JP4313567B2 - Cutting tool and manufacturing method thereof - Google Patents

Cutting tool and manufacturing method thereof Download PDF

Info

Publication number
JP4313567B2
JP4313567B2 JP2002362577A JP2002362577A JP4313567B2 JP 4313567 B2 JP4313567 B2 JP 4313567B2 JP 2002362577 A JP2002362577 A JP 2002362577A JP 2002362577 A JP2002362577 A JP 2002362577A JP 4313567 B2 JP4313567 B2 JP 4313567B2
Authority
JP
Japan
Prior art keywords
particles
phase
cutting tool
group
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002362577A
Other languages
Japanese (ja)
Other versions
JP2004190118A (en
Inventor
浩志 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002362577A priority Critical patent/JP4313567B2/en
Publication of JP2004190118A publication Critical patent/JP2004190118A/en
Application granted granted Critical
Publication of JP4313567B2 publication Critical patent/JP4313567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、切削工具等に使用される高強度かつ高靭性を有し、難削材の切削や高送り切削などの衝撃の大きい条件下での切削に優れた性能を発揮する超硬合金とその製造方法、並びにそれを用いた切削工具に関する。
【0002】
【従来の技術】
従来より、超硬合金は切削工具や耐摩工具等に用いられており、近年では特に靭性を重視したK種超硬合金として、WC粒子の粒径が1μmより小さい、いわゆる超微粒超硬合金が開発されている。
【0003】
かかる超微粒超硬合金は、微粒のWC原料粉末とコバルト原料粉末に対して、微量の炭化クロムや炭化バナジウム粉末を粒成長抑制剤として添加し焼成したものであるが、現状、このK種超微粒超硬合金はもっぱら仕上げ加工用等の衝撃の少ない切削条件で切削工具やプリント基板穴あけ加工用のマイクロドリル材料などの非鉄材料の加工に利用されていた(特許文献1参照)。
【0004】
一方、超硬合金の用途としては、上記仕上げ加工等の切削以外にも、ステンレス等の難削材の切削や高送り切削などの衝撃の大きい条件で、局部的に高温になり、かつ断続的に強い衝撃がかかるような加工に対しては、超硬合金組織中にTiやTaの炭化物等のいわゆるβ相粒子を分散含有させて耐酸化性や耐熱衝撃性などの特性向上を図った、いわゆるM種またはP種超硬合金が知られている。
【0005】
上記β相粒子を分散させた超硬合金として、例えば、特許文献2では、平均粒径0.6μm以下で最大粒径が3.0μm以下のWC粒子が分散している超硬合金素地中に、V,Cr,Ta,NbおよびTiのβ相粒子を最大粒径3.0μm以下とWC粒子と同程度に微細に制御し、かつ5体積%以下と少ない比率で分散させることで硬さおよび靭性を改善した超硬合金が記載されている。
【0006】
また、最近ではステンレス鋼といった難削材の加工や、切削の更なる効率化を求めて高速切削・高送り切削への利用も進められており、かかる加工に対して、従来のβ相粒子を分散したM種またはP種超硬合金よりもさらに高温特性、熱衝撃性および耐衝撃性の高い超硬合金が要求されている。
【0007】
【特許文献1】
特開昭61−12847号公報
【特許文献2】
特開平6−81072号公報
【0008】
【発明が解決しようとする課題】
このような要求に対して、上記特許文献1の超硬合金では、高温特性、熱衝撃性および耐衝撃性に対して十分な特性を有しておらず、また、上記特許文献2に記載されるような、微粒なWC粒子およびWC粒子と同程度に微粒なβ相粒子を5体積%以下と少ない含有比率で分散した超硬合金を用いて過酷な条件で切削を行うと、耐酸化性や耐熱衝撃性および耐衝撃性が低くて欠損が発生しやすいという問題があった。
【0009】
これに対して、耐酸化性や耐熱衝撃性を改善する上では、β相粒子の含有比率を増加せしめることが考えられるが、このβ相粒子の含有比率を増加せしめただけでは、結合相量を減じつつWC粒子やβ相粒子の粒成長抑制を制御することができなくなったり、焼結性が低下して合金を高緻密化させることができなくなり、硬さ、抗折力ともに低下してしまうために、過酷な条件で切削を行うとやはり耐衝撃性が低くて欠損が発生しやすいという問題があった。
【0010】
したがって、本発明の目的は、過酷な切削条件に対しても高い切削性能を発揮する耐酸化性、耐熱衝撃性および過酷な条件においても耐衝撃性、耐欠損性に優れた超硬合金とこれを用いた切削工具を提供することにある。
【0011】
【課題を解決するための手段】
本発明者は、耐酸化性および耐衝撃性に優れた超硬合金の構成について検討した結果、β相粒子の含有比率を5〜30体積%と増した状態でWC粒子と結合相の含有比率を適正化するとともに、WC粒子の平均粒径よりもβ相粒子の平均粒径を積極的に大きくした範囲に制御することによって、WC粒子の粒径を制御できるとともに超硬合金を高緻密化することができ、かつ超硬合金の耐酸化性を高めることができる結果、耐酸化性および耐衝撃性を改善できることを見出した。
【0012】
すなわち、本発明の切削工具は、平均粒径0.2〜0.8μmのWC粒子を60〜85体積%と、平均粒径1.2〜3μmの周期律表第4a,5a,6a族金属の少なくとも1種の炭化物、窒化物または炭窒化物からなるβ相粒子を5〜30体積%と、からなる硬質相と、前記硬質相の間を鉄族金属の少なくとも1種を主体とする結合相5〜20体積%にて結合してなり、ガス置換法で測定したバルク体の密度Dbと、#200メッシュを通過するサイズに微粉砕した後の粉末の密度Dpの比率Db/Dpが0.95以上である超硬合金の表面に、周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物、TiAlN、TiZrN、TiCrN、ダイヤモンド、ダイヤモンドライクカーボンおよびAl の群から選ばれる少なくとも1種の被覆層を単層または複数層形成してなることを特徴とする。
【0013】
なお、かかる超硬合金においては、前記β相粒子中におけるTi、Zr、NbおよびTaの少なくとも1種の総量が、β相粒子中におけるW以外の周期律表第4a,5a,6a族金属の総量に対して金属換算で70質量%以上であること、さらには、前記β相粒子中におけるWの含有量が、β相粒子中における周期律表第4a,5a,6a族金属の全量に対して金属換算で30質量%以上であることによって、合金の耐熱衝撃性および耐衝撃性を高めることができる。
【0014】
また、前記結合相が凝集した結合相プールの最大粒径が1μm以下であることによって、超硬合金の強度を高め、耐欠損性を高めることができる。
【0015】
さらに、前記WC粒子が、粒径0.5μm未満の粒子の面積比率が40〜80%、粒径0.5〜1.2μmの粒子の面積比率が15〜40%、粒径1.2μmを超える粒子の面積比率が5〜20%の割合の粒度分布からなることによって、耐衝撃性を高めて過酷な切削条件においても耐欠損性を高めることができる。
【0016】
また、本発明の切削工具の製造方法は、平均粒径0.1〜0.8μmのWC原料粉末と、平均粒径1〜1.3μmの周期律表第4a,5a,6a族金属の少なくとも1種の炭化物原料粉末と、平均粒径0.1〜1μmの少なくとも1種の鉄族金属原料粉末とをアトライタミルを用いて12〜36時間混合粉砕した後、これを成形し、1400〜1450℃にて1〜2時間真空焼成した後、さらに前記焼成温度より20〜50℃低い温度にて0.5〜1時間、50〜100MPaの圧力で熱間静水圧処理することを特徴とするものである。
【0018】
また、本発明は、前記超硬合金を切削工具として用いることで、難削材の切削や高送り切削などの衝撃の大きい条件下でも優れた切削性能を有する切削工具を得ることができる。
【0019】
【発明の実施の形態】
本発明の超硬合金について、その一例についてのSEM写真である図1を基にその組織を説明する。
本発明の超硬合金は、図1に示すように、WC粒子2と、周期律表第4a,5a,6a族金属の少なくとも1種の炭化物、窒化物または炭窒化物粒子(以下、β相粒子と称す。ただし、WC粒子は除く。)3とからなる硬質相4と、少なくとも1種の鉄族金属を主成分として、特にCoおよび/またはNiを80質量%以上含有する結合相5とから構成されている。また、部分的に結合相5がプール化した結合相プール6が形成される場合もある。
【0020】
本発明によれば、硬質相4として、平均粒径0.2〜0.8μmのWC粒子2を60〜85体積%、平均粒径1.2〜3μmのβ相粒子3を5〜30体積%の割合でそれぞれ分散含有するとともに、WC粒子2、β相粒子3の粒子間を5〜20体積%の結合相5にて結合してなることが重要である。
【0021】
つまり、WC粒子2の平均粒径よりもβ相粒子3の平均粒径を積極的に大きくすることによって、WC粒子2の粒径を前記所定範囲に制御できるとともに合金を高緻密化することができ、かつ合金の耐酸化性を高めることができる結果、合金の耐酸化性および耐衝撃性を高めることができることから、過酷な切削条件によって刃先が高温に晒されるような場合においても良好に使用可能な超硬合金となり、上記範囲を逸脱すると合金の耐酸化性、耐熱衝撃性または耐衝撃性が低下してしまう。
【0022】
すなわち、WC粒子2の平均粒径が0.2μmより小さいと、WC粒子2同士の凝集が生じて結合相5が凝集しやすくなり、粗大な結合相プールを生成するために合金の強度低下をもたらす。逆に、WC粒子2の平均粒径が0.8μmを超えると、従来のM種またはP種超硬合金に比較して強度を向上させることができず、耐欠損性や耐摩耗性を向上させることができない。また、WC粒子2の含有量が60体積%より少ないと合金の硬度が低下し、逆に85体積%を超えると耐酸化性または合金の緻密化が損なわれて、いずれも合金の強度が低下する。
【0023】
さらに、β相粒子3の平均粒径が1.2μmより小さいと焼結性が極端に低下して緻密な合金が得られなくなり、β相粒子3の平均粒径が3μmを超えるとWC粒子の平均粒径に対し大きくなり、応力集中により破壊源として働くために合金の強度が低下する。また、β相粒子3の含有量が5体積%より少ないと合金の耐酸化性、耐欠損性が低下してしまい、逆に25体積%より多いと合金を緻密化が不十分となり合金の強度が低下する。
【0024】
さらにまた、結合相5の含有量が5体積%より少ないと合金を高緻密化することができず合金の強度が低下し、逆に結合相5の含有量が20体積%を超えると合金の硬度が低下するとともに結合相5が凝集した粗大な金属プールが生じやすく合金の強度が低下する。
【0025】
なお、本発明の超硬合金は、ガス置換法で測定したバルク体の密度Dbと、該バルク体を#200メッシュを通過するサイズに微粉砕した後の粉末の密度Dpの比率Db/Dpが0.95以上、特に0.975以上、さらには0.98以上であることも重要である。この比率Db/Dpが大きいということは、つまり合金中の開気孔が少なく、合金が高緻密化した状態であることを意味するものである。
【0026】
従って、本発明において、このDb/Dpが0.95よりも小さいと、合金内部にボイドが残存するために、高硬度化、高強度化を達成することができず、耐酸化性、耐熱衝撃性および耐衝撃性を向上させることはできない。なお、本発明によれば、WC粒子−β相粒子−結合相間で金属の固溶が一切ないと仮定したときの理論密度に対し、アルキメデス法による超硬合金の相対密度が98%〜102%となることが望ましい。
【0027】
ここで、本発明によれば、β相粒子3におけるTi、Zr、NbおよびTaの少なくとも1種の総量が、β相粒子3中におけるW以外の周期律表第4a,5a,6a族金属の総量に対して金属換算で70質量%以上、特に80質量%以上、さらに90質量%以上の割合で含有することによって、合金の耐酸化性および耐衝撃性を高めることができる。
【0028】
また、合金の耐熱衝撃性を高める点で、β相粒子3中に、Wを周期律表第4a,5a,6a族金属の総量に対して金属換算で30質量%以上、特に40〜60質量%の割合で含有することが望ましい。
【0029】
さらに、本発明によれば、合金の組織を上記のように制御することによって、結合相5が凝集した金属プール6の最大粒径を1μm以下、特に0.7μm以下に制御することができ、これにより、合金を安定して高強度化することができる。
【0030】
また、WC粒子2の粒度分布が、粒径0.5μm未満の粒子の面積比率が40〜80%、粒径0.5〜1.2μmの粒子の面積比率が15〜40%、粒径1.2μmを超える粒子の面積比率が5〜20%の割合で存在することによって合金の耐衝撃性を高めることができる。
【0031】
なお、上記本発明の切削工具、この超硬合金の表面に、周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物、TiAlN、TiZrN、TiCrN、ダイヤモンド、ダイヤモンドライクカーボンおよびAlの群から選ばれる少なくとも1種の被覆層を単層または複数層形成することによって、耐酸化性、耐摩耗性に優れた切削工具等の高硬度材とすることができるが、この場合でも、上述した超硬合金(母材)が耐酸化性、耐熱衝撃性、耐衝撃性に優れることから、例え上記被覆層が摩滅または剥離した場合であっても欠損や摩耗が急激に進行することなく、長時間にわたって良好な切削加工が可能な切削工具となるのである。
【0032】
次に、上述した超硬合金を製造する方法について説明すると、まず、平均粒径0.1〜0.8μmのWC粉末を70〜85質量%、平均粒径1〜1.3μmの周期律表4a、5a、6a族金属、特に、Ti、Zr、V、Cr、Mo、Ta、Nb、Wの群から選ばれる少なくとも1種の金属の炭化物、窒化物および炭窒化物粉末もしくは前記金属2種以上の固溶体粉末を総量で5〜15質量%、平均粒径0.1〜1μmの鉄族金属粉末を5〜15質量%、さらには所望により、金属W(W)粉末、あるいはカーボンブラック(C)を調合して、混合、粉砕する。
【0033】
ここで、本発明によれば、上記原料の粒径および後述する下記焼成条件を制御することによって、上述した組織の超硬合金を作製することができる。
【0034】
本発明によれば、上記混合、粉砕は、焼結体である合金中の各成分の粒径を制御する点でアトライタミルを用いること、また、混合、粉砕時間は12〜36時間、特に15〜24時間とする。これは、従来のボールミルでは、ボールの摩擦とボールの落下の衝撃により粉砕・混合を進める方法であるのに対して、アトライタミルは、回転する攪拌羽根により粉砕用ボールが大きく動くため、粉砕効率が高く、所望の粒度に制御することが容易であるという長所を有するためであり、粉砕時間が12時間よりも短いと、粉砕粒度及び混合度に偏りが生じることになり、36時間よりも長くしても粉砕粒度はそれ以上微細化しないためである。
【0035】
上記混合、粉砕粉末を金型プレス等の成形方法によって所定の切削工具形状にプレス成形した後に焼成する。
【0036】
焼成にあたっては、まず、この成形体を、1400〜1450℃にて1〜2時間真空焼成する。この真空焼成によって、相対密度98%以上にち密化する。そして、この後、前記焼成温度より20〜50℃低い温度にて0.5〜1時間、50〜100MPaの圧力で熱間静水圧処理を施す。なお、真空焼成時の真空度は、0.1〜100Paであることが適当である。
【0037】
ここで、上記焼成条件において、焼成温度が1400℃より低いと合金を緻密化が難しく、前記Db/Dpが前記範囲よりも小さくなり、また1450℃を超えると硬質相4が異常粒成長を引き起こすため、WC粒子2、β相粒子3を前記所定の粒径に制御することができない。
【0038】
また、焼成時間が1時間より短いと後述する熱間静水圧処理にて合金を十分に緻密化させることができず、逆に2時間を越えると、WC粒子2やβ相粒子2などの硬質相4が粒成長して前述した所定の粒径に制御することができない。
