低下は、被膜厚さと、界面部近傍に生じるミクロポアの生成領域厚さとの合計が、破壊の応力集中源として作用することによると考えられると記載されている。
Non-Patent Document 1 discusses the influence of the structure near the interface between the substrate and the coating when the coating is formed on the cermet substrate by the CVD method, and is a TiC-Mo 2 C-Ni cermet substrate. When TiC is coated on the surface by the CVD method, micropores are formed on the substrate side near the interface between the substrate and the coating in the initial stage of CVD, and Ni is incorporated into the coating to form the substrate and the coating. A NiTi compound phase is formed on the coating side near the interface of the film, and as the coating grows, the NiTi compound phase moves to the vicinity of the coating surface. It is stated that micropores are formed.
The decrease in the strength of the coated cermet decreased with the increase in the thickness of the coating. In this decrease in strength, the sum of the film thickness and the thickness of the micropore formation region generated near the interface acts as a stress concentration source for fracture. It is stated that it is thought to be due to the fact that it is done.

特開平3-226576号公報Japanese Unexamined Patent Publication No. 3-226576 特開平4-289003号公報Japanese Unexamined Patent Publication No. 4-289003 特開2015-178172号公報Japanese Unexamined Patent Publication No. 2015-178172

「粉体および粉末冶金」第33巻第5号(1986年7月)p.274-279"Powder and Powder Metallurgy" Vol. 33, No. 5 (July 1986) p.274-279

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、表面被覆サーメット製切削工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。 In recent years, the performance of cutting equipment has been remarkably improved, while there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing, and along with this, cutting processing tends to be faster and more efficient. Surface-coated cermet cutting tools are further required to have abnormal damage resistance such as chipping resistance, chipping resistance, and peeling resistance, as well as excellent wear resistance over a long period of use. There is.

例えば、前記特許文献1で提案されている表面被覆サーメット製切削工具では、サーメット基体上にTiN層あるいはTiCN層を化学蒸着する際に、TiN層あるいはTiCN層中に、サーメット基体中の結合相形成成分が拡散・混入することがないように成膜することによって、表面被覆サーメット製切削工具の耐摩耗性の向上を図っており、また、前記特許文献2では、サーメット基体の表面部にはサーメットの結合相の主要成分であるCo、Niからなる溶出合金層を形成して靱性を高め、その一方、CoやNiを主体とする結合相成分が硬質被覆層に拡散移動するのを防止するように硬質被覆層を形成することで、表面被覆サーメット製切削工具の欠け発生、チッピング発生を抑制しており、さらに、前記特許文献3で提案されたW、Moを含有するTiCN基サーメットを基体とする表面被覆サーメット製切削工具では、基体のTiCN相と硬質被覆層との界面にMo濃化層あるいはさらにW濃化層を形成することによって、TiCN基サーメット基体と硬質被覆層の付着強度を高め、耐チッピング性、耐摩耗性を向上させている。
しかし、サーメット基体表面にTi化合物からなる硬質被覆層を蒸着形成した前記特許文献1~3で提案される表面被覆サーメット製切削工具は、通常条件の切削加工においてはある程度の切削性能が発揮されるとしても、合金鋼の湿式高速フライス切削加工等のように、刃先に断続的・衝撃的な高負荷が作用する切削条件に供した場合には、サーメット基体自体の靱性が十分ではなく、しかも、サーメット基体と硬質被覆層の密着性も十分でないために、チッピングを発生しやすく、その結果、工具寿命は短命であった。
したがって、サーメット基体表面にTi化合物からなる硬質被覆層を蒸着形成した表面被覆サーメット製切削工具においては、刃先に高負荷が作用する切削条件下での耐チッピング性の向上が強く望まれていた。
For example, in the surface-coated cermet cutting tool proposed in Patent Document 1, when a TiN layer or a TiCN layer is chemically vapor-deposited on a cermet substrate, a bonded phase is formed in the cermet substrate in the TiN layer or the TiCN layer. By forming a film so that the components do not diffuse or mix, the wear resistance of the surface-coated cermet cutting tool is improved. Further, in Patent Document 2, the surface portion of the cermet substrate is covered with cermet. To form an elution alloy layer consisting of Co and Ni, which are the main components of the bonded phase, to increase toughness, while preventing the bonded phase components mainly composed of Co and Ni from diffusing and moving to the hard coating layer. By forming a hard coating layer on the surface, the occurrence of chipping and chipping of the surface-coated cermet cutting tool is suppressed, and the TiCN-based cermet containing W and Mo proposed in Patent Document 3 is used as a substrate. In the surface-coated cermet cutting tool, the adhesion strength between the TiCN-based cermet substrate and the hard coating layer is increased by forming a Mo-concentrated layer or a W-concentrated layer at the interface between the TiCN phase of the substrate and the hard coating layer. , Chipping resistance and wear resistance are improved.
However, the surface-coated cermet cutting tools proposed in Patent Documents 1 to 3 in which a hard coating layer made of a Ti compound is vapor-deposited on the surface of a cermet substrate exhibit some cutting performance in cutting under normal conditions. Even so, the toughness of the cermet substrate itself is not sufficient when it is subjected to cutting conditions such as wet high-speed milling of alloy steel where an intermittent and shocking high load acts on the cutting edge. Since the adhesion between the cermet substrate and the hard coating layer is not sufficient, chipping is likely to occur, and as a result, the tool life is short.
Therefore, in a surface-coated cermet cutting tool in which a hard coating layer made of a Ti compound is vapor-deposited on the surface of a cermet substrate, improvement in chipping resistance under cutting conditions in which a high load acts on the cutting edge has been strongly desired.

本発明者らは上記課題を解決すべく、合金鋼の湿式高速フライス切削加工等の刃先に高負荷が作用する切削加工に供した場合であっても、すぐれた耐チッピング性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具を提供すべく、鋭意研究を進めたところ、次のような知見を得た。 In order to solve the above problems, the present inventors exhibit excellent chipping resistance and exhibit excellent chipping resistance even when subjected to cutting work such as wet high-speed milling of alloy steel in which a high load acts on the cutting edge. As a result of diligent research to provide a surface-coated cermet cutting tool that exhibits excellent wear resistance over a long period of time, the following findings were obtained.

前記非特許文献1は、TiC-MoC-Ni系サーメット基体表面に、TiCをCVD法によって被覆した場合の基体と被膜の経時的組織変化を述べるものであって、サーメット基体表面に硬質被覆層を蒸着形成した表面被覆サーメット製切削工具の一般的な特性について開示するものではないが、基体と被膜の界面近傍に形成されるミクロポアが基体の強度低下の一つの要因として挙げられている。
さらに、基体と被膜の界面近傍に形成されるミクロポアは、基体の強度低下に加え、基体と被膜の密着性を劣化させることは明らかであるから、表面被覆サーメット製切削工具の耐チッピング性低下の一因となることを示唆するものであるといえる。
The non-patent document 1 describes changes in the structure of the substrate and the coating over time when the surface of the TiC-Mo 2 C-Ni cermet substrate is coated with TiC by the CVD method, and the surface of the cermet substrate is hard coated. Although it does not disclose the general characteristics of a surface-coated cermet cutting tool in which a layer is vapor-deposited, micropores formed near the interface between the substrate and the coating are cited as one of the factors for reducing the strength of the substrate.
Furthermore, it is clear that the micropores formed near the interface between the substrate and the coating deteriorate the adhesion between the substrate and the coating in addition to the decrease in the strength of the substrate. It can be said that it suggests that it contributes.

