JP2002356734A - Hard metal alloy, and cutting tool using it - Google Patents

Hard metal alloy, and cutting tool using it

Info

Publication number
JP2002356734A
JP2002356734A JP2001162939A JP2001162939A JP2002356734A JP 2002356734 A JP2002356734 A JP 2002356734A JP 2001162939 A JP2001162939 A JP 2001162939A JP 2001162939 A JP2001162939 A JP 2001162939A JP 2002356734 A JP2002356734 A JP 2002356734A
Authority
JP
Japan
Prior art keywords
phase
solid solution
solution phase
cemented carbide
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001162939A
Other languages
Japanese (ja)
Inventor
Daisuke Shibata
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001162939A priority Critical patent/JP2002356734A/en
Publication of JP2002356734A publication Critical patent/JP2002356734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard metal alloy of which the hardness and thermal conductivity in a high-temperature region of >=500 deg.C in particular are high, and also to provide a cutting tool having excellent wear resistance, plastic deformation resistance and tool fracture resistance even in machining of the hard machining materials such as stainless steel. SOLUTION: The hard metal alloy 1 has a structure which consists of a tungsten carbide phase 2, a solid-solution phase 3 composed of the carbides, nitrides and carbonitrides of at least two metals selected from the group consisting of the group IVa, Va, and VIa metals of the periodic table, and a binding phase 5 containing at least one iron family metal. Moreover, this hard metal alloy contains, as the above solid-solution phase 3, at least a Zr-Nb solid-solution phase 7 containing Zr and Nb, and further the ratio of the average grain size d2 of the Zr-Nb solid-solution phase 7 to the average grain size d1 of the tungsten carbide phase 2, d2 /d1 , is 0.5 to 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、切削工具等に使用
される高強度かつ高靭性を有し、特にステンレス鋼をは
じめとする難削材の切削に適する炭化タングステン基超
硬合金およびそれを用いた切削工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tungsten carbide-based cemented carbide having high strength and high toughness used for cutting tools and the like, and particularly suitable for cutting difficult-to-cut materials such as stainless steel. It relates to the cutting tool used.

【0002】[0002]

【従来の技術】従来より、金属の切削加工に広く用いら
れている超硬合金は、炭化タングステンを主体とする硬
質相と、コバルト等の鉄族金属の結合相からなるWC−
Co系合金、もしくは上記WC−Co系に周期律表第4
a、5a、6a族金属の炭化物、窒化物、炭窒化物等固
溶体相を分散せしめた系が知られている。これらの超硬
合金は、切削工具として、主に鋳鉄や炭素鋼等の切削に
利用されているが、最近ではステンレス鋼の切削への利
用も進められている。ステンレス鋼は耐食性、耐酸化
性、耐熱性に優れるといった特性を有するため、幅広い
分野で使用され、加工量も年々増加している。
2. Description of the Related Art Conventionally, a cemented carbide widely used for metal cutting is a WC-hard alloy composed of a hard phase mainly composed of tungsten carbide and a binder phase of an iron group metal such as cobalt.
Co-based alloy or the above WC-Co-based alloy
There are known systems in which solid solution phases such as carbides, nitrides, and carbonitrides of metals of groups a, 5a, and 6a are dispersed. These cemented carbides are mainly used as cutting tools for cutting cast iron, carbon steel, and the like, but recently, use for cutting stainless steel has been promoted. Since stainless steel has characteristics such as excellent corrosion resistance, oxidation resistance, and heat resistance, it is used in a wide range of fields and the amount of processing is increasing year by year.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ステン
レス鋼は加工硬化が発生しやすく熱伝導率が低くて発熱
しやすく、かつ切削工具との反応性が高い為に難削材と
して知られており、従来の切削工具を用いてステンレス
鋼を切削した場合、切削工具の摩耗が大きく工具寿命が
短くなるという問題があった。
However, stainless steel is known as a difficult-to-cut material because work hardening easily occurs, heat conductivity is low, heat is easily generated, and reactivity with a cutting tool is high. When stainless steel was cut using a conventional cutting tool, there was a problem that the wear of the cutting tool was large and the tool life was shortened.

【0004】したがって、本発明の目的は、特に500
℃以上の高温域での熱伝導率および強度を高めた超硬合
金を提供すること、かつこれを用いて、ステンレス鋼等
の難削材の切削に対しても優れた耐摩耗性、耐塑性変形
性および耐欠損性を有する切削工具を提供することにあ
る。
Accordingly, an object of the present invention is to
Providing cemented carbide with enhanced thermal conductivity and strength in the high temperature range of ℃ or higher, and using this, it has excellent wear and plastic resistance even when cutting difficult-to-cut materials such as stainless steel. An object of the present invention is to provide a cutting tool having deformability and fracture resistance.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題に
対して検討した結果、炭化タングステン相と鉄族金属系
の結合相とを含有する超硬合金において、固溶体相とし
て少なくともZrおよびNbを含有するZr−Nb固溶
体相を析出せしめるとともに、前記炭化タングステン相
の平均粒径d1に対する前記Zr−Nb固溶体相の平均
粒径d2の比(d 2/d1)を0.5〜2の範囲内に制御
することによって、超硬合金の熱伝導率および高温強度
を高めることができ、かつこれを切削工具として用いる
ことによって、ステンレス鋼等の難削材の切削に対して
も優れた耐摩耗性、耐塑性変形性および耐欠損性を有す
る切削工具が得られることを知見した。
The present inventor has solved the above-mentioned problems.
As a result of investigation, the tungsten carbide phase and iron group metal
In a cemented carbide containing a binder phase of
Zr-Nb solid solution containing at least Zr and Nb
Precipitates the body phase and the tungsten carbide phase
Average particle size d1Of the Zr—Nb solid solution phase with respect to
Particle size dTwoRatio (d Two/ D1) Is controlled within the range of 0.5 to 2.
The thermal conductivity and high temperature strength of cemented carbide
And use it as a cutting tool
This makes it possible to cut difficult-to-cut materials such as stainless steel.
Also has excellent wear resistance, plastic deformation resistance and fracture resistance
It has been found that a cutting tool can be obtained.

【0006】すなわち、本発明の超硬合金は、炭化タン
グステン相と、周期律表第4a、5a、6a族金属の群
から選ばれる少なくとも2種の炭化物、窒化物および炭
窒化物からなる固溶体相と、少なくとも1種の鉄属金属
を含有する結合相とからなり、前記固溶体相として、少
なくともZrおよびNbを含有するZr−Nb固溶体相
を含み、前記炭化タングステン相の平均粒径d1に対す
る前記Zr固溶体相の平均粒径d2の比(d2/d1)が
0.5〜2であることを特徴とするものである。
That is, the cemented carbide of the present invention comprises a tungsten carbide phase and a solid solution phase comprising at least two kinds of carbides, nitrides and carbonitrides selected from the group consisting of metals of Groups 4a, 5a and 6a of the Periodic Table. And a binder phase containing at least one iron group metal, wherein the solid solution phase contains a Zr-Nb solid solution phase containing at least Zr and Nb, and the solid solution phase has an average particle diameter d 1 of the tungsten carbide phase. the ratio of the average particle size d 2 of Zr solid solution phase (d 2 / d 1) is characterized in that from 0.5 to 2.

【0007】ここで、前記Zr−Nb固溶体相の含有量
が、全量中1〜10体積%であること、前記固溶体相の
うち、Zr−Nb固溶体相以外の固溶体相の総含有量
が、全量中1〜10体積%であることが望ましい。
Here, the content of the Zr—Nb solid solution phase is 1 to 10% by volume based on the total amount, and the total content of the solid solution phases other than the Zr—Nb solid solution phase in the solid solution phase is the total amount. The content is desirably 1 to 10% by volume.

【0008】また、前記周期律表第4a、5a、6a族
金属のうちのTaの含有量が、全量中、TaC換算で1
重量%以下であっても優れた工具特性を有する超硬合金
となる。
The content of Ta in the metals of Groups 4a, 5a and 6a of the periodic table is 1% in terms of TaC in the total amount.
Even if the content is less than the weight%, a cemented carbide having excellent tool properties can be obtained.

【0009】さらに、前記炭化タングステン相を60〜
95体積%の比率で含有すること、前記結合相を1〜2
0体積%の比率で含有することが望ましい。
[0009] Further, the tungsten carbide phase may be
95% by volume, wherein the binder phase is 1 to 2
It is desirable to contain it at a ratio of 0% by volume.

【0010】また、本発明の切削工具は、上記超硬合金
からなり、特に、該超硬合金の表面に、周期律表第4
a、5a、6a族金属の炭化物、窒化物、炭窒化物、T
iAlN、TiZrN、ダイヤモンドおよびAl23
群から選ばれる少なくとも1種の被覆層を単層または複
数層形成してなることが望ましいものである。
[0010] The cutting tool of the present invention is made of the above-mentioned cemented carbide.
a, 5a, 6a metal carbide, nitride, carbonitride, T
It is desirable that at least one kind of coating layer selected from the group consisting of iAlN, TiZrN, diamond and Al 2 O 3 is formed as a single layer or a plurality of layers.

【0011】[0011]

【発明の実施の形態】本発明の超硬合金について、その
模式図である図1を基に説明する。図1によれば、超硬
合金1は、炭化タングステン相2と、周期律表第4a、
5a、6a族金属の群から選ばれる少なくとも2種の炭
化物、窒化物および炭窒化物からなる固溶体相3とから
なる硬質相4と、少なくとも1種の鉄属金属を主成分と
して含有する結合相5とから構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION A cemented carbide according to the present invention will be described with reference to FIG. According to FIG. 1, a cemented carbide 1 comprises a tungsten carbide phase 2 and a periodic table No. 4a,
A hard phase 4 composed of a solid solution phase 3 composed of at least two kinds of carbides, nitrides and carbonitrides selected from the group of 5a and 6a metals, and a binder phase containing at least one type of iron group metal as a main component And 5.

【0012】本発明によれば、固溶体相3として、少な
くともZrおよびNbを含有するZr−Nb固溶体相7
を含み、かつ炭化タングステン相2の平均粒径d1に対
するZr−Nb固溶体相7の平均粒径d2の比(d2/d
1)が0.5〜2であることが大きな特徴であり、これ
によって、超硬合金1の硬度および熱伝導率を高めるこ
とができ、かつこれを切削工具として用いることによっ
て、ステンレス鋼等の難削材の切削に対しても優れた耐
摩耗性、耐塑性変形性および耐欠損性を有する切削工具
が得られる。
According to the present invention, the Zr—Nb solid solution phase 7 containing at least Zr and Nb is used as the solid solution phase 3.
And the ratio of the average particle size d 2 of the Zr—Nb solid solution phase 7 to the average particle size d 1 of the tungsten carbide phase 2 (d 2 / d
It is a great feature that 1 ) is 0.5 to 2, whereby the hardness and thermal conductivity of the cemented carbide 1 can be increased, and by using this as a cutting tool, A cutting tool having excellent wear resistance, plastic deformation resistance and fracture resistance even when cutting difficult-to-cut materials is obtained.

【0013】すなわち、Zr−Nb固溶体相7を含有し
ない場合には、超硬合金1の硬度および熱伝導率が低下
するために、これを切削工具として用い、ステンレス鋼
等の難削材の切削を行った場合には、切削温度が著しく
上昇することから、超硬合金1の硬度が低下し工具の耐
摩耗性、耐塑性変形性が低下する。
That is, when the Zr—Nb solid solution phase 7 is not contained, the hardness and the thermal conductivity of the cemented carbide 1 decrease, so that the cemented carbide 1 is used as a cutting tool to cut hard-to-cut materials such as stainless steel. When the cutting is performed, since the cutting temperature rises remarkably, the hardness of the cemented carbide 1 decreases, and the wear resistance and the plastic deformation resistance of the tool decrease.

【0014】また、炭化タングステン相2の平均粒径d
1とZr−Nb固溶体相7の平均粒径d2との比(d2
1)が0.5よりも小さいと、超硬合金1の熱伝導率
が低下して、切削温度が上昇して超硬合金1の耐摩耗性
が低下し、逆に炭化タングステン相2の平均粒径d1
Zr−Nb固溶体相7の平均粒径d2との比(d2
1)が2よりも大きいと、Zr−Nb固溶体相7の析
出が過剰となるため超硬合金1の強度が低下し工具損傷
が大きくなるおそれがある。
The average particle diameter d of the tungsten carbide phase 2
1 and the average particle diameter d 2 of the Zr—Nb solid solution phase 7 (d 2 /
If d 1 ) is less than 0.5, the thermal conductivity of the cemented carbide 1 decreases, the cutting temperature increases, the wear resistance of the cemented carbide 1 decreases, and conversely, the tungsten carbide phase 2 The ratio of the average particle diameter d 1 to the average particle diameter d 2 of the Zr—Nb solid solution phase 7 (d 2 /
When d 1 ) is larger than 2, the precipitation of the Zr—Nb solid solution phase 7 becomes excessive, so that the strength of the cemented carbide 1 is reduced and tool damage may be increased.

【0015】ここで、Zr−Nb固溶体相7は、Zrま
たはNbを主成分とし、特にZrおよびNbの総量がZ
r−Nb固溶体相7中の総金属量に対して、50重量%
以上、特に70重量%以上の炭化物、窒化物および炭窒
化物からなり、さらに、耐欠損性、耐熱衝撃性、被削材
との耐溶着性、耐摩耗性をバランスよく維持して工具と
しての切削性能を高めるために、Zr−Nb固溶体相7
中のZr/(Zr+Nb)で表されるモル比が0.1〜
0.95、特に0.3〜0.8であることが望ましい。
Here, the Zr-Nb solid solution phase 7 contains Zr or Nb as a main component, and particularly when the total amount of Zr and Nb is Zr.
50% by weight based on the total amount of metals in the r-Nb solid solution phase 7
As described above, in particular, it is made of carbide, nitride and carbonitride in an amount of 70% by weight or more. In order to improve cutting performance, Zr-Nb solid solution phase 7
The molar ratio represented by Zr / (Zr + Nb) is 0.1 to
It is desirably 0.95, especially 0.3 to 0.8.

【0016】また、Zr−Nb固溶体相7中には、結合
相5とのなじみをよくして強度および熱伝導度を高める
ために、周期律表第4a、5a、6a族金属のうち、Z
rまたはNb以外の金属(Ti、V、Cr、Mo、T
a、W)の群から選ばれる1種、特にWおよび/または
Tiが総量で30体積%以下の比率で含有されていても
よい。なお、本発明における固溶体相3中の各金属成分
の含有比率は、エネルギー分散型X線分析(EDS)に
よって求めることができる。
In the Zr-Nb solid solution phase 7, in order to improve the compatibility with the binder phase 5 and to increase the strength and the thermal conductivity, the Zr-Nb group metal of the group 4a, 5a or 6a of the periodic table is used.
metals other than r or Nb (Ti, V, Cr, Mo, T
a, W), and in particular, W and / or Ti may be contained in a ratio of 30% by volume or less in total. In addition, the content ratio of each metal component in the solid solution phase 3 in the present invention can be determined by energy dispersive X-ray analysis (EDS).

【0017】さらに、熱伝導率と合金強度および硬度を
両立させるという点で、Zr−Nb固溶体相7の含有量
は、超硬合金1全量に対して、1〜10体積%の割合で
含有されることが望ましく、Zr−Nb固溶体相7の組
成はZr/(Zr+Nb)のモル比で0.3〜0.9、
特に0.5〜0.8であることが望ましい。
Further, from the viewpoint of satisfying both thermal conductivity and alloy strength and hardness, the content of the Zr—Nb solid solution phase 7 is 1 to 10% by volume based on the total amount of the cemented carbide 1. It is preferable that the composition of the Zr—Nb solid solution phase 7 is 0.3 to 0.9 in a molar ratio of Zr / (Zr + Nb),
In particular, it is preferably 0.5 to 0.8.

【0018】また、固溶体相3としては、Zr−Nb固
溶体7以外に、周期律表第4a、5a、6a族金属のう
ち、ZrまたはNb以外の金属(Ti、V、Cr、M
o、Ta、W)群から選ばれる1種、特にTiを主体と
する炭化物、窒化物および炭窒化物からなる他の固溶体
相8が1種以上存在することが、超硬合金1の高温特
性、特に高温における耐酸化性を維持する点で望まし
い。
As the solid solution phase 3, other than the Zr—Nb solid solution 7, metals other than Zr or Nb (Ti, V, Cr, M) in the metals of Groups 4a, 5a, and 6a of the periodic table.
o, Ta, and W), and the presence of at least one other solid solution phase 8 composed of carbides, nitrides, and carbonitrides mainly composed of Ti, In particular, it is desirable to maintain oxidation resistance at high temperatures.

【0019】なお、固溶体相3のうち、Zr−Nb固溶
体相7以外の他の固溶体相8の総含有量は、高温におけ
る耐酸化性と超硬合金1の強度および硬度を両立させる
という点で、超硬合金1全量中1〜10体積%であるこ
とが望ましい。
The total content of the solid solution phase 8 other than the Zr—Nb solid solution phase 7 in the solid solution phase 3 is such that the oxidation resistance at a high temperature and the strength and hardness of the cemented carbide 1 are compatible. And 1 to 10% by volume of the total amount of cemented carbide.

【0020】さらに、本発明によれば、超硬合金1全量
中の前記周期律表第4a、5a、6a族金属のうちのT
aの含有量が、全量中、TaC換算で0.8重量%以
下、特に0.5重量%以下、さらには不可避不純物以外
を実質上含有しない場合においても、優れた耐摩耗性、
耐塑性変形性および耐欠損性を維持することができ、す
なわち、他の原料に比較して非常に高価なTa原料を用
いることなく、ビッカース硬度(Hv)が1400以
上、破壊靭性(K1c)12MPa/m1/2以上、3点曲
げ強度2500MPa以上、800℃における熱伝導率
70W/m・K以上の優れた熱的および機械的特性を有
する超硬合金1となる。
Further, according to the present invention, T of the metals of Groups 4a, 5a and 6a of the periodic table in the total amount of cemented carbide 1 is used.
excellent wear resistance even when the content of a is 0.8% by weight or less, particularly 0.5% by weight or less in terms of TaC,
Plastic deformation resistance and fracture resistance can be maintained, that is, Vickers hardness (Hv) is 1400 or more and fracture toughness (K 1c ) without using a Ta material which is very expensive compared to other materials. Cemented carbide 1 having excellent thermal and mechanical properties of 12 MPa / m 1/2 or more, three-point bending strength of 2500 MPa or more, and thermal conductivity at 800 ° C. of 70 W / m · K or more.

【0021】一方、炭化タングステン相2は、WCで表
される六方晶形の結晶からなり、特に平均粒径0.5〜
3μmの多角形形状で超硬合金1中に分散している。な
お、本発明における結晶の平均粒径とは、超硬合金1の
断面における走査型顕微鏡写真(SEM)にて観察され
る十分な内部をインターセプト法にて測定した値を指
す。
On the other hand, the tungsten carbide phase 2 is composed of hexagonal crystals represented by WC and has an average particle diameter of 0.5 to
It is dispersed in the cemented carbide 1 in a polygonal shape of 3 μm. In the present invention, the average grain size of the crystal refers to a value obtained by measuring a sufficient inside of a section of the cemented carbide 1 observed by a scanning micrograph (SEM) by an intercept method.

【0022】また、本発明によれば、高硬度、高強度、
高靭性で、かつ高熱伝導率を維持するために、超硬合金
1全量中の炭化タングステン相2の含有比率がWC換算
で60〜95体積%、特に80〜90体積%の比率で含
有することが望ましい。
Further, according to the present invention, high hardness, high strength,
In order to maintain high toughness and high thermal conductivity, the content of tungsten carbide phase 2 in the total amount of cemented carbide 1 should be 60 to 95% by volume, especially 80 to 90% by volume in terms of WC. Is desirable.

【0023】他方、超硬合金1中には、合金強度および
耐欠損性の保持の点で、炭化タングステン相2の間に存
在する結合相5としては、Co,Ni,Fe等の鉄族金
属を主成分として、特に80重量%以上の割合で含有す
るが、結合相5の含有比率が超硬合金1全体に対して1
〜20体積%、特に10〜15体積%であることが望ま
しい。
On the other hand, in the cemented carbide 1, the binder phase 5 existing between the tungsten carbide phases 2 is an iron group metal such as Co, Ni, Fe, etc. As a main component, particularly in a proportion of 80% by weight or more.
It is desirable that the content is 20 to 20% by volume, particularly 10 to 15% by volume.

【0024】(製造方法)また、上述した超硬合金を製
造するには、まず、例えば平均粒径0.5〜10μmの
炭化タングステン粉末を80〜90重量%、平均粒径
0.5〜10μmのZrおよびNbの炭化物、窒化物お
よび炭窒化物粉末またはその固溶体粉末を総量で0.1
〜10重量%、平均粒径0.5〜10μmのZrおよび
Nb以外の周期律表4a、5a、6a族金属(Ti、
V、Cr、Mo、Ta、W)の炭化物、窒化物および炭
窒化物粉末もしくはこれら金属2種以上の固溶体粉末を
総量で0.1〜10重量%、平均粒径0.5〜10μm
の鉄族金属を5〜15重量%、さらには所望により、金
属タングステン(W)粉末、あるいはカーボンブラック
(C)を混合する。
(Production Method) In order to produce the above-mentioned cemented carbide, first, for example, 80 to 90% by weight of tungsten carbide powder having an average particle size of 0.5 to 10 μm and an average particle size of 0.5 to 10 μm Of Zr and Nb carbide, nitride and carbonitride powder or solid solution powder thereof in a total amount of 0.1%
Periodic table 4a, 5a, 6a metal other than Zr and Nb having an average particle size of 0.5 to 10 μm (Ti,
V, Cr, Mo, Ta, W) carbide, nitride and carbonitride powders or solid solution powders of two or more of these metals in a total amount of 0.1 to 10% by weight, average particle size of 0.5 to 10 μm
5 to 15% by weight of iron group metal, and further, if desired, metal tungsten (W) powder or carbon black (C) is mixed.

【0025】次に、上記混合粉末を用いて、プレス成
形、鋳込成形、押出成形、冷間静水圧プレス成形等の公
知の成形方法によって所定形状に成形した後、0.1〜
15Paの真空中、1〜20℃/分で昇温し、1350
〜1500℃で0.2〜5時間、特に0.5〜2時間焼
成することによって上述した超硬合金を得ることができ
る。
Next, the mixed powder is molded into a predetermined shape by a known molding method such as press molding, casting, extrusion molding, cold isostatic press molding, and the like.
In a vacuum of 15 Pa, the temperature is increased at 1 to 20 ° C./min,
The above-mentioned cemented carbide can be obtained by firing at ℃ 1,500 ° C. for 0.2 to 5 hours, particularly 0.5 to 2 hours.

【0026】また、上述した本発明の超硬合金は、高硬
度、高強度、高熱伝導率の優れた機械的特性および熱的
特性を有することから、金型、耐摩耗部材、高温構造材
料、等に適応可能であり、中でも切削工具、さらにはス
テンレス鋼等の難削材用の切削工具として好適に使用可
能である。
The above-mentioned cemented carbide of the present invention has excellent mechanical properties and thermal properties of high hardness, high strength, and high thermal conductivity. It can be suitably used as a cutting tool, and particularly as a cutting tool for difficult-to-cut materials such as stainless steel.

【0027】また、本発明の切削工具は、上述した超硬
合金の表面に、周期律表第4a、5a、6a族金属の炭
化物、窒化物、炭窒化物、TiAlN、TiZrN、ダ
イヤモンドおよびAl23の群から選ばれる少なくとも
1種の被覆層を単層または複数層形成したものであって
もよい。
Further, the cutting tool of the present invention provides a carbide, nitride, carbonitride, TiAlN, TiZrN, diamond and Al 2 metal of metals of Groups 4a, 5a and 6a of the periodic table on the surface of the above-mentioned cemented carbide. A single layer or a plurality of layers of at least one kind of coating layer selected from the group of O 3 may be used.

【0028】なお、超硬合金に前記被覆層を形成するに
は、所望により、超硬合金の表面を研磨、洗浄した後、
従来公知のPVD法やCVD法等の薄膜形成法を用いれ
ばよい。また、被覆層の厚みは0.1〜20μmである
ことが望ましい。
In order to form the coating layer on the cemented carbide, if necessary, the surface of the cemented carbide is polished and washed,
A conventionally known thin film forming method such as a PVD method or a CVD method may be used. Further, the thickness of the coating layer is desirably 0.1 to 20 μm.

【0029】[0029]

【実施例】(実施例)表1に示す平均粒径の炭化タング
ステン(WC)粉末、平均粒径1.2μmの金属コバル
ト(Co)粉末および平均粒径2.0μmの表1に示す
化合物粉末を表1に示す比率で添加、混合して、プレス
成形により切削工具形状(SDK42)に成形した後、
焼成温度より500℃以上低い温度から10℃/分の速
度で昇温して、1500℃で1時間焼成して超硬合金を
作製した。
EXAMPLES (Examples) Tungsten carbide (WC) powder having an average particle size shown in Table 1, metal cobalt (Co) powder having an average particle size of 1.2 μm, and compound powder shown in Table 1 having an average particle size of 2.0 μm Was added and mixed at the ratios shown in Table 1, and formed into a cutting tool shape (SDK42) by press molding.
The temperature was raised at a rate of 10 ° C./min from a temperature 500 ° C. or more lower than the firing temperature and fired at 1500 ° C. for 1 hour to produce a cemented carbide.

【0030】得られた超硬合金の任意断面5箇所につい
て、走査型電子顕微鏡により反射電子像を観察し、20
μm×20μmの任意領域におけるNb−Zr固溶体相
および炭化タングステン相についてルーゼックス画像解
析法により、平均粒径および含有比率を算出した。な
お、EDS分析の結果、本発明に従う試料No.2〜6
では、いずれもZr/(Zr+Nb)のモル比が0.3
〜0.8を満足することを確認した。また、同様にして
他の固溶体相および結合相の含有比率を算出した。結果
は表1に示した。
The reflected electron image was observed with a scanning electron microscope at five arbitrary cross sections of the obtained cemented carbide.
The average particle size and content ratio of the Nb-Zr solid solution phase and the tungsten carbide phase in an arbitrary region of μm × 20 μm were calculated by Luzex image analysis. In addition, as a result of the EDS analysis, the sample No. 2-6
In both cases, the molar ratio of Zr / (Zr + Nb) is 0.3
~ 0.8 was confirmed to be satisfied. Similarly, the content ratios of the other solid solution phase and the binder phase were calculated. The results are shown in Table 1.

【0031】また、試験片の厚み2.5mm、3点曲げ
スパンを10mmとする以外はJISR1601に準拠
して800℃における3点曲げ強度を測定した。さら
に、φ10mm厚み2.0mmの試験片を用いてJIS
R1611に準拠したレーザーフラッシュ法により熱伝
導率を測定した。結果は表1に示した。
The three-point bending strength at 800 ° C. was measured in accordance with JISR1601, except that the thickness of the test piece was 2.5 mm and the three-point bending span was 10 mm. Furthermore, JIS was performed using a test piece of φ10 mm and thickness of 2.0 mm.
The thermal conductivity was measured by a laser flash method based on R1611. The results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】また、得られた各超硬合金の表面に、PV
D法により膜厚2μmのTiN膜を成膜して切削工具を
作製した。
The surface of each of the obtained cemented carbides is coated with PV
A 2 μm-thick TiN film was formed by Method D to produce a cutting tool.

【0034】そして、この切削工具を用いて下記の条件
によりステンレス鋼の切削を15分間行い、切削工具の
フランク摩耗量および境界損傷量を測定した。なお、切
削試験中にフランク摩耗量が0.2mmあるいは境界損
傷量が0.5mmに達した場合にはその切削時間を測定
した。さらに、切削試験後の工具の刃先を観察し、変形
や損傷の有無を確認した。結果は表2に示した。 被削材 :ステンレス鋼(SUS304) 工具形状:SDK42 切削速度:200m/分 送り速度:0.2mm/刃 切り込み:2mm その他 :水溶性切削液使用
Using this cutting tool, stainless steel was cut for 15 minutes under the following conditions, and the flank wear and boundary damage of the cutting tool were measured. When the flank wear amount reached 0.2 mm or the boundary damage amount reached 0.5 mm during the cutting test, the cutting time was measured. Furthermore, the cutting edge of the tool after the cutting test was observed, and the presence or absence of deformation or damage was confirmed. The results are shown in Table 2. Work material: Stainless steel (SUS304) Tool shape: SDK42 Cutting speed: 200 m / min Feed speed: 0.2 mm / tooth Cutting depth: 2 mm Others: Use of water-soluble cutting fluid

【0035】[0035]

【表2】 [Table 2]

【0036】表1、2の結果より、Nb−Zr固溶体相
を含有しない試料No.1および2では、耐摩耗性およ
び耐欠損性が悪いものであった。また、炭化タングステ
ン相(WC)の平均粒径d1とNb−Zr固溶体相の平
均粒径d2との比d2/d1が0.5より小さい試料N
o.7では、熱伝導率が低下し、切削温度の上昇ととも
に硬度が低下し、耐摩耗性が低下した。一方、炭化タン
グステン相(WC)の平均粒径d1とNb−Zr固溶体
相の平均粒径d2との比d2/d1が2より大きい試料N
o.8では析出した粗大なNb−Zr固溶体相により合
金強度が低下し、欠損を生じた。
From the results in Tables 1 and 2, Sample No. containing no Nb-Zr solid solution phase. In Nos. 1 and 2, abrasion resistance and fracture resistance were poor. The average particle diameter d 1 and Nb-Zr ratio d 2 / d 1 between the average particle size d 2 of the solid solution phase is less than 0.5 samples N of the tungsten carbide phase (WC)
o. In No. 7, the thermal conductivity decreased, the hardness decreased with an increase in the cutting temperature, and the wear resistance decreased. On the other hand, the average particle diameter d 1 and Nb-Zr ratio d 2 / d 1 is greater than 2 sample N with an average particle size d 2 of the solid solution phase of tungsten carbide phase (WC)
o. In No. 8, the alloy strength was reduced due to the coarse Nb-Zr solid solution phase precipitated, and defects occurred.

【0037】これに対して、本発明に従い、Nb−Zr
固溶体相を含有せしめるとともに、炭化タングステン相
(WC)の平均粒径d1とNb−Zr固溶体相の平均粒
径d2との比d2/d1が0.5〜2である試料No.2
〜6では、いずれもフランク摩耗量0.15mm以下の
優れた耐摩耗性および耐欠損性を有するものであった。
On the other hand, according to the present invention, Nb-Zr
Sample No. 1 containing a solid solution phase and having a ratio d 2 / d 1 of 0.5 to 2 between the average particle size d 1 of the tungsten carbide phase (WC) and the average particle size d 2 of the Nb—Zr solid solution phase. 2
No. 6 to No. 6 each had excellent wear resistance and fracture resistance with a flank wear of 0.15 mm or less.

【0038】[0038]

【発明の効果】以上詳述したとおり、本発明の超硬合金
によれば、固溶体相として、少なくともZrおよびNb
を含有するZr−Nb固溶体相を含み、かつ炭化タング
ステン相の平均粒径d1に対するZr−Nb固溶体相の
平均粒径d2の比(d2/d1)が0.5〜2とすること
によって、超硬合金の硬度および熱伝導率を高めること
ができ、かつこれを切削工具として用いることによっ
て、ステンレス鋼等の難削材の切削に対しても優れた耐
摩耗性、耐塑性変形性および耐欠損性を有する切削工具
を得ることができる。
As described above in detail, according to the cemented carbide of the present invention, at least Zr and Nb
Include Zr-Nb solid solution phase containing, and the average particle diameter ratio of d 2 of Zr-Nb solid solution phase to an average particle size d 1 of the tungsten carbide phase (d 2 / d 1) is 0.5 to 2 As a result, the hardness and thermal conductivity of the cemented carbide can be increased, and by using this as a cutting tool, excellent wear resistance and plastic deformation resistance even when cutting difficult-to-cut materials such as stainless steel. It is possible to obtain a cutting tool having the property of resistance and fracture resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超硬合金の模式図である。FIG. 1 is a schematic view of a cemented carbide according to the present invention.

【符号の説明】[Explanation of symbols]

1 超硬工具 2 炭化タングステン相 3 固溶体相 4 硬質相 5 結合相 7 Nb−Zr固溶体相 8 他の固溶体相 DESCRIPTION OF SYMBOLS 1 Carbide tool 2 Tungsten carbide phase 3 Solid solution phase 4 Hard phase 5 Bonding phase 7 Nb-Zr solid solution phase 8 Other solid solution phases

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C23C 14/16 C04B 35/56 U Fターム(参考) 4G001 BA03 BA24 BA37 BA57 BA60 BA69 BB03 BB24 BB37 BB57 BB60 BB69 BC13 BC52 BC54 BC72 BD03 BD11 BD12 BD18 BE01 4K018 AD06 FA14 FA24 KA15 4K029 AA02 AA04 BA34 BA44 BA54 BA55 BA58 BA60 BB02 BD05──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // C23C 14/16 C04B 35/56 U F term (reference) 4G001 BA03 BA24 BA37 BA57 BA60 BA69 BB03 BB24 BB37 BB57 BB60 BB69 BC13 BC52 BC54 BC72 BD03 BD11 BD12 BD18 BE01 4K018 AD06 FA14 FA24 KA15 4K029 AA02 AA04 BA34 BA44 BA54 BA55 BA58 BA60 BB02 BD05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン相と、周期律表第4
a、5a、6a族金属の群から選ばれる少なくとも2種
の炭化物、窒化物および炭窒化物からなる固溶体相と、
少なくとも1種の鉄属金属を含有する結合相とからな
り、前記固溶体相として、少なくともZrおよびNbを
含有するZr−Nb固溶体相を含み、前記炭化タングス
テン相の平均粒径d1に対する前記Zr−Nb固溶体相
の平均粒径d2の比(d2/d1)が0.5〜2であるこ
とを特徴とする超硬合金。
1. A tungsten carbide phase and the fourth of the periodic table
a, a solid solution phase composed of at least two kinds of carbides, nitrides and carbonitrides selected from the group consisting of group 5a and 6a metals;
Consists binder phase and containing at least one iron group metal, as the solid solution phase comprises a Zr-Nb solid solution phase containing at least Zr and Nb, the relative average particle size d 1 of the tungsten carbide phase Zr- cemented carbide ratio of the average particle size d 2 of the Nb solid solution phase (d 2 / d 1) is characterized in that from 0.5 to 2.
【請求項2】 前記Zr−Nb固溶体相の含有量が、全
量中1〜10体積%であることを特徴とする請求項1記
載の超硬合金。
2. The cemented carbide according to claim 1, wherein the content of the Zr—Nb solid solution phase is 1 to 10% by volume based on the total amount.
【請求項3】 前記固溶体相のうち、Zr−Nb固溶体
相以外の固溶体相の総含有量が、全量中1〜10体積%
であることを特徴とする請求項1または2記載の超硬合
金。
3. The total content of solid solution phases other than the Zr—Nb solid solution phase in the solid solution phase is 1 to 10% by volume based on the total amount.
The cemented carbide according to claim 1 or 2, wherein
【請求項4】 前記周期律表第4a、5a、6a族金属
のうちのTaの含有量が、全量中、TaC換算で1重量
%以下であることを特徴とする請求項1乃至3のいずれ
か記載の超硬合金。
4. The method according to claim 1, wherein the content of Ta in the metals of Groups 4a, 5a and 6a of the periodic table is 1% by weight or less in terms of TaC in the total amount. The cemented carbide described in the above.
【請求項5】 前記炭化タングステン相を60〜95体
積%の比率で含有することを特徴とする請求項1乃至4
のいずれか記載の超硬合金。
5. The method according to claim 1, wherein said tungsten carbide phase is contained at a ratio of 60 to 95% by volume.
The cemented carbide according to any one of the above.
【請求項6】 前記結合相を1〜20体積%の比率で含
有することを特徴とする請求項1乃至5のいずれか記載
の超硬合金。
6. The cemented carbide according to claim 1, wherein the binder phase is contained at a ratio of 1 to 20% by volume.
【請求項7】 請求項1乃至6のいずれか記載の超硬合
金からなる切削工具。
7. A cutting tool comprising the cemented carbide according to any one of claims 1 to 6.
【請求項8】 表面に、周期律表第4a、5a、6a族
金属の炭化物、窒化物、炭窒化物、TiAlN、TiZ
rN、ダイヤモンドおよびAl23の群から選ばれる少
なくとも1種の被覆層を単層または複数層形成してなる
ことを特徴とする請求項7記載の切削工具。
8. On the surface, a carbide, nitride, carbonitride, TiAlN, TiZ of a Group 4a, 5a, or 6a metal of the periodic table
rN, cutting tool according to claim 7, characterized by being formed of at least one single layer or multiple layers covering layer selected from the group consisting of diamond and Al 2 O 3.
JP2001162939A 2001-05-30 2001-05-30 Hard metal alloy, and cutting tool using it Pending JP2002356734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162939A JP2002356734A (en) 2001-05-30 2001-05-30 Hard metal alloy, and cutting tool using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001162939A JP2002356734A (en) 2001-05-30 2001-05-30 Hard metal alloy, and cutting tool using it

Publications (1)

Publication Number Publication Date
JP2002356734A true JP2002356734A (en) 2002-12-13

Family

ID=19005990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162939A Pending JP2002356734A (en) 2001-05-30 2001-05-30 Hard metal alloy, and cutting tool using it

Country Status (1)

Country Link
JP (1) JP2002356734A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347076A1 (en) * 2002-03-20 2003-09-24 Seco Tools Ab PVD-Coated cutting tool insert
WO2005054530A1 (en) * 2003-12-03 2005-06-16 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
US7163657B2 (en) 2003-12-03 2007-01-16 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
WO2009147002A2 (en) * 2008-06-02 2009-12-10 H.C. Starck Gmbh Process for producing electrolytic capacitors having a low leakage current
JP2012130948A (en) * 2010-12-22 2012-07-12 Sumitomo Electric Ind Ltd Rotating tool
JP2012130947A (en) * 2010-12-22 2012-07-12 Sumitomo Electric Ind Ltd Rotative tool
WO2012147737A1 (en) * 2011-04-26 2012-11-01 日本タングステン株式会社 Tungsten carbide-based sinter and abrasion-resistant members using same
DE102012111728A1 (en) 2011-12-21 2013-06-27 Kennametal Inc. Carbide body and applications thereof
JP2014005529A (en) * 2012-05-29 2014-01-16 Sumitomo Electric Ind Ltd Cemented carbide and surface-coated cutting tool using the same
US8833633B2 (en) 2010-12-22 2014-09-16 Sumitomo Electric Industries, Ltd. Rotary tool
US10173395B2 (en) 2013-10-31 2019-01-08 Vermeer Manufacturing Company Hardfacing incorporating carbide particles
WO2023038238A1 (en) * 2021-09-10 2023-03-16 한국야금 주식회사 Cemented carbide for cutting tools, cutting tools, and method for manufacturing cemented carbide for cutting tools
WO2023166900A1 (en) * 2022-03-03 2023-09-07 京セラ株式会社 Cemented carbide, and coated tool and cutting tool using same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347076A1 (en) * 2002-03-20 2003-09-24 Seco Tools Ab PVD-Coated cutting tool insert
KR100865736B1 (en) * 2003-12-03 2008-10-28 케나메탈 아이엔씨. Cemented carbide body containing zirconium and niobium and method of making the same
DE10356470B4 (en) * 2003-12-03 2009-07-30 Kennametal Inc. Zirconium and niobium-containing cemented carbide bodies and process for its preparation and its use
US7163657B2 (en) 2003-12-03 2007-01-16 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
JP2007513256A (en) * 2003-12-03 2007-05-24 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
US7309466B2 (en) 2003-12-03 2007-12-18 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
US8394169B2 (en) 2003-12-03 2013-03-12 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
EP1689898B1 (en) 2003-12-03 2009-05-27 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
DE10356470A1 (en) * 2003-12-03 2005-07-07 Kennametal Inc. Zirconium and niobium-containing cemented carbide bodies and process for its preparation
WO2005054530A1 (en) * 2003-12-03 2005-06-16 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
CN102517485A (en) * 2003-12-03 2012-06-27 钴碳化钨硬质合金公司 Cemented carbide body containing zirconium and niobium and method of making the same
JP2011202278A (en) * 2003-12-03 2011-10-13 Kennametal Inc Cemented carbide body containing zirconium and niobium and method of making the same
JP4796969B2 (en) * 2003-12-03 2011-10-19 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
WO2009147002A3 (en) * 2008-06-02 2010-04-01 H.C. Starck Gmbh Process for producing electrolytic capacitors having a low leakage current
WO2009147002A2 (en) * 2008-06-02 2009-12-10 H.C. Starck Gmbh Process for producing electrolytic capacitors having a low leakage current
JP2012130948A (en) * 2010-12-22 2012-07-12 Sumitomo Electric Ind Ltd Rotating tool
JP2012130947A (en) * 2010-12-22 2012-07-12 Sumitomo Electric Ind Ltd Rotative tool
US8833633B2 (en) 2010-12-22 2014-09-16 Sumitomo Electric Industries, Ltd. Rotary tool
US8936186B2 (en) 2010-12-22 2015-01-20 Sumitomo Electric Industries, Ltd. Rotary tool
US8998062B2 (en) 2010-12-22 2015-04-07 Sumitomo Electric Industries, Ltd. Rotary tool
WO2012147737A1 (en) * 2011-04-26 2012-11-01 日本タングステン株式会社 Tungsten carbide-based sinter and abrasion-resistant members using same
JP2012229138A (en) * 2011-04-26 2012-11-22 Nippon Tungsten Co Ltd Tungsten carbide-based sintered body and abrasion resistant member using the same
DE102012111728A1 (en) 2011-12-21 2013-06-27 Kennametal Inc. Carbide body and applications thereof
US8834594B2 (en) 2011-12-21 2014-09-16 Kennametal Inc. Cemented carbide body and applications thereof
JP2014005529A (en) * 2012-05-29 2014-01-16 Sumitomo Electric Ind Ltd Cemented carbide and surface-coated cutting tool using the same
US10173395B2 (en) 2013-10-31 2019-01-08 Vermeer Manufacturing Company Hardfacing incorporating carbide particles
WO2023038238A1 (en) * 2021-09-10 2023-03-16 한국야금 주식회사 Cemented carbide for cutting tools, cutting tools, and method for manufacturing cemented carbide for cutting tools
WO2023166900A1 (en) * 2022-03-03 2023-09-07 京セラ株式会社 Cemented carbide, and coated tool and cutting tool using same

Similar Documents

Publication Publication Date Title
US20030129456A1 (en) Cemented carbide and cutting tool
JP2002356734A (en) Hard metal alloy, and cutting tool using it
JP2571124B2 (en) Nitrogen-containing cermet, method for producing the same, and coated nitrogen-containing cermet
JP5355712B2 (en) Rotating tool
JP5856752B2 (en) Tungsten carbide-based sintered body and wear-resistant member using the same
JP2002166307A (en) Cutting tool
JP4069749B2 (en) Cutting tool for roughing
JP2001179507A (en) Cutting tool
JP4336120B2 (en) Cutting tool and manufacturing method thereof
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP2801484B2 (en) Cemented carbide for cutting tools
JP2006111947A (en) Ultra-fine particle of cermet
JPH05171335A (en) Differential layer surface refined sintered alloy and its manufacture
JP3235259B2 (en) Coated cemented carbide member and method of manufacturing the same
JP4313567B2 (en) Cutting tool and manufacturing method thereof
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP2835255B2 (en) Cemented carbide
JP2009006413A (en) Ti based cermet
JP4005787B2 (en) Surface coated cemented carbide
JP4126451B2 (en) Cemented carbide
JP2003094207A (en) Cutting tool
JP2003105477A (en) Cemented carbide, and cutting tool using the same
JP7307394B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
WO2023188871A1 (en) Sintered body and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930