JP2020110891A - Cutting tool made of wc-group cemented carbide alloy excellent in anti-plastic deformation and anti-chipping and cutting tool made of surface-coating wc-group cemented carbide - Google Patents
Cutting tool made of wc-group cemented carbide alloy excellent in anti-plastic deformation and anti-chipping and cutting tool made of surface-coating wc-group cemented carbide Download PDFInfo
- Publication number
- JP2020110891A JP2020110891A JP2019004930A JP2019004930A JP2020110891A JP 2020110891 A JP2020110891 A JP 2020110891A JP 2019004930 A JP2019004930 A JP 2019004930A JP 2019004930 A JP2019004930 A JP 2019004930A JP 2020110891 A JP2020110891 A JP 2020110891A
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- based cemented
- binder phase
- tool
- cutting tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
本発明は、ステンレス鋼等の難削材の切削加工において、すぐれた耐塑性変形性を備え、すぐれた耐チッピング性を発揮するWC基超硬合金製切削工具(「WC基超硬工具」ともいう)および表面被覆WC基超硬合金製切削工具に関する。 The present invention provides a WC-based cemented carbide cutting tool (also referred to as “WC-based cemented carbide tool”) that has excellent plastic deformation resistance and excellent chipping resistance in cutting difficult-to-cut materials such as stainless steel. And a surface-coated WC-based cemented carbide cutting tool.
WC基超硬合金は硬さが高く、また、靱性を備えることから、これを基体とするWC基超硬工具は、すぐれた耐摩耗性を発揮し、また、長期の使用にわたって長寿命を有する切削工具として知られている。
しかし、近年、被削材の種類、切削加工条件等に応じて、WC基超硬工具の切削性能、工具寿命をより一段と向上させるべく、各種の提案がなされている。
Since the WC-based cemented carbide has high hardness and toughness, the WC-based cemented carbide tool based on this has excellent wear resistance and has a long life over long-term use. Known as a cutting tool.
However, in recent years, various proposals have been made in order to further improve the cutting performance and tool life of WC-based cemented carbide tools depending on the type of work material, cutting conditions, and the like.
例えば、特許文献1では、炭化タングステンを主成分とする硬質相と、鉄族元素(コバルトを含み、コバルトの含有量は超硬合金中において8質量%以上であることが好ましい)を主成分とする結合相とを備える超硬合金において、炭化タングステンの粒子数をA、他の炭化タングステン粒子との接触点の点数が1点以下の炭化タングステン粒子の粒子数をBとするとき、B/A≦0.05を満たすようにすることで、超硬合金の耐塑性変形性を向上させ、その結果として、炭素鋼、ステンレス鋼の湿式連続切削加工において、WC基超硬工具の長寿命化を図ることが提案されている。 For example, in Patent Document 1, a hard phase containing tungsten carbide as a main component and an iron group element (containing cobalt, and the content of cobalt is preferably 8% by mass or more in the cemented carbide) as main components. In a cemented carbide having a binder phase for forming a cemented carbide, the number of particles of tungsten carbide is A, and the number of particles of tungsten carbide having a contact point with another tungsten carbide particle of 1 point or less is B/A. By satisfying ≦0.05, the plastic deformation resistance of the cemented carbide is improved, and as a result, the longevity of the WC-based cemented carbide tool is extended in the wet continuous cutting of carbon steel and stainless steel. It is proposed to try.
特許文献2では、Co量が10〜13質量%、Co量に対するCr量の比が2〜8%、TaCとNbCの少なくとも1種をTaCとNbCの総量が0.2〜0.5質量%となる範囲で含有し、残部がWCから成り、硬さが88.6HRA〜89.5HRAであるWC基超硬工具において、研磨面上の面積比におけるWC積算粒度80%径D80と積算粒度20%径D20の比D80/D20を2.0≦D80/D20≦4.0の範囲とし、また、D80を4.0〜7.0μmの範囲とし、かつWC接着度cを0.36≦c≦0.43とすることにより、ステンレス鋼に代表される難削材の切削加工において、被削材の凝着を防止し耐欠損性を向上させることが提案されている。 In Patent Document 2, the amount of Co is 10 to 13% by mass, the ratio of the amount of Cr to the amount of Co is 2 to 8%, and the total amount of TaC and NbC is 0.2 to 0.5% by mass. In a WC-based cemented carbide tool, the balance of which is WC, the balance is WC, and the hardness is 88.6HRA to 89.5HRA, in the area ratio on the polished surface, the WC cumulative particle size 80% diameter D80 and the cumulative particle size 20. The ratio D80/D20 of the% diameter D20 is in the range of 2.0≦D80/D20≦4.0, the D80 is in the range of 4.0 to 7.0 μm, and the WC adhesion c is 0.36≦c. By setting ≦0.43, it has been proposed to prevent adhesion of a work material and improve fracture resistance in cutting of a difficult-to-cut material represented by stainless steel.
特許文献3では、WC基超硬工具において、WC基超硬合金の成分組成を、WC−x質量%Co−y質量%Cr3C2−z質量%VCで表したとき、6≦x≦14、0.4≦y≦0.8、0≦z≦0.6、(y+z)≦0.1xを満足し、また、WC基超硬合金のWC接着度Cを、C=1−Vb α・exp(0.391・L)で表したとき、この式におけるWC基超硬合金の結合相体積率の値Vbは0.11≦Vb≦0.25、また、(WC粒子の粒度分布の標準偏差)/(平均WC粒度)の値Lは0.3≦L≦0.7の範囲内であって、さらに、係数αが0.3≦α≦0.55の値を満足するWC接着度Cを有するWC基超硬合金とすることにより、Al合金、炭素鋼等の切削加工において、硬さと剛性を低下させることなく靱性を向上させ、耐欠損性を高めたWC基超硬工具が提案されている。 In Patent Document 3, in WC group carbide tool, when the composition of WC-based cemented carbide, expressed in WC-x wt% Co-y wt% Cr 3 C 2 -z wt% VC, 6 ≦ x ≦ 14, 0.4≦y≦0.8, 0≦z≦0.6, (y+z)≦0.1x are satisfied, and the WC adhesion C of the WC-based cemented carbide is C=1-V. When expressed by b α ·exp (0.391·L), the value V b of the volume fraction of the binder phase of the WC-based cemented carbide in this formula is 0.11≦V b ≦0.25, and (WC particles Value of (standard deviation of particle size distribution)/(average WC particle size) is within the range of 0.3≦L≦0.7, and the coefficient α is 0.3≦α≦0.55. By using a WC-based cemented carbide having a satisfactory WC adhesion C, a WC-based cement with improved fracture resistance and improved toughness in cutting processing of Al alloy, carbon steel, etc. without decreasing hardness and rigidity. Carbide tools have been proposed.
特許文献4では、WC基超硬工具において、WC−WC接着界面長さをL1とし、WC−Co接着界面長さをL2とした時、
R>(0.82−0.086×D)×(10/V)
の式を満足させることにより、Ni基耐熱合金の切削加工において、WC基超硬工具の耐熱塑性変形性と靱性を向上させることが提案されている。
なお、R=(L1)/((L1)+(L2))
D:WC面積平均粒径(μm)であって、0.6≦D≦1.7の範囲である。
ここで、前記Dは、WCの面積率が50%となるときのWCの粒径をいう。
V:結合相体積(vol%)であって、9≦V≦14の範囲である。
In Patent Document 4, in the WC-based cemented carbide tool, when the WC-WC adhesive interface length is L1 and the WC-Co adhesive interface length is L2,
R>(0.82-0.086×D)×(10/V)
It has been proposed that by satisfying the formula (1), the heat-resistant plastic deformability and toughness of the WC-based cemented carbide tool are improved in the cutting of the Ni-based heat-resistant alloy.
Note that R=(L1)/((L1)+(L2))
D: WC area average particle size (μm), which is in the range of 0.6≦D≦1.7.
Here, the D means the particle size of WC when the area ratio of WC is 50%.
V: Binder phase volume (vol %), which is in the range of 9≦V≦14.
特許文献5では、重量%で、Crまたは/およびCr化合物:0〜4%(Cr換算で)、Vまたは/およびV化合物:0〜4%(V換算で)、TaC:0〜2%、TiC:0〜2%、
Nまたは/およびN化合物:0〜1%(N換算で)、Co:0.1〜10%、WCおよび不可避不純物:残からなる組成を有し、かつ、0.06〜30ナノメータのCo平均厚み(CFP)を有し、焼結に際し、昇温途中900度C〜1600度Cの温度範囲の1部または全範囲において、気体を圧力媒体として3気圧〜200気圧の圧力を負荷して高密度化を図った切削加工工具用WC−Co系超硬部品が提案されており、このWC−Co系超硬部品、望ましくは、WCの平均粒径が1μm以下、CFPが0.06〜30nmの範囲の超微粒低Co超硬合金部品の靱性を高めることができるとされている。
ただし、CFPは、Co平均厚み(nm)であって、
CFP=0.58*A/(100−A)*R
から算出した値であり、A:Co(%),2R:WC平均粒径(nm)である。
In Patent Document 5, in weight %, Cr or/and Cr compound: 0 to 4% (in terms of Cr), V or/and V compound: 0 to 4% (in terms of V), TaC: 0 to 2%, TiC: 0-2%,
N or/and N compound: 0 to 1% (in terms of N), Co: 0.1 to 10%, WC and unavoidable impurities: a composition consisting of the balance, and a Co average of 0.06 to 30 nanometers It has a thickness (CFP), and during sintering, a part of the temperature range of 900° C. to 1600° C. during the temperature rise or the entire range is loaded with a pressure of 3 atm to 200 atm using a gas as a pressure medium to increase the temperature. A WC-Co-based cemented carbide part for cutting tools with a higher density has been proposed. This WC-Co-based cemented carbide part, desirably, the average particle size of WC is 1 μm or less, and the CFP is 0.06 to 30 nm. It is said that the toughness of ultrafine-grained low-Co cemented carbide parts in the range of can be enhanced.
However, CFP is Co average thickness (nm),
CFP=0.58*A/(100-A)*R
And A:Co(%), 2R:WC average particle size (nm).
前記特許文献1〜5で提案されている従来のWC基超硬工具によれば、WC−WC粒子相互の接触点数、WCの粒度、WC接着度あるいは製造条件等をコントロールすることによって、WC基超硬工具の切削性能、工具特性の向上を図っている。
しかし、前記従来の工具では、ステンレス鋼のような難削材の切削加工においては、WC−WC粒子の界面での粒界すべりの発生、あるいは、結合相への応力集中による亀裂の発生等により、チッピング等の異常損傷の発生を十分に抑制することができず、そのため、工具寿命は短命であった。
According to the conventional WC-based cemented carbide tools proposed in Patent Documents 1 to 5, by controlling the number of contact points between WC-WC particles, the particle size of WC, the degree of WC adhesion, the production conditions, etc. We are working to improve the cutting performance and tool characteristics of carbide tools.
However, in the conventional tool, when cutting a difficult-to-cut material such as stainless steel, due to occurrence of grain boundary slip at the interface of WC-WC particles, or occurrence of cracks due to stress concentration in the binder phase. The occurrence of abnormal damage such as chipping could not be sufficiently suppressed, and therefore the tool life was short.
本発明者らは、ステンレス鋼のような難削材の切削加工において、すぐれた耐塑性変形性と耐チッピング性を発揮するWC基超硬工具を提供すべく、WC基超硬合金の結合相の形態に着目し、鋭意研究を進めたところ、次のような知見を得た。 In order to provide a WC-based cemented carbide tool that exhibits excellent plastic deformation resistance and chipping resistance in the cutting of difficult-to-cut materials such as stainless steel, the present inventors have found that the binder phase of WC-based cemented carbide is used. As a result of intensive research focusing on the morphology, the following findings were obtained.
前記特許文献1〜4に示されるWC基超硬工具においては、主として、WC粒子に着目した改善がなされ、また、前記特許文献5に示されるWC基超硬工具においては、主として、CFPに着目した改善がなされていたが、本発明者らは、従来の技術とは視点を変えて、結合相の形態に着目して研究を重ねたところ、WC基超硬合金の結合相のうちの微細結合相粒子について、その真円度を0.9〜1.0の範囲内に定めた場合には、WC基超硬合金中の微細結合相粒子が、細長形状ではなく円形に近い形状であるため、WC―WC粒子間の接触長さが長くなることによって、WC−WC粒子の界面での粒界すべりの発生が低減されることで耐塑性変形性が向上し、切削加工時の刃先の変形発生が抑制されることを見出した。
また、WC基超硬合金中の微細結合相粒子は円形に近い形状となるために、切削加工時に作用する高負荷による応力集中が抑制されるとともに空隙の形成も抑制されることによって、変形、破壊の起点が減少し、チッピング、欠損等の異常損傷の発生が抑制されることを見出した。
つまり、WC基超硬合金の結合相のうちの微細結合相粒子について、その真円度を0.9〜1.0の範囲内に定めたWC基超硬工具を、ステンレス鋼等の難削材の切削加工に供した場合には、耐塑性変形性の向上によって、刃先の変形が抑制され、また、変形、破壊の起点が減少することによって、チッピング、欠損等の異常損傷の発生が抑えられ、工具の長寿命化が図られることを見出したのである。
In the WC-based cemented carbide tools shown in Patent Documents 1 to 4, improvements focused mainly on WC particles are made, and in the WC-based cemented carbide tool shown in Patent Document 5, mainly focused on CFP. However, the inventors of the present invention have conducted a study focusing on the morphology of the binder phase while changing the viewpoint from the conventional technique. When the roundness of the binder phase particles is set within the range of 0.9 to 1.0, the fine binder phase particles in the WC-based cemented carbide are not elongated but have a shape close to a circle. Therefore, by increasing the contact length between WC-WC particles, the occurrence of grain boundary slip at the interface of WC-WC particles is reduced, plastic deformation resistance is improved, and the cutting edge of the cutting edge is improved. It has been found that the occurrence of deformation is suppressed.
In addition, since the fine binder phase particles in the WC-based cemented carbide have a shape close to a circle, the stress concentration due to the high load acting during cutting is suppressed and the formation of voids is also suppressed, so that the deformation, It was found that the starting point of fracture is reduced and the occurrence of abnormal damage such as chipping and chipping is suppressed.
That is, for the fine binder phase particles of the binder phase of the WC-based cemented carbide, a WC-based cemented carbide tool whose roundness is set within the range of 0.9 to 1.0 is used for difficult-to-cut materials such as stainless steel. When the material is used for cutting, the deformation of the cutting edge is suppressed by the improvement of plastic deformation resistance, and the occurrence of deformation and fracture is reduced, which suppresses the occurrence of abnormal damage such as chipping and chipping. It was found that the tool life can be extended.
本発明は、上記知見に基づいてなされたものであって、
「(1)WC基超硬合金を基体とするWC基超硬合金製切削工具において、
前記WC基超硬合金の成分組成は、結合相形成成分としてのCoを6〜14質量%とCr3C2を0.1〜1.4質量%含有し、残部はWC及び不可避不純物からなり、前記WC基超硬合金の断面について測定した結合相粒子の個数積算10%粒度における粒子面積をA10としたとき、A10以下の面積を有する微細結合相粒子の平均真円度が0.9〜1.0の範囲内であることを特徴とするWC基超硬合金製切削工具。
(2)前記WC基超硬合金は、TaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を合計量で4質量%以下、さらに含有することを特徴とする(1)に記載のWC基超硬合金製切削工具。
(3)(1)または(2)に記載のWC基超硬合金製切削工具の少なくとも切れ刃には、硬質被覆層が形成されていることを特徴とする表面被覆WC基超硬合金製切削工具。」
を特徴とするものである。
なお、前記(1)、(2)におけるCr3C2、TaC、NbC、TiC、ZrCの含有量は、WC基超硬合金の断面について測定したCr量、Ta量、Nb量、Ti量、Zr量を、いずれも炭化物換算した数値である。
The present invention was made based on the above findings,
“(1) In a WC-based cemented carbide cutting tool based on WC-based cemented carbide,
The composition of the WC-based cemented carbide contains 6 to 14% by mass of Co and 0.1 to 1.4% by mass of Cr 3 C 2 as a binder phase forming component, and the balance consists of WC and unavoidable impurities. The average circularity of the fine binder phase particles having an area of A10 or less is 0.9 to, where A10 is the particle area of 10% particle size integration of the binder phase particles measured on the cross section of the WC-based cemented carbide. A WC-based cemented carbide cutting tool characterized by being in the range of 1.0.
(2) The WC-based cemented carbide further contains at least one selected from TaC, NbC, TiC and ZrC in a total amount of 4% by mass or less, and (1) is characterized in that Cutting tool made of WC-based cemented carbide.
(3) A surface-coated WC-based cemented carbide cutting tool characterized in that a hard coating layer is formed on at least the cutting edge of the WC-based cemented carbide cutting tool according to (1) or (2). tool. "
It is characterized by.
The contents of Cr 3 C 2 , TaC, NbC, TiC and ZrC in the above (1) and (2) are the Cr amount, Ta amount, Nb amount and Ti amount measured on the cross section of the WC-based cemented carbide, The values of Zr are all converted into carbides.
本発明のWC基超硬工具および表面被覆WC基超硬合金製切削工具は、その基体を構成するWC基超硬合金の成分であるCo、Cr3C2、あるいはさらに、TaC、NbC、TiC、ZrCが特定の組成範囲を有し、また、WC基超硬合金における結合相粒子の個数積算10%粒度における粒子面積をA10としたとき、A10以下の面積を有する微細結合相粒子の平均真円度が0.9〜1.0の範囲であることから、WC基超硬合金中には細長い形状の微細結合相粒子の存在は少なく、その多くは円形状に近い形状を有する微細結合相粒子であるため、WC−WC粒子同士の接触界面が長くなるために、ステンレス鋼等の難削材の切削加工において、切削加工時の高負荷が作用した場合でも、WC粒子間の粒界すべりの発生が抑制されて耐塑性変形性が向上し、刃先の変形が抑制され切削工具の長寿命化が図られる。
さらに、微細結合相粒子への応力集中が緩和されるため、結合相が起点となる破壊の発生が減少し、チッピング等の異常損傷の発生が抑制される。
The WC-based cemented carbide tool and the surface-coated WC-based cemented carbide cutting tool of the present invention include Co, Cr 3 C 2 , or TaC, NbC, or TiC, which are the components of the WC-based cemented carbide constituting the substrate. , ZrC has a specific composition range, and the average particle size of fine binder phase particles having an area of A10 or less, where A10 is the particle area at 10% particle size integration of binder phase particles in WC-based cemented carbide. Since the circularity is in the range of 0.9 to 1.0, there are few elongated fine binder phase particles in the WC-based cemented carbide, and most of them have a fine circular binder shape. Since the contact interface between WC-WC particles is long because they are particles, in the cutting of difficult-to-cut materials such as stainless steel, even when a high load is applied during cutting, grain boundary slip between WC particles Is suppressed, the plastic deformation resistance is improved, the deformation of the cutting edge is suppressed, and the life of the cutting tool is extended.
Further, since the stress concentration on the fine binder phase particles is relieved, the occurrence of breakage starting from the binder phase is reduced, and the occurrence of abnormal damage such as chipping is suppressed.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
Co:
Coは、WC基超硬合金の主たる結合相形成成分として含有させるが、Co含有量が6質量%未満では十分な靱性を保持することはできず、一方、Co含有量が14質量%を超えると急激に軟化し、切削工具として必要とされる所望の硬さが得られず、変形および摩耗進行が顕著になることから、WC基超硬合金中のCo含有量を6〜14質量%と定めた。
Co:
Co is contained as a main binder phase forming component of the WC-based cemented carbide, but if the Co content is less than 6 mass %, sufficient toughness cannot be maintained, while the Co content exceeds 14 mass %. And the desired hardness required as a cutting tool is not obtained, and the deformation and wear progress become remarkable, so that the Co content in the WC-based cemented carbide is set to 6 to 14% by mass. Specified.
Cr3C2:
Cr3C2は、主たる結合相を形成するCo中にCrが固溶し、硬質相を形成するWC相の成長を抑制して、WC相の粒径を微細化させ、WC基超硬合金を微粒・均粒組織とし、靱性を高める。しかし、この作用は、Cr3C2含有量が、0.1質量%未満では不充分であり、一方、その含有量がCoの含有量に対し10%を超えると、CrとWの複合炭化物を析出し、靱性が低下し、また、欠損発生の起点となる。
本発明においてはCo含有量上限が14質量%であるため、Cr3C2の上限はCo含有量上限の10%である1.4質量%である。
したがって、WC基超硬合金中のCr3C2含有量は、0.1〜1.4質量%と定めた。
Cr 3 C 2 :
Cr 3 C 2 is a WC-based cemented carbide, in which Cr is solid-dissolved in Co that forms the main binder phase, suppresses the growth of the WC phase that forms the hard phase, and reduces the grain size of the WC phase. To improve the toughness. However, this action is insufficient if the Cr 3 C 2 content is less than 0.1% by mass. On the other hand, if the content exceeds 10% with respect to the Co content, the compound carbide of Cr and W is formed. To reduce the toughness and become a starting point of occurrence of defects.
In the present invention, since the upper limit of Co content is 14% by mass, the upper limit of Cr 3 C 2 is 1.4% by mass, which is 10% of the upper limit of Co content.
Therefore, Cr 3 C 2 content of WC-based cemented carbide is specified to 0.1 to 1.4 mass%.
TaC、NbC、TiC、ZrC:
本発明のWC基超硬合金は、その成分として、さらに、TaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を合計量で4質量%以下、さらに含有することができる。
Ta、Nb、Ti、Zrはいずれも、主たる結合相を形成するCo中に固溶して硬さを高める効果を有するが、それらを炭化物換算した合計含有量が4質量%を超えると、炭化物析出により靱性を低下させ、欠損発生の起点となる。
したがって、WC基超硬合金中の成分としてTaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を含有させる場合には、その合計含有量は、4質量%以下とすることが望ましい。
なお、前記したCr3C2、TaC、NbC、TiC、ZrCの含有量は、WC基超硬合金についてEPMAによって測定したCr量、Ta量、Nb量、Ti量、Zr量を、いずれも炭化物換算した数値である。
TaC, NbC, TiC, ZrC:
The WC-based cemented carbide of the present invention can further contain, as a component thereof, at least one selected from TaC, NbC, TiC and ZrC in a total amount of 4% by mass or less.
Ta, Nb, Ti, and Zr all have the effect of increasing the hardness by forming a solid solution in Co that forms the main binder phase, but if the total content in terms of carbides exceeds 4% by mass, carbides The precipitation lowers the toughness and becomes the starting point of the occurrence of defects.
Therefore, when at least one selected from TaC, NbC, TiC and ZrC is contained as a component in the WC-based cemented carbide, the total content thereof is preferably 4% by mass or less.
The contents of Cr 3 C 2 , TaC, NbC, TiC, and ZrC described above are all the amounts of carbide, Cr amount, Ta amount, Nb amount, Ti amount, and Zr amount measured by EPMA for WC-based cemented carbide. It is a converted value.
微細結合相粒子の平均真円度(Circularity):
本発明でいうWC基超硬合金の微細結合相粒子の平均真円度とは、WC基超硬合金の断面について、走査型電子顕微鏡(SEM)を使用した観察によって特定した個々の微細結合相粒子の真円度を求め、求めた真円度を平均した値をいう。
ここで、微細結合相粒子とは、例えば、走査型電子顕微鏡(SEM)を用いて、倍率3000〜4000倍でWC基超硬合金の断面を観察して、結合相(Coを主成分とする相)のコントラストが他の相のコントラストから明確に分離可能なSEM像を取得し、これを画像処理して個々の結合相粒子の面積と個数を求め、結合相粒子の面積を横軸とし、また、結合相粒子の個数を縦軸とし、結合相面積の小さい粒子から個数を積み上げた累積分布を作成し、個数積算10%における粒子面積をA10とした場合に、A10以下の面積を有する結合相粒子を微細結合相粒子いう。
そして、微細結合相粒子の真円度については、例えば、走査型電子顕微鏡(SEM)を用いて、倍率3000〜4000倍でWC基超硬合金の断面を観察してSEM像を取得し、該SEM像における微細結合相粒子を特定して抽出し、画像解析ソフトImageJを用いて測定することにより、個々の微細結合相粒子の真円度を求めることができる。
Circularity of fine binder phase particles:
The average circularity of the fine binder phase particles of the WC-based cemented carbide referred to in the present invention means the individual fine binder phases specified by observation using a scanning electron microscope (SEM) with respect to the cross section of the WC-based cemented carbide. The circularity of the particles is calculated and the averaged circularity is used.
Here, the fine binder phase particles are, for example, using a scanning electron microscope (SEM), observing a cross section of the WC-based cemented carbide at a magnification of 3000 to 4000 times, and a binder phase (containing Co as a main component). Phase) to obtain a SEM image that can be clearly separated from the contrast of the other phase, image processing of this to determine the area and number of individual binder phase particles, the area of the binder phase particles as the horizontal axis, Also, when the number of binder phase particles is taken as the vertical axis and a cumulative distribution is created by stacking particles with a small binder phase area, and the particle area at 10% of the total number of particles is A10, a bond having an area of A10 or less is obtained. The phase particles are called finely bonded phase particles.
Then, regarding the circularity of the fine binder phase particles, for example, using a scanning electron microscope (SEM), a cross section of the WC-based cemented carbide is observed at a magnification of 3000 to 4000 times to obtain an SEM image. The roundness of each fine binder phase particle can be obtained by identifying and extracting the fine binder phase particle in the SEM image and measuring it using the image analysis software ImageJ.
より具体的に説明すれば、次のとおり。
WC基超硬合金の断面の1つの観察視野においてn個の微細結合相粒子が特定された場合、個々の微細結合相粒子に番号1からnを付与し、番号1〜nの微細結合相粒子の面積をそれぞれA1〜Anとし、また、番号1〜nの微細結合相粒子の周長をL1〜Lnとした時、番号mの微細結合相粒子の真円度Cmは、
Cm=4π×Am/Lm 2
で定義される。
そして、m=1〜nとしてC1〜Cnの値を求め、さらに、これらC1〜Cnの平均値C1〜nを求め、このC1〜nが前記1つの観察視野における微細結合相粒子の真円度となる。
そして、複数の観察視野(例えば、10ヶ所の観察視野)で、それぞれの観察視野における微細結合相粒子の真円度を求め、これらを平均した値を、本発明でいうWC基超硬合金の断面の微細結合相粒子の平均真円度とする。
真円度の定義からも明らかなように、真円度あるいは平均真円度の値が1に近いほど、WC基超硬合金の微細結合相粒子の形状は真円に近づき、一方、この値が0に近づくにつれ、微細結合相粒子の形状は円ではなく細長形状になっていくので、真円度あるいは平均真円度の値は、WC基超硬合金中における微細結合相粒子の形状の指標であるといえる。
More specifically, it is as follows.
When n fine binder phase particles are specified in one observation visual field of the cross section of the WC-based cemented carbide, the fine binder phase particles are given numbers 1 to n, and fine binder phase particles 1 to n are given. When the area of each is A 1 to A n, and the circumferential length of the fine binder phase particles of numbers 1 to n is L 1 to L n , the roundness C m of the fine binder phase particles of number m is
C m =4π×A m /L m 2
Is defined by
Then, a value of C 1 -C n as m = 1 to n, further, an average value C 1 to n of C 1 -C n, fine binding the C 1 to n is in the one observation field It is the roundness of the phase particles.
Then, in a plurality of observation visual fields (for example, 10 observation visual fields), the circularity of the fine binder phase particles in each observation visual field is obtained, and the averaged value is used as the WC-based cemented carbide of the present invention. The average roundness of the fine binder phase particles in the cross section.
As is clear from the definition of roundness, the closer the value of roundness or average roundness is to 1, the closer the shape of the fine binder phase particles of the WC-based cemented carbide is to a roundness. Since the shape of the fine binder phase particles becomes an elongated shape instead of a circle as the value approaches 0, the value of the roundness or the average roundness of the fine binder phase particles in the WC-based cemented carbide is It can be said to be an index.
本発明においては、微細結合相粒子の平均真円度を0.9〜1.0の範囲内としているが、これは次の理由による。
WC基超硬合金中における微細結合相粒子の平均真円度が0.9未満では、細長形状の微細結合相粒子が多くなることによりWC−WC粒子同士の接触界面長さが短くなるとともに、細長形状の微細結合相粒子の先端部に応力集中を生じやすく、微細結合相粒子先端部には空隙を生じ、WC−WC粒子間の粒界すべりを生じやすくなり、耐塑性変形性が十分でなくなる。さらに、微細結合相粒子先端部に形成された空隙は、WC基超硬工具の変形、破壊の起点となるため、靱性、耐チッピング性、耐欠損性等が低下する。
微細結合相粒子の平均真円度が1.0(あるいは1.0に近い値)の場合は、微細結合相粒子の形状が円形あるいはほぼ円形ということであり、WC−WC粒子同士の接触界面が長くなるために、耐塑性変形性が向上するとともに、チッピング、欠損に対する耐異常損傷性も向上する。
したがって、本発明においては、微粒結合相粒子の平均真円度は0.9〜1.0の範囲内とする。そして、これによって、ステンレス鋼等の難削材の湿式連続切削加工において、耐塑性変形性が向上することで、刃先の変形が抑制され、また、WC−WC粒子間の空隙形成を抑制するとともに、結合相への応力集中を緩和することで、チッピング、欠損等の耐異常損傷性を高め、切削工具の長寿命化を図ることができる。
In the present invention, the average circularity of the fine binder phase particles is set within the range of 0.9 to 1.0, but this is for the following reason.
When the average roundness of the fine binder phase particles in the WC-based cemented carbide is less than 0.9, the contact interface length between the WC-WC particles is shortened due to the increase in the number of elongated fine binder phase particles, Stress concentration is likely to occur at the tip of the elongated fine binder phase particles, voids are likely to occur at the tip of the fine binder phase particles, and grain boundary slip between WC-WC particles is likely to occur, resulting in insufficient plastic deformation resistance. Disappear. Furthermore, the voids formed at the tip of the fine binder phase particles serve as the starting points for deformation and breakage of the WC-based cemented carbide tool, so that the toughness, chipping resistance, fracture resistance, etc. are reduced.
When the average circularity of the fine binder phase particles is 1.0 (or a value close to 1.0), it means that the shape of the fine binder phase particles is circular or almost circular, and the contact interface between the WC-WC particles. As a result, the plastic deformation resistance is improved, and the abnormal damage resistance against chipping and chipping is also improved.
Therefore, in the present invention, the average roundness of the fine binder phase particles is within the range of 0.9 to 1.0. By this, in wet continuous cutting of difficult-to-cut materials such as stainless steel, the plastic deformation resistance is improved, so that the deformation of the cutting edge is suppressed and the formation of voids between WC-WC particles is suppressed. By relaxing the stress concentration on the binder phase, it is possible to enhance the abnormal damage resistance such as chipping and chipping, and prolong the life of the cutting tool.
本発明のWC基超硬工具は、例えば、以下の工程によって作製することができる。
まず、粗粒WC粉末、微粒WC粉末、Co粉末、Cr3C2粉末からなる原料粉末、あるいは、必要に応じて、さらに、TaC粉末、NbC粉末、TiC粉末、ZrC粉末のうちの1種以上の粉末を含有する原料粉末を、所定の組成になるように配合・混合して、混合粉末を作製する。
ついで、前記混合粉末を成形して圧粉成形体を作製し、この圧粉成形体を、加熱温度:1000℃以上1100℃以下の温度において、等温保持時間:30〜300分、加熱雰囲気:アルゴンガス雰囲気、雰囲気圧力:0.5〜0.7MPaの条件で等温保持する固相再配列工程を行い、ついで、加熱温度:1300℃以上1500℃以下、かつ、加熱保持時間:30〜120分、真空雰囲気の条件で焼結して、WC基超硬合金を作製する。
固相再配列工程における等温保持温度は、結合相の液相生成温度より100℃以上低温であり、結合相の塑性流動が活発でない。この温度範囲でガス圧力により固相収縮を促進することによりWC粒子の再配列が顕著となり、等温保持工程後はWC粒子間に平均真円度が0.9〜1.0に近いCoを主成分とする結合相粒子が残存する。
ついで、前記WC基超硬合金を、機械加工、研削加工し、所望サイズ・形状のWC基超硬工具を作製することができる。
The WC-based cemented carbide tool of the present invention can be produced, for example, by the following steps.
First, a raw powder consisting of coarse WC powder, fine WC powder, Co powder, Cr 3 C 2 powder, or, if necessary, one or more of TaC powder, NbC powder, TiC powder, and ZrC powder. The raw material powder containing the above powder is mixed and mixed so as to have a predetermined composition to prepare a mixed powder.
Then, the mixed powder is molded to prepare a powder compact, and the powder compact is heated at a temperature of 1000° C. or higher and 1100° C. or lower for an isothermal holding time of 30 to 300 minutes and a heating atmosphere of argon. A solid phase rearrangement step of maintaining isothermal conditions under gas atmosphere and atmospheric pressure: 0.5 to 0.7 MPa is performed, and then heating temperature: 1300° C. to 1500° C. and heating holding time: 30 to 120 minutes, Sintering is performed in a vacuum atmosphere to produce a WC-based cemented carbide.
The isothermal holding temperature in the solid phase rearrangement step is 100° C. or more lower than the liquid phase formation temperature of the binder phase, and the plastic flow of the binder phase is not active. By accelerating the solid-phase contraction by the gas pressure in this temperature range, rearrangement of the WC particles becomes remarkable, and after the isothermal holding step, the average roundness of the WC particles is mainly Co near 0.9 to 1.0. Binder particles as a component remain.
Next, the WC-based cemented carbide can be machined and ground to produce a WC-based cemented carbide tool of a desired size and shape.
前記の工程で作製されたWC基超硬工具においては、WC基超硬合金の微細結合相粒子の平均真円度が0.9〜1.0の範囲となり、細長形状ではなくほぼ円形状に近い微細結合相粒子が形成されるとともに、WC−WC粒子の接触界面長さが長くなる。
その結果、WC−WC粒子界面での粒界すべりが抑制されるため、耐塑性変形性が向上し、さらに、結合相への応力集中が緩和されるため、結合相が起点となる破壊、例えば、結合相とWC粒子間に形成された空隙が起点となる破壊、が減少し、靱性が向上する。
さらに、前記WC基超硬合金製切削工具の少なくとも切れ刃に、Ti−Al系、Al−Cr系等の炭化物、窒化物、炭窒化物あるいはAl2O3等の硬質皮膜を、PVD、CVD等の成膜法により被覆形成することにより、表面被覆WC基超硬合金製切削工具を作製することができる。
なお、表面被覆WC基超硬合金製切削工具の作製にあたり、硬質皮膜の種類、成膜法は、当業者に既によく知られている膜種、成膜手法を採用すればよく、特に、制限するものではない。
In the WC-based cemented carbide tool produced in the above step, the average circularity of the fine binder phase particles of the WC-based cemented carbide is in the range of 0.9 to 1.0, and the WC-based cemented carbide has a substantially circular shape rather than an elongated shape. As the fine binder phase particles are formed close to each other, the contact interface length of the WC-WC particles becomes long.
As a result, since the grain boundary slip at the WC-WC grain interface is suppressed, the plastic deformation resistance is improved, and the stress concentration on the binder phase is relieved. The fracture starting from the void formed between the binder phase and the WC particles is reduced, and the toughness is improved.
Further, at least the cutting edge of the WC-based cemented carbide cutting tool is coated with a hard coating such as a Ti-Al-based or Al-Cr-based carbide, nitride, carbonitride, or Al 2 O 3 by PVD or CVD. By forming a coating by a film forming method such as the above, a surface-coated WC-based cemented carbide cutting tool can be produced.
In the production of the surface-coated WC-based cemented carbide cutting tool, the type of hard coating and film forming method may be the film type and film forming method that are well known to those skilled in the art. Not something to do.
本発明のWC基超硬工具および表面被覆WC基超硬工具について、実施例により具体的に説明する。 The WC-based cemented carbide tool and the surface-coated WC-based cemented carbide tool of the present invention will be specifically described with reference to examples.
(a)まず、焼結用の粉末として、表1に示す平均粒径(d50)4.0〜8.0μmの粗粒WC粉末、同じく表1に示す平均粒径(d50)0.5〜2.0μmの微粒WC粉末、Co粉末、Cr3C2粉末、TaC粉末、NbC粉末、TiC粉末、ZrC粉末を用意する。
これらの粉末を、表1に示す配合組成となるように配合して、焼結用粉末を作製した。
表1には、各種粉末の配合組成(質量%)を示す。
なお、Co粉末、Cr3C2粉末、TaC粉末、NbC粉末、TiC粉末、ZrC粉末の平均粒径(d50)は、いずれも、1.0〜3.0μmの範囲内である。
(A) First, as a powder for sintering, a coarse WC powder having an average particle size (d50) of 4.0 to 8.0 μm shown in Table 1, and an average particle size (d50) of 0.5 to 0 shown in Table 1 are used. 2.0 μm fine WC powder, Co powder, Cr 3 C 2 powder, TaC powder, NbC powder, TiC powder, and ZrC powder are prepared.
These powders were blended so as to have the blending composition shown in Table 1 to prepare a sintering powder.
Table 1 shows the composition of each powder (mass %).
The average particle diameter (d50) of Co powder, Cr 3 C 2 powder, TaC powder, NbC powder, TiC powder, and ZrC powder is in the range of 1.0 to 3.0 μm.
(b)表1に示す配合組成に配合した焼結用粉末を、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力でプレス成形して圧粉成形体を作製した。 (B) Sintering powders blended with the blending composition shown in Table 1 were wet mixed in a ball mill for 72 hours, dried, and then press-molded at a pressure of 100 MPa to produce a powder compact.
(c)ついで、これらの圧粉成形体を、表2に示す条件、即ち、0.5〜0.7MPaのアルゴン雰囲気中、1000〜1100℃の保持温度範囲まで加熱し(この温度範囲は、固相反応は起こるが結合相の液相生成温度以下である)、該保持温度で30〜300分保持するという条件で固相再配列工程を行った。 (C) Then, these powder compacts are heated to the holding temperature range of 1000 to 1100° C. under the conditions shown in Table 2, that is, in an argon atmosphere of 0.5 to 0.7 MPa (this temperature range is The solid phase reaction occurs, but it is lower than the liquid phase formation temperature of the binding phase), and the solid phase rearrangement step was performed under the condition of holding at the holding temperature for 30 to 300 minutes.
(d)ついで、炉内を10−1Pa以下の真空雰囲気とし、表3に示す条件、即ち、加熱温度:1300℃以上1500℃以下、かつ、加熱保持時間:30〜120分、10−1Pa以下の真空雰囲気の条件で焼結して、WC基超硬合金を作製した。 (D) Next, the inside of the furnace was set to a vacuum atmosphere of 10 −1 Pa or less, and the conditions shown in Table 3, that is, heating temperature: 1300° C. or more and 1500° C. or less, and heating holding time: 30 to 120 minutes, 10 −1 Sintering was performed under a vacuum atmosphere of Pa or less to produce a WC-based cemented carbide.
(e)ついで、前記WC基超硬合金を、機械加工、研削加工し、CNMG120408−GMのインサート形状の表4に示すWC基超硬工具1〜12(以下、本発明工具1〜12とう)を作製した。 (E) Then, the WC-based cemented carbide is machined and ground, and the WC-based cemented carbide tools 1 to 12 shown in Table 4 of the insert shape of CNMG120408-GM (hereinafter referred to as Tools 1 to 12 of the present invention). Was produced.
比較のために、比較例のWC基超硬工具1〜9(以下、比較例工具1〜9という)を製造した。
その製造手順は、本発明工具1〜12の製造工程において、前記工程(c)を省略したもの、もしくは、不適切な条件にて前記工程(c)を行ったものである。
つまり、表1に示す配合組成に配合した焼結用粉末を、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力でプレス成形して圧粉成形体を作製し、表3に示す条件、即ち、加熱温度:1300℃以上1500℃以下、かつ、加熱保持時間:30〜120分、真空雰囲気の条件で焼結して、WC基超硬合金を作製し、これを機械加工、研削加工し、CNMG120408−GMのインサート形状の表5に示す比較例工具1〜9を作製した。
なお、比較例工具9については、表2に示す条件にて固相再配列工程を行った後、表3に示す条件で焼結して、WC基超硬合金を作製した。
For comparison, WC-based cemented carbide tools 1 to 9 of Comparative Examples (hereinafter, referred to as Comparative Example tools 1 to 9) were manufactured.
The manufacturing procedure is one in which the step (c) is omitted in the manufacturing process of the tools 1 to 12 of the present invention, or the step (c) is performed under an inappropriate condition.
That is, the sintering powder blended in the blending composition shown in Table 1 was wet mixed in a ball mill for 72 hours, dried, and then press-molded at a pressure of 100 MPa to produce a powder compact, and the conditions shown in Table 3 were used. That is, heating temperature: 1300° C. or more and 1500° C. or less, and heating holding time: 30 to 120 minutes, sintering is performed under the conditions of a vacuum atmosphere to produce a WC-based cemented carbide, which is machined and ground. Then, comparative example tools 1 to 9 shown in Table 5 of the insert shape of CNMG120408-GM were manufactured.
Regarding the comparative tool 9, the solid-phase rearrangement step was performed under the conditions shown in Table 2 and then the sintering was performed under the conditions shown in Table 3 to produce a WC-based cemented carbide.
本発明工具1〜12及び比較例工具1〜9のWC基超硬合金の断面について、EPMAにより、その成分であるCo、Cr、Ta、Nb、Ti、Zrの含有量を10点測定し、その平均値を各成分の含有量とした。
なお、Cr、Ta、Nb、Ti、Zrは、それぞれの炭化物に換算して含有量を算出した。
表4、表5に、それぞれの平均含有量を示す。
For the cross sections of the WC-based cemented carbides of the present tools 1 to 12 and comparative tools 1 to 9, EPMA was used to measure the contents of the components Co, Cr, Ta, Nb, Ti, and Zr at 10 points, The average value was used as the content of each component.
In addition, Cr, Ta, Nb, Ti, and Zr were converted into their respective carbides to calculate their contents.
Tables 4 and 5 show the respective average contents.
つぎに、本発明工具1〜12及び比較例工具1〜9のWC基超硬合金の断面について、走査型電子顕微鏡(SEM)を用いて、倍率3000〜4000倍でWC基超硬合金の断面を観察して、画像サイズ120×96mm、pixel数1280×1024pixelでSEM像を取得し、これを画像処理し、一つの観察視野内の個々の結合相粒子の面積と個数を求め、結合相粒子の面積を横軸とし、また、結合相粒子の個数を縦軸とする結合相粒子の累積分布を作成し、個数積算10%における粒子面積をA10とし、A10以下の面積を有する微細結合相粒子について、画像解析ソフトImageJを用いて個々の微細結合相粒子の真円度を測定し、前記一つの観察視野における個々の微細結合相粒子の真円度の平均値を求めた。
なお、前記観察倍率とpixel数の関係から、3000倍観察では最小結合相面積は977nm2であり、4000倍観察では549nm2である。また、観察視野倍率は視野内に150〜400個の結合相粒子が含まれるように倍率を選定した。本発明においては、WC粒子によって分断された個々の結合相を各々一つの結晶粒と見なしている。
そして、10箇所の観察視野で求めたそれぞれの真円度の平均値をさらに平均することにより、WC基超硬合金の断面における微細結合相粒子の平均真円度を算出した。
表4、表5に、A10の値と平均真円度の値を示す。
Next, regarding the cross sections of the WC-based cemented carbides of the present invention tools 1 to 12 and comparative example tools 1 to 9, using a scanning electron microscope (SEM), cross sections of the WC-based cemented carbide at a magnification of 3000 to 4000 times. By observing, the SEM image was acquired with an image size of 120×96 mm and the number of pixels was 1280×1024 pixels, the image was processed, and the area and the number of individual bonded phase particles in one observation visual field were obtained. The horizontal axis represents the area of B, and the vertical axis represents the number of binder phase particles, and a cumulative distribution of binder phase particles is created. The particle area at 10% of the number integration is A10, and the fine binder phase particles have an area of A10 or less. For, the roundness of each fine binder phase particle was measured using image analysis software ImageJ, and the average value of the roundness of each fine binder phase particle in the one observation visual field was determined.
Incidentally, from the observation magnification and the pixel number of relationships, minimal binding phase area is 3000 times observation is 977 nm 2, which is 549 nm 2 in 4000 times observed. The observation visual field magnification was selected so that 150 to 400 binder phase particles were included in the visual field. In the present invention, each binder phase divided by the WC particles is regarded as one crystal grain.
Then, the average circularity of the fine bonding phase particles in the cross section of the WC-based cemented carbide was calculated by further averaging the average values of the circularity obtained in the 10 observation fields.
Tables 4 and 5 show the values of A10 and the average roundness.
上記本発明工具1〜12、比較例工具1〜9について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下の湿式連続切削加工試験を行った。
被削材:JIS・SUS304(HB170)の丸棒、
切削速度:110m/min、
切り込み:2.0mm、
送り:0.5mm/rev、
切削時間:4分、
湿式水溶性切削油使用。
上記湿式連続切削加工試験後の、切れ刃の逃げ面塑性変形量を測定するとともに、切れ刃の損耗状態を観察した。なお、切れ刃の逃げ面塑性変形量は、工具の主切れ刃側逃げ面について、切れ刃から十分離れた位置で主切れ刃側逃げ面とすくい面が交差する稜線上に線分を引き、同線分を切れ刃部方向に延伸し、延伸した線分と切れ刃部稜線間の距離(延伸した線分の垂直方向)が最も離れている部分を測定し、切れ刃の逃げ面塑性変形量とした。また、逃げ面塑性変形量が0.04mm以上であった時、損耗状態を刃先変形とした。
図1に、逃げ面塑性変形量の測定模式図を示す。
表6に、この測定結果を示す。
The following wet continuous cutting test was performed on the above-mentioned tools 1 to 12 of the present invention and tools 1 to 9 of the comparative examples, in a state where they were screwed to the tip end of a tool steel bite with a fixing jig.
Work Material: JIS/SUS304 (HB170) round bar,
Cutting speed: 110m/min,
Notch: 2.0 mm,
Feed: 0.5 mm/rev,
Cutting time: 4 minutes,
Wet water-soluble cutting oil is used.
After the wet continuous cutting test, the flank plastic deformation amount of the cutting edge was measured, and the wear state of the cutting edge was observed. Incidentally, the flank plastic deformation amount of the cutting edge, for the main cutting edge side flank of the tool, draw a line segment on the ridge line where the main cutting edge side flank and the rake face intersect at a position sufficiently distant from the cutting edge, The same line segment is stretched in the direction of the cutting edge, and the part where the distance between the stretched line segment and the ridgeline of the cutting edge (vertical direction of the stretched line segment) is the farthest is measured, and the flank plastic deformation of the cutting edge is measured. And quantity. Further, when the flank face plastic deformation amount was 0.04 mm or more, the wear state was defined as the blade edge deformation.
FIG. 1 shows a schematic diagram of measurement of flank plastic deformation amount.
Table 6 shows the measurement results.
また、前記本発明工具1〜4、比較例工具1〜4の切れ刃表面に、表7に示す平均層厚の硬質被覆層をPVD法あるいはCVD法で被覆形成し、本発明表面被覆WC基超硬合金製切削工具(以下、「本発明被覆工具」という)1〜4、比較例表面被覆WC基超硬合金製切削工具(以下、「比較例被覆工具」という)1〜4を作製した。
上記の各被覆工具について、以下に示す、湿式連続切削加工試験を実施し、切れ刃の逃げ面塑性変形量を測定するとともに、切れ刃の損耗状態を観察した。
切削条件:
被削材:JIS・SUS304(HB170)の丸棒、
切削速度:190m/min、
切り込み:2.0mm、
送り:0.5mm/rev、
切削時間:4分、
湿式水溶性切削油使用。
表8に、切削試験の結果を示す。
Further, a hard coating layer having an average layer thickness shown in Table 7 is formed on the cutting edge surfaces of the present invention tools 1 to 4 and comparative example tools 1 to 4 by PVD method or CVD method, and the present invention surface coated WC group Cemented carbide cutting tools (hereinafter referred to as "the present invention coated tool") 1 to 4 and comparative example surface-coated WC-based cemented carbide cutting tools (hereinafter referred to as "comparative example coated tool") 1 to 4 were produced. ..
The wet continuous cutting test shown below was performed on each of the above coated tools to measure the amount of plastic deformation of the flank of the cutting edge and observe the wear state of the cutting edge.
Cutting conditions:
Work Material: JIS/SUS304 (HB170) round bar,
Cutting speed: 190m/min,
Notch: 2.0 mm,
Feed: 0.5 mm/rev,
Cutting time: 4 minutes,
Wet water-soluble cutting oil is used.
Table 8 shows the results of the cutting test.
表6及び表8に示される試験結果によれば、本発明工具および本発明被覆工具は、寿命に影響を及ぼす重度のチッピングを発生することなく、すぐれた耐塑性変形性を発揮することが分かる。
これに対して、比較例工具および比較例被覆工具は、所定の切削時間において工具の塑性変形が甚大であり、所定の被削材寸法を満足することが困難であることがわかる。
The test results shown in Tables 6 and 8 show that the tool of the present invention and the coated tool of the present invention exhibit excellent plastic deformation resistance without causing severe chipping which affects the life. ..
On the other hand, in the comparative tool and the comparative coated tool, the plastic deformation of the tool is great in a predetermined cutting time, and it is difficult to satisfy the predetermined work material size.
以上のとおり、本発明工具および本発明被覆工具は、ステンレス鋼等の難削材の切削加工に供した場合、すぐれた耐塑性変形性とともに、すぐれた耐チッピング性を有するが、他の被削材、切削条件に適用した場合にも、長期の使用にわたってすぐれた切削性能を発揮し、工具の長寿命化が図られることが期待される。
As described above, the tool of the present invention and the coated tool of the present invention have excellent plastic deformation resistance and excellent chipping resistance when subjected to cutting of a difficult-to-cut material such as stainless steel, but other work materials. Even when applied to materials and cutting conditions, it is expected that excellent cutting performance will be exhibited over long-term use and that the tool life will be extended.
Claims (3)
前記WC基超硬合金の成分組成は、結合相形成成分としてのCoを6〜14質量%とCr3C2を0.1〜1.4質量%含有し、残部はWC及び不可避不純物からなり、前記WC基超硬合金の断面について測定した結合相粒子の個数積算10%粒度における粒子面積をA10としたとき、A10以下の面積を有する微細結合相粒子の平均真円度が0.9〜1.0の範囲内であることを特徴とするWC基超硬合金製切削工具。 In a cutting tool made of WC-based cemented carbide based on WC-based cemented carbide,
The composition of the WC-based cemented carbide contains 6 to 14% by mass of Co and 0.1 to 1.4% by mass of Cr 3 C 2 as a binder phase forming component, and the balance consists of WC and unavoidable impurities. Assuming that the particle area of the binder phase particles measured on the cross section of the WC-based cemented carbide in the 10% particle size integration is A10, the average roundness of the fine binder phase particles having an area of A10 or less is 0.9 to A WC-based cemented carbide cutting tool characterized by being in the range of 1.0.
A surface-coated WC-based cemented carbide cutting tool, wherein a hard coating layer is formed on at least the cutting edge of the WC-based cemented carbide cutting tool according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019004930A JP7209216B2 (en) | 2019-01-16 | 2019-01-16 | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019004930A JP7209216B2 (en) | 2019-01-16 | 2019-01-16 | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020110891A true JP2020110891A (en) | 2020-07-27 |
JP7209216B2 JP7209216B2 (en) | 2023-01-20 |
Family
ID=71666274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019004930A Active JP7209216B2 (en) | 2019-01-16 | 2019-01-16 | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7209216B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252579A (en) * | 1994-03-11 | 1995-10-03 | Sumitomo Electric Ind Ltd | Coated cemented carbide for cutting tool |
JP2009035810A (en) * | 2007-07-11 | 2009-02-19 | Sumitomo Electric Hardmetal Corp | Cemented carbide |
JP2017171971A (en) * | 2016-03-22 | 2017-09-28 | 三菱マテリアル株式会社 | Wc-based hard metal alloy excellent in thermal conductivity and wc-based hard metal alloy-made tool |
-
2019
- 2019-01-16 JP JP2019004930A patent/JP7209216B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252579A (en) * | 1994-03-11 | 1995-10-03 | Sumitomo Electric Ind Ltd | Coated cemented carbide for cutting tool |
JP2009035810A (en) * | 2007-07-11 | 2009-02-19 | Sumitomo Electric Hardmetal Corp | Cemented carbide |
JP2017171971A (en) * | 2016-03-22 | 2017-09-28 | 三菱マテリアル株式会社 | Wc-based hard metal alloy excellent in thermal conductivity and wc-based hard metal alloy-made tool |
Also Published As
Publication number | Publication date |
---|---|
JP7209216B2 (en) | 2023-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5815709B2 (en) | Hard alloys and cutting tools | |
JP6590255B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JPWO2011002008A1 (en) | Cermet and coated cermet | |
JP5652113B2 (en) | WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting | |
JP7385829B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance | |
JP7043869B2 (en) | Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer | |
JP7517483B2 (en) | Cemented carbide and cutting tools containing it as a substrate | |
JP6850997B2 (en) | Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer | |
JP4703122B2 (en) | Method for producing TiCN-based cermet | |
JP6695566B2 (en) | Cemented carbide used as a tool for machining non-metallic materials | |
KR101302374B1 (en) | Cemented carbide having good wear resistance and chipping resistance | |
WO2021193159A1 (en) | Cutting tool made of wc-based cemented carbide | |
JP7209216B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance | |
JP7307394B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance | |
JP2022108807A (en) | Cutting tool | |
JP7161677B2 (en) | WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance | |
JP7441420B2 (en) | Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance | |
JP7441418B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance | |
JP2021130862A (en) | Hard metal and cutting tool | |
JP2011088253A (en) | Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide | |
JP6796257B2 (en) | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer | |
JP7473871B2 (en) | WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool | |
JP5031610B2 (en) | TiCN-based cermet | |
JP2004330314A (en) | Coated cemented carbide tool | |
JP2005200668A (en) | Cermet and coated cermet, and manufacturing methods for them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7209216 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |