JP2005131739A - Cutting tool made of cermet - Google Patents

Cutting tool made of cermet Download PDF

Info

Publication number
JP2005131739A
JP2005131739A JP2003370457A JP2003370457A JP2005131739A JP 2005131739 A JP2005131739 A JP 2005131739A JP 2003370457 A JP2003370457 A JP 2003370457A JP 2003370457 A JP2003370457 A JP 2003370457A JP 2005131739 A JP2005131739 A JP 2005131739A
Authority
JP
Japan
Prior art keywords
cermet
honing
hard phase
cutting tool
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003370457A
Other languages
Japanese (ja)
Other versions
JP4284153B2 (en
Inventor
Takashi Tokunaga
隆司 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003370457A priority Critical patent/JP4284153B2/en
Publication of JP2005131739A publication Critical patent/JP2005131739A/en
Application granted granted Critical
Publication of JP4284153B2 publication Critical patent/JP4284153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of a cermet having both of excellent chipping resistance and abrasion resistance. <P>SOLUTION: R honing 4 is formed on a cutting blade 3 of a TiCN based cermet base body 2 comprising a binding phase composed of Co and/or Ni and a hard phase composed of carbonitride of 4a, 5a, and 6a group metals in Periodic Table including Ti. The average particle diameter of the hard phase inside the cermet base body 2 is ≤ 1 μm. When a honing amount on the rake face 5 side of the R honing 4 is made as (a) and a honing amount on the flank 6 side of the R honing 4 is as (b), the cutting tool 1 made of a cermet is made to satisfy formula of a/b = 1.3-1.5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、TiCN基サーメットからなり、耐欠損性および耐摩耗性に優れた切削工具に関する。   The present invention relates to a cutting tool made of TiCN-based cermet and having excellent fracture resistance and wear resistance.

従来より、切削加工用のスローアウェイチップの素材として、Tiを含んで周期律表4a、5aおよび6a族金属のうちの1種以上との複合金属炭窒化物からなる硬質相を、Coおよび/またはNiの結合相にて結合したTiCN基サーメットが知られている。   Conventionally, as a raw material for a throw-away tip for cutting, a hard phase composed of a composite metal carbonitride containing Ti and containing at least one of Group 4a, 5a and 6a metals in the periodic table is used. Alternatively, a TiCN group cermet bonded with a Ni bonded phase is known.

かかるサーメット製切削工具においては切刃の突発的なチッピングや欠損の発生が問題であり耐摩耗性の向上とともに耐欠損性の向上が求められており、また、サーメット製切削工具は優れた耐摩耗性と被削材との耐反応性とを兼ね備えることから主に仕上げ加工に用いられているために被削材の仕上げ面粗度と寸法精度が厳しく要求される。   In such cermet cutting tools, sudden chipping or chipping of the cutting edge is a problem, and there is a demand for improved wear resistance as well as improved wear resistance, and cermet cutting tools have excellent wear resistance. Therefore, the finish surface roughness and dimensional accuracy of the work material are strictly required because it is used mainly for finishing.

また、特許文献1には切刃におけるすくい面側と逃げ面側のホーニング量を1.5〜4.0の範囲で制御することにより切刃における耐欠損性が向上することが記載されており、さらに、特許文献2にはサーメット製切削工具のホーニング加工面に結合相量が少ない表面硬化層を形成することによってチッピングや欠損を防止できることが記載されている。   Further, Patent Document 1 describes that the fracture resistance of the cutting edge is improved by controlling the honing amount on the rake face side and the flank face side of the cutting edge in the range of 1.5 to 4.0. Furthermore, Patent Document 2 describes that chipping and chipping can be prevented by forming a hardened surface layer with a small amount of binder phase on the honing surface of a cermet cutting tool.

一方、特許文献3、4等には切削工具としてサーメット同様、汎用に用いられる超硬合金について、合金中の炭化タングステン粒子の粒径を微粒化することによって合金強度が向上し、切削工具としての耐欠損性および耐摩耗性が向上することが記載されている。
特開平10―71507号公報 特開平5−212605号公報 特開昭61−12847号公報 特開平7−157837号公報
On the other hand, in Patent Documents 3 and 4 and the like, as with a cermet as a cutting tool, the cement strength of a cemented carbide used for general purposes is improved by atomizing the particle size of tungsten carbide particles in the alloy. It describes that chipping resistance and wear resistance are improved.
Japanese Patent Laid-Open No. 10-71507 JP-A-5-212605 Japanese Patent Laid-Open No. 61-12847 Japanese Patent Laid-Open No. 7-157837

しかしながら、上記特許文献3、4に記載されるような超硬合金の微粒化の知見をサーメットに応用して硬質相の微粒化を図ると合金強度は向上するものの切刃の突発欠損やチッピングの発生は改善されず、結果として切削工具として満足できるものではなかった。   However, applying the knowledge of atomization of cemented carbide as described in the above Patent Documents 3 and 4 to cermet to reduce the hardness of the hard phase will improve the alloy strength, but it will cause sudden chipping and chipping of the cutting edge. The generation was not improved and as a result was not satisfactory as a cutting tool.

また、上記微粒サーメット製切削工具について特許文献1、2にしたがって切刃のホーニング量を調整しても、耐欠損性は改善されるものの切刃に大きな切削抵抗がかかるような場合、切刃が塑性変形して加工する被削材の寸法精度が大きくずれてしまったり、急速に摩耗が進行してしまう恐れがあった。   Moreover, even if the honing amount of the cutting edge is adjusted according to Patent Documents 1 and 2 for the fine cermet cutting tool, the cutting edge is improved when the cutting edge is subjected to a large cutting resistance, although the chipping resistance is improved. There was a risk that the dimensional accuracy of the work material processed by plastic deformation would be greatly shifted or that the wear would progress rapidly.

従って、本発明は、上記課題を解決するためになされたものであり、その目的は、優れた耐欠損性、耐塑性変形性および耐摩耗性を兼ね備えたサーメット製切削工具を提供することにある。   Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cermet cutting tool having excellent fracture resistance, plastic deformation resistance, and wear resistance. .

本発明者は、上記課題について検討した結果、サーメット基体の硬質相の平均粒径を1μm以下に微粒化するとともに、切刃のすくい面側のホーニング量をa、切刃の逃げ面側のホーニング量をbとしたとき、a/b=1.3〜1.5のRホーニングを施すことによって、微粒サーメットからなる切削工具の耐欠損性が大幅に改善されるとともに、耐塑性変形性が向上し、かつ耐摩耗性も向上することを知見した。   As a result of studying the above problems, the present inventor has refined the average particle size of the hard phase of the cermet substrate to 1 μm or less, sets the honing amount on the rake face side of the cutting edge, and honing on the flank face side of the cutting edge. When the amount is b, by performing R honing of a / b = 1.3 to 1.5, the fracture resistance of the cutting tool made of fine cermet is greatly improved and the plastic deformation resistance is improved. And the wear resistance was also improved.

即ち、本発明のサーメット製切削工具は、Coおよび/またはNiからなる結合相と、Tiを含んで周期律表4a、5aおよび6a族金属の炭窒化物からなる硬質相と、からなるTiCN基サーメット基体の切刃にRホーニングを形成した切削工具であって、前記サーメット基体内部における硬質相の平均粒径が1μm以下であるとともに、前記Rホーニングのすくい面側のホーニング量をa、前記Rホーニングの逃げ面側のホーニング量をbとしたとき、a/b=1.3〜1.5であることを特徴とするものである。   That is, the cermet cutting tool of the present invention includes a TiCN group comprising a binder phase comprising Co and / or Ni and a hard phase comprising Ti and containing a carbonitride of Group 4a, 5a and 6a metals. A cutting tool in which R honing is formed on a cutting edge of a cermet base, the average particle size of the hard phase inside the cermet base is 1 μm or less, and the honing amount on the rake face side of the R honing is a, R When the honing amount on the flank side of the honing is b, a / b = 1.3 to 1.5.

ここで、前記サーメット基体の少なくともRホーニングにおいて、前記サーメット基体表面から50〜200μmの深さ範囲における前記硬質相の平均粒径が、前記サーメット基体内部の硬質相の平均粒径よりも大きい表面領域が存在すること、特に、前記サーメット基体表面から30μmの深さ位置における前記硬質相の平均粒径dと、前記サーメット基体内部の硬質相の平均粒径dとの比(d/d)が1.1〜3.0であることが、切刃における塑性変形を抑制して切削工具としての耐摩耗性が向上するとともに、切刃における耐欠損性を維持できる。 Here, in at least R honing of the cermet substrate, the surface region in which the average particle size of the hard phase in the depth range of 50 to 200 μm from the surface of the cermet substrate is larger than the average particle size of the hard phase inside the cermet substrate In particular, the ratio (d 1 / d) between the average particle diameter d 1 of the hard phase at a depth of 30 μm from the surface of the cermet substrate and the average particle diameter d 2 of the hard phase inside the cermet substrate. 2 ) is 1.1 to 3.0, it is possible to suppress the plastic deformation in the cutting edge, improve the wear resistance as a cutting tool, and maintain the fracture resistance in the cutting edge.

また、前記Rホーニングのすくい面側終端部における曲率半径をR、前記Rホーニングの逃げ面側終端部における曲率半径をRとしたとき、R/R=1.0〜1.5であることが、切刃強度を維持してチッピングや異常摩耗を防止できるとともに、切刃抵抗の増大によって切刃が欠損するということも防止できる。 Further, when the radius of curvature at the rake face side end portion of the R honing is R a and the radius of curvature at the flank end portion of the R honing is R b , R a / R b = 1.0 to 1.5 As a result, the cutting edge strength can be maintained to prevent chipping and abnormal wear, and the cutting edge can be prevented from being lost due to increased cutting edge resistance.

上記本発明のサーメット製切削工具は、サーメット基体の硬質相の平均粒径を1μm以下に微粒化するとともに、切刃のすくい面側のホーニング量をa、切刃の逃げ面側のホーニング量をbとしたとき、a/b=1.3〜1.5のRホーニングを施すことによって、微粒サーメットからなる切削工具の耐欠損性が大幅に改善されるとともに、耐塑性変形性が向上して耐摩耗性も向上する。   In the cermet cutting tool of the present invention, the average particle size of the hard phase of the cermet substrate is atomized to 1 μm or less, the honing amount on the rake face side of the cutting blade is a, and the honing amount on the flank side of the cutting blade is When b is used, by performing R honing of a / b = 1.3 to 1.5, the fracture resistance of the cutting tool made of fine cermet is greatly improved and the plastic deformation resistance is improved. Abrasion resistance is also improved.

本発明のサーメット製切削工具について、その要部拡大断面図である図1を基に説明する。   The cermet cutting tool of the present invention will be described with reference to FIG.

図1によれば、サーメット製切削工具(以下、単に工具と略す。)1は、Coおよび/またはNiからなる結合相と、Tiを含んで周期律表4a、5aおよび6a族金属の炭窒化物からなる硬質相と、からなるTiCN基サーメット基体2の切刃3にRホーニング4を形成し、サーメット基体2内部における硬質相の平均粒径が1μm以下であるとともに、Rホーニング4のすくい面5側のホーニング量をa、Rホーニング4の逃げ面6側のホーニング量をbとしたとき、a/b=1.3〜1.5であることを特徴とするものである。   According to FIG. 1, a cermet cutting tool (hereinafter simply referred to as a tool) 1 is a carbonitriding of a periodic table 4a, 5a and 6a metal containing Ti and a binder phase composed of Co and / or Ni. An R honing 4 is formed on the cutting edge 3 of the TiCN-based cermet base 2 made of a hard phase made of a material, and the average particle size of the hard phase inside the cermet base 2 is 1 μm or less, and the rake face of the R honing 4 A / b = 1.3 to 1.5, where a is the honing amount on the 5 side and b is the honing amount on the flank 6 side of the R honing 4.

これによって、従来のサーメット製切削工具の最大の課題であった切刃3における突発欠損やチッピング等の発生を抑制して耐欠損性を大幅に向上させることができるとともに、切刃3における耐塑性変形性を改善させて耐摩耗性を向上させることができる。   As a result, it is possible to significantly improve the fracture resistance by suppressing the occurrence of sudden chipping, chipping and the like in the cutting edge 3, which was the biggest problem of the conventional cermet cutting tool, and the plastic resistance in the cutting edge 3 The wear resistance can be improved by improving the deformability.

すなわち、サーメット基体2の内部における硬質相(硬質相)の平均結晶粒径が1μm以下、特に0.5〜0.9μm、さらに0.7〜0.9μmであることが重要であり、この硬質相の平均結晶粒径が硬質相の平均結晶粒径が1μmを超えるとサーメットの強度が低下してチップの耐欠損性が低下する。なお、0.5μm以上であるほうがサーメット基体2の焼結性を維持して切刃3の耐摩耗性を維持できるとともに、工具1の耐衝撃性や硬度、耐欠損性を維持できる点で望ましい。   That is, it is important that the average crystal grain size of the hard phase (hard phase) in the cermet substrate 2 is 1 μm or less, particularly 0.5 to 0.9 μm, and further 0.7 to 0.9 μm. When the average crystal grain size of the phase exceeds 1 μm, the strength of the cermet is lowered and the chip resistance of the chip is lowered. In addition, it is desirable that the thickness is 0.5 μm or more from the standpoint of maintaining the sinterability of the cermet base 2 and maintaining the wear resistance of the cutting edge 3 and maintaining the impact resistance, hardness, and fracture resistance of the tool 1. .

なお、サーメット基体2の構成については、Tiを含む周期律表4a、5aおよび6a族金属からなる複合金属炭窒化物が硬質相として形成されており、特に、硬質相は、TiCNからなる芯部と、Tiと、Ti以外の周期律表4a、5aおよび6a族金属、特にW、Mo、TaおよびNbのうちの1種以上との複合炭化物、複合窒化物、複合炭窒化物の少なくとも1種からなる周辺部とから構成される2重有芯構造、または3重有芯構造をなしていることが、粒成長制御効果を有しサーメット基体が微細で均一な組織となるとともに、結合相との濡れ性に優れてサーメットの高強度化に寄与する点で望ましい。   In addition, about the structure of the cermet base | substrate 2, the periodic table 4a, 5a containing Ti, and the composite metal carbonitride which consists of a 6a group metal are formed as a hard phase, and especially a hard phase is a core part which consists of TiCN. And at least one of composite carbide, composite nitride, composite carbonitride of Ti and periodic table 4a, 5a and 6a other than Ti, particularly one or more of W, Mo, Ta and Nb A double-core structure or a triple-core structure composed of a peripheral portion made of a cermet substrate having a grain growth control effect and a fine and uniform structure, It is desirable in that it has excellent wettability and contributes to increasing the strength of the cermet.

また、Coおよび/またはNiからなる結合相は、5〜30重量%の割合で含有されることが、耐欠損性と耐摩耗性をともに維持する点で望ましい。   In addition, it is desirable that the binder phase composed of Co and / or Ni is contained in a proportion of 5 to 30% by weight in order to maintain both fracture resistance and wear resistance.

ここで、サーメット基体2の少なくともRホーニング4において、サーメット基体2表面から50〜200μmの深さ範囲Aにおける前記硬質相の平均粒径が、前記サーメット基体2内部の硬質相の平均粒径よりも大きい表面領域9が存在すること、特に、サーメット基体2表面から30μmの深さ位置における前記硬質相の平均粒径dと、前記サーメット基体2内部の硬質相の平均粒径dとの比(d/d)が1.1〜3.0であることが、切刃3における塑性変形を抑制して工具1としての耐摩耗性が向上するとともに、切刃3における耐欠損性を維持できる。 Here, in at least the R honing 4 of the cermet substrate 2, the average particle diameter of the hard phase in the depth range A of 50 to 200 μm from the surface of the cermet substrate 2 is larger than the average particle diameter of the hard phase inside the cermet substrate 2. the ratio of the large surface area 9 is present, in particular, the average particle diameter d 1 of the hard phase at a depth position of 30μm cermet substrate 2 surface, and the average particle size d 2 of the cermet base body 2 inside of the hard phase When (d 1 / d 2 ) is 1.1 to 3.0, the plastic deformation in the cutting blade 3 is suppressed, the wear resistance as the tool 1 is improved, and the fracture resistance in the cutting blade 3 is improved. Can be maintained.

なお、Rホーニング4の表面領域9における硬質相の平均粒径は0.6〜2μmであることが、切刃3の耐摩耗性および耐塑性変形性をともに満足する点で望ましい。   The average particle size of the hard phase in the surface region 9 of the R honing 4 is preferably 0.6 to 2 μm from the viewpoint of satisfying both the wear resistance and the plastic deformation resistance of the cutting edge 3.

また、Rホーニング4のすくい面5側終端部における曲率半径をR、Rホーニング4の逃げ面6側終端部における曲率半径をRとしたとき、R/R=1.0〜1.5であることが、切刃3の強度を維持してチッピングや異常摩耗を防止できるとともに、切刃抵抗の増大によって切刃3が欠損するということも防止できる。 Further, when the curvature radius on the rake face 5 side end portion of the R honing 4 R a, the radius of curvature on the flank surface 6 side end portion of the R honing 4 was R b, R a / R b = 1.0~1 .5 can maintain the strength of the cutting edge 3 to prevent chipping and abnormal wear, and can also prevent the cutting edge 3 from being lost due to an increase in cutting edge resistance.

さらに、本発明によれば、サーメット基体2表面に、(Tix,M1−x)(CyN1−y)(ただし、MはTi以外の周期律表4a、5aおよび6a族金属、Al、Siのうちの1種以上、0.4<x≦1,0≦y≦1)で表わされる硬質被覆層(以下、Ti系被覆層と略す。)、またはダイヤモンド、立方晶窒化硼素、アルミナ、Zr、Hf、Cr、Siの炭化物、窒化物、炭窒化物の1種以上からなる他の硬質被覆層を形成することもでき、かかる表面被覆層を形成した場合においても耐摩耗性が向上するとともに耐塑性変形性、耐欠損性を維持することができる。   Further, according to the present invention, (Tix, M1-x) (CyN1-y) (where M is the periodic table 4a, 5a and 6a group metals other than Ti, Al, Si) on the surface of the cermet substrate 2 Or a hard coating layer represented by 0.4 <x ≦ 1, 0 ≦ y ≦ 1) (hereinafter abbreviated as Ti-based coating layer), diamond, cubic boron nitride, alumina, Zr, Hf It is also possible to form another hard coating layer composed of one or more of Cr, Si carbide, nitride, carbonitride, and even when such a surface coating layer is formed, the wear resistance is improved and the plastic resistance is improved. Deformability and fracture resistance can be maintained.

また、Ti系被覆層は高硬度や高温安定性などの耐熱性の点で、(Ti,M1)N(ただし、M1はAl、Si、ZrおよびCrの群から選ばれる1種)、最適には(Tix,Al1−x)Nからなることが望ましい。 In addition, the Ti coating layer is (Ti, M1) N (where M1 is one selected from the group of Al, Si, Zr and Cr), optimally in terms of heat resistance such as high hardness and high temperature stability. Is preferably made of (Tix, Al1-x) N.

(製造方法)
本発明のTiCN基サーメットからなる切削工具を製造するには、まず原料粉末として、硬質相形成成分として、TiCN粉末と、周期律表4a、5aおよび6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種の粉末を用いて、周期律表4a、5aおよび6a族金属総量に対するTi量が55〜80質量%、特に65〜77質量%となるように秤量する。また、硬質相形成成分全体における炭素(C)と窒素(N)とのN/(C+N)の比率が0.4〜0.6となるように調合する。
(Production method)
To manufacture a cutting tool comprising the TiCN-based cermet of the present invention, first, as raw material powder, as a hard phase forming component, TiCN powder, and carbides, nitrides, and carbonitrides of periodic table 4a, 5a and 6a metals Using at least one kind of powder selected from the group, Ti is weighed so that the Ti amount is 55 to 80% by mass, particularly 65 to 77% by mass with respect to the total amount of the metals in Group 4a, 5a and 6a. Moreover, it mix | blends so that the ratio of N / (C + N) of carbon (C) and nitrogen (N) in the whole hard phase formation component may be 0.4-0.6.

また、このときに用いるTiCN粉末の平均粒径が1μm以下の微細な粉末であることが必要である。この時のTiCN粉末の平均粒径が1μmよりも大きいとサーメットにおける硬質相の前記平均結晶粒径を1μm以下にすることが困難となる。また、TiCN粉末の平均粒径が0.4μm以上であることがサーメット基体2の焼結性が維持できるとともに硬質相の前記平均結晶粒径が小さくなりすぎず切刃における耐摩耗性を維持できる点で望ましい。   In addition, it is necessary that the TiCN powder used at this time is a fine powder having an average particle diameter of 1 μm or less. If the average particle size of the TiCN powder at this time is larger than 1 μm, it becomes difficult to make the average crystal particle size of the hard phase in the cermet 1 μm or less. Further, when the average particle size of the TiCN powder is 0.4 μm or more, the sinterability of the cermet substrate 2 can be maintained, and the average crystal particle size of the hard phase can be maintained without reducing the average crystal particle size of the hard phase. Desirable in terms.

また、周期律表4a、5aおよび6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種の粉末の平均粒径は0.5〜2μmが適当である。さらに、結合相形成成分として、平均粒径が0.3〜4μmのNiおよび/またはCoの粉末を所定の割合で添加する。   The average particle size of at least one powder selected from the group of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals is suitably 0.5-2 μm. Further, Ni and / or Co powder having an average particle diameter of 0.3 to 4 μm is added at a predetermined ratio as a binder phase forming component.

そしてこれらの秤量された粉末をボールミルなどによって混合した後、プレス成形、押出成形、射出成形などの公知の成形手法によって所定の切削工具形状に成形した後、焼成する。   These weighed powders are mixed by a ball mill or the like, then formed into a predetermined cutting tool shape by a known forming method such as press molding, extrusion molding or injection molding, and then fired.

焼成にあたっては、有芯構造の硬質相を形成し、また硬質相の粒成長を抑制するために、真空度0.01Torr以下の真空雰囲気、またはN、Ar、CO、COガス等の非酸化性ガス雰囲気中で、室温から950℃付近までを5〜15℃/分で昇温し、その後、1400℃付近までを1〜5℃/分(昇温速度b)で昇温し、さらに1400℃〜1600℃の焼成温度まで43℃〜15℃/分(昇温速度C)で昇温し、保持時間1時間以内で、放冷にて室温まで10℃〜15℃/分で冷却する条件で焼成することが望ましい。 また、上記の方法によって作製されたTiCN基サーメット基体の切刃に、ブラシ加工、砥石加工によって、その研磨部材の材質、研磨方法、研磨圧力、研磨時間等をコントロールして、上述した寸法に制御されたRホーニング加工を行い、本発明のサーメット製切削工具を作製することができる。 In firing, in order to form a hard phase with a cored structure and suppress the grain growth of the hard phase, a vacuum atmosphere with a vacuum degree of 0.01 Torr or less, or non-N 2 , Ar, CO, CO 2 gas, etc. In an oxidizing gas atmosphere, the temperature is raised from room temperature to around 950 ° C. at 5 to 15 ° C./min, and then raised to around 1400 ° C. at 1 to 5 ° C./min (heating rate b). The temperature is raised to a firing temperature of 1400 ° C. to 1600 ° C. at a rate of 43 ° C. to 15 ° C./minute (temperature increase rate C), and is allowed to cool to room temperature by cooling at a temperature of 10 ° C. to 15 ° C./minute within 1 hour. It is desirable to fire under conditions. Also, the cutting edge of the TiCN-based cermet substrate manufactured by the above method is controlled to the above-mentioned dimensions by controlling the material of the polishing member, the polishing method, the polishing pressure, the polishing time, etc. by brushing and grinding stone processing. The cermet cutting tool of the present invention can be manufactured by performing the R honing process.

原料粉末として、表1に示す平均粒径のTiCN(TiC/TiN=50/50)粉末と、いずれも平均粒径が0.5〜2μmのTiN粉末、TaC粉末、NbC粉末、WC粉末、ZrC粉末、VC粉末、および平均粒径が2μmのCo粉末、Ni粉末またはCoとNiとの合金粉末を用い、これら原料粉末を表1に示される配合組成に配合し、ボールミルで湿式混合粉砕した。なお、上記平均粒径はマイクロトラック法で測定したものである。   As raw material powder, TiCN (TiC / TiN = 50/50) powder having an average particle diameter shown in Table 1, TiN powder having an average particle diameter of 0.5 to 2 μm, TaC powder, NbC powder, WC powder, ZrC Using powder, VC powder, and Co powder, Ni powder, or alloy powder of Co and Ni having an average particle diameter of 2 μm, these raw material powders were blended into the blending composition shown in Table 1, and wet mixed and pulverized by a ball mill. The average particle diameter is measured by the microtrack method.

次に、上記混合粉末を用いて、成形圧98MPaでISO規格CNMG120408のチップ形状にプレス成形し、この成形体を0.01Torr以下の真空中で950℃まで12℃/minで昇温し、950℃から1300℃までを2℃/分で昇温し、表1の焼成温度まで5℃/分で昇温し、1時間保持した後、真空中で12℃/分で室温まで降温して、CNMG120408形状のサーメットを作製した。

Figure 2005131739
Next, the above mixed powder was press-molded into a chip shape of ISO standard CNMG120408 at a molding pressure of 98 MPa, and this molded body was heated to 950 ° C. in a vacuum of 0.01 Torr or less at a rate of 12 ° C./min. The temperature was raised from 1 ° C. to 1300 ° C. at 2 ° C./minute, raised to 5 ° C./minute up to the firing temperature shown in Table 1, held for 1 hour, and then cooled to room temperature at 12 ° C./minute in vacuum. A cermet having a shape of CNMG120408 was produced.
Figure 2005131739

次に、得られたサーメット基体に対して、ブラシ加工により表2に示す寸法のRホーニングを各試料に形成した。なお、Rホーニングの形状については、顕微鏡にてすくい面側および逃げ面側のホーニング量を見積もるとともに、工具断面について形状を表面粗さ計ですくい面側および逃げ面側それぞれのホーニング終端における曲率半径を算出した。また、工具断面について鏡面研磨を行い、走査型電子顕微鏡で合金組織を撮影して平均粒径と表面領域の有無およびその深さの測定を行なった。   Next, R honing of the dimensions shown in Table 2 was formed on each sample by brushing on the obtained cermet substrate. As for the shape of R honing, the honing amount on the rake face side and flank face side is estimated with a microscope, and the shape of the tool cross section is measured with a surface roughness meter. Was calculated. Further, the tool cross-section was mirror-polished, and the alloy structure was photographed with a scanning electron microscope to measure the average particle diameter, the presence / absence of a surface region, and the depth thereof.

また、工具の断面を電子顕微鏡観察して表面領域の有無を確認するとともに、サーメット基体表面から1000μm以上内部の領域にて7×7μmの観察領域2箇所をインターセプト法で硬質相の結晶粒径を測定し、その平均結晶粒径をサーメット基体内部における硬質相の平均粒径として測定した。さらに、サーメット基体表面から30μmの深さ位置を中心として7×7μmの観察領域2箇所を同様に硬質相の平均粒径を測定し、その平均結晶粒径をサーメット基体表面における硬質相の平均粒径として測定した。   In addition, the cross section of the tool is observed with an electron microscope to confirm the presence or absence of the surface region, and the 7 mm × 7 μm observation region in the region of 1000 μm or more from the surface of the cermet substrate is intercepted to determine the crystal grain size of the hard phase. The average crystal grain size was measured as the average grain size of the hard phase inside the cermet substrate. Further, the average grain size of the hard phase was measured in two similar areas of the 7 × 7 μm observation region centered at a depth of 30 μm from the cermet substrate surface, and the average crystal grain size was determined as the average grain size of the hard phase on the cermet substrate surface. Measured as diameter.

次に、得られた試料について、
被削材: S45C
切削速度: 200m/min.
送り: 0.3mm/rev.
切込み: 2.0mm
の条件で36パス×4回のインターバル切削試験を行い、切刃の逃げ面摩耗量を測定して耐摩耗性を評価した。また、顕微鏡および投影機を用いて切刃におけるホーニング量を算出した。結果は表2に示した。

Figure 2005131739
Next, about the obtained sample,
Work material: S45C
Cutting speed: 200 m / min.
Feed: 0.3 mm / rev.
Cutting depth: 2.0mm
Under these conditions, an interval cutting test of 36 passes × 4 times was performed, and the amount of flank wear of the cutting blade was measured to evaluate the wear resistance. Further, the amount of honing at the cutting edge was calculated using a microscope and a projector. The results are shown in Table 2.
Figure 2005131739

表2から明らかなように、硬質相の平均粒径が1μmを超える試料No.11では耐塑性変形性が低下した。また、Rホーニングのa/b比が1.3より小さい試料No.10では切刃でのチッピングが多数発生して結果的に逃げ面摩耗量が大きく工具寿命が短いものであった。さらに、また、Rホーニングのa/b比が1.5より大きい試料No.8、12ではすくい面にかかる切削抵抗が大きく突発欠損が発生してしまった。また、昇温速度bを速くした試料No.9ではサーメット基体表面に結合相が噴出して焼結不良となり工具特性を評価することができなかった。   As apparent from Table 2, the sample No. In No. 11, the plastic deformation resistance decreased. In addition, the sample No. In No. 10, many chippings occurred at the cutting edge, resulting in a large amount of flank wear and a short tool life. In addition, the sample No. In 8 and 12, the cutting resistance applied to the rake face was large, and a sudden defect occurred. In addition, sample No. 1 with a higher temperature rise rate b was used. In No. 9, the binder phase was ejected to the surface of the cermet substrate, resulting in poor sintering, and the tool characteristics could not be evaluated.

これに対して、本発明に従い、サーメット基体内部における硬質相の平均粒径が1μm以下であるとともに、Rホーニングのすくい面側のホーニング量aと、逃げ面側のホーニング量bとの比a/b=1.3〜1.5の範囲内にある試料No.1〜7では、いずれも耐塑性変形性および耐欠損性に優れたものであった。   On the other hand, according to the present invention, the average particle size of the hard phase inside the cermet substrate is 1 μm or less, and the ratio of the honing amount a on the rake face side of the R honing and the honing amount b on the flank face side a / b = sample No. in the range of 1.3 to 1.5. In Nos. 1 to 7, all were excellent in plastic deformation resistance and fracture resistance.

本発明のサーメット製切削工具の要部断面模式図である。It is a principal part cross-sectional schematic diagram of the cermet cutting tool of this invention.

符号の説明Explanation of symbols

1 サーメット製切削工具(工具)
2 サーメット基体
3 切刃
4 Rホーニング
a:すくい面側のホーニング量
b:逃げ面側のホーニング量
Ra:すくい面側終端部における曲率半径
Rb:逃げ面側終端部における曲率半径
5 すくい面
6 逃げ面
9 表面領域
1 Cermet cutting tool
2 Cermet substrate 3 Cutting edge 4 R honing a: Honing amount on the rake face side b: Honing amount on the flank face side Ra: Radius of curvature at the rake face side end part Rb: Curvature radius 5 at the flank face side end part Rake face 6 Escape Surface 9 Surface area

Claims (4)

Coおよび/またはNiからなる結合相と、Tiを含んで周期律表4a、5aおよび6a族金属の炭窒化物からなる硬質相と、からなるTiCN基サーメット基体の切刃にRホーニングを形成した切削工具であって、
前記サーメット基体内部における硬質相の平均粒径が1μm以下であるとともに、前記Rホーニングのすくい面側のホーニング量をa、前記Rホーニングの逃げ面側のホーニング量をbとしたとき、a/b=1.3〜1.5であることを特徴とするサーメット製切削工具。
R honing was formed on the cutting edge of a TiCN-based cermet substrate comprising a binder phase comprising Co and / or Ni, and a hard phase comprising Ti and containing a carbonitride of Group 4a, 5a and 6a metals of the periodic table. A cutting tool,
When the average particle size of the hard phase in the cermet substrate is 1 μm or less, the honing amount on the rake face side of the R honing is a, and the honing amount on the flank side of the R honing is b A cermet cutting tool characterized by being 1.3 to 1.5.
前記サーメット基体の少なくともRホーニング部において、前記サーメット基体表面から50〜200μmの深さ範囲における前記硬質相の平均粒径が、前記サーメット基体内部の硬質相の平均粒径よりも大きい表面領域が存在することを特徴とする請求項1記載のサーメット製切削工具。 In at least the R honing part of the cermet substrate, there is a surface region in which the average particle size of the hard phase in the depth range of 50 to 200 μm from the surface of the cermet substrate is larger than the average particle size of the hard phase inside the cermet substrate. The cermet cutting tool according to claim 1, wherein: 前記サーメット基体表面から30μmの深さ位置における前記硬質相の平均粒径dと、前記サーメット基体内部の硬質相の平均粒径dとの比(d/d)が1.1〜3.0であることを特徴とする請求項2記載のサーメット製切削工具。 A ratio (d 1 / d 2 ) between the average particle diameter d 1 of the hard phase at a depth of 30 μm from the surface of the cermet substrate and the average particle diameter d 2 of the hard phase inside the cermet substrate is 1.1 to The cermet cutting tool according to claim 2, wherein the cutting tool is 3.0. 前記Rホーニングのすくい面側終端部における曲率半径をR、前記Rホーニングの逃げ面側終端部における曲率半径をRとしたとき、R/R=1.0〜1.5であることを特徴とするサーメット製切削工具。 R a / R b = 1.0 to 1.5 where R a is the radius of curvature at the rake face side end of the R honing and R b is the radius of curvature at the flank end of the R honing. A cermet cutting tool characterized by that.
JP2003370457A 2003-10-30 2003-10-30 Cutting method Expired - Fee Related JP4284153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370457A JP4284153B2 (en) 2003-10-30 2003-10-30 Cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370457A JP4284153B2 (en) 2003-10-30 2003-10-30 Cutting method

Publications (2)

Publication Number Publication Date
JP2005131739A true JP2005131739A (en) 2005-05-26
JP4284153B2 JP4284153B2 (en) 2009-06-24

Family

ID=34647465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370457A Expired - Fee Related JP4284153B2 (en) 2003-10-30 2003-10-30 Cutting method

Country Status (1)

Country Link
JP (1) JP4284153B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007736A (en) * 2005-06-28 2007-01-18 Tungaloy Corp Throwaway chip
EP1829990A1 (en) * 2006-03-03 2007-09-05 Sandvik Intellectual Property AB Coated cermet cutting tool and use thereof
JP2007260824A (en) * 2006-03-28 2007-10-11 Kyocera Corp Cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007736A (en) * 2005-06-28 2007-01-18 Tungaloy Corp Throwaway chip
EP1829990A1 (en) * 2006-03-03 2007-09-05 Sandvik Intellectual Property AB Coated cermet cutting tool and use thereof
US7799443B2 (en) 2006-03-03 2010-09-21 Sandvik Intellectual Property Ab Coated cermet cutting tool and use thereof
JP2007260824A (en) * 2006-03-28 2007-10-11 Kyocera Corp Cutting tool

Also Published As

Publication number Publication date
JP4284153B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
EP1359130B1 (en) Cubic boron nitride sintered body and cutting tool
WO2011002008A1 (en) Cermet and coated cermet
JPWO2007111301A1 (en) Surface coating tool
JP5559575B2 (en) Cermet and coated cermet
JP2010105099A (en) Cutting tool
JP5031182B2 (en) Cemented carbide
JP7453613B2 (en) surface coated cutting tools
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP4284153B2 (en) Cutting method
JP4703122B2 (en) Method for producing TiCN-based cermet
JP5063129B2 (en) cermet
JP4069749B2 (en) Cutting tool for roughing
JP2009172697A (en) Wc-based cemented carbide cutting tool showing excellent chipping resistance, thermal crack resistance and wear resistance in high-speed intermittent heavy cutting
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JP7031532B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP4703123B2 (en) Method for producing surface-coated TiCN-based cermet
JP2004330314A (en) Coated cemented carbide tool
JP2001181775A (en) Cermet sintered body
JP5451507B2 (en) Cutting tools
JP7441420B2 (en) Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance
CN109972013B (en) Cemented carbide and coated cemented carbide
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP7307394B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP4035045B2 (en) Throw-away tip and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees