JP2011173212A - Surface-coated tool - Google Patents

Surface-coated tool Download PDF

Info

Publication number
JP2011173212A
JP2011173212A JP2010038945A JP2010038945A JP2011173212A JP 2011173212 A JP2011173212 A JP 2011173212A JP 2010038945 A JP2010038945 A JP 2010038945A JP 2010038945 A JP2010038945 A JP 2010038945A JP 2011173212 A JP2011173212 A JP 2011173212A
Authority
JP
Japan
Prior art keywords
phase
zro
average particle
substrate
surface region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010038945A
Other languages
Japanese (ja)
Other versions
JP5424935B2 (en
Inventor
Takeshi Yamazaki
剛 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010038945A priority Critical patent/JP5424935B2/en
Publication of JP2011173212A publication Critical patent/JP2011173212A/en
Application granted granted Critical
Publication of JP5424935B2 publication Critical patent/JP5424935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated tool with a stable high wear resistance, achieved by suppressing the separation of a coated layer and by improving wear resistance of the base body surface itself. <P>SOLUTION: In the surface-coated tool, the coated layer 6 is formed on the surface of the base body 1 made of a cemented carbide of a WC phase 2, a binding phase 3 made of one or more ferrous metals, and a B1-type solid solution phase 4, other than WC, made of a carbide, nitride, or carbonitride of one or more metals of group 4, 5, and 6, including Zr, in the periodic table. The surface area 7 of the base body 1 with a depth of 5-100 &mu;m from the surface is dotted with a ZrO<SB>2</SB>phase 5, but has no &eta; phase. The inside of the base body 1 with a depth deeper than 100 &mu;m from the surface has no ZrO<SB>2</SB>phase 5, or is dotted with a ZrO<SB>2</SB>phase 5 with an average particle diameter of 1/5 or less of the average particle diameter of the ZrO<SB>2</SB>phase 5 in the surface area 7. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は表面被覆工具に関し、特に耐塑性変形性に優れ、高靭性を有し、かつ耐摩耗性に優れた超硬合金からなる切削工具に関する。   The present invention relates to a surface-coated tool, and particularly to a cutting tool made of a cemented carbide having excellent plastic deformation resistance, high toughness, and excellent wear resistance.

従来から金属の切削加工に広く用いられている超硬合金は、炭化タングステンを主体とする硬質相と、コバルト等の鉄族金属の結合相に対して、周期表第4、5、6族金属の炭化物、窒化物、炭窒化物等の固溶相であるB1型固溶体を分散せしめた系が知られている。   Cemented carbides that have been widely used for metal cutting have traditionally consisted of a hard phase mainly composed of tungsten carbide and a bonded phase of an iron group metal such as cobalt. A system in which a B1-type solid solution, which is a solid solution phase of carbide, nitride, carbonitride, etc., is dispersed is known.

例えば、特許文献1では、被覆層を形成したWC基超硬合金母材中にZr化合物を含有させることが開示され、かつ化合物の大きさが合金の表面から50μmの深さで0.02〜0.5μm、50〜150μmの深さで0.5〜1.0μm、150μm深さで1.0〜5.0μmとしたことが記載されている。   For example, Patent Document 1 discloses that a Zr compound is contained in a WC-based cemented carbide base material on which a coating layer is formed, and the size of the compound is 0.02 to a depth of 50 μm from the surface of the alloy. It is described that 0.5 to 1.0 μm at a depth of 0.5 μm, 50 to 150 μm, and 1.0 to 5.0 μm at a depth of 150 μm.

また、特許文献2では、立方晶系化合物を含む超硬合金の表面において、表面から2〜10μmの深さに炭化タングステンと内部よりも1.2〜3倍量の結合相とからなる第1表面領域と、第1表面領域の界面から3〜15μmの深さに、炭化タングステンと結合相と内部よりも1.5〜5倍の立方晶系化合物とからなる第2表面領域とを形成することが開示され、この超硬合金の表面に被覆層を形成したものも開示されている。   Moreover, in patent document 2, in the surface of the cemented carbide alloy containing a cubic system compound, it is the 1st which consists of tungsten carbide and the binder phase 1.2 to 3 times as much as the inside in the depth of 2-10 micrometers from the surface. A surface region and a second surface region made of tungsten carbide, a binder phase, and a cubic compound 1.5 to 5 times larger than the inside are formed at a depth of 3 to 15 μm from the interface of the first surface region. In other words, a cemented layer formed on the surface of the cemented carbide is also disclosed.

特開2000−336489号公報JP 2000-336489 A 特開2004−259286号公報JP 2004-259286 A

しかしながら、上記特許文献1および特許文献2のいずれの構成によっても、強い衝撃がかかった場合には被覆層が剥離する場合が多くあり、さらに、被覆層が剥離した後の基体が露出した状態で切削を続けると、摩耗の進行が非常に早くて早期に寿命に至ってしまうという問題があった。   However, in both configurations of Patent Document 1 and Patent Document 2, when a strong impact is applied, the coating layer often peels off, and the substrate after the coating layer is peeled is exposed. When cutting is continued, there is a problem that the wear progresses very quickly and reaches the end of its life.

本発明は、上記問題点を解決するためになされたものであり、その目的は、被覆層の剥離を抑制するとともに、基体表面自身における耐摩耗性も向上させて、安定した高い耐摩耗性が得られる表面被覆工具を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is to suppress the peeling of the coating layer and to improve the wear resistance on the surface of the substrate itself, thereby providing a stable and high wear resistance. The object is to provide the resulting surface-coated tool.

本発明の表面被覆工具は、WC相と、鉄族金属の1種以上よりなる結合相と、WC以外のZrを含む周期表第4、5、6族金属の1種以上の炭化物、窒化物または炭窒化物からなるB1型固溶相との超硬合金からなる基体の表面に被覆層を形成したものであって、前記基体の表面からの深さが5〜100μmまでの表面領域にZrO相が点在しているとともにη相が存在せず、前記表面領域より深い内部では、前記ZrO相が存在しないか、または前記表面領域におけるZrO相の平均粒径に対する平均粒径が1/5以下の大きさで点在しているものである。 The surface-coated tool of the present invention includes a WC phase, a binder phase composed of one or more types of iron group metals, and one or more types of carbides and nitrides of Group 4, 5, and 6 metals of the periodic table including Zr other than WC. Alternatively, a coating layer is formed on the surface of a substrate made of a cemented carbide with a B1 type solid solution phase made of carbonitride, and a ZrO layer is formed in a surface region having a depth from the surface of the substrate of 5 to 100 μm. The two phases are interspersed and the η phase does not exist, and in the interior deeper than the surface region, the ZrO 2 phase does not exist, or the average particle size with respect to the average particle size of the ZrO 2 phase in the surface region is It is dotted with a size of 1/5 or less.

ここで、前記被覆層としては、積層構造であり、前記基体側第1層目がTiN、TiC
、TiB、TiCNまたはTiAlNのうちの1種のTi化合物である場合に特に有効であり、従来の超硬合金に比べて被覆層が剥離しにくいものである。
Here, the coating layer has a laminated structure, and the first layer on the substrate side is TiN, TiC.
, TiB 2 , TiCN, or TiAlN, which is particularly effective when it is one kind of Ti compound, and the coating layer is more difficult to peel off than conventional cemented carbide.

また、前記表面領域について断面で観察したとき、前記ZrO相の平均粒径dと前記B1型固溶相の平均粒径dとの比(d/d)が1.2〜10であることが望ましく、前記表面領域における前記ZrO相の組織全体に対する存在割合が1〜10面積%であることが望ましい。 Also, the when observed in cross-section for the surface area, the ratio of the average particle size d 2 of the ZrO 2 phase average particle size d 1 and the B1-type solid solution phase of (d 1 / d 2) is 1.2 to It is desirable that the ratio of the ZrO 2 phase in the surface region is 1 to 10 area%.

さらに、前記表面領域における結合相の含有割合が内部に対して1.2〜2倍であることが望ましい。   Furthermore, it is desirable that the content ratio of the binder phase in the surface region is 1.2 to 2 times the inside.

本発明の切削工具によれば、超硬合金の表面にη相が存在せずZrO相が点在することによって、基体と被覆層との熱膨張差による被覆層の剥離を抑制することができ、かつ仮に被覆層が剥離や摩耗した場合でも、露出した超硬合金基体の耐摩耗性が高くて、切削工具として安定した切削が可能となる。 According to the cutting tool of the present invention, the η phase does not exist on the surface of the cemented carbide and the ZrO 2 phase is scattered, thereby suppressing the peeling of the coating layer due to the difference in thermal expansion between the substrate and the coating layer. Even when the coating layer is peeled off or worn, the exposed cemented carbide substrate has high wear resistance, and stable cutting as a cutting tool is possible.

本発明の表面被覆工具の好適例である切削工具の一例についての鏡面研磨断面における波長分散型分光分析による酸素成分の濃度分布を示すマッピング写真である。It is a mapping photograph which shows the density | concentration distribution of the oxygen component by the wavelength dispersion type | mold spectral analysis in the mirror polishing cross section about an example of the cutting tool which is a suitable example of the surface coating tool of this invention. 図1の切削工具についての走査型電子顕微鏡写真および局部についてエネルギー分散型分光分析による成分分析結果である。It is a scanning electron micrograph about the cutting tool of FIG. 1, and the component analysis result by energy dispersive type | mold spectral analysis about a local.

本発明の切削工具について、その一例についての鏡面研磨断面における波長分散型分光分析による酸素成分の濃度分布を示すマッピング写真である図1および図2の走査型電子顕微鏡写真および局部についての成分分析結果を基に説明する。   About the cutting tool of this invention, the scanning electron micrograph of FIG. 1 and FIG. 2 which is a mapping photograph which shows the density distribution of the oxygen component by the wavelength dispersion type | mold spectral analysis in the mirror polishing cross section about the example, and the component analysis result about a local This will be explained based on the above.

図1、2に示す超硬合金(基体)1は、WC相2、鉄族金属の1種以上よりなる結合相3、WC以外のZrを含む周期表第4、5、6族金属の1種以上の炭化物、窒化物または炭窒化物からなるB1型固溶相(以下、B1型固溶相と略す。)4から形成され、さらにZrO相5が点在している。また、図1によれば、基体1の表面には、Tiを含む被覆層6が形成されている。 A cemented carbide (substrate) 1 shown in FIGS. 1 and 2 includes a WC phase 2, a binding phase 3 composed of one or more iron group metals, and a periodic table 4th, 5th, and 6th metals including Zr other than WC. It is formed from a B1 type solid solution phase (hereinafter abbreviated as B1 type solid solution phase) 4 made of carbide, nitride, or carbonitride of at least seeds, and is further dotted with ZrO 2 phases 5. Further, according to FIG. 1, a coating layer 6 containing Ti is formed on the surface of the substrate 1.

そして、図1によれば、基体1の表面からの深さが5〜100μmまでの表面領域7にZrO相5が点在しており、基体1の表面からの深さが100μmより深い内部では、ZrO相5が存在していない。また、基体1の表面領域7にはη相が存在せず、表面領域7自体が破壊することもない。なお、本発明によれば、基体1の内部においては表面領域7におけるZrO相5の平均粒径に対する平均粒径が1/5以下の大きさで点在していても、本発明の効果を発揮することができる。 According to FIG. 1, the ZrO 2 phase 5 is scattered in the surface region 7 having a depth of 5 to 100 μm from the surface of the substrate 1, and the depth from the surface of the substrate 1 is deeper than 100 μm. Then, the ZrO 2 phase 5 does not exist. Further, the surface region 7 of the substrate 1 has no η phase, and the surface region 7 itself is not destroyed. According to the present invention, even if the average particle diameter with respect to the average particle diameter of the ZrO 2 phase 5 in the surface region 7 is scattered within 1/5 or less in the inside of the substrate 1, the effect of the present invention is achieved. Can be demonstrated.

上記構成によって、基体1と被覆層6との熱膨張差による被覆層6の剥離を抑制することができ、かつ仮に被覆層6が剥離や摩耗した場合でも、露出した超硬合金基体1の耐摩耗性が高い。そのため、切削工具として用いた場合に安定した切削が可能となる。   With the above configuration, the peeling of the coating layer 6 due to the difference in thermal expansion between the substrate 1 and the coating layer 6 can be suppressed, and even if the coating layer 6 is peeled off or worn, the resistance of the exposed cemented carbide substrate 1 is prevented. Abrasion is high. Therefore, stable cutting is possible when used as a cutting tool.

ここで、被覆層6としては積層構造であり、基体1側の第1層目がTiN、TiC、TiB、TiCNまたはTiAlN等のTi化合物である場合に特に有効であり、従来の超硬合金に比べて被覆層が剥離しにくいものである。また、被覆層は必ずしも1層のみ成膜されたものに限らず、2層以上の積層構造とすることもできる。なお、各材料の熱膨張係数は、TiNが9.4×10−6、TiCが7.4×10−6、TiBが7.6×1
−6、TiAlNが7.7×10−6、超硬合金が5〜6×10−6、ZrOが10.5×10−6、Al7.5×10−6、Coが12.4×10−6である。
Here, the coating layer 6 has a laminated structure, and is particularly effective when the first layer on the substrate 1 side is a Ti compound such as TiN, TiC, TiB 2 , TiCN, or TiAlN. Compared with, the coating layer is more difficult to peel off. In addition, the coating layer is not necessarily formed by only one layer, and may have a laminated structure of two or more layers. The thermal expansion coefficient of each material is 9.4 × 10 −6 for TiN, 7.4 × 10 −6 for TiC, and 7.6 × 1 for TiB 2.
0 -6, TiAlN is 7.7 × 10 -6, the cemented carbide is 5~6 × 10 -6, ZrO 2 is 10.5 × 10 -6, Al 2 O 3 7.5 × 10 -6, Co Is 12.4 × 10 −6 .

また、表面領域7を断面観察したとき、ZrO相5の平均粒径dとB1型固溶相4の平均粒径dとの比(d/d)が1.2〜10であることが、基体1の靭性を維持できるとともに基体1と被覆層6との密着性を高めることができるために望ましく、例えば、ZrO相5の平均粒径dが1.5〜10μm、B1型固溶相4の平均粒径dが0.2〜1.5μmである。 Further, when the surface area 7 and cross-sectional observation, the ratio of the average particle size d 2 of an average particle diameter d 1 and the B1-type solid solution phase 4 of the ZrO 2 phase 5 (d 1 / d 2) is 1.2 to 10 It is desirable that the toughness of the substrate 1 can be maintained and the adhesion between the substrate 1 and the coating layer 6 can be improved. For example, the average particle diameter d 1 of the ZrO 2 phase 5 is 1.5 to 10 μm. , average particle size d 2 of the B1-type solid solution phase 4 is 0.2 and 1.5 .mu.m.

さらに、表面領域7におけるZrO相5の組織全体に対する存在割合が1〜10面積%であることが、基体1の靭性を維持できるとともに基体1と被覆層6との密着性を高めることができる点で望ましい。なお、基体1の組織観察において、B1型固溶相4が1〜20面積%の割合で存在することが、基体1の高温硬度を高めることができるとともに、基体1の靭性を低下させることなく耐塑性変形性を向上させるのに好ましい。基体1の内部におけるB1型固溶相4の面積比率の望ましい範囲は1〜8面積%であり、表面領域7におけるB1型固溶相4の面積比率の望ましい範囲は1〜10面積%である。 Furthermore, the presence ratio of the ZrO 2 phase 5 in the entire surface region 7 to the entire structure is 1 to 10 area%, so that the toughness of the substrate 1 can be maintained and the adhesion between the substrate 1 and the coating layer 6 can be enhanced. Desirable in terms. In the observation of the structure of the substrate 1, the presence of the B1 type solid solution phase 4 in a ratio of 1 to 20 area% can increase the high temperature hardness of the substrate 1 and without reducing the toughness of the substrate 1. It is preferable for improving the plastic deformation resistance. A desirable range of the area ratio of the B1 type solid solution phase 4 in the inside of the substrate 1 is 1 to 8 area%, and a desirable range of the area ratio of the B1 type solid solution phase 4 in the surface region 7 is 1 to 10 area%. .

さらに、表面領域7における結合相3の含有割合が内部に対して1.2〜2倍であることが、基体1表面における硬度をさほど低下させないで耐摩耗性が高く、かつ基体1と被覆層6との熱膨張係数差をさらに小さくできる点で望ましい。   Furthermore, the content ratio of the binder phase 3 in the surface region 7 is 1.2 to 2 times that in the inside, so that the hardness on the surface of the substrate 1 is not lowered so much and the wear resistance is high, and the substrate 1 and the coating layer This is desirable in that the difference in thermal expansion coefficient from 6 can be further reduced.

(製造方法)
上述した切削工具を構成する超硬合金の製造方法の一例について説明する。まず、炭化タングステン(WC)粉末に対して、金属コバルト(Co)粉末を5.0〜15.0質量%と、B1型固溶相を形成するための化合物粉末として、炭化ジルコニウム粉末を0.05〜1質量%、他のB1型固溶相を形成するための化合物粉末を0〜3質量%の比率で調合する。
(Production method)
An example of the manufacturing method of the cemented carbide which comprises the cutting tool mentioned above is demonstrated. First, 5.0 to 15.0 mass% of metal cobalt (Co) powder with respect to tungsten carbide (WC) powder, and zirconium carbide powder is used as a compound powder for forming a B1-type solid solution phase. The compound powder for forming 05-1 mass% and another B1 type solid solution phase is prepared in the ratio of 0-3 mass%.

この調合した粉末に溶媒を加えて、所定時間混合・粉砕してスラリーとした後、このスラリーにバインダを添加してさらに混合し、スプレードライヤー等を用いてスラリーを乾燥しながら混合粉末の造粒を行う。次に、造粒された顆粒を用いてプレス成形により切削工具形状に成形を行う。このとき、成形体の切刃形状そのものをホーニングのついた形状とするか、または焼成前の生成形体に対してホーニング加工を行い、焼成前にホーニングを付した形状としておく。   A solvent is added to the prepared powder and mixed and pulverized for a predetermined time to form a slurry. Then, a binder is added to the slurry and further mixed, and the mixture is granulated while drying the slurry using a spray dryer or the like. I do. Next, the granulated granules are molded into a cutting tool shape by press molding. At this time, the shape of the cutting edge of the molded body itself is set to a shape with honing, or a honing process is performed on the generated shape before firing to obtain a shape with honing before firing.

その後、焼成炉にて酸素を0.5〜10%含有する窒素ガス雰囲気下にて脱脂を行った後、窒素ガス雰囲気のまま焼成炉を昇温し、500〜570℃の温度範囲を20〜45分間保持する。そして、焼成炉内の雰囲気を窒素ガス雰囲気から真空雰囲気に切り替え、昇温速度5〜15℃/分で1450〜1600℃の焼成温度に上げて、この温度で0.3〜1時間焼成して、表面領域においてZrO相が内部に比べて多く点在する超硬合金を作製することができる。 Then, after degreasing in a nitrogen gas atmosphere containing 0.5 to 10% oxygen in a firing furnace, the temperature of the firing furnace is increased in a nitrogen gas atmosphere, and a temperature range of 500 to 570 ° C. is set to 20 to 20%. Hold for 45 minutes. Then, the atmosphere in the firing furnace is switched from a nitrogen gas atmosphere to a vacuum atmosphere, and the firing temperature is raised to 1450 to 1600 ° C. at a heating rate of 5 to 15 ° C./minute, and firing is performed at this temperature for 0.3 to 1 hour. In this way, a cemented carbide in which ZrO 2 phases are scattered more in the surface region than in the interior can be produced.

また、B1型固溶相を形成するための原料粉末の調合割合としては、炭化ジルコニウム(ZrC):0.5〜1.5質量%、炭化チタン(TiC):0〜0.3質量%、炭化タンタル(TaC):0〜0.3質量%、炭化クロム(Cr):0〜0.3質量%の組成が特に好適である。 Moreover, as a preparation ratio of the raw material powder for forming the B1-type solid solution phase, zirconium carbide (ZrC): 0.5 to 1.5 mass%, titanium carbide (TiC): 0 to 0.3 mass%, The composition of tantalum carbide (TaC): 0 to 0.3% by mass and chromium carbide (Cr 3 C 2 ): 0 to 0.3% by mass is particularly suitable.

そして、作製された超硬合金に対して、超硬合金の表面に化学気相蒸着(CVD)法や、物理気相蒸着(PVD)法によって、公知の被覆層を成膜する。本発明においては、被覆層に引張応力が残留するCVD法にて成膜された被覆層において、従来に対する効果が
顕著である。
Then, a known coating layer is formed on the surface of the cemented carbide by a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method. In the present invention, in the coating layer formed by the CVD method in which the tensile stress remains in the coating layer, the effect of the conventional technique is remarkable.

平均粒径0.8μmの炭化タングステン(WC)粉末、平均粒径1.2μmの金属コバルト(Co)粉末および平均粒径1〜2μmの表1に示す化合物粉末を表1に示す比率で調合して、これに溶媒を加えて混合・粉砕した後、保形剤を添加してさらに混合し、できたスラリーをスプレードライヤーに投入して造粒粉末を作製した。次に、この造粒粉末を用いて、プレス成形により切削工具形状(CNMA120412)に成形を行う。このとき、得られた生成形体に対してホーニング加工を行い、焼成前にホーニングを付した形状とした。そして、成形体を焼成炉中に載置して、酸素ガスを表1に示す割合で含有する窒素ガス雰囲気中、450℃で2時間脱脂を行った後、表1に示す温度および時間でガス雰囲気の切り替えおよび焼成を行い、その後に表1に示す条件で焼成して超硬合金を作製した。   A tungsten carbide (WC) powder having an average particle diameter of 0.8 μm, a metal cobalt (Co) powder having an average particle diameter of 1.2 μm, and a compound powder shown in Table 1 having an average particle diameter of 1 to 2 μm were prepared at the ratio shown in Table 1. Then, after adding a solvent to this and mixing and pulverizing it, a shape-retaining agent was added and further mixed, and the resulting slurry was put into a spray dryer to produce a granulated powder. Next, the granulated powder is used to form a cutting tool shape (CNMA 120204) by press molding. At this time, a honing process was performed on the obtained generated shape to obtain a shape with honing before firing. And after putting a molded object in a baking furnace and performing degreasing | defatting for 2 hours at 450 degreeC in the nitrogen gas atmosphere which contains oxygen gas in the ratio shown in Table 1, it is gas at the temperature and time shown in Table 1. The atmosphere was switched and fired, and then fired under the conditions shown in Table 1 to produce a cemented carbide.

さらに、この加工した超硬合金の表面に化学気相蒸着(CVD)法によって、0.5μmの窒化チタン(TiN)膜、9.0μmの柱状の結晶構造をなす炭窒化チタン(TiCN)膜、3μmのα型酸化アルミニウム(Al)膜の被覆層を順次成膜した。 Furthermore, a 0.5 μm titanium nitride (TiN) film, a 9.0 μm titanium carbonitride (TiCN) film having a columnar crystal structure is formed on the surface of the processed cemented carbide by chemical vapor deposition (CVD), A coating layer of a 3 μm α-type aluminum oxide (Al 2 O 3 ) film was sequentially formed.

得られた工具について、超硬合金の鏡面研磨加工面について走査型電子顕微鏡による3000倍写真を撮影し、これをルーゼックスにより画像解析することによって、表面領域の有無、および表面領域と内部におけるZrO相とB1型固溶相の平均粒径(d、d、d、d)と面積%を算出した。なお、任意の3箇所の平均値を超硬合金に含まれるB1型固溶相の面積%とした。結果は表2に示した。 The resulting tool, the mirror polished surface of the cemented carbide shot 3000 times by the scanning electron microscope image, by image analysis by Luzex this, the presence or absence of the surface region, and the surface area and ZrO inside 2 The average particle size (d 1 , d 2 , d 3 , d 4 ) and area% of the phase and the B1 type solid solution phase were calculated. In addition, the average value of arbitrary three places was made into area% of the B1 type solid solution phase contained in a cemented carbide. The results are shown in Table 2.

そして、この工具を用いて下記の条件により、連続切削試験および強断続切削試験を行い、耐摩耗性および耐欠損性を評価した。   Then, using this tool, a continuous cutting test and a strong interrupted cutting test were performed under the following conditions to evaluate the wear resistance and fracture resistance.

(摩耗試験)
被削材 :FCD700
工具形状:CNMA120412
切削速度:300m/分
送り速度:0.3mm/rev
切り込み:1.5mm(3秒切削毎に切込み変動)
切削時間:6分
切削液 :エマルジョン15%+水85%混合液
評価項目:顕微鏡にて切刃を観察し、逃げ面摩耗量の測定と刃先状態の確認
(強断続切削条件)
被削材 :FCD700
工具形状:CNMA120412
切削速度:150m/分
送り速度:0.15〜0.3mm/rev
切り込み:1.5mm
切削液 :エマルジョン15%+水85%混合液
評価項目:衝撃回数2000回以内に欠損した試料の個数(評価数20個)
および衝撃回数2000回で欠損しなかった試料の刃先状態の確認
結果は表3に示した。
(Abrasion test)
Work material: FCD700
Tool shape: CNMA120204
Cutting speed: 300 m / min Feeding speed: 0.3 mm / rev
Cutting depth: 1.5mm (cutting variation every 3 seconds cutting)
Cutting time: 6 minutes Cutting fluid: Mixture of 15% emulsion + 85% water Evaluation item: Observe the cutting edge with a microscope, measure the amount of flank wear and check the cutting edge condition (strongly interrupted cutting conditions)
Work material: FCD700
Tool shape: CNMA120204
Cutting speed: 150 m / min Feeding speed: 0.15-0.3 mm / rev
Cutting depth: 1.5mm
Cutting fluid: Mixture of 15% emulsion + 85% water Evaluation item: Number of samples lost within 2000 impacts (20 evaluations)
And confirmation of the cutting edge condition of the sample that was not damaged after 2000 impacts
The results are shown in Table 3.

表1〜3に示す結果より、原料としてZr成分を添加しなかった試料No.8では、ZrO相の析出が見られず、被覆層の剥離を伴うチッピングの発生が見られた。また、N雰囲気での熱処理温度が550℃を越える試料No.5では、基体の表面にη相が析出して切刃においてチッピングが見られた。さらに、N雰囲気での熱処理時間が45分より長い試料No.6では、焼成後の超硬合金におけるZrO相の分布状態が表面と内部とで同じになり、超硬合金自体の硬度が低下して摩耗の進行が早かった。また、N雰囲気で熱処理する際のガスの酸素含有量が0.5体積%より少ない試料No.7では、ZrO相の析出が見られず、被覆層の剥離を伴うチッピングの発生が見られた。 From the results shown in Tables 1 to 3, Sample No. in which no Zr component was added as a raw material was used. In No. 8, no ZrO 2 phase precipitation was observed, and chipping accompanied by peeling of the coating layer was observed. In addition, Sample No. with a heat treatment temperature in the N 2 atmosphere exceeding 550 ° C. In No. 5, the η phase was precipitated on the surface of the substrate, and chipping was observed at the cutting edge. Furthermore, Sample No. No. 2 in which the heat treatment time in the N 2 atmosphere is longer than 45 minutes. In No. 6, the distribution state of the ZrO 2 phase in the cemented carbide after firing became the same between the surface and the inside, the hardness of the cemented carbide itself decreased, and the progress of wear was rapid. In addition, the sample No. 2 in which the oxygen content of the gas when heat-treating in an N 2 atmosphere is less than 0.5% by volume is obtained. In No. 7, no precipitation of ZrO 2 phase was observed, and chipping accompanied by peeling of the coating layer was observed.

これに対して、所定の表面領域を有する試料No.1〜6では、被覆層の密着性が高くてチッピングの発生が抑制され、安定した切削加工が可能であった。   On the other hand, the sample No. having a predetermined surface area. In Nos. 1 to 6, the adhesiveness of the coating layer was high, the occurrence of chipping was suppressed, and stable cutting was possible.

1:超硬合金(基体)
2:WC相
3:結合相
4:B1型固溶相
5:ZrO
6:被覆層
7:表面領域
1: Cemented carbide (base)
2: WC phase 3: bonded phase 4: B1-type solid solution phase 5: ZrO 2 phase 6: coating layer 7: surface region

Claims (5)

WC相と、鉄族金属の1種以上よりなる結合相と、WC以外のZrを含む周期表第4、5、6族金属の1種以上の炭化物、窒化物または炭窒化物からなるB1型固溶相との超硬合金からなる基体の表面に被覆層を形成したものであって、前記基体の表面からの深さが5〜100μmまでの表面領域にZrO相が点在するとともにη相が存在せず、前記基体の表面領域より深い内部では、前記ZrO相が存在しないか、または前記表面領域におけるZrO相の平均粒径に対する平均粒径が1/5以下の大きさで点在している表面被覆工具。 B1 type comprising a WC phase, a binder phase composed of one or more types of iron group metals, and one or more types of carbides, nitrides or carbonitrides of Group 4, 5, 6 metals of the periodic table containing Zr other than WC A coating layer is formed on the surface of a substrate made of a cemented carbide with a solid solution phase, and ZrO 2 phases are scattered in a surface region having a depth of 5 to 100 μm from the surface of the substrate and η There is no phase, and in the interior deeper than the surface region of the substrate, the ZrO 2 phase does not exist, or the average particle size with respect to the average particle size of the ZrO 2 phase in the surface region is 1/5 or less. Scattered surface coating tools. 前記被覆層が積層構造であり、前記基体側の第1層目がTiN、TiC、TiB、TiCNまたはTiAlNのうちの1種のTi化合物である請求項1記載の表面被覆工具。 The surface-coated tool according to claim 1, wherein the coating layer has a laminated structure, and the first layer on the substrate side is one kind of Ti compound of TiN, TiC, TiB 2 , TiCN, or TiAlN. 前記表面領域について断面で観察したとき、前記ZrO相の平均粒径dと前記B1型固溶相の平均粒径dとの比(d/d)が1.2〜10である請求項1または2記載の表面被覆工具。 When observed in cross-section for the surface region, the ratio of the average particle size d 2 of the ZrO 2 phase average particle size d 1 and the B1-type solid solution phase of (d 1 / d 2) is at 1.2 to 10 The surface-coated tool according to claim 1 or 2. 前記表面領域における前記ZrO相の組織全体に対する存在割合が1〜10面積%である請求項1乃至3のいずれか記載の表面被覆工具。 The surface-coated tool according to any one of claims 1 to 3, wherein the existence ratio of the ZrO 2 phase in the surface region to the entire structure is 1 to 10 area%. 前記表面領域における結合相の含有割合が内部に対して1.2〜2倍である請求項1乃至4のいずれか記載の表面被覆工具。   The surface-coated tool according to any one of claims 1 to 4, wherein the content ratio of the binder phase in the surface region is 1.2 to 2 times the inside.
JP2010038945A 2010-02-24 2010-02-24 Surface coating tool Active JP5424935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038945A JP5424935B2 (en) 2010-02-24 2010-02-24 Surface coating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038945A JP5424935B2 (en) 2010-02-24 2010-02-24 Surface coating tool

Publications (2)

Publication Number Publication Date
JP2011173212A true JP2011173212A (en) 2011-09-08
JP5424935B2 JP5424935B2 (en) 2014-02-26

Family

ID=44686575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038945A Active JP5424935B2 (en) 2010-02-24 2010-02-24 Surface coating tool

Country Status (1)

Country Link
JP (1) JP5424935B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005508A (en) * 2012-06-25 2014-01-16 Hitachi Tool Engineering Ltd Hard metal and manufacturing method therefor and insert for turning using the same
JP2018053358A (en) * 2017-08-17 2018-04-05 住友電気工業株式会社 Method for producing cemented carbide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336451A (en) * 1999-05-28 2000-12-05 Toshiba Tungaloy Co Ltd Modified sintered alloy, coated sintered alloy, and their production
JP2001212702A (en) * 2000-01-31 2001-08-07 Kyocera Corp Cutting tool and method of manufacturing therefor
JP2003094207A (en) * 2001-09-26 2003-04-03 Kyocera Corp Cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336451A (en) * 1999-05-28 2000-12-05 Toshiba Tungaloy Co Ltd Modified sintered alloy, coated sintered alloy, and their production
JP2001212702A (en) * 2000-01-31 2001-08-07 Kyocera Corp Cutting tool and method of manufacturing therefor
JP2003094207A (en) * 2001-09-26 2003-04-03 Kyocera Corp Cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005508A (en) * 2012-06-25 2014-01-16 Hitachi Tool Engineering Ltd Hard metal and manufacturing method therefor and insert for turning using the same
JP2018053358A (en) * 2017-08-17 2018-04-05 住友電気工業株式会社 Method for producing cemented carbide

Also Published As

Publication number Publication date
JP5424935B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
US8784977B2 (en) Coated cubic boron nitride sintered body tool
JP4966580B2 (en) Coated tool
KR101701186B1 (en) Cutting tool
JP5235607B2 (en) Surface coating tool
JP5214075B1 (en) Cutting tools
JPWO2012086839A1 (en) Cutting tools
JP2010172989A (en) Surface-coated cutting tool
JP2010253594A (en) Surface coated tool
JP2004100004A (en) Coated cemented carbide and production method therefor
KR101811972B1 (en) Hard coating film and target for forming hard coating film
JP5534765B2 (en) Surface covering member
JP5424935B2 (en) Surface coating tool
JP2004263254A (en) Cemented carbide, coated cemented carbide member, and their production methods
JP2008296292A (en) Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2011093003A (en) Surface-coated member
JP2005153098A (en) Surface coated cutting tool
JP6028374B2 (en) Target and hard coating coated cutting tool
KR101816712B1 (en) Cutting tools having hard coated layer
JP2009034766A (en) Surface coated cutting tool with hard coat layer having improved chipping resistance and wear resistance
JP4817799B2 (en) Surface covering
JP2004249380A (en) Surface-coated ti group cermet cutting tool and its manufacturing method
JP5835305B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP5743585B2 (en) Cutting tools
JP5111259B2 (en) Surface covering member
JP2006297584A (en) Surface coated tool and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150