そこで、本発明者らは、TiN基サーメットを基体とし、その表面に硬質被覆層(具体的には、チタンの窒化物(以下、「TiN」で示す)、チタンの炭化物(以下、「TiC」で示す)、チタンの炭窒化物(以下、「TiCN」で示す)及び酸化アルミニウム(以下、「Al」で示す)のうちの1層又は2層以上)を化学蒸着法で被覆形成した表面被覆TiN基サーメット製切削工具において、TiN基サーメットの成分組成の調整とともに、焼結条件を調整することで、ミクロポアの形成を避け、また、TiN基サーメット基体と硬質被覆層との界面近傍に特異な組織を形成することで、TiN基サーメット基体自体の靱性向上を図ると同時に、TiN基サーメット基体と硬質被覆層との密着性を向上させ得ることを見出した。
そして、靱性向上が図られた前記TiN基サーメット基体の表面に、TiN基サーメット基体との密着性にすぐれた硬質被覆層が化学蒸着法で被覆形成された表面被覆TiN基サーメット製切削工具は、刃先に断続的・衝撃的な高負荷が作用する合金鋼の湿式高速フライス切削加工等の切削加工に供した場合であっても、チッピングの発生が抑制されるとともにすぐれた耐摩耗性を発揮するため、長期の使用にわたってすぐれた切削性能を発揮することを見出したのである。
Therefore, the present inventors use a TiN-based cermet as a substrate, and have a hard coating layer (specifically, a nitride of titanium (hereinafter referred to as "TiN") and a carbide of titanium (hereinafter, "TiC") on the surface thereof. (Represented by), titanium carbide (hereinafter referred to as "TiCN") and aluminum oxide (hereinafter referred to as "Al 2 O 3 "), one layer or two or more layers) are coated and formed by a chemical vapor deposition method. In the surface-coated TiN-based cermet cutting tool, the formation of micropores is avoided by adjusting the component composition of the TiN-based cermet and the sintering conditions, and the vicinity of the interface between the TiN-based cermet substrate and the hard coating layer. It has been found that by forming a unique structure, the toughness of the TiN-based cermet substrate itself can be improved, and at the same time, the adhesion between the TiN-based cermet substrate and the hard coating layer can be improved.
A surface-coated TiN-based cermet cutting tool in which a hard coating layer having excellent adhesion to the TiN-based cermet substrate is coated and formed on the surface of the TiN-based cermet substrate with improved toughness by a chemical vapor deposition method is used. Even when it is used for cutting such as wet high-speed milling of alloy steel, which has an intermittent and shocking high load on the cutting edge, the occurrence of chipping is suppressed and excellent wear resistance is exhibited. Therefore, it was found that it exhibits excellent cutting performance over a long period of use.

本発明は、上記の知見に基づいてなされたものであって、
「(1)TiN基サーメットを基体とし、その表面に硬質被覆層が被覆されている表面被覆TiN基サーメット製切削工具において、
(a)前記TiN基サーメットは、その断面を観察した時、平均面積割合が70~94面積%のTiN相と、平均面積割合が1~25面積%のMoC相を含み、残部が結合相からなる焼結組織を有し、
(b)前記TiN基サーメットは、基体表面からその内部に向かって、面積割合で0.5~20面積%のグラファイト相を含有するグラファイト含有層が、2~20μmの平均層厚で存在し、
(c)前記硬質被覆層は、TiN層、TiC層、TiCN層及びAl層の内から選ばれた1層または2層以上からなることを特徴とする表面被覆TiN基サーメット製切削工具。
(2)前記TiN基サーメットの表面直上には、TiN層、TiC層及びTiCN層の内から選ばれた1層または2層以上のTi化合物層が5μm以上の平均層厚で形成され、前記TiN基サーメットの表面直上のTi化合物層には、2~10原子%のMoを含有し、平均粒径が1~50nmであるMo含有Ti化合物層が1~5μmの平均層厚で形成されていることを特徴とする前記(1)に記載の表面被覆TiN基サーメット製切削工具。
(3)前記グラファイト含有層の平均微小硬さは、前記TiN基サーメットの内部の平均微小硬さの50~80%の硬さであることを特徴とする前記(1)または(2)に記載の表面被覆TiN基サーメット製切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings.
"(1) In a surface-coated TiN-based cermet cutting tool whose substrate is a TiN-based cermet and whose surface is coated with a hard coating layer.
(A) The TiN-based cermet contains a TiN phase having an average area ratio of 70 to 94 area% and a Mo 2C phase having an average area ratio of 1 to 25 area% when the cross section is observed, and the balance is bonded. It has a sintered structure consisting of phases and has a
(B) In the TiN-based cermet, a graphite-containing layer containing a graphite phase having an area ratio of 0.5 to 20 area% is present from the surface of the substrate toward the inside thereof with an average layer thickness of 2 to 20 μm.
(C) The surface-coated TiN-based cermet cutting tool, wherein the hard coating layer is composed of one layer or two or more layers selected from the TiN layer, the TiC layer, the TiCN layer , and the Al2O3 layer. ..
(2) One layer or two or more Ti compound layers selected from the TiN layer, the TiC layer and the TiCN layer are formed on the surface of the TiN-based cermet with an average layer thickness of 5 μm or more, and the TiN is formed. The Ti compound layer immediately above the surface of the base cermet contains 2 to 10 atomic% of Mo, and the Mo-containing Ti compound layer having an average particle size of 1 to 50 nm is formed with an average layer thickness of 1 to 5 μm. The surface-coated TiN-based cermet cutting tool according to (1) above.
(3) The above-mentioned (1) or (2), wherein the average microhardness of the graphite-containing layer is 50 to 80% of the average microhardness inside the TiN-based cermet. Surface-coated TiN-based cermet cutting tool. "
It has the characteristics of.

本発明の表面被覆TiN基サーメット製切削工具は、TiN基サーメット基体の成分組成を特定することにより、焼結体組織中のミクロポアの形成が抑制され、基体は所定の硬さとすぐれた靱性を備えるようになり、特に、TiN基サーメット基体表面の所定の層厚(深さ領域)にのみ、低硬度のグラファイト含有層が存在することによって、基体表面の靱性向上が図られることから、合金鋼の湿式高速フライス切削加工等のように、刃先に断続的・衝撃的な高負荷が作用する切削加工において、すぐれた耐チッピング性と耐摩耗性を発揮する。 In the surface-coated TiN-based cermet cutting tool of the present invention, the formation of micropores in the sintered structure is suppressed by specifying the component composition of the TiN-based cermet substrate, and the substrate has a predetermined hardness and excellent toughness. In particular, the presence of the low-hardness graphite-containing layer only in a predetermined layer thickness (depth region) on the surface of the TiN-based cermet substrate improves the toughness of the substrate surface. Demonstrates excellent chipping resistance and wear resistance in cutting processes such as wet high-speed milling where an intermittent and shocking high load acts on the cutting edge.

さらに、本発明の表面被覆TiN基サーメット製切削工具は、基体表面直上の硬質被覆層の所定の厚さ領域に、所定のMo含有量で、かつ、所定の平均粒径のMo含有Ti化合物層が形成されていることから、基体と硬質被覆層の密着性が向上し、これが表面被覆TiN基サーメット製切削工具の耐チッピング性向上に大きく貢献する。 Further, the surface-coated TiN-based cermet cutting tool of the present invention has a Mo-containing Ti compound layer having a predetermined Mo content and a predetermined average particle size in a predetermined thickness region of the hard coating layer immediately above the substrate surface. Therefore, the adhesion between the substrate and the hard coating layer is improved, which greatly contributes to the improvement of the chipping resistance of the surface-coated TiN-based cermet cutting tool.

本発明の表面被覆TiN基サーメット製切削工具の縦断面SEM像(倍率:2000倍)の一例を示す。An example of a vertical cross-sectional SEM image (magnification: 2000 times) of the surface-coated TiN-based cermet cutting tool of the present invention is shown.

つぎに、本発明の表面被覆TiN基サーメット製切削工具(以下、「被覆TiN基サーメット工具」ということもある)について、より具体的に説明する。 Next, the surface-coated TiN-based cermet cutting tool of the present invention (hereinafter, also referred to as “coated TiN-based cermet tool”) will be described more specifically.

図1に、本発明の被覆TiN基サーメット工具の断面構造の一例を示すが、本発明の被覆TiN基サーメット工具は、TiN相とMoC相と結合相からなるTiN基サーメットの表面に、化学蒸着法で硬質被覆層(図1では、TiCN層とAl層)が形成されているが、さらに、TiN基サーメットの表面から内部に向かう特定領域にはグラファイト含有層が形成され、また、TiN基サーメット直上の硬質被覆層(TiCN層)の特定領域には、Mo含有Ti化合物層が形成されている。 FIG. 1 shows an example of the cross-sectional structure of the coated TiN - based cermet tool of the present invention. A hard coating layer (TiCN layer and Al2O3 layer in FIG. 1 ) is formed by a chemical vapor deposition method, and a graphite-containing layer is further formed in a specific region from the surface of the TiN-based cermet toward the inside. Further, a Mo-containing Ti compound layer is formed in a specific region of the hard coating layer (TiCN layer) directly above the TiN-based cermet.

まず、TiN基サーメットを構成するTiN相、MoC相、結合相、グラファイト含有層について説明し、ついで、TiN基サーメット直上の硬質被覆層に形成されるMo含有Ti化合物層について説明する。 First, the TiN phase, the Mo 2C phase, the bonded phase, and the graphite-containing layer constituting the TiN-based cermet will be described, and then the Mo-containing Ti compound layer formed on the hard coating layer directly above the TiN-based cermet will be described.

TiN相:
本発明の被覆TiN基サーメット工具において、その縦断面を観察した時、TiN基サーメット基体に占めるTiN相の平均面積割合が70面積%未満になると、基体としての硬さが十分ではなく、一方、TiN相の平均面積割合が94面積%を超えると、焼結組織にミクロポア(微細な空隙)が形成されやすくなり、これが原因で靱性が低下することから、TiN基サーメット基体中のTiN相の平均面積割合は70~94面積%とする。
TiN相の好ましい平均面積割合は75~90面積%であり、より好ましい平均面積割合は、85~90面積%である。
本発明では、TiN基サーメット基体の縦断面を、エネルギー分散型X線分析装置(EDS)を備えた走査型電子顕微鏡(SEM)で観察し、得られた二次電子像内の領域(例えば、40×50μmの領域)における含有元素量を測定し、TiN相、MoC相及び結合相成分(例えば、Fe相、Ni相あるいはFe-Ni合金相)を特定し、各相が前記領域に占める面積比率を算出し、少なくとも、5領域以上の複数の領域で面積比率を算出し、これらの平均値を、各相の面積%とした。
本発明のTiN基サーメット基体においては、製造工程等から不可避的に混入する不可避不純物成分については、本発明の目的を損なわない範囲内(即ち、TiN基サーメット基体の硬さと靱性を低下せしめない範囲内)において、微量の含有(混入)が許容される。
TiN phase:
When the vertical cross section of the coated TiN-based cermet tool of the present invention is observed, if the average area ratio of the TiN phase to the TiN-based cermet substrate is less than 70 area%, the hardness of the substrate is not sufficient, while the hardness of the substrate is not sufficient. When the average area ratio of the TiN phase exceeds 94 area%, micropores (fine voids) are likely to be formed in the sintered structure, which reduces toughness. Therefore, the average TiN phase in the TiN-based cermet substrate is average. The area ratio is 70 to 94 area%.
The preferred average area ratio of the TiN phase is 75 to 90 area%, and the more preferable average area ratio is 85 to 90 area%.
In the present invention, the vertical cross section of the TiN-based cermet substrate is observed with a scanning electron microscope (SEM) equipped with an energy dispersive X-ray analyzer (EDS), and the region in the obtained secondary electron image (for example, for example). The amount of elements contained in the region (40 × 50 μm 2 region) is measured to identify the TiN phase, Mo 2 C phase and bonded phase components (for example, Fe phase, Ni phase or Fe—Ni alloy phase), and each phase is the region. The area ratio was calculated, and the area ratio was calculated in a plurality of regions having at least 5 regions, and the average value of these was taken as the area% of each phase.
In the TiN-based cermet substrate of the present invention, the unavoidable impurity component inevitably mixed from the manufacturing process or the like is within a range that does not impair the object of the present invention (that is, a range that does not reduce the hardness and toughness of the TiN-based cermet substrate). (Inside), a small amount of content (mixture) is allowed.

MoC相:
TiN基サーメット基体中のMoC相の平均面積割合が1面積%未満では、TiN相と結合相との間でのぬれ性が不足し、焼結組織にミクロポアを生じるため、靱性が低下する。
一方、MoC相の平均面積割合が25面積%を超えると、FeMoC相等の複炭化物、FeMoN相等の複窒化物を生じやすくなり、これが靱性低下の要因となることから、TiN基サーメット基体中のMoC相の平均面積割合は1~25面積%とする。
MoC相の好ましい平均面積割合は1~15面積%であり、より好ましい平均面積割合は、1 ~10面積%である。
Mo 2 C phase:
If the average area ratio of the Mo 2 C phase in the TiN-based cermet substrate is less than 1 area%, the wettability between the TiN phase and the bonded phase is insufficient, and micropores are formed in the sintered structure, resulting in a decrease in toughness. ..
On the other hand, when the average area ratio of the Mo 2 C phase exceeds 25 area%, double carbides such as Fe 3 Mo 3 C phase and double nitrides such as Fe 3 Mo 3 N phase are likely to be generated, which causes a decrease in toughness. Therefore, the average area ratio of the Mo 2C phase in the TiN-based cermet substrate is 1 to 25 area%.
The preferred average area ratio of the Mo 2C phase is 1 to 15 area%, and the more preferable average area ratio is 1 to 10 area%.

結合相:
本発明の被覆TiN基サーメット工具では、TiN基サーメットを構成する結合相成分及びその平均面積割合について特段の制限はないが、TiN基サーメットの靱性を高めるという観点からは、FeとNiを結合相成分として含有し、かつ、TiN基サーメット基体中に占める結合相の平均面積割合(Fe相、Ni相、Fe-Ni合金相の合計平均面積割合)は5~15面積%とすることが好ましい。
ここで、結合相の平均面積割合が、5面積%未満であると、結合相量が少ないためにTiN基サーメット基体の靱性が低下し、一方、結合相の平均面積割合が15面積%を超えると、硬質相成分であるTiN相の量が相対的に減少するため、基体として必要とされる硬度を確保することができないからである。
Bonded phase:
In the coated TiN-based cermet tool of the present invention, there are no particular restrictions on the bonded phase components constituting the TiN-based cermet and their average area ratios, but from the viewpoint of increasing the toughness of the TiN-based cermet, Fe and Ni are bonded phases. The average area ratio of the bonded phase (total average area ratio of Fe phase, Ni phase, and Fe—Ni alloy phase) contained as a component and occupied in the TiN-based cermet substrate is preferably 5 to 15 area%.
Here, when the average area ratio of the bonded phase is less than 5 area%, the toughness of the TiN-based cermet substrate decreases due to the small amount of the bonded phase, while the average area ratio of the bonded phase exceeds 15 area%. This is because the amount of the TiN phase, which is a hard phase component, is relatively reduced, so that the hardness required for the substrate cannot be secured.

さらに、前記結合相において、結合相を構成するFeとNiの合計含有量に対するNiの含有割合(=Ni/(Fe+Ni)×100)を、15~35質量%とすることによって、TiN基サーメット基体の靱性及び硬さを一段と高めることができる。
これは、FeとNiの合計含有量に対するNiの含有割合(=Ni/(Fe+Ni)×100)が15質量%未満の場合には、NiはFe中に固溶するが、結合相を固溶強化するほどの効果は発揮されないため結合相の硬さが不足し、また、FeとNiの合計含有量に対するNiの含有割合(=Ni/(Fe+Ni)×100)が35質量%を超える場合には、金属間化合物FeNiを生じやすくなるため、結合相の靱性が低下するという理由による。
Further, in the bonded phase, the content ratio of Ni to the total content of Fe and Ni constituting the bonded phase (= Ni / (Fe + Ni) × 100) is set to 15 to 35% by mass, whereby the TiN-based cermet substrate is formed. The toughness and hardness of the product can be further increased.
This is because when the content ratio of Ni to the total content of Fe and Ni (= Ni / (Fe + Ni) × 100) is less than 15% by mass, Ni is solid-dissolved in Fe, but the bonded phase is solid-dissolved. When the hardness of the bonded phase is insufficient because the effect of strengthening is not exhibited, and the content ratio of Ni to the total content of Fe and Ni (= Ni / (Fe + Ni) × 100) exceeds 35% by mass. This is because the intermetallic compound FeNi 3 is likely to be generated, and thus the toughness of the bonded phase is lowered.

グラファイト含有層:
本発明の被覆TiN基サーメット工具について、エネルギー分散型X線分析装置(EDS)を備えた走査型電子顕微鏡(SEM)を用いて、TiN基サーメット基体の表面を含み、かつ、基体内部に向かって500μmの深さにわたってTiN基サーメット基体の縦断面を観察した場合、基体表面から基体内部へ向かってグラファイト相を含有する領域の存在が確認される。
そして、該領域において、グラファイト相の面積割合が観察領域の0.5~20面積%を占める領域をグラファイト含有層と定義した場合、本発明のTiN基サーメット基体は、基体表面から基体内部へ向かって、2~20μmの平均層厚でグラファイト含有層が形成されている。
前記グラファイト含有層の存在は、基体表面の靱性を向上させることで、被覆TiN基サーメット工具の耐チッピング性を向上させるが、グラファイト含有層の平均層厚が2μm未満の場合もしくはグラファイト相の平均面積割合が0.5面積%未満の場合には、TiN基サーメット基体の表面強靭化の効果が十分ではない。
一方、前記グラファイト含有層におけるグラファイト含有層の平均層厚が20μmを超える場合もしくはグラファイト相の平均面積割合が20面積%を超える場合には、グラファイト含有層の硬さが過度に低下することによって、TiN基サーメット基体の変形あるいは硬質被覆層の剥離を生じやすくなる。
よって、本発明では、TiN基サーメット基体の表面には、基体表面から基体内部へ向かって、2~20μmの平均層厚で、平均面積割合で0.5~20面積%のグラファイト相を含有するグラファイト含有層を形成する。
Graphite-containing layer:
For the coated TiN-based cermet tool of the present invention, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray analyzer (EDS) is used to include the surface of the TiN-based cermet substrate and toward the inside of the substrate. When the vertical cross section of the TiN-based cermet substrate is observed over a depth of 500 μm, the presence of a region containing a graphite phase is confirmed from the surface of the substrate toward the inside of the substrate.
When the region in which the area ratio of the graphite phase occupies 0.5 to 20 area% of the observation region is defined as the graphite-containing layer, the TiN-based cermet substrate of the present invention faces from the surface of the substrate to the inside of the substrate. Therefore, a graphite-containing layer is formed with an average layer thickness of 2 to 20 μm.
The presence of the graphite-containing layer improves the chipping resistance of the coated TiN-based cermet tool by improving the toughness of the surface of the substrate, but when the average layer thickness of the graphite-containing layer is less than 2 μm or the average area of the graphite phase. When the ratio is less than 0.5 area%, the effect of surface toughness of the TiN-based cermet substrate is not sufficient.
On the other hand, when the average layer thickness of the graphite-containing layer in the graphite-containing layer exceeds 20 μm or the average area ratio of the graphite phase exceeds 20 area%, the hardness of the graphite-containing layer is excessively lowered. Deformation of the TiN-based cermet substrate or peeling of the hard coating layer is likely to occur.
Therefore, in the present invention, the surface of the TiN-based cermet substrate contains a graphite phase having an average layer thickness of 2 to 20 μm and an average area ratio of 0.5 to 20 area% from the surface of the substrate toward the inside of the substrate. Form a graphite-containing layer.

グラファイト含有層の硬さ:
TiN基サーメット基体の前記グラファイト含有層を含む縦断面について、サーメット基体表面からその内部方向の500μmの深さにわたって10μm間隔で微小硬さを測定した場合、グラファイトを0.5~20面積%含有するグラファイト含有層における平均微小硬さは、サーメット基体表面から500μmを超えるサーメット基体内部(以下、単に「サーメット基体内部」という)の平均微小硬さの50~80%の範囲内の硬さとなることが好ましい。
ここで、グラファイト含有層における平均微小硬さが、サーメット基体内部の平均微小硬さの50%未満の場合には、グラファイト含有層が塑性変形を生じやすくなり、また、グラファイト含有層表面に被覆された硬質被覆層が剥離しやすくなる。
一方、前記グラファイト含有層における平均微小硬さが、サーメット基体内部の平均微小硬さの80%を超える硬さとなった場合には、TiN基サーメット基体の靱性向上効果が低下し、被覆TiN基サーメット工具の耐チッピング性の向上を期待できない。
したがって、サーメット基体表面からその内部方向に向かって形成されているグラファイト含有層の硬さは、サーメット基体内部(例えば、サーメット基体表面から500μmを超える深さの内部領域)の平均微小硬さの50~80%であることが好ましい。
Hardness of graphite-containing layer:
The vertical cross section of the TiN-based cermet substrate containing the graphite-containing layer contains 0.5 to 20 area% of graphite when the microhardness is measured at intervals of 10 μm over a depth of 500 μm in the internal direction from the surface of the cermet substrate. The average microhardness in the graphite-containing layer may be within the range of 50 to 80% of the average microhardness inside the cermet substrate (hereinafter, simply referred to as “inside the cermet substrate”) exceeding 500 μm from the surface of the cermet substrate. preferable.
Here, when the average microhardness in the graphite-containing layer is less than 50% of the average microhardness inside the cermet substrate, the graphite-containing layer is likely to undergo plastic deformation and is coated on the surface of the graphite-containing layer. The hard coating layer is easily peeled off.
On the other hand, when the average microhardness in the graphite-containing layer exceeds 80% of the average microhardness inside the cermet substrate, the toughness improving effect of the TiN-based cermet substrate is reduced, and the coated TiN-based cermet It cannot be expected that the chipping resistance of the tool will be improved.
Therefore, the hardness of the graphite-containing layer formed from the surface of the cermet substrate toward the inside thereof is 50, which is the average microhardness inside the cermet substrate (for example, an internal region having a depth of more than 500 μm from the surface of the cermet substrate). It is preferably -80%.

Mo含有Ti化合物層:
本発明の被覆TiN基サーメット工具において、サーメット基体表面直上に被覆形成される硬質被覆層がTi化合物層の場合、サーメット基体表面と前記Ti化合物層との界面を含む硬質被覆層の縦断面を、エネルギー分散型X線分析装置(EDS)を備えた走査型電子顕微鏡(SEM)で観察し、得られた二次電子像内の領域(例えば、40×50μmの領域)における含有元素量を測定した場合、基体表面直上のTi化合物層には、微量のMoを含有するMo含有領域の形成が確認される。
そして、前記Mo含有領域に含有されるMo成分は、TiN基サーメットの表面から、化学蒸着に際しTi化合物層へMoが拡散することによって形成されたものであるが、Ti化合物層中へMoが拡散することによって、TiN基サーメット基体とTi化合物層との密着性が向上する。
前記Mo含有領域において、2~10原子%のMoが含有される領域を、Mo含有Ti化合物層と定義した場合、Mo含有Ti化合物層の平均層厚は1~5μmであることが好ましく、さらに、Mo含有Ti化合物層におけるMo含有Ti化合物粒子の平均粒径(TiN基サーメット基体表面に平行な方向に測定した粒径の平均値)は1~50nmであることが好ましい。
Mo-containing Ti compound layer:
In the coated TiN-based cermet tool of the present invention, when the hard coating layer formed by coating directly on the surface of the cermet substrate is a Ti compound layer, the vertical cross section of the hard coating layer including the interface between the surface of the cermet substrate and the Ti compound layer is displayed. Observe with a scanning electron microscope (SEM) equipped with an energy dispersive X-ray analyzer (EDS), and measure the amount of contained elements in a region (for example, a region of 40 × 50 μm 2 ) in the obtained secondary electron image. If this is the case, the formation of a Mo-containing region containing a trace amount of Mo is confirmed in the Ti compound layer immediately above the surface of the substrate.
The Mo component contained in the Mo-containing region is formed by diffusing Mo from the surface of the TiN-based cermet to the Ti compound layer during chemical vapor deposition, but Mo is diffused into the Ti compound layer. By doing so, the adhesion between the TiN-based cermet substrate and the Ti compound layer is improved.
When the region containing 2 to 10 atomic% of Mo in the Mo-containing region is defined as the Mo-containing Ti compound layer, the average layer thickness of the Mo-containing Ti compound layer is preferably 1 to 5 μm, and further. The average particle size of the Mo-containing Ti compound particles in the Mo-containing Ti compound layer (the average value of the particle size measured in the direction parallel to the surface of the TiN-based cermet substrate) is preferably 1 to 50 nm.

ここで、前記Mo含有Ti化合物層におけるMo含有量が2原子%未満、あるいは、Mo含有Ti化合物層の平均層厚が1μm未満であると、TiN基サーメット基体と硬質被覆層の密着性向上を期待することはできず、一方、Mo含有Ti化合物層におけるMo含有量が10原子%を超える場合、あるいは、Mo含有Ti化合物層の平均層厚が5μmを超える場合には、TiN基サーメット基体からのMoの流出が過多となり、TiN基サーメット基体中に空隙を生じやすくなるため、Mo含有Ti化合物層におけるMo含有量は、2~10原子%であり、また、Mo含有Ti化合物層の平均層厚は1~5μmであることが好ましい。
また、Mo含有Ti化合物粒子は、粗粒となると被覆層付着強度が低下することから、平均粒径が1~50nmの微粒であることが好ましい。
Here, when the Mo content in the Mo-containing Ti compound layer is less than 2 atomic% or the average layer thickness of the Mo-containing Ti compound layer is less than 1 μm, the adhesion between the TiN-based cermet substrate and the hard coating layer is improved. On the other hand, when the Mo content in the Mo-containing Ti compound layer exceeds 10 atomic%, or when the average layer thickness of the Mo-containing Ti compound layer exceeds 5 μm, the TiN-based cermet substrate is used. The Mo content in the Mo-containing Ti compound layer is 2 to 10 atomic%, and the average layer of the Mo-containing Ti compound layer is high, because the outflow of Mo is excessive and voids are likely to be generated in the TiN-based cermet substrate. The thickness is preferably 1 to 5 μm.
Further, the Mo-containing Ti compound particles are preferably fine particles having an average particle size of 1 to 50 nm because the adhesion strength of the coating layer decreases when they become coarse particles.

ここで、Mo含有Ti化合物層におけるMo含有量の測定、Mo含有Ti化合物層の平均層厚の測定及びMo含有Ti化合物層におけるMo含有Ti化合物粒子の粒径の測定は、例えば、以下のように行うことができる。
走査型電子顕微鏡(SEM)及びエネルギー分散型X線分析装置(EDS)を用いて、TiN基サーメット基体の表面と硬質被覆層との界面を含む被覆TiN基サーメット工具の縦断面について、5000倍の視野で、硬質被覆層の厚さ方向(即ち、TiN基サーメット基体の表面に垂直な方向)に、MoとTiについて組成分析を行う。
その結果から、Mo含有量(即ち、Mo×100/(Mo+Ti))が2~10原子%である層厚方向の領域を特定し、これをMo含有Ti化合物層の層厚であるとして求める。
さらに、この測定を5視野において行い、その平均値をMo含有Ti化合物層の平均層厚とする。
また、前記で特定したMo含有Ti化合物層の領域において、走査型電子顕微鏡(SEM)を用いて、基体表面と平行な方向にMo含有Ti化合物粒子の粒径を測定し、この測定を5視野において行い、その平均値をMo含有Ti化合物粒子の平均粒径として求める。
Here, the measurement of the Mo content in the Mo-containing Ti compound layer, the measurement of the average layer thickness of the Mo-containing Ti compound layer, and the measurement of the particle size of the Mo-containing Ti compound particles in the Mo-containing Ti compound layer are, for example, as follows. Can be done.
Using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDS), the vertical cross section of a coated TiN-based cermet tool including the interface between the surface of the TiN-based cermet substrate and the hard coating layer is 5000 times larger. In the visual field, the composition of Mo and Ti is analyzed in the thickness direction of the hard coating layer (that is, the direction perpendicular to the surface of the TiN-based cermet substrate).
From the result, a region in the layer thickness direction in which the Mo content (that is, Mo × 100 / (Mo + Ti)) is 2 to 10 atomic% is specified, and this is determined as the layer thickness of the Mo-containing Ti compound layer.
Further, this measurement is performed in five fields of view, and the average value is taken as the average thickness of the Mo-containing Ti compound layer.
Further, in the region of the Mo-containing Ti compound layer specified above, the particle size of the Mo-containing Ti compound particles is measured in a direction parallel to the surface of the substrate using a scanning electron microscope (SEM), and this measurement is performed in five fields. The average value thereof is obtained as the average particle size of the Mo-containing Ti compound particles.

被覆TiN基サーメット工具の作製:
本発明の被覆TiN基サーメット工具を作製するに際して、例えば、その原料粉末として、TiN:55~92質量%、MoC:1~40質量%、Fe:5~18質量%、Ni:1~5質量%であり、かつ、NiとFeの合量に対するNiの質量%(=Ni×100/(Fe+Ni))が15~35質量%という関係を満たす成分及び組成の原料粉末を用いることが好適である。
そして、前記条件を満足する原料粉末をボールミルで混合し、該混合粉末をプレス成形して圧粉成形体を作製する。
ついで、前記圧粉成形体を、水素濃度1~3%、窒素濃度97~99%の混合ガスをフローしながら(窒素希釈水素雰囲気)、1350~1450℃の温度範囲で30分~120分焼結し、その後、Arガス雰囲気に切り替え、室温まで自然冷却することによって、すぐれた靱性と硬さを相兼ね備える本発明のTiN基焼結体を作製することができる。
なお、圧粉成形体を、窒素希釈水素雰囲気にて焼結するのは、TiN粉末と結合相(主として、Fe成分)との濡れ性を高めると同時に焼結性を高めるためである。
次いで、前記TiN基サーメット基体を化学蒸着装置に装入し、硬質被覆層を蒸着形成する。
硬質被覆層としては、TiN層、TiC層、TiCN層及びAl層の内から選ばれた1層または2層以上を被覆するが、TiN基サーメットの基体表面直上には、TiN層、TiC層及びTiCN層の内から選ばれた1層または2層以上のTi化合物層を、まず、蒸着形成することが好ましい。
なお、硬質被覆層の全層厚は、3~20μmであることが好ましい。
硬質被覆層の蒸着条件について特段の制限はないが、例えば、TiCN層については、
反応ガス(容量%):
TiCl 2%、CHCN 0.7%、N 10%、H 残,
反応圧力:7 kPa,
反応温度:900 ℃
という蒸着条件で形成することができる。
また、酸化アルミニウム層については、
反応ガス(容量%):
AlCl 2.2%、CO 5.5%、HCl 2.2%、
S 0.2%、H 残,
反応圧力:7 kPa,
反応温度:1000 ℃
という蒸着条件で形成することができる。
硬質被覆層を蒸着形成後、所定形状に機械加工することによって、被覆TiN基サーメット工具を作製することができる。
そして、前記工程で被覆TiN基サーメット工具を作製することにより、特定の面積割合のTiN相とMoC相からなりミクロポアが低減された焼結組織を有し、また、TiN基サーメット基体のその表面から内部に向かって所定の層厚のグラファイト含有層を有する靱性にすぐれかつ耐チッピング性にすぐれた被覆TiN基サーメット工具を作製することができる。
また、サーメット基体表面の直上に蒸着形成された第1層が、TiN層、TiC層及びTiCN層の内から選ばれた1層または2層以上のTi化合物層である場合には、少なくとも第1層には、所定量のMo含有量、所定の平均粒径及び所定の平均粒径を有するMo含有Ti化合物層が形成され、これによって、TiN基サーメット基体と硬質被覆層の密着性が向上し、より一段と耐チッピング性にすぐれた被覆TiN基サーメット工具を得ることができる。
Fabrication of coated TiN-based cermet tools:
In producing the coated TiN-based cermet tool of the present invention, for example, as the raw material powder thereof, TiN: 55 to 92% by mass, Mo 2 C: 1 to 40% by mass, Fe: 5 to 18% by mass, Ni: 1 to 1 to It is preferable to use a raw material powder having a component and composition which is 5% by mass and satisfies the relationship that the mass% of Ni (= Ni × 100 / (Fe + Ni)) is 15 to 35% by mass with respect to the total amount of Ni and Fe. Is.
Then, the raw material powder satisfying the above conditions is mixed by a ball mill, and the mixed powder is press-molded to prepare a powder compact.
Then, the powder compact was baked in a temperature range of 1350 to 1450 ° C. for 30 to 120 minutes while flowing a mixed gas having a hydrogen concentration of 1 to 3% and a nitrogen concentration of 97 to 99% (nitrogen-diluted hydrogen atmosphere). The TiN-based sintered body of the present invention having excellent toughness and hardness can be produced by connecting, then switching to an Ar gas atmosphere, and naturally cooling to room temperature.
The reason why the powder compact is sintered in a nitrogen-diluted hydrogen atmosphere is to improve the wettability between the TiN powder and the bonded phase (mainly the Fe component) and at the same time to improve the sinterability.
Next, the TiN-based cermet substrate is charged into a chemical vapor deposition apparatus to form a hard coating layer by vapor deposition.
As the hard coating layer, one layer or two or more layers selected from the TiN layer, the TiC layer , the TiCN layer and the Al2O3 layer are coated, and the TiN layer is directly above the surface of the TiN-based cermet substrate. It is preferable that one or two or more Ti compound layers selected from the TiC layer and the TiCN layer are first vapor-deposited.
The total thickness of the hard coating layer is preferably 3 to 20 μm.
There are no particular restrictions on the vapor deposition conditions of the hard coating layer, but for example, for the TiCN layer,
Reaction gas (volume%):
TiCl 42%, CH 3 CN 0.7%, N 2 10%, H 2 remaining,
Reaction pressure: 7 kPa,
Reaction temperature: 900 ° C
It can be formed under the vapor deposition condition.
For the aluminum oxide layer,
Reaction gas (volume%):
AlCl 3 2.2%, CO 2 5.5%, HCl 2.2%,
H 2 S 0.2%, H 2 remaining,
Reaction pressure: 7 kPa,
Reaction temperature: 1000 ° C
It can be formed under the vapor deposition condition.
A coated TiN-based cermet tool can be manufactured by forming a hard coating layer by vapor deposition and then machining it into a predetermined shape.
Then, by manufacturing the coated TiN-based cermet tool in the above step, it has a sintered structure composed of TiN phase and Mo 2C phase having a specific area ratio and reduced micropores, and the TiN-based cermet substrate has a sintered structure. A coated TiN-based cermet tool having a graphite-containing layer having a predetermined layer thickness from the surface to the inside and having excellent toughness and excellent chipping resistance can be produced.
Further, when the first layer formed by vapor deposition immediately above the surface of the cermet substrate is one layer or two or more Ti compound layers selected from the TiN layer, the TiC layer and the TiCN layer, at least the first layer is used. A Mo-containing Ti compound layer having a predetermined amount of Mo content, a predetermined average particle size, and a predetermined average particle size is formed in the layer, thereby improving the adhesion between the TiN-based cermet substrate and the hard coating layer. , A coated TiN-based cermet tool with even better chipping resistance can be obtained.

つぎに、本発明の被覆TiN基サーメット工具を、実施例により具体的に説明する。
なお、本発明の実施例としては、TiN基サーメット基体の表面直上に、第1層としてTi化合物層を化学蒸着で被覆形成した例を示す。
Next, the coated TiN-based cermet tool of the present invention will be specifically described with reference to Examples.
As an example of the present invention, an example in which a Ti compound layer is coated and formed as a first layer on the surface of a TiN-based cermet substrate by chemical vapor deposition is shown.

TiN基サーメット基体を作製するための粉末として、平均粒径10μmのTiN粉末、平均粒径2μmのMoC粉末、平均粒径2μmのFe粉末及び平均粒径1μmのNi粉末を用意し、表1に示す配合割合となるように配合し、かつ、Fe粉末及びNi粉末の配合量を、表1に示す配合比となるように配合することにより原料粉末1~8を用意した。
なお、ここでいう平均粒径は、メジアン径(d50)を意味する。
As powders for producing a TiN-based cermet substrate, TiN powder having an average particle size of 10 μm, Mo 2 C powder having an average particle size of 2 μm, Fe powder having an average particle size of 2 μm, and Ni powder having an average particle size of 1 μm are prepared. Raw material powders 1 to 8 were prepared by blending so as to have the blending ratio shown in 1 and blending the Fe powder and Ni powder so as to have the blending ratio shown in Table 1.
The average particle size referred to here means the median diameter (d50).

次いで、前記の原料粉末1~8を、ボールミル中に充填して混合し、混合粉末1~8を作製し、該混合粉末1~8を乾燥した後、100~500MPaの圧力でプレス成形し、圧粉成形体1~8を作製した。 Next, the raw material powders 1 to 8 are filled in a ball mill and mixed to prepare mixed powders 1 to 8, and the mixed powders 1 to 8 are dried and then press-molded at a pressure of 100 to 500 MPa. Powder compacts 1 to 8 were produced.

次いで、この圧粉成形体1~8を、表2に示す条件で焼結した後、室温まで冷却することで、表3に示す本発明のTiN基サーメット基体(以下、「本発明基体」という)1~8を作製した。 Next, the powder compacts 1 to 8 are sintered under the conditions shown in Table 2 and then cooled to room temperature to cool the TiN-based cermet substrate of the present invention shown in Table 3 (hereinafter referred to as "the substrate of the present invention"). ) 1 to 8 were prepared.

比較のため、本発明工具と同等の平均粒径を有する各種粉末を、表4に示す配合組成となるように配合して原料粉末11~18を用意し、次いで、原料粉末11~18を、ボールミル中に充填して混合し、混合粉末11~18を作製し、該混合粉末11~18を乾燥した後、100~500MPaの圧力でプレス成形し、圧粉成形体11~18を作製した。
次いで、この圧粉成形体11~18を、表2および表5に示す条件で焼結した後、室温まで冷却することで、表6に示す比較例のサーメット基体(以下、「比較例基体」という)11~18を作製した。
For comparison, various powders having an average particle size equivalent to that of the tool of the present invention are blended so as to have the blending composition shown in Table 4 to prepare raw material powders 11 to 18, and then raw material powders 11 to 18 are added. The mixed powders 11 to 18 were prepared by filling and mixing in a ball mill, and the mixed powders 11 to 18 were dried and then press-molded at a pressure of 100 to 500 MPa to prepare powder compacts 11 to 18.
Next, the powder compacts 11 to 18 were sintered under the conditions shown in Tables 2 and 5, and then cooled to room temperature to obtain a cermet substrate of Comparative Example shown in Table 6 (hereinafter, “Comparative Example Substrate””. ) 11-18 were produced.

次いで、前記本発明基体1~8、比較例基体11~18を化学蒸着装置に装入し、表7、表8に示す膜種の硬質被覆層を、複層の積層構造として、表7、表8に示す平均層厚で蒸着形成した。
なお、ここでは、4層までの積層構造として硬質被覆層を蒸着形成したが、この層数に制限されるものではなく、より多数の層の積層構造であっても良い。
また、硬質被覆層の蒸着条件について特段の制限はないが、本発明基体1~8、比較例基体11~18におけるTiN、TiC、TiCN、Alの化学蒸着条件は、以下のとおりである。
[TiNの化学蒸着条件]
反応ガス(容量%):
TiCl 2%、N 30%、H 残,
反応圧力:7 kPa,
反応温度:1000 ℃
[TiCの化学蒸着条件]
反応ガス(容量%):
TiCl 2%、CH 7%、H 残,
反応圧力:7 kPa,
反応温度:1000 ℃
[TiCNの化学蒸着条件]
反応ガス(容量%):
TiCl 2%、CHCN 0.7%、N 10%、H 残,
反応圧力:7 kPa,
反応温度:900 ℃
[Alの化学蒸着条件]
反応ガス(容量%):
AlCl 2.2%、CO 5.5%、HCl 2.2%、
S 0.2%、H 残,
反応圧力:7 kPa,
反応温度:1000 ℃
Next, the substrates 1 to 8 of the present invention and the substrates 11 to 18 of Comparative Examples were charged into a chemical vapor deposition apparatus, and the hard coating layers of the film types shown in Tables 7 and 8 were used as a multi-layered laminated structure in Table 7. The average layer thickness shown in Table 8 was used for vapor deposition.
Here, the hard coating layer is formed by vapor deposition as a laminated structure of up to four layers, but the number of layers is not limited, and a laminated structure of a larger number of layers may be used.
The vapor deposition conditions for the hard coating layer are not particularly limited, but the chemical vapor deposition conditions for TiN, TiC, TiCN , and Al 2 O3 in the substrates 1 to 8 of the present invention and the substrates 11 to 18 of the comparative examples are as follows. be.
[Chemical vapor deposition conditions for TiN]
Reaction gas (volume%):
TiCl 42%, N 2 30%, H 2 remaining ,
Reaction pressure: 7 kPa,
Reaction temperature: 1000 ° C
[Chemical vapor deposition conditions for TiC]
Reaction gas (volume%):
TiCl 42%, CH 47%, H 2 remaining ,
Reaction pressure: 7 kPa,
Reaction temperature: 1000 ° C
[Chemical vapor deposition conditions for TiCN]
Reaction gas (volume%):
TiCl 42%, CH 3 CN 0.7%, N 2 10%, H 2 remaining,
Reaction pressure: 7 kPa,
Reaction temperature: 900 ° C
[Chemical vapor deposition conditions for Al 2 O 3 ]
Reaction gas (volume%):
AlCl 3 2.2%, CO 2 5.5%, HCl 2.2%,
H 2 S 0.2%, H 2 remaining,
Reaction pressure: 7 kPa,
Reaction temperature: 1000 ° C

硬質被覆層を蒸着形成後、研削加工を施すことにより、ISO規格SEEN1203AFSNのインサート形状をもった表7に示す本発明の被覆TiN基サーメット工具(以下、「本発明工具」という)1~8及び表8に示す比較例の被覆サーメット工具(以下、「比較例工具」という)11~18を作製した。 The coated TiN-based cermet tool of the present invention (hereinafter referred to as "tool of the present invention") 1 to 8 and the coated TiN-based cermet tool of the present invention shown in Table 7 having an insert shape of ISO standard SEEN1203AFSN by subjecting the hard coating layer to vapor deposition and then grinding. Covered cermet tools (hereinafter referred to as "comparative example tools") 11 to 18 of the comparative examples shown in Table 8 were produced.

ついで、本発明工具1~8と比較例工具11~18について、その縦断面を、エネルギー分散型X線分析装置(EDS)を備えた走査型電子顕微鏡(SEM)で観察し、得られた二次電子像内の測定領域(例えば、100μm×100μmの測定領域)における含有元素量を測定し、TiN相、MoC相及びFe-Ni相を特定し、各相が前記測定領域に占める面積比率を算出し、5視野の測定領域で面積比率を算出し、これらの算出値を平均した値を、焼結組織中の各相の面積%として求めた。
また、Fe-Ni相について、該相におけるNiの含有量とFeの含有量を、オージェ電子分光装置を用い、Fe-Ni相上で10点の測定を行い、得られた算出値を平均した値からFeとNiの合計含有量に対するNiの含有割合(=Ni×100/(Fe+Ni))を質量%として求めた。
表3、表6に、これらの値を示す。
Then, the vertical cross sections of the tools 1 to 8 of the present invention and the tools 11 to 18 of the comparative examples were observed with a scanning electron microscope (SEM) equipped with an energy dispersive X-ray analyzer (EDS), and the two obtained. The amount of contained elements in the measurement region (for example, a measurement region of 100 μm × 100 μm) in the secondary electron image is measured to identify the TiN phase, Mo 2C phase and Fe—Ni phase, and the area occupied by each phase in the measurement region. The ratio was calculated, the area ratio was calculated in the measurement area of 5 visual fields, and the value obtained by averaging these calculated values was obtained as the area% of each phase in the sintered structure.
Further, with respect to the Fe—Ni phase, the Ni content and the Fe content in the phase were measured at 10 points on the Fe—Ni phase using an Auger electron spectroscope, and the obtained calculated values were averaged. From the value, the content ratio of Ni to the total content of Fe and Ni (= Ni × 100 / (Fe + Ni)) was determined as% by mass.
Tables 3 and 6 show these values.

次に、本発明工具1~8と比較例工具11~18について、エネルギー分散型X線分析装置(EDS)を備えた走査型電子顕微鏡(SEM)を用いて、TiN基サーメット基体の表面を含み、かつ、基体内部に向かって500μmの深さにわたってグラファイト相の面積を測定し、グラファイト相の平均面積割合が0.5~20面積%となる領域をグラファイト含有層と特定し、グラファイト含有層の層厚を求め、5視野で測定したグラファイト含有層の層厚を平均し、これをグラファイト含有層の平均層厚として求めた。
表3、表6に、これらの値を示す。
Next, for the tools 1 to 8 of the present invention and the comparative examples tools 11 to 18, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray analyzer (EDS) was used to include the surface of the TiN-based cermet substrate. In addition, the area of the graphite phase was measured over a depth of 500 μm toward the inside of the substrate, and the region where the average area ratio of the graphite phase was 0.5 to 20 area% was specified as the graphite-containing layer, and the graphite-containing layer was identified. The layer thickness was determined, and the layer thickness of the graphite-containing layer measured in five fields was averaged, and this was determined as the average layer thickness of the graphite-containing layer.
Tables 3 and 6 show these values.

次に、本発明工具1~8と比較例工具11~18について、TiN基サーメット基体の表面を含み、かつ、基体内部に向かって500μmの深さにわたって10μm間隔で微小硬さを測定し、異なる5箇所で測定した平均値を、グラファイト含有層における平均微小硬さとした。
また、サーメット基体内部についても微小硬さを測定し、異なる5箇所で測定した平均値を、サーメット基体内部の平均微小硬さとし、サーメット基体内部の平均微小硬さに対するグラファイト含有層における平均微小硬さの割合(%)を求めた。
表3、表6に、これらの値を示す。
Next, with respect to the tools 1 to 8 of the present invention and the tools 11 to 18 of the comparative examples, the micro-hardness was measured at intervals of 10 μm over a depth of 500 μm toward the inside of the substrate, including the surface of the TiN-based cermet substrate, and different. The average value measured at 5 points was taken as the average microhardness in the graphite-containing layer.
In addition, the micro-hardness inside the cermet substrate was also measured, and the average value measured at five different points was taken as the average micro-hardness inside the cermet substrate, and the average micro-hardness in the graphite-containing layer relative to the average micro-hardness inside the cermet substrate. The ratio (%) of was calculated.
Tables 3 and 6 show these values.

次に、本発明工具1~8と比較例工具11~18について、Mo含有Ti化合物層におけるMo含有量の測定、Mo含有Ti化合物層の平均層厚の測定及びMo含有Ti化合物層におけるMo含有Ti化合物粒子の粒径の測定を行った。
まず、走査型電子顕微鏡(SEM)及びエネルギー分散型X線分析装置(EDS)を用いて、TiN基サーメット基体の表面と硬質被覆層との界面を含む被覆TiN基サーメット工具の縦断面について、5000倍の視野で、硬質被覆層の厚さ方向(即ち、TiN基サーメット基体の表面に垂直な方向)に、MoとTiについて組成分析を行った。
その結果から、Mo含有量(即ち、Mo×100/(Mo+Ti))が2~10原子%である層厚方向の領域を特定し、これをMo含有Ti化合物層の層厚であるとして求め、この測定を5視野において行い、その平均値をMo含有Ti化合物層の平均層厚とした。
ついで、前記で特定したMo含有Ti化合物層の領域において、走査型電子顕微鏡(SEM)を用いて、基体表面と平行な方向にMo含有Ti化合物粒子の粒径を測定し、この測定を5視野において行い、その平均値をMo含有Ti化合物粒子の平均粒径として求める。
表7、表8に、これらの値を示す。
Next, for Tools 1 to 8 of the present invention and Comparative Examples Tools 11 to 18, the Mo content in the Mo-containing Ti compound layer was measured, the average thickness of the Mo-containing Ti compound layer was measured, and the Mo content in the Mo-containing Ti compound layer was measured. The particle size of the Ti compound particles was measured.
First, using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDS), the vertical cross section of the coated TiN-based cermet tool including the interface between the surface of the TiN-based cermet substrate and the hard coating layer is 5000. The composition of Mo and Ti was analyzed in the thickness direction of the hard coating layer (that is, the direction perpendicular to the surface of the TiN-based cermet substrate) with a double field of view.
From the result, a region in the layer thickness direction in which the Mo content (that is, Mo × 100 / (Mo + Ti)) is 2 to 10 atomic% was specified, and this was determined as the layer thickness of the Mo-containing Ti compound layer. This measurement was performed in 5 fields of view, and the average value was taken as the average layer thickness of the Mo-containing Ti compound layer.
Then, in the region of the Mo-containing Ti compound layer specified above, the particle size of the Mo-containing Ti compound particles was measured in a direction parallel to the surface of the substrate using a scanning electron microscope (SEM), and this measurement was performed in 5 fields. The average value thereof is obtained as the average particle size of the Mo-containing Ti compound particles.
Tables 7 and 8 show these values.

Figure 0007037121000001
Figure 0007037121000001

Figure 0007037121000002
Figure 0007037121000002

Figure 0007037121000003
Figure 0007037121000003

Figure 0007037121000004
Figure 0007037121000004

Figure 0007037121000005
Figure 0007037121000005

Figure 0007037121000006
Figure 0007037121000006

Figure 0007037121000007
Figure 0007037121000007

Figure 0007037121000008
Figure 0007037121000008

次いで、前記本発明工具1~8、比較例工具11~18を、いずれも工具鋼製カッターの先端部に固定治具にてネジ止めした状態で、以下に示す、合金鋼の湿式フライス切削加工試験を実施し、切刃の逃げ面摩耗幅を測定するとともに、刃先の損耗状態を観察した。
切削条件:
被削材:JIS・SCM440のブロック、
切削速度:750 m/min、
切り込み:1.0 mm、
送り:0.11 mm/rev、
切削時間:13 分、
表9に、切削試験の結果を示す。
Next, with the tools 1 to 8 of the present invention and the tools 11 to 18 of the comparative examples all screwed to the tip of the tool steel cutter with a fixing jig, the wet milling of the alloy steel shown below is performed. A test was carried out, the flank wear width of the cutting edge was measured, and the wear state of the cutting edge was observed.
Cutting conditions:
Work material: JIS / SCM440 block,
Cutting speed: 750 m / min,
Notch: 1.0 mm,
Feed: 0.11 mm / rev,
Cutting time: 13 minutes,
Table 9 shows the results of the cutting test.

Figure 0007037121000009
Figure 0007037121000009

表3、表6~9に示されるように、本発明工具1~8は、TiN基サーメット基体が所定の成分及び組成で形成されるとともに、基体表面からその内部の所定深さ(層厚)に、グラファイト含有層が形成されていること、あるいはさらに、基体直上にMo含有Ti化合物層が形成されていることによって、刃先に断続的・衝撃的な機械的負荷と急熱急冷の熱サイクルによる熱負荷(熱衝撃)が作用する切削加工においても、刃先に異常を生じない、もしくは切削寿命に影響を与えない軽度のチッピングしか生じず、比較例工具に見られる切削寿命に影響を与えるようなチッピングを発生することなく、長期の使用にわたって優れた耐摩耗性を示した。
これに対して、比較例工具11~18は、TiN基サーメット基体が、本発明で規定する成分組成から外れていること、あるいは、基体にグラファイト含有層が形成されていないため、耐摩耗性が十分でないばかりか、熱亀裂の発生・伝播を主たる原因とする刃先のチッピングによって、工具寿命が短命となった。
As shown in Tables 3 and 6-9, in the tools 1 to 8 of the present invention, the TiN-based cermet substrate is formed with a predetermined component and composition, and the predetermined depth (layer thickness) from the surface of the substrate to the inside thereof is formed. Due to the formation of a graphite-containing layer or the formation of a Mo-containing Ti compound layer directly above the substrate, the cutting edge is subject to intermittent and shocking mechanical loads and a thermal cycle of rapid heating and quenching. Even in the cutting process where a heat load (thermal shock) acts, only slight chipping that does not cause an abnormality in the cutting edge or does not affect the cutting life occurs, which affects the cutting life seen in the comparative example tool. It showed excellent wear resistance over long-term use without causing chipping.
On the other hand, the tools 11 to 18 of Comparative Examples have wear resistance because the TiN-based cermet substrate deviates from the component composition specified in the present invention or the graphite-containing layer is not formed on the substrate. Not only is it not sufficient, but the tool life has been shortened due to chipping of the cutting edge, which is the main cause of the generation and propagation of thermal cracks.

この発明の表面被覆TiN基サーメット製切削工具は、耐チッピング性、耐摩耗性にすぐれることから、高速湿式断続切削ばかりでなく、その他の切削条件下での切削工具としても適用することができ、長期の使用にわたって、すぐれた切削性能を発揮し、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

Since the surface-coated TiN-based cermet cutting tool of the present invention has excellent chipping resistance and wear resistance, it can be applied not only to high-speed wet intermittent cutting but also as a cutting tool under other cutting conditions. It exhibits excellent cutting performance over a long period of use, and can fully satisfy the labor saving and energy saving of cutting processing and the cost reduction.

Claims (3)

TiN基サーメットを基体とし、その表面に硬質被覆層が被覆されている表面被覆TiN基サーメット製切削工具において、
(a)前記TiN基サーメットは、その断面を観察した時、平均面積割合が70~94面積%のTiN相と、平均面積割合が1~25面積%のMoC相を含み、残部が結合相からなる焼結組織を有し、
(b)前記TiN基サーメットは、基体表面からその内部に向かって、平均面積割合で0.5~20面積%のグラファイト相を含有するグラファイト含有層が、2~20μmの平均層厚で存在し、
(c)前記硬質被覆層は、TiN層、TiC層、TiCN層及びAl層の内から選ばれた1層または2層以上からなることを特徴とする表面被覆TiN基サーメット製切削工具。
In a surface-coated TiN-based cermet cutting tool whose surface is a TiN-based cermet as a substrate and whose surface is coated with a hard coating layer.
(A) The TiN-based cermet contains a TiN phase having an average area ratio of 70 to 94 area% and a Mo 2C phase having an average area ratio of 1 to 25 area% when the cross section is observed, and the balance is bonded. It has a sintered structure consisting of phases and has a
(B) In the TiN-based cermet, a graphite-containing layer containing a graphite phase having an average area ratio of 0.5 to 20 area% exists from the surface of the substrate toward the inside thereof with an average layer thickness of 2 to 20 μm. ,
(C) The surface-coated TiN-based cermet cutting tool, wherein the hard coating layer is composed of one layer or two or more layers selected from the TiN layer, the TiC layer, the TiCN layer , and the Al2O3 layer. ..
前記TiN基サーメットの表面直上には、TiN層、TiC層及びTiCN層の内から選ばれた1層または2層以上の Ti化合物層が5μm以上の平均層厚で形成され、前記TiN基サーメットの表面直上のTi化合物層には、2~10原子%のMoを含有し、平均粒径が1~50nmであるMo含有Ti化合物層が1~5μmの平均層厚で形成されていることを特徴とする請求項1に記載の表面被覆TiN基サーメット製切削工具。 Immediately above the surface of the TiN-based cermet, one or more Ti compound layers selected from the TiN layer, the TiC layer and the TiCN layer are formed with an average layer thickness of 5 μm or more, and the TiN-based cermet has an average layer thickness of 5 μm or more. The Ti compound layer immediately above the surface contains 2 to 10 atomic% of Mo, and the Mo-containing Ti compound layer having an average particle size of 1 to 50 nm is formed with an average layer thickness of 1 to 5 μm. The surface-coated TiN-based cermet cutting tool according to claim 1. 前記グラファイト含有層の平均微小硬さは、前記TiN基サーメットの内部の平均微小硬さの50~80%の硬さであることを特徴とする請求項1または2に記載の表面被覆TiN基サーメット製切削工具。
The surface-coated TiN-based cermet according to claim 1 or 2, wherein the average micro-hardness of the graphite-containing layer is 50 to 80% of the average micro-hardness inside the TiN-based cermet. Cutting tool.
JP2018185621A 2018-09-28 2018-09-28 Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer Active JP7037121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018185621A JP7037121B2 (en) 2018-09-28 2018-09-28 Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018185621A JP7037121B2 (en) 2018-09-28 2018-09-28 Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer

Publications (2)

Publication Number Publication Date
JP2020055050A JP2020055050A (en) 2020-04-09
JP7037121B2 true JP7037121B2 (en) 2022-03-16

Family

ID=70105879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018185621A Active JP7037121B2 (en) 2018-09-28 2018-09-28 Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer

Country Status (1)

Country Link
JP (1) JP7037121B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308907A (en) 1999-02-26 2000-11-07 Ngk Spark Plug Co Ltd Cermet tool and its manufacture
JP2004285463A (en) 2003-01-30 2004-10-14 Tungaloy Corp Cermet containing free carbon particle
JP2012101288A (en) 2010-11-08 2012-05-31 Tungaloy Corp Cermet and coated cermet
JP2013202753A (en) 2012-03-29 2013-10-07 Mitsubishi Materials Corp Cutting tool made of cermet
JP2020033597A (en) 2018-08-29 2020-03-05 三菱マテリアル株式会社 TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171809A (en) * 1974-12-19 1976-06-22 Ngk Spark Plug Co Chitsukachitankishoketsugokinno seizoho
JPS5337113A (en) * 1976-09-18 1978-04-06 Nippon Shinkinzoku Kk Titaniummnitrideebased highhstrength sintered alloy
EP0417333B1 (en) * 1989-09-11 1996-12-27 Mitsubishi Materials Corporation Cermet and process of producing the same
KR0140409B1 (en) * 1994-09-29 1998-06-01 김은영 Process for preparing sintered titanium nitride
JPH0971856A (en) * 1995-09-05 1997-03-18 Kobe Steel Ltd Wear resistant hard film-coated material and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308907A (en) 1999-02-26 2000-11-07 Ngk Spark Plug Co Ltd Cermet tool and its manufacture
JP2004285463A (en) 2003-01-30 2004-10-14 Tungaloy Corp Cermet containing free carbon particle
JP2012101288A (en) 2010-11-08 2012-05-31 Tungaloy Corp Cermet and coated cermet
JP2013202753A (en) 2012-03-29 2013-10-07 Mitsubishi Materials Corp Cutting tool made of cermet
JP2020033597A (en) 2018-08-29 2020-03-05 三菱マテリアル株式会社 TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL

Also Published As

Publication number Publication date
JP2020055050A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP5305056B1 (en) Cutting tool made of cubic boron nitride based sintered body
WO2018042740A1 (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and peeling resistance
EP3395484B1 (en) Surface-coated cubic boron nitride sintered compact tool
JP2014188598A (en) Surface coated wc base super hard alloy cutting tool excellent in toughness and defect resistance
JP5029825B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP2012086297A (en) Wc-based cemented carbide cutting tool exercising superior chipping resistance and wear resistance in high speed intermittent cutting
JP5023896B2 (en) Surface coated cutting tool
JP5003308B2 (en) Surface coated cutting tool
JP6853449B2 (en) Surface coating cutting tool
JP7037121B2 (en) Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer
JP6414800B2 (en) Surface-coated titanium carbonitride-based cermet cutting tool with excellent chipping resistance
JP4936211B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP2012086298A (en) Cutting tool made of surface-coated wc-based cemented carbide exhibiting excellent defect resistance in high-speed intermittent cutting of steel
JP5561607B2 (en) Surface-coated WC-based cemented carbide insert
JP2009056560A (en) Surface-coated cutting tool
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP5686294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5613888B2 (en) Surface-coated WC-based cemented carbide insert
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4936212B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP4867572B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4427731B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance and heat-resistant plastic deformation in high-speed intermittent cutting of hardened steel
JP2015182155A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in intermittent cutting
WO2017142058A1 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220215

R150 Certificate of patent or registration of utility model

Ref document number: 7037121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150