JP2008133508A - Hard metal - Google Patents

Hard metal Download PDF

Info

Publication number
JP2008133508A
JP2008133508A JP2006320615A JP2006320615A JP2008133508A JP 2008133508 A JP2008133508 A JP 2008133508A JP 2006320615 A JP2006320615 A JP 2006320615A JP 2006320615 A JP2006320615 A JP 2006320615A JP 2008133508 A JP2008133508 A JP 2008133508A
Authority
JP
Japan
Prior art keywords
cemented carbide
particles
powder
hard metal
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006320615A
Other languages
Japanese (ja)
Inventor
Hideyoshi Kinoshita
秀吉 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006320615A priority Critical patent/JP2008133508A/en
Publication of JP2008133508A publication Critical patent/JP2008133508A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard metal which has enhanced abrasion resistance and deformation resistance on the surface, while enhancing toughness thereof. <P>SOLUTION: The hard metal 1 comprises WC grains 2 and a binder phase 3 which combine the WC grains 2. When a cross-section structure of the hard metal 1 is observed, WC grains 2a which show polygonal shapes and roundness with curvature radiuses of 50 nm or more at the corners are contained in the inner part of the hard metal so as to occupy 50% or more of the area of the whole WC grains 2, and a mean length of neck growing parts 4 among WC grains 2 is longer in the surface part than in the inner part of the hard metal 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、切削工具等に使用される超硬合金に関する。   The present invention relates to a cemented carbide used for a cutting tool or the like.

従来より、金属の切削加工に広く用いられている超硬合金は、六方晶形からなり、断面が三角形や四角形等の多角形形状をなす角ばったWC粒子を主体とする硬質相と、Co等の鉄族金属の結合相からなるWC−Co系合金、もしくは上記WC−Co系に周期表第4、5および6族金属の炭化物、窒化物、炭窒化物等の固溶体相を分散せしめた系が知られている。   Conventionally, a cemented carbide widely used for metal cutting processing has a hexagonal shape, a hard phase mainly composed of angular WC particles having a polygonal shape such as a triangle or a quadrangle, and a Co or the like. A WC-Co alloy composed of a binder phase of an iron group metal, or a system in which a solid solution phase such as carbides, nitrides, carbonitrides of the fourth, fifth and sixth group metals of the periodic table is dispersed in the WC-Co system. Are known.

これらの超硬合金は、切削工具として、主に鋳鉄や炭素鋼等の切削に利用されているが、最近ではステンレス鋼といった難削材の加工やプリント基板の小径穴あけ加工等、切削の更なる効率化を求めて高速切削・高送り切削への利用も進められている。   These cemented carbides are mainly used for cutting cast iron, carbon steel, etc. as cutting tools, but recently, cutting of hard-to-cut materials such as stainless steel and small-diameter drilling of printed circuit boards has been further performed. The use for high-speed cutting and high-feed cutting has been promoted in order to improve efficiency.

例えば、特許文献1では、超硬合金の製造において低炭素側のWC原料を用いることによって、焼結後の超硬合金におけるWC粒子の形状が比較的丸いものとなり、クラックが伝播する場合にはクラックが粒子周辺を通って伝播する傾向にあることから、クラック抵抗が大きくなってクラックの進展が抑制されることが開示されている。また、特許文献2においては、超硬合金の製造工程における混合、焼成条件を制御して、未粒成長WC粒子相を所定の割合で含有せしめて、靭性に優れる超硬合金を作製できることが開示されている。   For example, in Patent Document 1, when a WC raw material on the low carbon side is used in the manufacture of cemented carbide, the shape of the WC particles in the sintered cemented carbide becomes relatively round, and cracks propagate. It has been disclosed that cracks tend to propagate through the periphery of the particles, so that the crack resistance is increased and the progress of cracks is suppressed. Patent Document 2 discloses that a cemented carbide excellent in toughness can be produced by controlling the mixing and firing conditions in the manufacturing process of cemented carbide to include a grain-grown WC particle phase at a predetermined ratio. Has been.

さらに、特許文献3では、超硬合金の表面での板状WC粒子の比率を内部に比べて高くすることによって表面の板状WC粒子間に空隙が形成され、この空隙が潤滑剤などを保持する働きをして軸受け材として効果が発揮されること、この超硬合金の表面にダイヤモンド層を被覆する際に被覆層の密着性が向上することが記載されている。
特開2000−15514号公報 特開平06−172912号公報 特開2000−119790号公報
Furthermore, in Patent Document 3, voids are formed between the plate-like WC particles on the surface by increasing the ratio of the plate-like WC particles on the surface of the cemented carbide compared to the inside, and this void holds the lubricant and the like. It is described that the effect as a bearing material is exerted by this function, and that the adhesion of the coating layer is improved when the diamond layer is coated on the surface of the cemented carbide.
JP 2000-15514 A Japanese Patent Laid-Open No. 06-172912 JP 2000-119790 A

しかしながら、特許文献1、2の超硬合金では、WC粒子の形状が丸くなってクラック進展の抑制効果は高いが、晶出WC量が少なくて粒成長に伴うWC粒子同士の合体が発生し難いことから、超硬合金の耐摩耗性および耐変形性が十分でなく、例えば切削工具として用いた場合には早期に切刃形状が変化してしまい、加工精度が低下するという問題があった。また、特許文献3の超硬合金では、表面においてボイドが多く存在することから、超硬合金の表面における耐摩耗性に劣るという問題があった。   However, in the cemented carbides of Patent Documents 1 and 2, the shape of the WC particles is rounded and the effect of suppressing crack growth is high, but the amount of crystallization WC is small and coalescence of WC particles accompanying grain growth is difficult to occur. For this reason, the wear resistance and deformation resistance of the cemented carbide are not sufficient. For example, when used as a cutting tool, there is a problem that the cutting edge shape is changed at an early stage and the processing accuracy is lowered. Further, the cemented carbide disclosed in Patent Document 3 has a problem that the surface has a lot of voids, resulting in poor wear resistance on the surface of the cemented carbide.

したがって、本発明の目的は、超硬合金の靭性を高めつつ、表面における耐摩耗性と耐変形性を高めた超硬合金を提供することにある。   Accordingly, an object of the present invention is to provide a cemented carbide having improved wear resistance and deformation resistance on the surface while enhancing the toughness of the cemented carbide.

本発明の超硬合金は、WC粒子間を結合相で結合した超硬合金であって、該超硬合金の断面組織を観察した場合に、内部において、多角形状でかつ角部の曲率半径が50nm以上の丸みを呈するWC粒子がWC粒子全体に対して50面積%以上の割合で含まれているとともに、前記WC粒子間のネック成長部の平均長さが前記超硬合金の内部よりも表面において長いことを特徴とする。   The cemented carbide of the present invention is a cemented carbide in which WC particles are bonded with a binder phase, and when the cross-sectional structure of the cemented carbide is observed, a polygonal shape and a radius of curvature of a corner portion are formed inside. WC particles exhibiting a roundness of 50 nm or more are contained in a ratio of 50 area% or more with respect to the entire WC particles, and the average length of the neck growth portion between the WC particles is larger than the surface of the inside of the cemented carbide. It is characterized by being long.

ここで、上記構成において、前記WC粒子の平均粒径が0.5〜1.5μmであることを特徴とする。   Here, in the above configuration, the average particle diameter of the WC particles is 0.5 to 1.5 μm.

また、上記構成において、前記平均粒径に対して±30%以内の粒径をもつWC粒子の比率が、WC粒子全体に対して80面積%以上の割合で存在することを特徴とする。   In the above configuration, the ratio of WC particles having a particle size within ± 30% with respect to the average particle size is 80% by area or more with respect to the entire WC particles.

さらに、上記構成において、前記表面でのX線回折測定における(101)面の回折ピークの半価幅が、前記内部でのX線回折測定における(101)面の回折ピークの半価幅よりも狭いことを特徴とする。   Further, in the above configuration, the half width of the diffraction peak of the (101) plane in the X-ray diffraction measurement on the surface is larger than the half width of the diffraction peak of the (101) plane in the internal X-ray diffraction measurement. It is characterized by being narrow.

本発明の超硬合金によれば、WC粒子が、多角形状でかつ角部の曲率半径が50nm以上の丸みを呈するWC粒子がWC粒子全体に対して50面積%以上の割合で含まれているとともに、前記WC粒子間のネック成長部の平均長さが前記超硬合金の内部よりも表面において長いことによって、超硬合金全体の靭性を高めつつ、超硬合金の表面における耐摩耗性および耐変形性を高めることができる。   According to the cemented carbide of the present invention, the WC particles are polygonal and the WC particles having a rounded curvature radius of 50 nm or more are included at a ratio of 50 area% or more with respect to the entire WC particles. In addition, since the average length of the neck growth portion between the WC particles is longer on the surface than the inside of the cemented carbide, the wear resistance and resistance on the surface of the cemented carbide are improved while improving the toughness of the entire cemented carbide. Deformability can be improved.

ここで、前記WC粒子の平均粒径が0.5〜1.5μmであることが、超硬合金の硬度を高める点で望ましい。   Here, the average particle diameter of the WC particles is preferably 0.5 to 1.5 μm from the viewpoint of increasing the hardness of the cemented carbide.

また、前記平均粒径に対して±30%以内の粒径をもつWC粒子の比率が、WC粒子全体に対して80面積%以上の割合で存在することが、超硬合金の強度を高めることができる点で望ましい。   Further, the ratio of WC particles having a particle size within ± 30% with respect to the average particle size is present at a ratio of 80 area% or more with respect to the entire WC particles, thereby increasing the strength of the cemented carbide. It is desirable in that it can.

さらに、前記表面でのX線回折測定における(101)面の回折ピークの半価幅が、前記内部でのX線回折測定における(101)面の回折ピークの半価幅よりも狭いことが、超硬合金の表面における耐摩耗性および耐変形性をより高めることができる点で望ましい。   Furthermore, the half width of the diffraction peak of the (101) plane in the X-ray diffraction measurement on the surface is narrower than the half width of the diffraction peak of the (101) plane in the internal X-ray diffraction measurement, It is desirable in that the wear resistance and deformation resistance on the surface of the cemented carbide can be further improved.

本発明の超硬合金について、その(a)表面、(b)内部の走査型電子顕微鏡写真である図1を基に説明する。   The cemented carbide of the present invention will be described with reference to FIG. 1 which is a scanning electron micrograph of (a) surface and (b) inside.

図1によれば、超硬合金1は、WC粒子2間を結合相3で結合した組織で構成されている。   According to FIG. 1, the cemented carbide 1 is composed of a structure in which WC particles 2 are bonded by a bonding phase 3.

本発明によれば、超硬合金1の断面組織を観察した場合に、内部において、多角形状でかつの曲率半径が50nm以上の丸みを呈するWC粒子(以下、丸いWC粒子と略す。)2aがWC粒子2全体に対して50面積%以上の割合で含まれているとともに、WC粒子2間のネック成長部4の平均長さが、超硬合金1の内部よりも表面において長いことを特徴とする。なお、図1では、丸いWC粒子2aの角部cを実線矢印で示しており、丸いWC粒子2a以外のWC粒子2の角部cを点線矢印で示している。これにより、超硬合金1全体の靭性を高めつつ、超硬合金1の表面における耐摩耗性および耐変形性を高めることができる。   According to the present invention, when the cross-sectional structure of the cemented carbide 1 is observed, WC particles (hereinafter abbreviated as round WC particles) 2a that are rounded and have a polygonal shape and a radius of curvature of 50 nm or more are formed inside. It is contained at a ratio of 50 area% or more with respect to the entire WC particles 2, and the average length of the neck growth portion 4 between the WC particles 2 is longer on the surface than the inside of the cemented carbide 1. To do. In FIG. 1, corners c of round WC particles 2a are indicated by solid arrows, and corners c of WC particles 2 other than round WC particles 2a are indicated by dotted arrows. Thereby, the wear resistance and the deformation resistance on the surface of the cemented carbide 1 can be enhanced while enhancing the toughness of the cemented carbide 1 as a whole.

ここで、本発明において、WC粒子2の角部とは、図1に示すように、超硬合金の断面についての顕微鏡写真において、それぞれのWC粒子2に存在する角部のうちで最も曲率半径が小さい、つまり最も尖った角部c(図1の矢印の先端部)の曲率半径が50nm以上の丸みを呈するWC粒子2を丸いWC粒子2aと定義する。このとき、WC粒子2が隣接するWC粒子2とネック成長部を形成している部分は角部とみなさず、単独で角部をなしている部分のみについて評価する。したがって、丸いWC粒子2aの含有比率の算出する際には、角部が1つもないWC粒子2は省いて見積もる。なお、ネック成長部4はクラックの進展方向を変向する作用があるので、クラックの進展抑制に対して有効であると思われる。また、WC粒子2間のネック成長部4とは、図2に示されるようなWC粒子2間がそれぞれ独立して存在しながらもその一部が焼結によって結合したWC粒子2において、焼結で連結している部分の長さを指す。なお、本発明における超硬合金1の内部とは、超硬合金1の表面から300μm以上の深さ領域をいう。   Here, in the present invention, the corner of the WC particle 2 is, as shown in FIG. 1, the smallest radius of curvature among the corners present in each WC particle 2 in the micrograph of the cross section of the cemented carbide. WC particles 2 having a small radius, that is, a rounded corner having a radius of curvature of 50 nm or more at the sharpest corner c (the tip of the arrow in FIG. 1) are defined as round WC particles 2a. At this time, the portion where the WC particle 2 forms the neck growth portion with the adjacent WC particle 2 is not regarded as a corner portion, and only the portion forming the corner portion alone is evaluated. Therefore, when calculating the content ratio of the round WC particles 2a, the WC particles 2 having no corners are omitted for estimation. In addition, since the neck growth part 4 has the effect | action which changes the propagation direction of a crack, it is thought that it is effective with respect to crack progress suppression. In addition, the neck growth portion 4 between the WC particles 2 is a WC particle 2 in which the WC particles 2 as shown in FIG. It refers to the length of the parts connected by. In the present invention, the inside of the cemented carbide 1 refers to a depth region of 300 μm or more from the surface of the cemented carbide 1.

また、WC粒子2の平均粒径が1.5μm以下であることが、超硬合金1の硬度を高める点で望ましい。ここで、上記超硬合金1の組織とするためにはWC原料粉末の安定した供給が可能な点で、WC粒子2の平均粒径が0.5μm以上であることが望ましい。したがって、本発明においては、WC粒子2の平均粒径が0.5〜1.5μmであることが望ましい。   Further, the average particle diameter of the WC particles 2 is preferably 1.5 μm or less from the viewpoint of increasing the hardness of the cemented carbide 1. Here, in order to obtain the structure of the cemented carbide 1, it is desirable that the average particle diameter of the WC particles 2 is 0.5 μm or more in that stable supply of the WC raw material powder is possible. Therefore, in the present invention, it is desirable that the average particle diameter of the WC particles 2 is 0.5 to 1.5 μm.

なお、前記平均粒径に対して±30%以内の粒径をもつWC粒子の比率がWC粒子2全体に対して80面積%以上の割合で存在することが、超硬合金1の強度を高めることができる点で望ましい。   It is to be noted that the ratio of WC particles having a particle size within ± 30% with respect to the average particle size is present in a ratio of 80 area% or more with respect to the entire WC particles 2 to increase the strength of the cemented carbide 1. It is desirable in that it can.

さらに、図3の超硬合金1の(a)表面、(b)内部におけるX線回折パターンに示すように、表面(a)でのX線回折測定における(101)面の回折ピークの半価幅wが、内部(b)でのX線回折測定における(101)面の回折ピークの半価幅wよりも狭いことが、超硬合金1の表面における耐摩耗性および耐変形性をより高めることができる点で望ましい。 Further, as shown in the X-ray diffraction pattern on the surface (a) and inside (b) of the cemented carbide 1 in FIG. 3, the half value of the diffraction peak on the (101) plane in the X-ray diffraction measurement on the surface (a). The width w s is narrower than the half-value width w i of the diffraction peak of the (101) plane in the X-ray diffraction measurement in the interior (b), thereby reducing the wear resistance and deformation resistance on the surface of the cemented carbide 1. It is desirable in that it can be further increased.

(製造方法)
また、上述した超硬合金を製造するには、まず、例えば平均粒径0.5〜1.5μmのWC粉末を80〜90質量%、平均粒径0.1〜2μmのTaC粉末、Cr粉末、VC粉末、TiC粉末、NbC粉末、ZrC粉末、MoC粉末、HfC粉末を総量で0.5〜5質量%、平均粒径0.5〜1μmの鉄族金属を5〜15質量%、さらには所望により、金属W(タングステン)粉末、あるいはカーボンブラック(C)を混合する。
(Production method)
In order to manufacture the above-described cemented carbide, first, for example, 80 to 90% by mass of WC powder having an average particle size of 0.5 to 1.5 μm, TaC powder having an average particle size of 0.1 to 2 μm, Cr 3 C 2 powder, VC powder, TiC powder, NbC powder, ZrC powder, MoC powder, 0.5 to 5 mass% in a total amount of HfC powder, average particle diameter of iron group metals of 0.5 to 1 [mu] m 5 to 15 wt% Further, if desired, metal W (tungsten) powder or carbon black (C) is mixed.

ここで、本発明においては、WC粉末として、製造時に1750℃以上で炭化処理された高温炭化WC粉末を用いる。これによって、焼成後の超硬合金に含まれるWC粒子は部分的に急激な粒成長を引き起こすことなく、WC粒子全体が比較的均一に粒成長するようになる。このため、超硬合金全体にわたってWC粒子の粒径が従来に比較して均一に揃ったものとなる。   Here, in this invention, the high temperature carbonization WC powder carbonized at 1750 degreeC or more at the time of manufacture is used as WC powder. As a result, the WC particles contained in the cemented carbide after firing do not cause partial abrupt grain growth, and the entire WC particles grow relatively uniformly. For this reason, the particle diameters of the WC particles are uniform over the entire cemented carbide as compared with the conventional case.

しかも、WC粒子2の形状も徐々に三角形や四角形の多角形形状に成長するために、後述する所定条件にて焼成することにより、上述した形状のWC粒子2を含有する超硬合金1を得ることができる。   Moreover, since the shape of the WC particles 2 gradually grows into a triangular or quadrangular polygonal shape, the cemented carbide 1 containing the WC particles 2 having the above-described shape is obtained by firing under predetermined conditions described later. be able to.

また、本発明においては、この高温炭化WC粉末を用いるとともに、後述する製造方法によって、超硬合金におけるネック成長部の平均長さを表面のほうが内部よりも長くなるような組織とすることができる。すなわち、比較的低温、短時間で焼成することによって、超硬合金の表面と内部に付与されている熱容量差が大きくなる。しかも、高温炭化WC粉末を用いるために、超硬合金の内部においては粒成長させずに焼結体を緻密化させることができる。これによって、超硬合金1の表面と内部におけるWC粒子2の粒成長度合を変えることができる。その結果、超硬合金の表面における耐摩耗性および耐変形性を高めることができる。なお、高温炭化WC粉末は平均粒径0.5μm以上の範囲で製造可能であり、1.5μmを越えると超硬合金の硬度が低下する。   In the present invention, the high-temperature carbonized WC powder is used, and the average length of the neck growth portion in the cemented carbide can be made a structure in which the surface is longer than the inside by the manufacturing method described later. . That is, by firing at a relatively low temperature for a short time, the difference in heat capacity applied between the surface and the inside of the cemented carbide is increased. Moreover, since the high-temperature carbonized WC powder is used, the sintered body can be densified without grain growth inside the cemented carbide. Thereby, the grain growth degree of the WC particles 2 on the surface and inside of the cemented carbide 1 can be changed. As a result, the wear resistance and deformation resistance on the surface of the cemented carbide can be improved. The high-temperature carbonized WC powder can be produced with an average particle size of 0.5 μm or more, and when it exceeds 1.5 μm, the hardness of the cemented carbide decreases.

また、上記混合に際して、水やメタノール等の溶媒を加えアトライタ粉砕することが好適である。   Further, at the time of the mixing, it is preferable to add a solvent such as water or methanol and perform attritor pulverization.

次に、上記混合粉末を用いて、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定形状に成形した後、5〜10℃/分の速度で昇温した後、真空雰囲気中にて1350〜1380℃で0.2〜0.5時間焼成することにより上述した超硬合金を得ることができる。   Next, the mixture powder is molded into a predetermined shape by a known molding method such as press molding, casting molding, extrusion molding, cold isostatic pressing, etc., and then the temperature is increased at a rate of 5 to 10 ° C./min. After heating, the above-mentioned cemented carbide can be obtained by firing at 1350 to 1380 ° C. for 0.2 to 0.5 hours in a vacuum atmosphere.

ここで、上記工程のうち、焼成温度が1350℃より低いと超硬合金の焼結性が低下してしまい、逆に焼成温度が1380℃より高いと本発明の超硬合金の表面組織を得ることができない。また、焼成時間が0.2時間よりも短いと超硬合金を緻密化させることができず、焼成時間が0.5時間よりも長いと超硬合金の上記表面組織を得ることができない。   Here, among the above steps, when the firing temperature is lower than 1350 ° C., the sinterability of the cemented carbide decreases, and conversely, when the firing temperature is higher than 1380 ° C., the surface structure of the cemented carbide of the present invention is obtained. I can't. If the firing time is shorter than 0.2 hours, the cemented carbide cannot be densified, and if the firing time is longer than 0.5 hours, the surface structure of the cemented carbide cannot be obtained.

なお、上述した本発明の超硬合金は、高靭性であるとともに高硬度で高強度であることから、切削工具として好適に使用可能である。   In addition, since the cemented carbide of the present invention described above has high toughness and high hardness and high strength, it can be suitably used as a cutting tool.

また、本発明の切削工具は、上述した超硬合金の表面に、周期表第4、5および6族金属の炭化物、窒化物、炭窒化物、TiAlN、TiZrN、ダイヤモンドおよびAlの群から選ばれる少なくとも1種の被覆層を単層または複数層形成したものであってもよい。 Further, the cutting tool of the present invention has a group of carbides, nitrides, carbonitrides, TiAlN, TiZrN, diamond, and Al 2 O 3 of periodic table groups 4, 5 and 6 metals on the surface of the cemented carbide described above. A single layer or a plurality of layers of at least one coating layer selected from the above may be used.

表1に示す炭化温度と平均粒径のWC粉末、平均粒径0.6μmのCo粉末、平均粒径1.5μmのTaC粉末、平均粒径1.3μmのCr粉末、平均粒径1.5μmのVC粉末、平均粒径2.0μmのTiC粉末を表1に示す比率で添加し、溶媒として水を、メディアとしてメディア径4mmでWC粒子の平均粒径0.3μmの超硬合金製ボールを加えて、24時間振動ミル混合し、混合粉末を作製した後、有機バインダとしてパラフィンワックス1.6質量%添加し、金型プレス成形し、表1に示す条件で焼成してSPMN120408の切削工具形状の超硬合金を作製した。
WC powder having the carbonization temperature and average particle size shown in Table 1, Co powder having an average particle size of 0.6 μm, TaC powder having an average particle size of 1.5 μm, Cr 3 C 2 powder having an average particle size of 1.3 μm, and average particle size A 1.5 μm VC powder and a TiC powder having an average particle size of 2.0 μm are added at a ratio shown in Table 1, water is used as a solvent, a cemented carbide with a media diameter of 4 mm and a WC particle average particle size of 0.3 μm is used as a medium. Balls were added and mixed with a vibration mill for 24 hours to prepare a mixed powder. After that, 1.6% by mass of paraffin wax was added as an organic binder, the mold was press-molded, and fired under the conditions shown in Table 1 to obtain SPMN120408. A cutting tool-shaped cemented carbide was produced.

得られた超硬合金の任意断面5箇所について、走査型電子顕微鏡により図1に示すような10000倍の反射電子像を観察し、11μm×8μmの任意領域の3箇所(表面から同じ深さで連続3箇所)について、WC粒子の形状(WC粒子の平均粒径、WC粒子の角部について曲率半径50nm以上の丸い粒子の比率)を算出した。結果を表2に示す。また、以下の条件で工具の切削性能を評価した。なお、図1は上記実施例の試料No.4の組織写真を示している。   As shown in FIG. 1, a 10,000 times magnified backscattered electron image is observed with respect to five arbitrary cross sections of the obtained cemented carbide with three parts (at the same depth from the surface) of an arbitrary area of 11 μm × 8 μm. The shape of WC particles (average particle diameter of WC particles, ratio of round particles having a radius of curvature of 50 nm or more with respect to corner portions of WC particles) was calculated for three consecutive positions. The results are shown in Table 2. Moreover, the cutting performance of the tool was evaluated under the following conditions. 1 shows the sample No. of the above example. 4 shows organizational photographs.

<条件>
被削材 :溝付合金鋼(SCM440) 4本溝付き
工具形状:SPMN120408
切削速度:150m/min
送り速度:0.3mm/rev.
切込み :2mm
切削状態:乾式
評価項目:衝撃回数1000回時点での切刃の摩耗幅、および工具寿命に至るまでの衝撃回数
<Conditions>
Work Material: Grooved Alloy Steel (SCM440) Four Grooved Tool Shape: SPMN120408
Cutting speed: 150 m / min
Feed rate: 0.3 mm / rev.
Cutting depth: 2mm
Cutting state: Dry evaluation item: Wear width of cutting edge at the time of impact 1000 times, and the number of impact until the tool life

表1,2の結果より、焼成温度が1380℃を越える試料No.7では、超硬合金の表面と内部におけるネック部の長さが同じとなり、工具切刃における耐摩耗性、耐変形性が不十分であった。また、焼成時間が0.5時間を越える試料No.8では、また丸い粒子の比率が低下してしまい、工具切刃においてチッピングが発生した。さらに、焼成時間が0.2時間よりも短い試料No.9では、超硬合金の緻密化が不十分であるとともに、表面と内部におけるネック成長の長さが同じであり、工具切刃における耐摩耗性が不十分であった。また、原料のWC粉末として炭化温度が従来のように1500℃のWC粉末を用いた試料No.10では、超硬合金の表面と内部におけるネック成長の平均長さが同じであり、切削特性においても耐変形性が不十分であった。   From the results of Tables 1 and 2, the sample No. In No. 7, the length of the neck part in the inside and the inside of the cemented carbide alloy became the same, and the wear resistance and deformation resistance in the tool cutting edge were insufficient. In addition, Sample No. In No. 8, the ratio of round particles decreased, and chipping occurred at the tool cutting edge. Furthermore, sample No. 1 with a firing time shorter than 0.2 hours was used. In No. 9, the cemented carbide alloy was insufficiently densified, the length of neck growth on the surface and inside was the same, and the wear resistance of the tool cutting edge was insufficient. In addition, as a raw material WC powder, sample No. 1 using a WC powder having a carbonization temperature of 1500 ° C. as in the prior art. In No. 10, the average length of neck growth on the surface and inside of the cemented carbide was the same, and the deformation resistance was insufficient in cutting characteristics.

これに対して、本発明に従い、1750℃以上で炭化したWC粉末を原料として、所定の焼成条件にて製造した試料No.1〜6では、いずれもWC粒子中、角部が丸い粒子の割合が50体積%より高く、かつ表面におけるネック部の平均長さが内部よりも長いものであり、優れた耐欠損性と耐摩耗性、耐変形性を示すものであった。   On the other hand, according to the present invention, sample No. 1 manufactured under predetermined firing conditions using WC powder carbonized at 1750 ° C. or higher as a raw material. 1 to 6, the ratio of particles with rounded corners is higher than 50% by volume in the WC particles, and the average length of the neck portion on the surface is longer than that of the inside, and has excellent fracture resistance and wear resistance. And deformation resistance.

本発明の超硬合金の一例について、(a)表面、(b)内部の断面における走査型電子顕微鏡写真である。It is a scanning electron micrograph in an example of the cemented carbide of this invention in the cross section of (a) surface and (b) inside. 図1の走査型電子顕微鏡写真にネック成長部を書き込んだ図である。It is the figure which wrote the neck growth part in the scanning electron micrograph of FIG. 図1の超硬合金の(a)表面、(b)内部におけるX線回折パターンである。It is the X-ray diffraction pattern in the (a) surface and (b) inside of the cemented carbide of FIG.

符号の説明Explanation of symbols

1 超硬合金
2 WC粒子
2a 丸いWC粒子
3 結合相
4 ネック成長部
c 対角線Lの両端に位置する角部
超硬合金表面のX線回折測定における(101)面の回折ピークの半価幅
i 超硬合金内部のX線回折測定における(101)面の回折ピークの半価幅
DESCRIPTION OF SYMBOLS 1 Cemented carbide 2 WC particle 2a Round WC particle 3 Bonding phase 4 Neck growth part c Half value of diffraction peak of (101) plane in X-ray diffraction measurement of corner part w s cemented carbide surface located at both ends of diagonal L Width w i Half width of diffraction peak of (101) plane in X-ray diffraction measurement inside cemented carbide

Claims (4)

WC粒子間を結合相で結合した超硬合金であって、該超硬合金の断面組織を観察した場合に、内部において、多角形状でかつ角部の曲率半径が50nm以上の丸みを呈するWC粒子がWC粒子全体に対して50面積%以上の割合で含まれているとともに、前記WC粒子間のネック成長部の平均長さが前記超硬合金の内部よりも表面において長いことを特徴とする超硬合金。 A cemented carbide in which WC particles are bonded with a binder phase, and when a cross-sectional structure of the cemented carbide is observed, a WC particle having a polygonal shape and a rounded curvature radius of 50 nm or more inside. Is included at a ratio of 50 area% or more with respect to the entire WC particles, and the average length of the neck growth portion between the WC particles is longer on the surface than the inside of the cemented carbide. Hard alloy. 前記WC粒子の平均粒径が0.5〜1.5μmであることを特徴とする請求項1記載の超硬合金。 The cemented carbide according to claim 1, wherein an average particle size of the WC particles is 0.5 to 1.5 µm. 前記平均粒径に対して±30%以内の粒径をもつWC粒子の比率が、WC粒子全体に対して80面積%以上の割合で存在することを特徴とする請求項2記載の超硬合金。 The cemented carbide according to claim 2, wherein the ratio of WC particles having a particle size within ± 30% of the average particle size is 80% by area or more with respect to the whole WC particles. . 前記表面でのX線回折測定における(101)面の回折ピークの半価幅が、前記内部でのX線回折測定における(101)面の回折ピークの半価幅よりも狭いことを特徴とする請求項1乃至3のいずれか記載の超硬合金。 The half width of the diffraction peak of the (101) plane in the X-ray diffraction measurement on the surface is narrower than the half width of the diffraction peak of the (101) plane in the internal X-ray diffraction measurement. The cemented carbide according to any one of claims 1 to 3.
JP2006320615A 2006-11-28 2006-11-28 Hard metal Pending JP2008133508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320615A JP2008133508A (en) 2006-11-28 2006-11-28 Hard metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320615A JP2008133508A (en) 2006-11-28 2006-11-28 Hard metal

Publications (1)

Publication Number Publication Date
JP2008133508A true JP2008133508A (en) 2008-06-12

Family

ID=39558550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320615A Pending JP2008133508A (en) 2006-11-28 2006-11-28 Hard metal

Country Status (1)

Country Link
JP (1) JP2008133508A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244588A (en) * 2012-05-29 2013-12-09 Sumitomo Electric Ind Ltd Cemented carbide, and surface-coated cutting tool using the same
JP2013244590A (en) * 2012-05-29 2013-12-09 Sumitomo Electric Ind Ltd Cutting tool base material formed of cemented carbide, and surface-coated cutting tool using the same
JP2015101747A (en) * 2013-11-22 2015-06-04 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool prepared using the same
JP2015101745A (en) * 2013-11-22 2015-06-04 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool prepared using the same
JP2015101748A (en) * 2013-11-22 2015-06-04 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool prepared using the same
JP2015101746A (en) * 2013-11-22 2015-06-04 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool prepared using the same
JP6459106B1 (en) * 2017-12-11 2019-01-30 住友電工ハードメタル株式会社 Cemented carbide and cutting tools
WO2019116614A1 (en) * 2017-12-11 2019-06-20 住友電工ハードメタル株式会社 Cemented carbide and cutting tool
JP2020110858A (en) * 2019-01-09 2020-07-27 三菱マテリアル株式会社 Cutting tool made of wc-group cemented carbide alloy excellent in anti-plastic deformation and anti-chipping and cutting tool made of surface-coating wc-group cemented carbide alloy
JP6957828B1 (en) * 2020-10-30 2021-11-02 住友電工ハードメタル株式会社 Cemented carbide and cutting tools equipped with it

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244588A (en) * 2012-05-29 2013-12-09 Sumitomo Electric Ind Ltd Cemented carbide, and surface-coated cutting tool using the same
JP2013244590A (en) * 2012-05-29 2013-12-09 Sumitomo Electric Ind Ltd Cutting tool base material formed of cemented carbide, and surface-coated cutting tool using the same
JP2015101747A (en) * 2013-11-22 2015-06-04 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool prepared using the same
JP2015101745A (en) * 2013-11-22 2015-06-04 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool prepared using the same
JP2015101748A (en) * 2013-11-22 2015-06-04 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool prepared using the same
JP2015101746A (en) * 2013-11-22 2015-06-04 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool prepared using the same
JP6459106B1 (en) * 2017-12-11 2019-01-30 住友電工ハードメタル株式会社 Cemented carbide and cutting tools
WO2019116614A1 (en) * 2017-12-11 2019-06-20 住友電工ハードメタル株式会社 Cemented carbide and cutting tool
JP2020110858A (en) * 2019-01-09 2020-07-27 三菱マテリアル株式会社 Cutting tool made of wc-group cemented carbide alloy excellent in anti-plastic deformation and anti-chipping and cutting tool made of surface-coating wc-group cemented carbide alloy
JP7307394B2 (en) 2019-01-09 2023-07-12 三菱マテリアル株式会社 WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP6957828B1 (en) * 2020-10-30 2021-11-02 住友電工ハードメタル株式会社 Cemented carbide and cutting tools equipped with it
WO2022091343A1 (en) * 2020-10-30 2022-05-05 住友電工ハードメタル株式会社 Cemented carbide and cutting tool comprising same

Similar Documents

Publication Publication Date Title
JP2008133508A (en) Hard metal
JP5454678B2 (en) Cermet and coated cermet
JP5902613B2 (en) Cemented carbide tool
JP5732663B2 (en) Cubic boron nitride sintered tool
KR20120041265A (en) Super hard alloy and cutting tool using same
JP2010234519A (en) Cermet and coated cermet
JP5355712B2 (en) Rotating tool
JP2007145667A (en) Cubic boron nitride sintered compact
JP5273987B2 (en) Cermet manufacturing method
JP2008238354A (en) Drill and cutting method
JP2005213599A (en) TiCN-BASED CERMET AND ITS MANUFACTURING METHOD
JP4331958B2 (en) Cemented carbide manufacturing method
WO2006100939A1 (en) TiCN BASE CERMET AND CUTTING TOOL AND METHOD FOR MANUFACTURING CUT ARTICLE USING THE SAME
JP4351451B2 (en) Cemented carbide and method for manufacturing the same, and rotary tool using the cemented carbide
JP4336120B2 (en) Cutting tool and manufacturing method thereof
JP5057751B2 (en) Cemented carbide and method for producing the same
JP4313567B2 (en) Cutting tool and manufacturing method thereof
JP4172754B2 (en) TiCN-based cermet and method for producing the same
JP2004256862A (en) Cemented carbide, production method therefor, and cutting tool using the same
JP5031610B2 (en) TiCN-based cermet
JP2010253607A (en) Cutting tool
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP5235624B2 (en) Tungsten carbide-based cemented carbide and rotary tool using the same
JP5058553B2 (en) Manufacturing method of surface coated cemented carbide end mill for high feed cutting
JP2005131739A (en) Cutting tool made of cermet