【0039】
また、熱間静水圧処理の温度が上記範囲よりも高い、または圧力が100MPaよりも高いと、WC粒子2とβ相粒子3が粒成長し各粒子の粒径を上述した範囲に制御することができず、合金の耐酸化性および耐衝撃性が低下する。逆に、熱間静水圧処理の温度が前記処理温度よりも低い、または圧力が50MPaよりも低いと、合金を高緻密化させることができず、特に、合金の耐熱衝撃性、耐衝撃性が低下する。さらに、熱間静水圧処理時間が0.5時間より短いと合金を高緻密化させることができず、前記Db/Dpが前記範囲よりも小さくなり、1時間を越えると硬質相4が粒成長してWC相2やβ相粒子3を前記所定の粒径に制御することができず、かつ結合相プール6が粗大化する。
【0040】
なお、上記の超硬合金に、前述したような被覆層を形成するには、所望により、上記超硬合金の表面を研削、研磨、洗浄した後、従来公知のPVD法やCVD法等の薄膜形成法によって形成することができる。また、被覆層の厚みは、耐衝撃性、耐摩耗性の点で1〜20μmであることが望ましい。
【0041】
【実施例】
表1に示す平均粒径のWC粉末、Co粉末および他炭化物粉末を表1に示す比率で添加し、アトライタミルあるいはボールミルにて表1に示す時間混合、粉砕し、乾燥した後、プレス成形により切削工具形状(SDKN1203)に成形し、表1に示す条件で焼成し、さらに必要に応じ、表1の条件で熱間静水圧処理して超硬合金を作製した。
【0042】
【表1】

Figure 0004313567
【0043】
得られた超硬合金の任意断面5箇所について、走査型電子顕微鏡により反射電子像を観察し、20μm×20μmの任意領域について、画像解析法によってWC粒子、β相粒子の含有量および粒径(平均および分布)、結合相の含有量、結合相プールの最大径を算出した。なお、含有量は上記画像解析に基づく面積比率を体積比率とした。
【0044】
また、同写真中のβ相粒子(任意5個)についてEPMA分析を行い、金属含有量(β相粒子中におけるWの含有量/β相粒子中における周期律表第4a,5a,6a族金属の全量:表中A(%)と記載、β相粒子中におけるTi、Zr、NbおよびTaの少なくとも1種の総量/β相粒子中におけるW以外の周期律表第4a,5a,6a族金属の総量:表中B(%)と記載)を算出した。
【0045】
さらに、焼結性の目安となるバルク体の密度Dbと、バルク体を超硬合金製の乳鉢によって#200メッシュを通過するサイズに、微粉砕した粉末の密度Dpをヘリウムを使用してガス置換法で測定し、比率Db/Dp値を表2に示した。なお、表中、試料No.1〜5についてはいずれも相対密度が98〜102%であった。
【0046】
また、得られた各超硬合金の表面に、PVD法により膜厚2μmのTiAlN膜を成膜して切削工具を作製した。
【0047】
そして、この切削工具を用いて下記の条件により靭性試験として溝付合金鋼の高送りを行い欠損を生じた時の送り速度を測定した。これら結果は表2に示した。
(耐衝撃性試験)
被削材 :溝付合金鋼(SCM440H)
工具形状:SDKN1203
切削速度:80m/分
送り速度:可変 0.2〜0.8mm/刃
切り込み:2mm
その他 :乾式切削
【0048】
【表2】
Figure 0004313567
【0049】
表1、2の結果より、本発明の製造方法に対して、原料粒径、調合比率、混合条件、焼成条件のいずれかが逸脱する試料No.6〜12については、合金の開気孔率または組織が本発明の範囲から逸脱して耐酸化性、耐衝撃性を両立させることができず、いずれも欠損に至る時間が短いものであった。
【0050】
これに対して、本発明の範囲内の組織からなり、且つガス置換法で測定した前記超硬合金のバルク体の密度Dbとガス置換法で測定した前記超硬合金の微粉砕した粉末の密度Dpの比率Db/Dpが0.95以上で、かつ超硬合金である試料No.1〜5については、いずれも靭性試験において欠損を生じる送りも実用上十分な0.5mm/刃以上と優れた耐衝撃性を有するものであった。
【0051】
【発明の効果】
以上詳述したとおり、本発明の切削工具によれば、β相粒子の含有量を5〜30体積%と増した状態でWC粒子と結合相の含有量を適正化するとともに、WC粒子の平均粒径よりもβ相粒子の平均粒径を積極的に大きくした範囲にて制御した超硬合金を母材とすることによって、WC粒子の粒径を制御できるとともに合金を高緻密化することができ、かつ合金の耐酸化性を高めることができる結果、耐酸化性、耐熱衝撃性および耐衝撃性に優れ、切削工具に適した切削工具を得ることができる。
【図面の簡単な説明】
【図1】本発明の超硬合金の一例を示す代用SEM写真である。
【符号の説明】
1 超硬合金
2 WC粒子
3 β相粒子
4 硬質相
5 結合相
6 結合相プール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cemented carbide that has high strength and high toughness used for cutting tools and the like, and exhibits excellent performance in cutting under difficult conditions such as cutting difficult-to-cut materials and high-feed cutting. The present invention relates to a manufacturing method thereof and a cutting tool using the manufacturing method.
[0002]
[Prior art]
Conventionally, cemented carbide has been used for cutting tools, wear-resistant tools, and the like. In recent years, as a K-type cemented carbide with particular emphasis on toughness, a so-called ultra-fine cemented carbide with a WC particle size smaller than 1 μm is used. Has been developed.
[0003]
Such ultrafine cemented carbide is obtained by adding a small amount of chromium carbide or vanadium carbide powder as a grain growth inhibitor to a fine WC raw material powder and cobalt raw material powder and firing them. The fine cemented carbide has been used for processing non-ferrous materials such as a cutting tool and a micro drill material for drilling a printed circuit board under cutting conditions with less impact such as for finishing (see Patent Document 1).
[0004]
On the other hand, in addition to the above-mentioned finishing machining, cemented carbide applications are locally hot and intermittent under conditions of high impact such as cutting difficult-to-cut materials such as stainless steel and high feed cutting. For processing that requires a strong impact, the so-called β-phase particles such as carbides of Ti and Ta are dispersed in the cemented carbide structure to improve properties such as oxidation resistance and thermal shock resistance. So-called M-type or P-type cemented carbides are known.
[0005]
As a cemented carbide in which the β-phase particles are dispersed, for example, in Patent Document 2, in a cemented carbide substrate in which WC particles having an average particle size of 0.6 μm or less and a maximum particle size of 3.0 μm or less are dispersed. , V, Cr, Ta, Nb and Ti β-phase particles having a maximum particle size of 3.0 μm or less and finely controlled to the same extent as WC particles, and being dispersed at a small ratio of 5% by volume or less, hardness and A cemented carbide with improved toughness is described.
[0006]
In recent years, the machining of difficult-to-cut materials such as stainless steel and the use of high-speed cutting and high-feed cutting for the further efficiency of cutting have been promoted. There is a demand for a cemented carbide having higher temperature characteristics, thermal shock resistance and higher impact resistance than the dispersed M-type or P-type cemented carbide.
[0007]
[Patent Document 1]
JP 61-12847 [Patent Document 2]
Japanese Patent Laid-Open No. 6-81072
[Problems to be solved by the invention]
In response to such a demand, the cemented carbide of Patent Document 1 does not have sufficient characteristics for high temperature characteristics, thermal shock resistance, and impact resistance, and is described in Patent Document 2. When cutting under severe conditions using cemented carbide in which fine WC particles and β-phase particles as fine as WC particles are dispersed in a small content ratio of 5% by volume or less, In addition, there is a problem that the thermal shock resistance and impact resistance are low and defects are likely to occur.
[0009]
On the other hand, in order to improve the oxidation resistance and thermal shock resistance, it is conceivable to increase the content ratio of the β phase particles. However, if the content ratio of the β phase particles is increased, the amount of the binder phase is increased. It is impossible to control the grain growth inhibition of WC particles and β-phase particles while reducing sinter, or the sinterability is lowered and the alloy cannot be densified, and both hardness and bending strength are reduced. For this reason, when cutting is performed under severe conditions, there is still a problem that the impact resistance is low and defects are likely to occur.
[0010]
Accordingly, an object of the present invention is to provide a cemented carbide with excellent oxidation resistance, thermal shock resistance and excellent impact resistance and fracture resistance even under severe conditions, which exhibits high cutting performance even under severe cutting conditions. It is in providing the cutting tool using.
[0011]
[Means for Solving the Problems]
As a result of examining the structure of the cemented carbide excellent in oxidation resistance and impact resistance, the present inventor has found that the content ratio of the WC particles and the binder phase in a state where the content ratio of the β phase particles is increased to 5 to 30% by volume. In addition, the particle size of the WC particles can be controlled and the cemented carbide can be made highly dense by controlling the average particle size of the β-phase particles to a range in which the average particle size of the β phase particles is positively larger than that of the WC particles. It has been found that the oxidation resistance and impact resistance of the cemented carbide can be improved as a result of improving the oxidation resistance and impact resistance.
[0012]
That is, the cutting tool of the present invention is a group 4a, 5a, 6a metal of periodic table with 60-85% by volume of WC particles having an average particle size of 0.2-0.8 μm and an average particle size of 1.2-3 μm. A hard phase composed of 5 to 30% by volume of β-phase particles composed of at least one kind of carbide, nitride or carbonitride, and a bond mainly composed of at least one iron group metal between the hard phases. be attached at the phase 5-20% by volume, and density Db of the bulk material was measured by gas replacement method, the ratio Db / Dp between the density Dp powder after fine grinding to a size passing through a # 200 mesh A carbide, nitride, carbonitride, TiAlN, TiZrN, TiCrN, diamond, diamond-like carbon, and Al 2 O 3 in the periodic table groups 4a, 5a, and 6a are provided on the surface of the cemented carbide that is 0.95 or more. A small group chosen from Both characterized by comprising forming a single layer or multiple layers of one of the covering layer.
[0013]
In such a cemented carbide, the total amount of at least one of Ti, Zr, Nb and Ta in the β-phase particles is that of the group 4a, 5a and 6a metals of the periodic table other than W in the β-phase particles. It is 70% by mass or more in terms of metal with respect to the total amount, and further, the content of W in the β-phase particles is based on the total amount of Group 4a, 5a, and 6a metals in the periodic table in the β-phase particles. By being 30% by mass or more in terms of metal, the thermal shock resistance and impact resistance of the alloy can be improved.
[0014]
In addition, when the maximum particle size of the binder phase pool in which the binder phases are aggregated is 1 μm or less, the strength of the cemented carbide can be increased and the fracture resistance can be increased.
[0015]
Furthermore, the WC particles have an area ratio of 40 to 80% of particles having a particle diameter of less than 0.5 μm, an area ratio of particles of 0.5 to 1.2 μm of 15 to 40%, and a particle diameter of 1.2 μm. By comprising a particle size distribution in which the area ratio of the exceeding particles is 5 to 20%, the impact resistance can be increased and the fracture resistance can be increased even under severe cutting conditions.
[0016]
Moreover, the manufacturing method of the cutting tool of this invention is a WC raw material powder with an average particle diameter of 0.1-0.8 micrometer, and periodic table 4a, 5a, 6a group metal with an average particle diameter of 1-1.3 micrometer. and one of carbide MonoHara material powder, after the at least one iron group metal raw material powder having an average particle diameter 0.1~1μm was 12-36 hours mixed and pulverized using an attritor mill, molding it, 1400 to After vacuum baking at 1450 ° C. for 1 to 2 hours, hot isostatic pressure treatment is further performed at a temperature lower by 20 to 50 ° C. than the baking temperature for 0.5 to 1 hour at a pressure of 50 to 100 MPa. Is.
[0018]
Moreover, this invention can obtain the cutting tool which has the outstanding cutting performance also on conditions with big impacts, such as cutting of a difficult-to-cut material, and high feed cutting, by using the said cemented carbide as a cutting tool.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The structure of the cemented carbide of the present invention will be described with reference to FIG. 1 which is an SEM photograph of an example.
As shown in FIG. 1, the cemented carbide of the present invention comprises WC particles 2 and at least one carbide, nitride or carbonitride particles (hereinafter referred to as β-phase) of Group 4a, 5a, and 6a metals in the periodic table. 3) and a binder phase 5 containing at least one iron group metal as a main component and particularly containing Co and / or Ni in an amount of 80% by mass or more. It is composed of In some cases, a bonded phase pool 6 in which the bonded phases 5 are partially pooled is formed.
[0020]
According to the present invention, as the hard phase 4, 60 to 85% by volume of WC particles 2 having an average particle size of 0.2 to 0.8 μm, and 5 to 30 volumes of β phase particles 3 having an average particle size of 1.2 to 3 μm. It is important that the WC particles 2 and the β-phase particles 3 are bonded by 5 to 20% by volume of the binder phase 5 while being dispersed and contained at a ratio of%.
[0021]
That is, by positively increasing the average particle size of the β-phase particles 3 than the average particle size of the WC particles 2, the particle size of the WC particles 2 can be controlled within the predetermined range and the alloy can be highly densified. As a result, the oxidation resistance and impact resistance of the alloy can be improved. As a result, it can be used well even when the cutting edge is exposed to high temperatures due to severe cutting conditions. If it becomes a possible cemented carbide and deviates from the above range, the oxidation resistance, thermal shock resistance or impact resistance of the alloy will be lowered.
[0022]
That is, when the average particle diameter of the WC particles 2 is smaller than 0.2 μm, the WC particles 2 are aggregated and the binder phase 5 is easily aggregated, and the strength of the alloy is reduced in order to generate a coarse binder phase pool. Bring. Conversely, if the average particle size of the WC particles 2 exceeds 0.8 μm, the strength cannot be improved as compared with the conventional M-type or P-type cemented carbide, and the fracture resistance and wear resistance are improved. I can't let you. Further, if the content of WC particles 2 is less than 60% by volume, the hardness of the alloy is lowered, and conversely if it exceeds 85% by volume, the oxidation resistance or the densification of the alloy is impaired, and the strength of the alloy is lowered. To do.
[0023]
Furthermore, if the average particle size of the β phase particles 3 is smaller than 1.2 μm, the sinterability is extremely lowered and a dense alloy cannot be obtained. If the average particle size of the β phase particles 3 exceeds 3 μm, the WC particles It becomes larger with respect to the average grain size, and acts as a fracture source due to stress concentration, so that the strength of the alloy is lowered. On the other hand, if the content of β-phase particles 3 is less than 5% by volume, the oxidation resistance and fracture resistance of the alloy are lowered. Conversely, if the content is more than 25% by volume, the alloy is insufficiently densified and the strength of the alloy is reduced. Decreases.
[0024]
Furthermore, if the content of the binder phase 5 is less than 5% by volume, the alloy cannot be densified and the strength of the alloy is reduced. Conversely, if the content of the binder phase 5 exceeds 20% by volume, As the hardness decreases, a coarse metal pool in which the binder phase 5 is aggregated is likely to be formed, and the strength of the alloy is decreased.
[0025]
The cemented carbide of the present invention has a ratio Db / Dp of the density Db of the bulk body measured by the gas replacement method and the density Dp of the powder after pulverizing the bulk body to a size passing through # 200 mesh. It is also important that it is 0.95 or more, especially 0.975 or more, and further 0.98 or more. That this ratio Db / Dp is large means that there are few open pores in the alloy and the alloy is in a highly densified state.
[0026]
Accordingly, in the present invention, if this Db / Dp is smaller than 0.95, voids remain inside the alloy, so that high hardness and high strength cannot be achieved, and oxidation resistance and thermal shock are not achieved. And impact resistance cannot be improved. According to the present invention, the relative density of the cemented carbide according to the Archimedes method is 98% to 102% with respect to the theoretical density when it is assumed that there is no solid solution of metal between the WC particles, the β phase particles, and the binder phase. It is desirable that
[0027]
Here, according to the present invention, the total amount of at least one of Ti, Zr, Nb, and Ta in the β-phase particles 3 is that of the group 4a, 5a, and 6a metals of the periodic table other than W in the β-phase particles 3. By containing 70% by mass or more, particularly 80% by mass or more, and further 90% by mass or more in terms of metal based on the total amount, the oxidation resistance and impact resistance of the alloy can be enhanced.
[0028]
Further, in terms of enhancing the thermal shock resistance of the alloy, in the β-phase particles 3, W is 30% by mass or more in terms of metal with respect to the total amount of metals in Group 4a, 5a, and 6a of the periodic table, particularly 40 to 60 mass. It is desirable to contain it in the ratio of%.
[0029]
Furthermore, according to the present invention, by controlling the structure of the alloy as described above, the maximum particle size of the metal pool 6 in which the binder phase 5 is aggregated can be controlled to 1 μm or less, particularly 0.7 μm or less, Thereby, the strength of the alloy can be increased stably.
[0030]
The particle size distribution of the WC particles 2 is such that the area ratio of particles having a particle diameter of less than 0.5 μm is 40 to 80%, the area ratio of particles having a particle diameter of 0.5 to 1.2 μm is 15 to 40%, and the particle diameter 1 The impact ratio of the alloy can be increased by the presence of the area ratio of particles exceeding 2 μm at a ratio of 5 to 20%.
[0031]
Incidentally, the cutting tool of the present invention, the surface of the cemented carbide of this, periodic table 4a, 5a, 6a group metal carbides, nitrides, carbonitrides, TiAlN, TiZrN, TiCrN, diamond, diamond-like it can be by forming at least one coating layer a single layer or multiple layers are selected from the group consisting of carbon and Al 2 O 3, oxidation resistance, and high hardness material such as excellent cutting tool wear resistance However, even in this case, since the cemented carbide (base material) described above is excellent in oxidation resistance, thermal shock resistance, and impact resistance, even if the coating layer is worn or peeled off, there is no defect or wear. This is a cutting tool capable of good cutting over a long time without rapidly progressing.
[0032]
Next, a method for producing the above-mentioned cemented carbide will be described. First, a WC powder having an average particle diameter of 0.1 to 0.8 μm is prepared in a periodic table of 70 to 85 mass% and an average particle diameter of 1 to 1.3 μm. 4a, 5a, 6a group metals, in particular, carbides, nitrides and carbonitride powders of at least one metal selected from the group consisting of Ti, Zr, V, Cr, Mo, Ta, Nb, and W or the above two metals The total amount of the above solid solution powder is 5 to 15% by mass, the iron group metal powder having an average particle size of 0.1 to 1 μm is 5 to 15% by mass, and, if desired, metal W (W) powder or carbon black (C ), Mixed and pulverized.
[0033]
Here, according to the present invention, the cemented carbide having the above-described structure can be produced by controlling the particle size of the raw material and the firing conditions described below.
[0034]
According to the present invention, the mixing and pulverization uses an attritor mill in terms of controlling the particle size of each component in the sintered alloy, and the mixing and pulverization time is 12 to 36 hours, particularly 15 to It shall be the 24 hours. This is a method of advancing grinding and mixing in the conventional ball mill by the impact of ball friction and ball falling, whereas in the attritor mill, the grinding balls move greatly by the rotating stirring blades, so the grinding efficiency is high. This is because it has the advantage that it is high and it is easy to control to a desired particle size. If the pulverization time is shorter than 12 hours, the pulverization particle size and the degree of mixing are biased, and it is longer than 36 hours. However, the pulverized particle size is not further reduced.
[0035]
The mixed and pulverized powder is fired after being pressed into a predetermined cutting tool shape by a molding method such as a die press.
[0036]
In firing, first, this compact is vacuum fired at 1400-1450 ° C. for 1-2 hours. By this vacuum firing, the relative density becomes 98% or higher. Then, hot isostatic pressure treatment is performed at a temperature lower by 20 to 50 ° C. than the firing temperature for 0.5 to 1 hour at a pressure of 50 to 100 MPa. The degree of vacuum at the time of vacuum firing is suitably 0.1 to 100 Pa.
[0037]
Here, in the above firing conditions, if the firing temperature is lower than 1400 ° C., it is difficult to densify the alloy, the Db / Dp becomes smaller than the above range, and if it exceeds 1450 ° C., the hard phase 4 causes abnormal grain growth. Therefore, the WC particles 2 and the β phase particles 3 cannot be controlled to the predetermined particle sizes.
[0038]
Also, if the firing time is shorter than 1 hour, the alloy cannot be sufficiently densified by the hot isostatic treatment described later, and conversely, if it exceeds 2 hours, the WC particles 2 and β-phase particles 2 are hard. The phase 4 grows and cannot be controlled to the predetermined particle size described above.
[0039]
Further, when the temperature of the hot isostatic treatment is higher than the above range, or when the pressure is higher than 100 MPa, the WC particles 2 and the β phase particles 3 grow and the particle size of each particle is controlled within the above-described range. And the oxidation resistance and impact resistance of the alloy are reduced. On the other hand, if the temperature of the hot isostatic treatment is lower than the treatment temperature or the pressure is lower than 50 MPa, the alloy cannot be densified, and in particular, the thermal shock resistance and impact resistance of the alloy are low. descend. Furthermore, if the hot isostatic pressure treatment time is shorter than 0.5 hours, the alloy cannot be densified, the Db / Dp is smaller than the above range, and if it exceeds 1 hour, the hard phase 4 grows. As a result, the WC phase 2 and the β phase particles 3 cannot be controlled to the predetermined particle diameter, and the bonded phase pool 6 becomes coarse.
[0040]
In order to form a coating layer as described above on the above cemented carbide, the surface of the cemented carbide is ground, polished, and washed as desired, and then a conventionally known thin film such as a PVD method or a CVD method. It can be formed by a forming method. Further, the thickness of the coating layer is preferably 1 to 20 μm in terms of impact resistance and wear resistance.
[0041]
【Example】
Add the WC powder, Co powder and other carbide powder with the average particle size shown in Table 1 in the ratio shown in Table 1, mix, grind and dry for the time shown in Table 1 in an attritor mill or ball mill, then cut by press molding Molded into a tool shape (SDKN1203), fired under the conditions shown in Table 1, and further subjected to hot isostatic pressing under the conditions shown in Table 1 to produce a cemented carbide.
[0042]
[Table 1]
Figure 0004313567
[0043]
The reflected electron image was observed with a scanning electron microscope at five arbitrary cross sections of the obtained cemented carbide, and the content and particle size of WC particles and β-phase particles were determined by image analysis for an arbitrary region of 20 μm × 20 μm ( The average and distribution), the content of the binder phase, and the maximum diameter of the binder phase pool were calculated. In addition, content made the area ratio based on the said image analysis the volume ratio.
[0044]
In addition, EPMA analysis was performed on the β phase particles (arbitrary 5 particles) in the same photograph, and the metal content (W content in β phase particles / Group 4a, 5a, 6a metals in the periodic table in β phase particles) Total amount of: described in the table as A (%), total amount of at least one of Ti, Zr, Nb and Ta in β-phase particles / group 4a, 5a, 6a metal of periodic table other than W in β-phase particles Total amount: described as B (%) in the table).
[0045]
Furthermore, the density Db of the bulk body, which is a measure of sinterability, and the bulk body are made to pass through # 200 mesh with a mortar made of cemented carbide, and the density Dp of the finely pulverized powder is replaced with helium. The ratio Db / Dp value is shown in Table 2. In the table, sample No. In each of 1 to 5, the relative density was 98 to 102%.
[0046]
Further, a TiAlN film having a thickness of 2 μm was formed on the surface of each obtained cemented carbide by the PVD method to produce a cutting tool.
[0047]
Then, using this cutting tool, the feed rate was measured when a grooved alloy steel was fed at high speed as a toughness test under the following conditions. These results are shown in Table 2.
(Impact resistance test)
Work material: Grooved alloy steel (SCM440H)
Tool shape: SDKN1203
Cutting speed: 80 m / min Feeding speed: Variable 0.2 to 0.8 mm / Blade cutting: 2 mm
Other: Dry cutting [0048]
[Table 2]
Figure 0004313567
[0049]
From the results shown in Tables 1 and 2, sample No. in which any of the raw material particle size, the mixing ratio, the mixing conditions, and the firing conditions deviates from the manufacturing method of the present invention. For Nos. 6 to 12, the open porosity or structure of the alloy deviated from the scope of the present invention, making it impossible to achieve both oxidation resistance and impact resistance.
[0050]
On the other hand, the density Db of the cemented carbide bulk body measured by the gas displacement method and the density Db of the cemented carbide bulk body measured by the gas displacement method and having a structure within the scope of the present invention. Sample No. Db ratio Db / Dp is 0.95 or more and is a cemented carbide. As for Nos. 1 to 5, all of the feeds causing defects in the toughness test had a practically sufficient impact resistance of 0.5 mm / blade or more.
[0051]
【The invention's effect】
As described above in detail, according to the cutting tool of the present invention, while the content of β phase particles is increased to 5 to 30% by volume, the content of WC particles and binder phase is optimized, and the average of WC particles is increased. By using as a base material a cemented carbide controlled in a range in which the average particle size of the β phase particles is positively larger than the particle size, the particle size of the WC particles can be controlled and the alloy can be highly densified. As a result, the oxidation resistance of the alloy can be improved. As a result, a cutting tool that is excellent in oxidation resistance, thermal shock resistance and impact resistance and suitable for a cutting tool can be obtained.
[Brief description of the drawings]
FIG. 1 is a substitute SEM photograph showing an example of a cemented carbide of the present invention.
[Explanation of symbols]
1 Cemented carbide 2 WC particles 3 β phase particles 4 Hard phase 5 Bonded phase 6 Bonded phase pool

Claims (6)

平均粒径0.2〜0.8μmのWC粒子を60〜85体積%と、平均粒径1.2〜3μmの周期律表第4a,5a,6a族金属の少なくとも1種の炭化物からなるβ相粒子を5〜30体積%と、からなる硬質相と、前記硬質相の間を鉄族金属の少なくとも1種を主体とする結合相5〜20体積%にて結合してなり、ガス置換法で測定したバルク体の密度Dbと、該バルク体を#200メッシュを通過するサイズに微粉砕した後の粉末の密度Dpの比率Db/Dpが0.95以上である超硬合金の表面に、周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物、TiAlN、TiZrN、TiCrN、ダイヤモンド、ダイヤモンドライクカーボンおよびAl の群から選ばれる少なくとも1種の被覆層を単層または複数層形成してなることを特徴とする切削工具And 60 to 85% by volume of WC particles having an average particle diameter of 0.2 to 0.8 [mu] m, the 4a periodic table having an average particle diameter of 1.2~3μm, 5a, 6a group of at least one hydrocarbon compound or these metals A β-phase particle composed of 5 to 30% by volume, and a hard phase composed of 5 to 30% by volume, and the hard phase is bonded with a bonded phase of 5 to 20% by volume mainly composed of at least one iron group metal. and density Db of the bulk material was measured by displacement method, the ratio Db / Dp between the density Dp powder after fine grinding to a size passing through a # 200 mesh the bulk body of the cemented carbide is 0.95 or more On the surface, at least one coating selected from the group consisting of carbides, nitrides, carbonitrides, TiAlN, TiZrN, TiCrN, diamond, diamond-like carbon, and Al 2 O 3 of periodic table group 4a, 5a, 6a metals single layer or multiple layers forming a layer Cutting tool characterized by comprising Te. 前記β相粒子中におけるTi、Zr、NbおよびTaの少なくとも1種の総量が、β相粒子中におけるW以外の周期律表第4a,5a,6a族金属の総量に対して金属換算で70質量%以上であることを特徴とする請求項1記載の切削工具The total amount of at least one of Ti, Zr, Nb, and Ta in the β-phase particles is 70 mass in terms of metal with respect to the total amount of Group 4a, 5a, and 6a metals other than W in the β-phase particles. The cutting tool according to claim 1, wherein the cutting tool is at least%. 前記β相粒子中におけるWの含有量が、β相粒子中における周期律表第4a,5a,6a族金属の全量に対して金属換算で30質量%以上であることを特徴とする請求項2記載の切削工具The content of W in the β phase particles is 30% by mass or more in terms of metal with respect to the total amount of metals in Group 4a, 5a, and 6a of the periodic table in the β phase particles. The described cutting tool . 前記結合相が凝集した結合相プールの最大粒径が1μm以下であることを特徴とする請求項1乃至3のいずれか記載の切削工具The cutting tool according to any one of claims 1 to 3, wherein a maximum particle size of the binder phase pool in which the binder phases are aggregated is 1 µm or less. 前記WC粒子が、粒径0.5μm未満の粒子の面積比率が40〜80%、粒径0.5〜1.2μmの粒子の面積比率が15〜40%、粒径1.2μmを超える粒子の面積比率が5〜20%の割合の粒度分布からなることを特徴とする請求項1乃至4のいずれか記載の切削工具The WC particles are particles having an area ratio of 40 to 80% of particles having a particle diameter of less than 0.5 μm, particles having an area ratio of 15 to 40% of particles having a particle diameter of 0.5 to 1.2 μm, and particles having a particle diameter exceeding 1.2 μm. The cutting tool according to any one of claims 1 to 4, characterized by comprising a particle size distribution with an area ratio of 5 to 20%. 平均粒径0.1〜0.8μmのWC原料粉末と、平均粒径1〜1.3μmの周期律表第4a,5a,6a族金属の少なくとも1種の炭化物原料粉末と、平均粒径0.1〜1μmの少なくとも1種の鉄族金属原料粉末とをアトライタミルを用いて12〜36時間混合粉砕した後、これを成形し、1400〜1450℃にて1〜2時間真空焼成した後、前記焼成温度より20〜50℃低い温度にて0.5〜1時間、50〜100MPaの圧力で熱間静水圧処理することを特徴とする切削工具の製造方法。And WC raw material powder having an average particle diameter 0.1 to 0.8 [mu] m, the 4a, 5a periodic table having an average particle size of 1~1.3Myuemu, and at least one carbide MonoHara material powder of 6a group metal, the average particle After mixing and pulverizing at least one iron group metal raw material powder having a diameter of 0.1 to 1 μm with an attritor mill for 12 to 36 hours , this is molded and vacuum fired at 1400 to 1450 ° C. for 1 to 2 hours A method for producing a cutting tool , wherein hot isostatic pressure treatment is performed at a pressure of 50 to 100 MPa for 0.5 to 1 hour at a temperature 20 to 50 ° C. lower than the firing temperature.
JP2002362577A 2002-12-13 2002-12-13 Cutting tool and manufacturing method thereof Expired - Fee Related JP4313567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362577A JP4313567B2 (en) 2002-12-13 2002-12-13 Cutting tool and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362577A JP4313567B2 (en) 2002-12-13 2002-12-13 Cutting tool and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004190118A JP2004190118A (en) 2004-07-08
JP4313567B2 true JP4313567B2 (en) 2009-08-12

Family

ID=32760987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362577A Expired - Fee Related JP4313567B2 (en) 2002-12-13 2002-12-13 Cutting tool and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4313567B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336120B2 (en) * 2003-02-25 2009-09-30 京セラ株式会社 Cutting tool and manufacturing method thereof
JP2004256862A (en) * 2003-02-25 2004-09-16 Kyocera Corp Cemented carbide, production method therefor, and cutting tool using the same
JP2009024214A (en) * 2007-07-19 2009-02-05 Tungaloy Corp Hard metal and manufacturing method therefor
JP6068830B2 (en) * 2011-05-12 2017-01-25 株式会社タンガロイ Cemented carbide and coated cemented carbide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711051B2 (en) * 1988-09-07 1995-02-08 東芝タンガロイ株式会社 Cemented carbide and coated cemented carbide formed by forming a coating on the surface of the alloy
JPH0681072A (en) * 1992-09-01 1994-03-22 Mitsubishi Materials Corp Tungsten carbide base sintered hard alloy
JP3606527B2 (en) * 1993-11-10 2005-01-05 三菱マテリアル神戸ツールズ株式会社 Shaft cutting tool
JPH07197180A (en) * 1993-12-29 1995-08-01 Kobe Steel Ltd High strength and high hardness sintered hard alloy excellent in corrosion resistance

Also Published As

Publication number Publication date
JP2004190118A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP5732663B2 (en) Cubic boron nitride sintered tool
JP6068830B2 (en) Cemented carbide and coated cemented carbide
JP2008133508A (en) Hard metal
WO2010104094A1 (en) Cermet and coated cermet
JP2004076049A (en) Hard metal of ultra-fine particles
JP4313567B2 (en) Cutting tool and manufacturing method thereof
JP5856752B2 (en) Tungsten carbide-based sintered body and wear-resistant member using the same
JP4336120B2 (en) Cutting tool and manufacturing method thereof
JP4331958B2 (en) Cemented carbide manufacturing method
JP2004256862A (en) Cemented carbide, production method therefor, and cutting tool using the same
CN110785504A (en) Composite sintered body
JP2006111947A (en) Ultra-fine particle of cermet
JP4351451B2 (en) Cemented carbide and method for manufacturing the same, and rotary tool using the cemented carbide
JP4776395B2 (en) Cutting tools
JP5057751B2 (en) Cemented carbide and method for producing the same
CN112055757B (en) Composite sintered body
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP2004256852A (en) Cemented carbide and drill using it
JP5008789B2 (en) Super hard sintered body
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP2006144089A (en) Hard metal made of superfine particle
JP5132678B2 (en) cermet
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP3605740B2 (en) Carbide alloy for end mill
KR101251599B1 (en) Sintered body for a cutting tool and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees