JP7031532B2 - TiN-based sintered body and cutting tool made of TiN-based sintered body - Google Patents
TiN-based sintered body and cutting tool made of TiN-based sintered body Download PDFInfo
- Publication number
- JP7031532B2 JP7031532B2 JP2018160676A JP2018160676A JP7031532B2 JP 7031532 B2 JP7031532 B2 JP 7031532B2 JP 2018160676 A JP2018160676 A JP 2018160676A JP 2018160676 A JP2018160676 A JP 2018160676A JP 7031532 B2 JP7031532 B2 JP 7031532B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- tin
- based sintered
- phase
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Description
この発明は、表層部に高靱性層が形成されたTiN基焼結体に関し、また、このTiN基焼結体を基体とするチッピング、欠損等の耐異常損傷性にすぐれたTiN基焼結体製切削工具及び表面被覆TiN基焼結体製切削工具に関するものである。 The present invention relates to a TiN-based sintered body in which a high toughness layer is formed on a surface layer portion, and a TiN-based sintered body using this TiN-based sintered body as a substrate and having excellent resistance to abnormal damage such as chipping and chipping. It relates to a cutting tool made of a surface-coated TiN-based sintered body and a cutting tool made of a surface-coated TiN-based sintered body.
従来、切削工具としては、WC基超硬合金製切削工具、TiCN基サーメット製切削工具、TiC基焼結合金製切削工具、TiN基焼結合金製切削工具等が知られている。
これらの切削工具のうち、TiC基焼結体製切削工具は、耐摩耗性にすぐれるものの、他の切削工具に比して、靱性が著しく劣り、熱衝撃に弱く、また、欠損も発生しやすいことから、主として、高速仕上げ切削加工で使用されている。
また、TiCN基サーメット製切削工具は、鋼に対する親和性が低く、耐摩耗性、仕上げ面粗さに優れているが、その反面、靱性は十分ではない。
一方、WC基超硬合金製切削工具は、靱性にすぐれるものの、耐摩耗性が十分であるとはいえず、さらに、合金成分として、希少金属であるW、Coを使用していることから、低コスト化を図るためにはW使用量、Co使用量の低減が必要とされる。
そこで、すぐれた靱性と耐摩耗性を備える工具材料を提供すべく、従来からいくつかの提案がなされている。
Conventionally, as a cutting tool, a WC-based cemented carbide cutting tool, a TiCN-based cermet cutting tool, a TiC-based sintered alloy cutting tool, a TiN-based sintered alloy cutting tool, and the like are known.
Of these cutting tools, TiC-based sintered body cutting tools have excellent wear resistance, but their toughness is significantly inferior to other cutting tools, they are vulnerable to thermal impact, and they also have defects. Due to its ease of use, it is mainly used in high-speed finish cutting.
Further, the TiCN-based cermet cutting tool has a low affinity for steel and is excellent in wear resistance and finished surface roughness, but on the other hand, its toughness is not sufficient.
On the other hand, WC-based cemented carbide cutting tools have excellent toughness, but their wear resistance is not sufficient, and they use rare metals W and Co as alloy components. In order to reduce the cost, it is necessary to reduce the amount of W used and the amount of Co used.
Therefore, some proposals have been made conventionally in order to provide a tool material having excellent toughness and wear resistance.
例えば、TiN基焼結合金については、特許文献1に示されるように、硬質相と結合用金属とを含有する切削工具用の焼結硬質合金において、該合金は65~97重量%の硬質相と3~35重量%の結合用金属とから成り、前記硬質相は酸素含量0.15%以下の窒化物及び/又は炭窒化物によって構成されており、硬質相を結合している前記の結合用金属は少なくとも鉄族金属の1つとクロム族金属の1つとの合金である切削工具用の焼結硬質合金が提案されており、この焼結硬質合金は、強靭性を備えるとされている。
そして、具体例を示す実施例1には、硬質相成分としてのTiN90重量%(この中の酸素含量は0.05%である)と、NiとMoとの(80:20)混合物10重量%とを、350mmHgの圧力下の窒素中で約1450℃で焼結して得た焼結硬質合金は、約1500ビッカースの硬度(荷重3kg)及び80-90kg/mm2の曲げ破損強度を示すことが記載されている。
For example, as for a TiN-based sintered alloy, as shown in
In Example 1 showing a specific example, 90% by weight of TiN as a hard phase component (the oxygen content in this is 0.05%) and 10% by weight of a (80:20) mixture of Ni and Mo. The sintered cemented carbide obtained by sintering the above in nitrogen under a pressure of 350 mmHg at about 1450 ° C. exhibits a hardness of about 1500 Vickers (load 3 kg) and a bending breakage strength of 80-90 kg / mm 2 . Is described.
また、例えば、特許文献2では、TiN65~95重量%、Moおよび/またはMo2C2~20重量%、鉄族金属3~15重量%からなるTiNを主体とする焼結合金原料粉末100重量部に対して、炭素粉末を上記原料粉末に配合されるTiNを対象としてその100重量部に対して0.2~6.8重量部の割合で添加混合し、成型、焼結したTiN基焼結合金が提案されており、このTiN基焼結合金によれば、焼成時に炭素粉末がTiN粒子の表面にTiCとして析出し、TiN粒子と結合金属(Ni、Co)の濡れ性を改善することにより、特に鋳鉄の高速連続・断続切削において、切削工具の耐久性(フランク摩耗、耐塑性変形性)が高まるとされている。 Further, for example, in Patent Document 2, 100 parts by weight of a sintered alloy raw material powder mainly composed of TiN consisting of 65 to 95% by weight of TiN, Mo and / or Mo 2 C2 to 20% by weight, and 3 to 15% by weight of an iron group metal. On the other hand, the carbon powder was added and mixed at a ratio of 0.2 to 6.8 parts by weight with respect to 100 parts by weight of TiN to be blended in the raw material powder, and the TiN base-fired bond was molded and sintered. Gold has been proposed, and according to this TiN-based sintered alloy, carbon powder is deposited as TiC on the surface of TiN particles during firing, and the wettability of the TiN particles and the bonded metal (Ni, Co) is improved. In particular, it is said that the durability (frank wear, plastic deformation resistance) of the cutting tool is enhanced in high-speed continuous / intermittent cutting of cast iron.
さらに、例えば、特許文献3には、TiC,(Ti,Nb)C、TiCNあるいは(Ti,Ta)CN等の硬質成分を含有するTi基サーメットにおいて、サーメットの表面からその内部300μmの範囲にわたって表面軟化層を形成し、また、該軟化層における硬さをサーメット内部の硬さに比して5~20%低くした靱性にすぐれるサーメットが提案されており、また、これを基体とし、その表面に炭化物、窒化物、アルミニウム酸化物等からなる被覆層を有する切削工具は、合金鋼の断続切削加工において、すぐれた耐チッピング性、耐欠損性を発揮するとされている。 Further, for example, in Patent Document 3, in a Ti-based cermet containing a hard component such as TiC, (Ti, Nb) C, TiCN or (Ti, Ta) CN, the surface of the Ti-based cermet extends from the surface of the cermet to the inside of the cermet within a range of 300 μm. A cermet having an excellent toughness, which forms a softened layer and has a hardness in the softened layer that is 5 to 20% lower than the hardness inside the cermet, has been proposed. Cutting tools having a coating layer made of carbides, nitrides, aluminum oxides, etc. are said to exhibit excellent chipping resistance and chipping resistance in intermittent cutting of alloy steel.
近年、切削加工の技術分野における省力化、省エネ化、高速化、高効率化、低コスト化の要請は強く、切削装置の高性能化には目ざましいものがあるが、その反面、切削工具にとっての使用条件は益々過酷なものとなってきており、工具性能の一段の向上が求められるとともに、工具寿命の延命化が求められており、そして、このような要請に応えることのできる材料の開発が望まれている。
既述のとおり、WC基超硬合金はすぐれた靱性を備えるが、耐摩耗性が十分であるとはいえず、さらに、合金成分として、希少金属であるW、Coが使用されているため、高価な工具材料であり、低コスト化を図るためにはW使用量、Co使用量の低減が課題となる。
また、TiCN基サーメットは、すぐれた硬さ、耐摩耗性を備えるが、靱性が十分でないため、これを切削工具として用いた場合には、チッピング、欠損等を発生しやすく、これを原因として工具寿命が短命となるという問題点がある。
そこで、切削工具用の材料としては、すぐれた靱性と硬さを相兼ね備え、チッピング、欠損等の異常損傷を発生することなく、長期の使用にわたってすぐれた切削性能を発揮する切削工具材料が望まれている。
In recent years, there have been strong demands for labor saving, energy saving, high speed, high efficiency, and low cost in the technical field of cutting, and there are remarkable improvements in the performance of cutting equipment, but on the other hand, for cutting tools. The conditions of use are becoming more and more harsh, and there is a need to further improve tool performance, extend the life of tools, and develop materials that can meet such demands. It is desired.
As described above, the WC-based cemented carbide has excellent toughness, but its wear resistance is not sufficient, and since rare metals W and Co are used as alloy components. It is an expensive tool material, and in order to reduce the cost, it is an issue to reduce the amount of W used and the amount of Co used.
In addition, TiCN-based cermet has excellent hardness and wear resistance, but its toughness is not sufficient, so when it is used as a cutting tool, chipping, chipping, etc. are likely to occur, which is the cause of the tool. There is a problem that the life is short.
Therefore, as a material for a cutting tool, a cutting tool material that has both excellent toughness and hardness and exhibits excellent cutting performance over a long period of time without causing abnormal damage such as chipping and chipping is desired. ing.
本発明者は、上述の観点から、WC基超硬合金に匹敵する靱性を備えるとともに、TiCN基サーメットに匹敵する硬さ、耐摩耗性を相兼ね備え、しかも、希少金属であるW、Coの使用を必要としない切削工具材料について鋭意研究を行ったところ、次のような知見を得た。 From the above viewpoint, the present inventor has toughness comparable to that of WC-based cemented carbide, hardness and wear resistance comparable to those of TiCN-based cermet, and use of rare metals W and Co. As a result of diligent research on cutting tool materials that do not require, the following findings were obtained.
まず、本発明者は、従来のTiN基焼結体からなる切削工具について、工具寿命が短命となる原因を調査したところ、TiCN基サーメットと同様に、すぐれた硬さと耐摩耗性を有する反面、靱性が十分でないため、TiN基焼結体の表面に発生したチッピング、欠損等が破損に至る主たる要因であることを見出した。
そこで、本発明者は、TiN基焼結体の作製にあたり、結合相の組成の最適化を図るとともに、焼結条件を制御することにより、TiN基焼結体表層部に低Mo領域を形成し、該表層部の低Mo領域における微小硬さ(マイクロビッカース硬さ)を、TiN基焼結体内部の微小硬さに比して小さくすることにより、表層部はすぐれた靱性を備えるとともに内部は高い硬さを相兼ね備えたTiN基焼結体を作製し得ることを見出した。
そして、靱性と硬さを相兼ね備えたこのTiN基焼結体を、例えば、炭素鋼、合金鋼等の連続切削、断続切削加工用の切削工具として用いたところ、従来のWC基超硬合金製切削工具とほぼ同等あるいはそれ以上にすぐれた耐異常損傷性を示すとともに、従来のTiCN基サーメット製切削工具とほぼ同等の耐摩耗性を備え、長期の使用にわたってすぐれた切削性能を発揮することを見出したのである。
さらに、前記TiN基焼結体を基体とし、少なくとも切刃に硬質被覆層を形成し表面被覆TiN基焼結体製切削工具を作製したところ、硬質被覆層の脆化を招くこともなく硬質被覆層と基体との密着強度にすぐれ、チッピング、欠損等の異常損傷を発生することもなく、長期の使用にわたってすぐれた切削性能を発揮することを見出したのである。
First, the present inventor investigated the cause of the short life of a cutting tool made of a conventional TiN-based sintered body. As a result, it has excellent hardness and wear resistance like the TiCN-based cermet. Since the toughness is not sufficient, it has been found that chipping, chipping, etc. generated on the surface of the TiN-based sintered body are the main factors leading to breakage.
Therefore, the present inventor formed a low Mo region on the surface layer of the TiN-based sintered body by optimizing the composition of the bonded phase and controlling the sintering conditions when producing the TiN-based sintered body. By reducing the micro-hardness (micro-Vickers hardness) in the low Mo region of the surface layer to the micro-hardness inside the TiN-based sintered body, the surface layer has excellent toughness and the inside is It has been found that a TiN-based sintered body having high hardness can be produced.
When this TiN-based sintered body having both toughness and hardness was used as a cutting tool for continuous cutting and intermittent cutting of carbon steel, alloy steel, etc., for example, it was made of a conventional WC-based cemented carbide. It has almost the same or better resistance to abnormal damage than cutting tools, and has almost the same wear resistance as conventional TiCN-based cermet cutting tools, and exhibits excellent cutting performance over long-term use. I found it.
Further, when a cutting tool made of a surface-coated TiN-based sintered body was produced by forming a hard coating layer on at least the cutting edge using the TiN-based sintered body as a substrate, the hard coating layer was not brittle and was hard-coated. It has been found that the adhesion strength between the layer and the substrate is excellent, abnormal damage such as chipping and chipping does not occur, and excellent cutting performance is exhibited over a long period of use.
この発明は、上記の知見に基づいてなされたものであって、
「(1)TiN相とMo2C相を含み、残部が結合相からなるTiN基焼結体であって、
(a)前記焼結体の断面を観察した時、前記焼結体中でTiN相が占める平均面積割合は70.0~91.5面積%、Mo2C相が占める平均面積割合は3.5~25.0面積%であり、
(b)前記結合相の成分はFeとNiからなり、前記結合相の面積割合は5.0~15.0面積%であり、かつ、FeとNiの合計含有量に対するNiの含有割合は15.0~35.0質量%であり、
(c)前記焼結体の表面から、その内部へ向かって深さ50~300μmまでの領域には、低Mo領域が形成され、該低Mo領域における平均Mo含有量は、前記焼結体の表面から少なくとも500μmを超える深さの焼結体内部の平均Mo含有量の30~80%であり、
(d)前記低Mo領域の平均微小硬さは、前記焼結体の表面から少なくとも500μmを超える深さの焼結体内部の平均微小硬さの70~90%であることを特徴とするTiN基焼結体。
(2)前記(1)に記載のTiN基焼結体が少なくとも切れ刃として構成されていることを特徴とするTiN基焼結体製切削工具。
(3)前記(2)に記載のTiN基焼結体製切削工具の少なくとも切刃には、硬質被覆層が形成されていることを特徴とする表面被覆TiN基焼結体製切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings.
"(1) A TiN-based sintered body containing a TiN phase and a Mo 2C phase, the balance of which is a bonded phase.
(A) When observing the cross section of the sintered body, the average area ratio of the TiN phase in the sintered body is 70.0 to 91.5 area%, and the average area ratio of the Mo 2C phase is 3. 5 to 25.0 area%,
(B) The components of the bonded phase are Fe and Ni, the area ratio of the bonded phase is 5.0 to 15.0 area%, and the content ratio of Ni to the total content of Fe and Ni is 15. It is 0.0 to 35.0% by mass,
(C) A low Mo region is formed in a region from the surface of the sintered body to a depth of 50 to 300 μm toward the inside thereof, and the average Mo content in the low Mo region is the same as that of the sintered body. 30-80% of the average Mo content inside the sintered body at a depth of at least 500 μm from the surface .
(D) The average microhardness of the low Mo region is 70 to 90% of the average microhardness inside the sintered body at a depth of at least 500 μm from the surface of the sintered body. Base sintered body.
(2) A cutting tool made of a TiN-based sintered body, characterized in that the TiN-based sintered body according to (1) above is configured as at least a cutting edge.
(3) A surface-coated TiN-based sintered body cutting tool characterized in that a hard coating layer is formed on at least the cutting edge of the TiN-based sintered body cutting tool according to (2) above. "
It has the characteristics of.
この発明のTiN基焼結体は、所定の面積割合のTiN相、Mo2C相及び結合相としてのFe-Ni合金相を有し、かつ、結合相を構成するNiとFeの含有比率を所定の質量割合とし、さらに、焼結体の表面から、その内部へ向かって深さ50~300μmまでの領域には、低Mo領域が形成され、該領域における平均微小硬さは、焼結体内部の平均微小硬さより低くされているため、TiN基焼結体は、その表層部がすぐれた靱性を備え、一方、焼結体内部は高い硬さを有し、TiN基焼結体全体としては、すぐれた靱性と硬さを相兼ね備えている。 The TiN-based sintered body of the present invention has a TiN phase, a Mo 2 C phase, and an Fe—Ni alloy phase as a bonded phase in a predetermined area ratio, and has a content ratio of Ni and Fe constituting the bonded phase. A low Mo region is formed in a region from the surface of the sintered body to a depth of 50 to 300 μm from the surface of the sintered body to a predetermined mass ratio, and the average microhardness in the region is the sintered body. Since the TiN-based sintered body has an excellent toughness on the surface layer because it is lower than the average micro-hardness inside, the inside of the sintered body has a high hardness, and the TiN-based sintered body as a whole has a high hardness. Has excellent toughness and hardness.
そして、この発明のTiN基焼結体からなるTiN基焼結体製切削工具は、すぐれた靱性と硬さを相兼ね備えることによって、炭素鋼、合金鋼等の連続切削、断続切削加工に供した場合であっても、WC基超硬合金製切削工具と同等あるいはそれ以上の耐チッピング性、耐欠損性を示し、また、TiCN基サーメット製切削工具と同等あるいはそれ以上の耐摩耗性を発揮する。 The TiN-based sintered body cutting tool made of the TiN-based sintered body of the present invention is used for continuous cutting and intermittent cutting of carbon steel, alloy steel, etc. by combining excellent toughness and hardness. Even in some cases, it exhibits chipping resistance and chipping resistance equal to or higher than those of WC-based superhard alloy cutting tools, and exhibits wear resistance equal to or higher than that of TiCN-based cermet cutting tools. ..
さらに、この発明のTiN基焼結体からなるTiN基焼結体製切削工具を基体として、少なくともその切れ刃部に硬質被覆層を被覆形成した表面被覆TiN基焼結体製切削工具 においては、焼結体の表層部が低Mo領域であるために、Moの拡散による硬質被覆層の脆化が防止され、さらに、基体と硬質被覆層との接合強度が高められるため、炭素鋼、合金鋼等の連続切削、断続切削加工において、硬質被覆層のチッピング、欠損、剥離等の異常損傷の発生を招くことなく、すぐれた耐摩耗性を示し、長期の使用にわたって、すぐれた切削性能を発揮する。 Further, in the surface-coated TiN-based sintered body cutting tool in which the cutting tool made of a TiN-based sintered body made of the TiN-based sintered body of the present invention is used as a base and a hard coating layer is coated on at least the cutting edge portion thereof, the cutting tool is made of a TiN-based sintered body. Since the surface layer portion of the sintered body has a low Mo region, brittleness of the hard coating layer due to diffusion of Mo is prevented, and further, the bonding strength between the substrate and the hard coating layer is enhanced, so that carbon steel and alloy steel are used. In continuous cutting and intermittent cutting, it exhibits excellent wear resistance without causing abnormal damage such as chipping, chipping, and peeling of the hard coating layer, and exhibits excellent cutting performance over a long period of use. ..
この発明において、TiN基焼結体の焼結組織における各相を、特定の面積割合に定めた理由、結合相を構成するNiとFeの含有比率を特定の質量割合に定めた理由、低Mo領域の深さ・微小硬さ等を定めた理由を、以下に説明する。 In the present invention, the reason why each phase in the sintered structure of the TiN-based sintered body is set to a specific area ratio, the reason why the content ratio of Ni and Fe constituting the bonded phase is set to a specific mass ratio, and low Mo. The reason for defining the depth of the region, the minute hardness, etc. will be explained below.
TiN相:
TiN基焼結体の断面を観察した時、TiN基焼結体に占めるTiN相の平均面積割合が70.0面積%未満では、焼結体の硬さが十分ではなく、その結果、TiN基焼結体製切削工具(以下、「TiN基切削工具」という)の耐摩耗性も低下する。一方、TiN基焼結体中のTiN相が91.5面積%を超えると、焼結組織に微細な空隙(ポア)が形成されやすくなるため、靱性が低下し、TiN基切削工具の耐チッピング性、耐欠損性低下の要因となる。
したがって、TiN基焼結体中のTiN相の平均面積割合は70.0~91.5面積%とする。
また、本発明では、図1に示されるように、TiN基焼結体の表面に垂直な断面(以下、このような面を、単に「縦断面」という)について、エネルギー分散型X線分析装置(EDS)を備えた走査型電子顕微鏡(SEM)で縦断面観察し、得られた二次電子像内の領域(例えば、40μm×50μmの領域)における含有元素量を測定し、TiN相、Mo2C相及びFe-Ni相を特定し、各相が前記領域に占める面積比率を算出し、少なくとも、5領域以上の複数の領域で面積比率を算出し、これらの平均値を、各相の面積%とした。
なお、本発明のTiN基焼結体においては、製造工程等から不可避的に混入する不可避不純物成分については、本発明の目的を損なわない範囲内(即ち、TiN基焼結体の硬さと靱性を低下せしめない範囲内)において、微量の含有(混入)が許容される。
TiN phase:
When observing the cross section of the TiN-based sintered body, if the average area ratio of the TiN phase to the TiN-based sintered body is less than 70.0 area%, the hardness of the sintered body is not sufficient, and as a result, the TiN-based sintered body is not sufficiently hard. The wear resistance of a sintered cutting tool (hereinafter referred to as "TiN-based cutting tool") is also reduced. On the other hand, when the TiN phase in the TiN-based sintered body exceeds 91.5 area%, fine voids (pores) are likely to be formed in the sintered structure, so that the toughness is lowered and the chipping resistance of the TiN-based cutting tool is reduced. It causes deterioration of sex and fracture resistance.
Therefore, the average area ratio of the TiN phase in the TiN-based sintered body is 70.0 to 91.5 area%.
Further, in the present invention, as shown in FIG. 1, an energy dispersive X-ray analyzer is provided for a cross section perpendicular to the surface of the TiN-based sintered body (hereinafter, such a surface is simply referred to as a “longitudinal cross section”). A vertical cross-section was observed with a scanning electron microscope (SEM) equipped with (EDS), and the amount of elements contained in the region (for example, a region of 40 μm × 50 μm) in the obtained secondary electron image was measured, and the TiN phase and Mo were measured. 2 C phase and Fe—Ni phase are specified, the area ratio of each phase in the region is calculated, the area ratio is calculated in a plurality of regions of at least 5 regions or more, and the average value of these is calculated as the average value of each phase. Area%.
In the TiN-based sintered body of the present invention, the unavoidable impurity component inevitably mixed from the manufacturing process or the like is within a range that does not impair the object of the present invention (that is, the hardness and toughness of the TiN-based sintered body are maintained. A small amount of content (mixture) is allowed within the range that does not decrease).
Mo2C相:
TiN基焼結体の縦断面を観察した時、TiN基焼結体中のMo2C相の平均面積割合が3.5面積%未満では、特に、TiN基焼結体の低Mo領域におけるTiN相と結合相間でのぬれ性が不足し、焼結組織に空隙を生じ靱性が低下しやすくなり、一方、Mo2C相の平均面積割合が25.0面積%を超えると、Fe3Mo3C相等の複炭化物、Fe3Mo3N相等の複窒化物を生じやすくなり、これが靱性低下の要因となることから、TiN基焼結体中のMo2C相の平均面積割合は3.5~25.0面積%とする。
Mo 2 C phase:
When observing the vertical cross section of the TiN-based sintered body, when the average area ratio of the Mo 2 C phase in the TiN-based sintered body is less than 3.5 area%, TiN is particularly high in the low Mo region of the TiN-based sintered body. Wetness between the phase and the bonded phase is insufficient, voids are formed in the sintered structure, and the toughness tends to decrease. On the other hand, when the average area ratio of the Mo 2 C phase exceeds 25.0 area%, Fe 3 Mo 3 Since double carbides such as C phase and double nitrides such as Fe 3 Mo 3 N phase are likely to be generated, which causes a decrease in toughness, the average area ratio of Mo 2 C phase in the TiN-based sintered body is 3.5. ~ 25.0 Area%.
低Mo領域の平均Mo含有量:
本発明のTiN基焼結体の縦断面について、エネルギー分散型X線分析装置(EDS)を備えた走査型電子顕微鏡(SEM)で縦断面観察し、TiN基焼結体の表面からその内部に向かってMo含有量を測定した場合、TiN基焼結体の内部に向かって50~300μmの深さ範囲には、TiN基焼結体の内部のMo含有量に比して、Mo含有量が少ない低Mo領域(具体的には、TiN基焼結体の表面から少なくとも500μmを超える深さの焼結体の内部の平均Mo含有量の30~80%の平均Mo含有量となる領域を「低Mo領域」と定義する。)の存在が確認できるが、この低Mo領域の存在によって、TiN基焼結体の靱性向上が図られる。
ここで、前記低Mo領域における平均Mo含有量が、TiN基焼結体の内部の平均Mo含有量の30%未満になると、TiN粒子と結合相の濡れ性が低下し、低Mo領域内に空隙を生じ、靱性が低下する。一方、低Mo領域における平均Mo含有量が、TiN基焼結体の内部の平均Mo含有量の80%を超えると、Mo量を低減したことによる硬さの低下の効果が少なくなるため、表面靱性が不足し、切削工具として用いた場合には、チッピング、欠損が発生しやすくなる。
したがって、低Mo領域における平均Mo含有量は、TiN基焼結体の表面から少なくとも500μmを超える深さの焼結体の内部の平均Mo含有量の30~80%とする。
Average Mo content in the low Mo region:
The vertical cross section of the TiN-based sintered body of the present invention was observed in a vertical cross section with a scanning electron microscope (SEM) equipped with an energy-dispersed X-ray analyzer (EDS), and from the surface of the TiN-based sintered body to the inside thereof. When the Mo content is measured toward the inside, the Mo content is in the depth range of 50 to 300 μm toward the inside of the TiN-based sintered body as compared with the Mo content inside the TiN-based sintered body. A region having a small low Mo content (specifically, a region having an average Mo content of 30 to 80% of the average Mo content inside the sintered body at a depth of at least 500 μm from the surface of the TiN-based sintered body is defined as a region. The existence of the "low Mo region" can be confirmed, and the presence of this low Mo region improves the toughness of the TiN-based sintered body.
Here, when the average Mo content in the low Mo region is less than 30% of the average Mo content inside the TiN-based sintered body, the wettability of the TiN particles and the bonded phase is lowered, and the wettability of the TiN particles and the bonded phase is lowered into the low Mo region. It creates voids and reduces toughness. On the other hand, when the average Mo content in the low Mo region exceeds 80% of the average Mo content inside the TiN-based sintered body, the effect of reducing the hardness due to the reduction in the Mo content is reduced, and thus the surface surface. When used as a cutting tool due to insufficient toughness, chipping and chipping are likely to occur.
Therefore, the average Mo content in the low Mo region is 30 to 80% of the average Mo content inside the sintered body at a depth of at least 500 μm from the surface of the TiN-based sintered body .
低Mo領域の厚さ:
TiN基焼結体の内部の平均Mo含有量の30~80%の平均Mo含有量である前記低Mo領域が、焼結体の表面から50μm未満までの浅い深さであると、TiN基焼結体の靱性向上の効果を十分に発揮できず、一方、焼結体の表面から300μmを超えた深さを有し、焼結体の内部にまで低Mo領域が広がると、TiN基焼結体全体としての硬さの低下により、切削工具として用いた場合に塑性変形を生じやすくなる。
したがって、低Mo領域は、TiN基焼結体の表面からその内部へ向って深さ50μm以上で300μm以下の範囲に形成する。
Low Mo region thickness:
When the low Mo region having an average Mo content of 30 to 80% of the average Mo content inside the TiN-based sintered body has a shallow depth of less than 50 μm from the surface of the sintered body, the TiN-based sintered body is fired. If the effect of improving the toughness of the body cannot be fully exerted, while the depth exceeds 300 μm from the surface of the sintered body and the low Mo region extends to the inside of the sintered body, TiN-based sintering is performed. Due to the decrease in hardness of the whole body, plastic deformation is likely to occur when used as a cutting tool.
Therefore, the low Mo region is formed in a range of 300 μm or less at a depth of 50 μm or more from the surface of the TiN-based sintered body toward the inside thereof.
低Mo領域の微小硬さ:
TiN基焼結体の低Mo領域を含む縦断面について、焼結体表面からその内部方向に向かって微小硬さを測定した場合、前記低Mo領域における平均微小硬さが、焼結体の表面から少なくとも500μmを超える深さの焼結体内部の平均微小硬さの70%未満では、低Mo領域が塑性変形を生じやすくなり、一方、焼結体内部の平均微小硬さの90%を超える硬さとなった場合には、TiN基焼結体の靱性向上効果が十分に発揮されない。
したがって、低Mo領域における平均微小硬さは、焼結体の表面から少なくとも500μmを超える深さの焼結体内部の平均微小硬さの70~90%とする。
Micro-hardness in the low Mo region:
When the micro-hardness of the TiN-based sintered body including the low Mo region is measured from the surface of the sintered body toward the inside thereof, the average micro-hardness in the low Mo region is the surface of the sintered body. Below 70% of the average microhardness inside the sintered body at a depth of at least 500 μm , the low Mo region is prone to plastic deformation, while exceeding 90% of the average microhardness inside the sintered body. When it becomes hard, the effect of improving the toughness of the TiN-based sintered body is not sufficiently exhibited.
Therefore, the average microhardness in the low Mo region is 70 to 90% of the average microhardness inside the sintered body at a depth of at least 500 μm from the surface of the sintered body.
結合相:
TiN基焼結体に占める結合相の平均面積割合が、5.0面積%未満であると、結合相量が少ないためにTiN基焼結体の靱性が低下し、一方、結合相の平均面積割合が15.0面積%を超えると、硬質相成分であるTiN相の量が相対的に減少するため、硬度が低下し、その結果、TiN基切削工具の耐摩耗性も低下する。
したがって、TiN基焼結体に占める結合相の平均面積割合は5.0~15.0面積%とする。
Bonded phase:
When the average area ratio of the bonded phase to the TiN-based sintered body is less than 5.0 area%, the toughness of the TiN-based sintered body decreases due to the small amount of the bonded phase, while the average area of the bonded phase. When the ratio exceeds 15.0 area%, the amount of the TiN phase, which is a hard phase component, is relatively reduced, so that the hardness is lowered, and as a result, the wear resistance of the TiN-based cutting tool is also lowered.
Therefore, the average area ratio of the bonded phase to the TiN-based sintered body is 5.0 to 15.0 area%.
また、この発明では、結合相を構成するFeとNiの合計含有量に対するNiの含有割合(=Ni/(Fe+Ni)×100)を、15.0~35.0質量%とすることによって、TiN基焼結体の靱性及び硬さを一段と高めることができる。
これは、FeとNiの合計含有量に対するNiの含有割合(=Ni/(Fe+Ni)×100)が15.0質量%未満の場合には、NiはFe中に固溶するが、結合相を固溶強化するほどの効果は発揮されないため結合相の硬さが不足し、また、FeとNiの合計含有量に対するNiの含有割合(=Ni/(Fe+Ni)×100)が35.0質量%を超える場合には、金属間化合物FeNi3を生じやすくなるため、結合相の靱性が低下するという理由による。
Further, in the present invention, TiN is set to 15.0 to 35.0% by mass by setting the Ni content ratio (= Ni / (Fe + Ni) × 100) to the total content of Fe and Ni constituting the bonded phase. The toughness and hardness of the base sintered body can be further increased.
This is because when the content ratio of Ni to the total content of Fe and Ni (= Ni / (Fe + Ni) × 100) is less than 15.0% by mass, Ni dissolves in Fe, but the bonded phase is formed. Since the effect of strengthening the solid solution is not exhibited, the hardness of the bonded phase is insufficient, and the Ni content ratio (= Ni / (Fe + Ni) × 100) to the total content of Fe and Ni is 35.0% by mass. If it exceeds, the intermetallic compound FeNi 3 is likely to be generated, and the toughness of the bonded phase is lowered.
本発明のTiN基焼結体、TiN基焼結体製切削工具、表面被覆TiN基焼結体製切削工具の作製:
本発明のTiN基焼結体を作製するに際して、前記の各相の成分組成等を得るためには、まず、その原料粉末として、TiN:55~92質量%、Mo2C:1~40質量%、Fe:5~18質量%、Ni:1~4.5質量%であり、かつ、NiとFeの合量に対するNiの質量%(=Ni×100/(Fe+Ni))が15.0~35.0質量%という関係を満たす成分及び組成の原料粉末を用いることが好適である。
そして、前記条件を満足する原料粉末を、例えば、WC基超硬合金を混合メディアとするボールミルで混合し、該混合粉末をプレス成形して圧粉成形体を作製する。
ついで、前記圧粉成形体を、水素濃度1~3%、窒素濃度97~99%の混合ガスをフローしながら(窒素希釈水素雰囲気)、1350~1450℃の温度範囲で30分~150分焼結し、その後、Arガス雰囲気に切り替え、焼結温度から約1200℃(例えば、1180~1220℃)の温度範囲まで約1℃/分(例えば、0.5~1.5℃/分)の冷却速度で徐冷し、更に室温まで自然冷却することによって、TiN基焼結体の表層部に低Mo領域が形成されたすぐれた靱性と硬さを相兼ね備える本発明のTiN基焼結体を作製することができる。
なお、圧粉成形体を、窒素希釈水素雰囲気にて焼結するのは、TiN粉末と結合相の大半の成分であるFeとの濡れ性を高めると同時に焼結性を高めるためである。
また、この後、所定形状に機械加工することによって、チッピング、欠損等の耐異常損傷性及び耐摩耗性にすぐれ、長期の使用にわたってすぐれた切削性能を発揮するTiN基焼結体製切削工具を作製することができる。
さらに、前記TiN基焼結体製切削工具の少なくとも切刃に、Ti-Al系、Al-Cr系等の炭化物、窒化物、炭窒化物あるいはAl2O3等の硬質皮膜を、PVD、CVD等の成膜法により被覆形成することにより、表面被覆TiN基焼結体製切削工具を作製することができる。
なお、表面被覆TiN基焼結体製切削工具の作製にあたり、硬質皮膜の種類、成膜法は、当業者に既によく知られている膜種、成膜手法を採用すればよく、特に、制限するものではない。
Fabrication of TiN-based sintered body, cutting tool made of TiN-based sintered body, and cutting tool made of surface-coated TiN-based sintered body of the present invention:
In order to obtain the component composition of each of the above phases when producing the TiN-based sintered body of the present invention, first, as the raw material powder thereof, TiN: 55 to 92% by mass, Mo 2 C: 1 to 40% by mass. %, Fe: 5 to 18% by mass, Ni: 1 to 4.5% by mass, and the mass% of Ni with respect to the total amount of Ni and Fe (= Ni × 100 / (Fe + Ni)) is 15.0 to It is preferable to use a raw material powder having a component and composition satisfying the relationship of 35.0% by mass.
Then, the raw material powder satisfying the above conditions is mixed by, for example, a ball mill using a WC-based cemented carbide as a mixed medium, and the mixed powder is press-molded to prepare a powder compact.
Then, the powder compact was baked in a temperature range of 1350 to 1450 ° C. for 30 to 150 minutes while flowing a mixed gas having a hydrogen concentration of 1 to 3% and a nitrogen concentration of 97 to 99% (nitrogen diluted hydrogen atmosphere). After that, the atmosphere is switched to Ar gas atmosphere, and the temperature range from the sintering temperature to about 1200 ° C. (for example, 1180 to 1220 ° C.) is about 1 ° C./min (for example, 0.5 to 1.5 ° C./min). The TiN-based sintered body of the present invention having excellent toughness and hardness in which a low Mo region is formed on the surface layer of the TiN-based sintered body by slowly cooling at a cooling rate and then naturally cooling to room temperature. Can be made.
The reason why the powder compact is sintered in a nitrogen-diluted hydrogen atmosphere is to improve the wettability between the TiN powder and Fe, which is a component of most of the bonded phase, and at the same time to improve the sinterability.
Further, after that, by machining into a predetermined shape, a cutting tool made of a TiN-based sintered body, which has excellent resistance to abnormal damage such as chipping and chipping and wear resistance, and exhibits excellent cutting performance over a long period of use, is produced. Can be made.
Further, on at least the cutting tool of the cutting tool made of the TiN-based sintered body, a carbide such as Ti—Al or Al—Cr, a nitride, a carbonitride , or a hard film such as Al2O3 is applied to PVD, CVD. A cutting tool made of a surface-coated TiN-based sintered body can be manufactured by forming a coating by a film forming method such as.
When manufacturing a cutting tool made of a surface-coated TiN-based sintered body, the type of hard film and the film forming method may be a film type and a film forming method already well known to those skilled in the art, and are particularly limited. It's not something to do.
つぎに、この発明の実施例を具体的に説明する。 Next, an embodiment of the present invention will be specifically described.
TiN基焼結体を作製するための粉末として、平均粒径10μmのTiN粉末、平均粒径2μmのMo2C粉末、平均粒径2μmのFe粉末及び平均粒径1μmのNi粉末を用意し、表1に示す配合割合となるように配合し、かつ、Fe粉末及びNi粉末の配合量を、表1に示す配合比となるように配合することにより原料粉末1~8を用意した。なお、ここでいう平均粒径は、メジアン径(d50)を意味する。 As powders for producing a TiN-based sintered body, TiN powder having an average particle size of 10 μm, Mo 2 C powder having an average particle size of 2 μm, Fe powder having an average particle size of 2 μm, and Ni powder having an average particle size of 1 μm were prepared. Raw material powders 1 to 8 were prepared by blending so as to have the blending ratio shown in Table 1 and blending the Fe powder and Ni powder so as to have the blending ratio shown in Table 1. The average particle size referred to here means the median diameter (d50).
次いで、前記の原料粉末1~8を、ボールミル中に充填して混合し、混合粉末1~8を作製し、該混合粉末1~8を乾燥した後、100~500MPaの圧力でプレス成形し、圧粉成形体1~8を作製した。
Next, the
次いで、この圧粉成形体1~8を、表2に示すように、窒素希釈水素雰囲気フロー中、1350~1450℃の温度範囲で30分~120分焼結した後、Arガス雰囲気に切り替え、焼結温度から約1200℃の温度範囲まで約1℃/分の速度で徐冷し、その後は室温まで自然冷却(焼結炉外での大気中における放冷)するという条件で焼結することで、表3に示す本発明のTiN基焼結体(以下、「本発明焼結体」という)1~8を作製した。
Next, as shown in Table 2, the
比較のため、本発明焼結体作製用粉末と同等の平均粒径を有する各種粉末を、同じく表4に示す配合組成となるように配合して原料粉末11~18を用意し、次いで、原料粉末11~18を、ボールミル中に充填して混合し、混合粉末11~18を作製し、該混合粉末11~18を乾燥した後、100~500MPaの圧力でプレス成形し、圧粉成形体11~18を作製した。
次いで、この圧粉成形体11~18を、表2および表5に示す条件で焼結することで、表6に示す比較例の焼結体(以下、「比較例焼結体」という)1~8を作製した。
For comparison, various powders having the same average particle size as the powder for producing the sintered body of the present invention are blended so as to have the same blending composition as shown in Table 4, and raw material powders 11 to 18 are prepared, and then the raw materials are prepared. The powders 11 to 18 are filled in a ball mill and mixed to prepare a mixed powder 11 to 18, and the mixed powders 11 to 18 are dried and then press-molded at a pressure of 100 to 500 MPa to obtain a powder compact 11 ~ 18 was prepared.
Next, by sintering the powder compacts 11 to 18 under the conditions shown in Tables 2 and 5, the sintered body of the comparative example shown in Table 6 (hereinafter referred to as “comparative example sintered body”) 1 ~ 8 was prepared.
なお、参考のため、WC基超硬合金焼結体を、以下の方法で作製した。
原料粉末として、いずれも0.5~1μmの平均粒径を有するWC粉末およびCo粉末を用意し、これら原料粉末を、WC:90質量%、Co:10質量%の割合で配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度1400℃、保持時間1時間の条件で焼結し、WC基超硬合金焼結体(以下、単に「超硬合金」という)を形成した。
上記の方法で、WC:84面積%、Co:16面積%の成分組成からなるWC基超硬合金焼結体1(以下、「参考例焼結体1」という)を作製した。
For reference, a WC-based cemented carbide sintered body was produced by the following method.
As raw material powders, WC powder and Co powder, both of which have an average particle size of 0.5 to 1 μm, are prepared, and these raw material powders are mixed in a ratio of WC: 90% by mass and Co: 10% by mass with a ball mill. After wet mixing for 24 hours and drying, it is press-molded into a green compact at a pressure of 100 MPa, and this green compact is sintered in a vacuum of 6 Pa under the conditions of a temperature of 1400 ° C. and a holding time of 1 hour. A hard alloy sintered body (hereinafter, simply referred to as “cemented carbide”) was formed.
By the above method, a WC-based cemented carbide sintered body 1 (hereinafter referred to as “reference example sintered
さらに参考とするため、TiCN基サーメット焼結体を、以下の方法で作製した。
原料粉末として、いずれも0.5~3μmの平均粒径を有するTiCN粉末、Mo2C粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、TiCN:75質量%、Mo2C:10質量%、Co:7.5質量%、Ni:7.5質量%の割合で配合し、ボールミルで24時間湿式混合し、乾燥した後、200MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度1450℃、保持時間1時間の条件で焼結し、TiCN基サーメット焼結体(以下、単に「サーメット」という)を形成した。
上記の方法で、TiMoCN:90面積%、Co+Ni:10面積%の成分組成からなるTiCN基サーメット焼結体2(以下、「参考例焼結体2」という)を作製した。
For further reference, a TiCN-based cermet sintered body was produced by the following method.
As the raw material powder, TiCN powder, Mo 2 C powder, Co powder and Ni powder having an average particle size of 0.5 to 3 μm are prepared, and these raw material powders are used as TiCN: 75% by mass and Mo 2 C: 10. It was blended in a ratio of mass%, Co: 7.5% by mass, Ni: 7.5% by mass, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 200 MPa, and this pressure was obtained. The powder was sintered in a vacuum of 6 Pa at a temperature of 1450 ° C. and a holding time of 1 hour to form a TiCN-based cermet sintered body (hereinafter, simply referred to as “cermet”).
By the above method, a TiCN-based cermet sintered body 2 (hereinafter referred to as “reference example sintered body 2”) having a component composition of TiMoCN: 90 area% and Co + Ni: 10 area% was produced.
ついで、本発明焼結体1~8と比較例焼結体1~8について、焼結体の縦断面について、エネルギー分散型X線分析装置(EDS)を備えた走査型電子顕微鏡(SEM)で縦断面観察し、得られた二次電子像内の測定領域(例えば、40μm×50μmの測定領域)における含有元素量を測定し、TiN相、Mo2C相及びFe-Ni合金相を特定し、各相が前記測定領域に占める面積比率を算出し、5箇所の測定領域で面積比率を算出し、これらの算出値の平均値を、焼結組織中の各相の面積%として求めた。
また、Fe-Ni合金相については、該相におけるNiの含有量とFeの含有量を、オージェ電子分光装置を用い、Fe-Ni合金相上で10点の測定を行い、得られた算出値を平均した値からFeとNiの合計含有量に対するNiの含有割合(=Ni×100/(Fe+Ni))を質量%として求めた。
表3、表6に、これらの値を示す。
Next, with respect to the
For the Fe—Ni alloy phase, the Ni content and Fe content in the phase were measured at 10 points on the Fe—Ni alloy phase using an Auger electron spectroscope, and the calculated values were obtained. The content ratio of Ni to the total content of Fe and Ni (= Ni × 100 / (Fe + Ni)) was determined as% by mass from the average value.
Tables 3 and 6 show these values.
また、本発明焼結体1~8、比較例焼結体1~8及び参考例焼結体1、2について、エネルギー分散型X線分析装置(EDS)を備えた走査型電子顕微鏡(SEM)でその縦断面観察を行い、Mo含有量を測定するとともに、該Mo含有量に基づいて低Mo領域の深さ範囲を求めた。
即ち、縦断面観察領域の断面中央付近(焼結体の表面から少なくとも500μmを超える深さの焼結体の内部)の5個所で測定したMo量の平均値を、焼結体内部の平均Mo含有量であるとして求めた。また、焼結体表面から500μmまでの位置にかけて、10μm毎に焼結体表面と平行な長さ100μmの線分を引き、同線分上でMo量をエネルギー分散型X線分析装置(EDS)により測定し、線分上のMo量平均値が焼結体の内部のMo量の30~80%のMoである領域を低Mo領域であるとして求め、低Mo領域の存在する深さ範囲を特定した。
表3、表6に、上記で求めた焼結体内部の平均Mo含有量、焼結体表面からの低Mo領域の深さ範囲を示す。
Further, for the
That is, the average value of the amount of Mo measured at five points near the center of the cross section of the vertical cross-section observation region (inside the sintered body at a depth of at least 500 μm from the surface of the sintered body) is the average Mo inside the sintered body. It was determined as the content. Further, a line segment having a length of 100 μm parallel to the surface of the sintered body is drawn every 10 μm from the surface of the sintered body to a position of 500 μm, and the amount of Mo is measured on the same line segment by an energy dispersive X-ray analyzer (EDS). The region where the average value of Mo amount on the line segment is 30 to 80% of the Mo amount inside the sintered body is determined as the low Mo region, and the depth range in which the low Mo region exists is determined. Identified.
Tables 3 and 6 show the average Mo content inside the sintered body and the depth range of the low Mo region from the surface of the sintered body obtained above.
ついで、本発明焼結体1~8、比較例焼結体1~8及び参考例焼結体1、2の縦断面について、微小硬さ試験(ナノインデンテーション硬さ試験)を行うことにより、低Mo領域の5箇所において測定した微小硬さの平均値を平均微小硬さとして求め、焼結体の表面から少なくとも500μmを超える深さの焼結体内部の5箇所において測定した微小硬さの平均値を平均微小硬さとして求め、焼結体内部における平均微小硬さに対する低Mo領域の平均微小硬さの比率(%)を求めた。
微小硬さ試験は、荷重10gの条件で、焼結体表面から、その内部への深さ500μmの範囲にわたり、10μm毎に微小硬さHV(N/mm2)を測定し、低Mo領域内の5箇所における測定値の平均値を平均微小硬さとし、また、焼結体の表面から少なくとも500μmを超える深さの焼結体内部の5箇所における測定値の平均値を平均微小硬さとし、低Mo領域の平均微小硬さを、焼結体内部の平均微小硬さで除することにより、焼結体の表面から少なくとも500μmを超える深さの焼結体内部の平均微小硬さに対する低Mo領域の平均微小硬さの比率(%)を算出した。
なお、比較例焼結体1~8、参考例焼結体1、2のうちで、低Mo領域が形成されていないものについては、前記平均微小硬さの比率は、約100(%)となる。
Then, the vertical cross sections of the
In the micro-hardness test, the micro-hardness HV (N / mm 2 ) was measured every 10 μm over a range of 500 μm from the surface of the sintered body to the inside under the condition of a load of 10 g, and within the low Mo region. The average value of the measured values at the five points in the above is defined as the average microhardness, and the average value of the measured values at the five locations inside the sintered body at a depth of at least 500 μm from the surface of the sintered body is defined as the average microhardness. By dividing the average microhardness of the Mo region by the average microhardness inside the sintered body, the low Mo region with respect to the average microhardness inside the sintered body at a depth of at least 500 μm from the surface of the sintered body. The ratio (%) of the average microhardness of was calculated.
Of the
次に、前記で作製した本発明焼結体1~8、比較例焼結体1~8及び参考例焼結体1、2に対して研削加工を施すことにより、ISO規格SEEN1203AFSNのインサート形状をもった本発明焼結体製の切削工具(以下、「本発明工具」という)1~8、比較例焼結体製の切削工具(以下、「比較例工具」という)1~8及び参考例焼結体製の切削工具(以下、「参考例工具」という)1、2を作製した。
Next, the insert shape of the ISO standard SEEN1203AFSN is obtained by grinding the
前記本発明工具1~8、比較例工具1~8及び参考例工具1、2を、いずれも工具鋼製カッターの先端部に固定治具にてネジ止めした状態で、以下に示す、合金鋼の湿式正面フライス切削加工試験を実施し、切刃の逃げ面摩耗幅を測定するとともに、切刃の損耗状態を観察した。
切削条件:
被削材:JIS・SCM440のブロック材、
切削速度:180 m/min、
切り込み:0.9 mm、
送り:0.3 mm/rev、
切削時間:15 分、
表7に、切削試験の結果を示す。
The alloy steel shown below, in which the
Cutting conditions:
Work material: JIS / SCM440 block material,
Cutting speed: 180 m / min,
Notch: 0.9 mm,
Feed: 0.3 mm / rev,
Cutting time: 15 minutes,
Table 7 shows the results of the cutting test.
また、前記本発明工具1~8、比較例工具1~8及び参考例工具1、2の切刃表面に、表8に示す平均層厚の硬質被覆層をPVD法あるいはCVD法で被覆形成し、本発明被覆工具1~8、比較例被覆工具1~8及び参考例被覆工具1、2を作製した。
上記の各被覆工具について、以下に示す、湿式正面フライス切削加工試験を実施し、切刃の逃げ面摩耗幅を測定するとともに、切刃の損耗状態を観察した。
切削条件:
被削材:JIS・SCM440のブロック材、
切削速度:220 m/min、
切り込み:1.0 mm、
送り:0.3 mm/rev、
切削時間:10 分、
表9に、切削試験の結果を示す。
Further, a hard coating layer having an average layer thickness shown in Table 8 is coated on the cutting edge surfaces of the
The wet face milling cutting test shown below was carried out for each of the above-mentioned coated tools, the flank wear width of the cutting edge was measured, and the wear state of the cutting edge was observed.
Cutting conditions:
Work material: JIS / SCM440 block material,
Cutting speed: 220 m / min,
Notch: 1.0 mm,
Feed: 0.3 mm / rev,
Cutting time: 10 minutes,
Table 9 shows the results of the cutting test.
表7、表9に示されるように、本発明工具1~8、本発明被覆工具1~8は、それぞれ、参考例工具1、参考例被覆工具1と同様に、チッピング、欠損等の異常損傷を発生することもなく、長期の使用にわたって、すぐれた切削性能を発揮した。
しかし、比較例工具1~8、参考例工具2、また、比較例被覆工具1~8、参考例被覆工具2は靱性が十分でないため、チッピング、欠損等の異常損傷の発生により、工具寿命が短命であった。
As shown in Tables 7 and 9, the
However, since the toughness of
この発明のTiN基焼結体は、すぐれた硬さと靱性を備えるため、切削工具ばかりでなく、各種の技術分野における強靭部材、耐摩部材としても適用することができるが、特に、これを切削工具として用いた場合には、すぐれた耐摩耗性と耐異常損傷性を発揮するため、長期の使用にわたって、すぐれた切削性能を発揮し、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
Since the TiN-based sintered body of the present invention has excellent hardness and toughness, it can be applied not only as a cutting tool but also as a tough member and an abrasion resistant member in various technical fields. When used as a tool, it exhibits excellent wear resistance and abnormal damage resistance, so it exhibits excellent cutting performance over a long period of use, and is sufficient for labor saving, energy saving, and cost reduction in cutting. It is something that can respond to satisfaction.
Claims (3)
(a)前記焼結体の断面を観察した時、前記焼結体中でTiN相が占める平均面積割合は70.0~91.5面積%、Mo2C相が占める平均面積割合は3.5~25.0面積%であり、
(b)前記結合相の成分はFeとNiからなり、前記結合相の面積割合は5.0~15.0面積%であり、かつ、FeとNiの合計含有量に対するNiの含有割合は15.0~35.0質量%であり、
(c)前記焼結体の表面から、その内部へ向かって深さ50~300μmまでの領域には、低Mo領域が形成され、該低Mo領域における平均Mo含有量は、前記焼結体の表面から少なくとも500μmを超える深さの焼結体内部の平均Mo含有量の30~80%であり、
(d)前記低Mo領域の平均微小硬さは、前記焼結体の表面から少なくとも500μmを超える深さの焼結体内部の平均微小硬さの70~90%であることを特徴とするTiN基焼結体。 A TiN-based sintered body containing a TiN phase and a Mo 2C phase, the balance of which is a bonded phase.
(A) When observing the cross section of the sintered body, the average area ratio of the TiN phase in the sintered body is 70.0 to 91.5 area%, and the average area ratio of the Mo 2C phase is 3. 5 to 25.0 area%,
(B) The components of the bonded phase are Fe and Ni, the area ratio of the bonded phase is 5.0 to 15.0 area%, and the content ratio of Ni to the total content of Fe and Ni is 15. It is 0.0 to 35.0% by mass,
(C) A low Mo region is formed in a region from the surface of the sintered body to a depth of 50 to 300 μm toward the inside thereof, and the average Mo content in the low Mo region is the same as that of the sintered body. 30-80% of the average Mo content inside the sintered body at a depth of at least 500 μm from the surface .
(D) The average microhardness of the low Mo region is 70 to 90% of the average microhardness inside the sintered body at a depth of at least 500 μm from the surface of the sintered body. Base sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018160676A JP7031532B2 (en) | 2018-08-29 | 2018-08-29 | TiN-based sintered body and cutting tool made of TiN-based sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018160676A JP7031532B2 (en) | 2018-08-29 | 2018-08-29 | TiN-based sintered body and cutting tool made of TiN-based sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020033597A JP2020033597A (en) | 2020-03-05 |
JP7031532B2 true JP7031532B2 (en) | 2022-03-08 |
Family
ID=69669134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018160676A Active JP7031532B2 (en) | 2018-08-29 | 2018-08-29 | TiN-based sintered body and cutting tool made of TiN-based sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7031532B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7037121B2 (en) * | 2018-09-28 | 2022-03-16 | 三菱マテリアル株式会社 | Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008111652A1 (en) | 2007-03-13 | 2008-09-18 | Kyocera Corporation | Ceramic for decorative part, decorative part for watch, decorative part for portable device, and portable device |
WO2015129771A1 (en) | 2014-02-26 | 2015-09-03 | 三菱マテリアル株式会社 | Cutting tool made of surface-coated titanium carbonitride-based cermet having exceptional chipping resistance |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5539616B2 (en) * | 1973-06-18 | 1980-10-13 | ||
JPS5165008A (en) * | 1974-12-03 | 1976-06-05 | Ngk Spark Plug Co | Chitsukachitankishoketsugokinno seizoho |
JPS5171809A (en) * | 1974-12-19 | 1976-06-22 | Ngk Spark Plug Co | Chitsukachitankishoketsugokinno seizoho |
JPS5337113A (en) * | 1976-09-18 | 1978-04-06 | Nippon Shinkinzoku Kk | Titaniummnitrideebased highhstrength sintered alloy |
JPH0711048B2 (en) * | 1988-11-29 | 1995-02-08 | 東芝タンガロイ株式会社 | High-strength nitrogen-containing cermet and method for producing the same |
KR0140409B1 (en) * | 1994-09-29 | 1998-06-01 | 김은영 | Process for preparing sintered titanium nitride |
-
2018
- 2018-08-29 JP JP2018160676A patent/JP7031532B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008111652A1 (en) | 2007-03-13 | 2008-09-18 | Kyocera Corporation | Ceramic for decorative part, decorative part for watch, decorative part for portable device, and portable device |
WO2015129771A1 (en) | 2014-02-26 | 2015-09-03 | 三菱マテリアル株式会社 | Cutting tool made of surface-coated titanium carbonitride-based cermet having exceptional chipping resistance |
Also Published As
Publication number | Publication date |
---|---|
JP2020033597A (en) | 2020-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030129456A1 (en) | Cemented carbide and cutting tool | |
EP3754039B1 (en) | Tin-based sintered body and cutting tool made of tin-based sintered body | |
CN106794523A (en) | Composite sinter cutting element | |
JP7031532B2 (en) | TiN-based sintered body and cutting tool made of TiN-based sintered body | |
JP5273987B2 (en) | Cermet manufacturing method | |
WO2023188875A1 (en) | Sintered body and cutting tool | |
JP4807575B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel | |
JP4069749B2 (en) | Cutting tool for roughing | |
JP6695566B2 (en) | Cemented carbide used as a tool for machining non-metallic materials | |
JP2019155570A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance | |
JP2019155569A (en) | Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance | |
JP7380219B2 (en) | A surface-coated TiN-based cermet cutting tool with a hard coating layer that exhibits excellent chipping resistance. | |
JP7008249B2 (en) | TiN-based sintered body and cutting tool made of TiN-based sintered body | |
JP5561607B2 (en) | Surface-coated WC-based cemented carbide insert | |
JP2009006413A (en) | Ti based cermet | |
JP7008906B2 (en) | TiN-based sintered body and cutting tool made of TiN-based sintered body | |
JP4284153B2 (en) | Cutting method | |
JP7037121B2 (en) | Surface-coated TiN-based cermet cutting tool with excellent chipping resistance due to the hard coating layer | |
JPH0673560A (en) | Coated sintered hard alloy member and its production | |
JP5613888B2 (en) | Surface-coated WC-based cemented carbide insert | |
WO2019159781A1 (en) | Tin-based sintered body and cutting tool made of tin-based sintered body | |
JP2003094207A (en) | Cutting tool | |
JP6395053B2 (en) | Surface-coated WC-based cemented carbide cutting tool with excellent fracture resistance and plastic deformation resistance | |
JPH0665671A (en) | Cemented carbide for cutting tool | |
JP2005248265A (en) | Coated cemented carbide member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7031532 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |