JP5743585B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5743585B2
JP5743585B2 JP2011028719A JP2011028719A JP5743585B2 JP 5743585 B2 JP5743585 B2 JP 5743585B2 JP 2011028719 A JP2011028719 A JP 2011028719A JP 2011028719 A JP2011028719 A JP 2011028719A JP 5743585 B2 JP5743585 B2 JP 5743585B2
Authority
JP
Japan
Prior art keywords
solid solution
solution phase
type solid
cutting
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011028719A
Other languages
Japanese (ja)
Other versions
JP2012166299A (en
Inventor
隼人 久保
隼人 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011028719A priority Critical patent/JP5743585B2/en
Publication of JP2012166299A publication Critical patent/JP2012166299A/en
Application granted granted Critical
Publication of JP5743585B2 publication Critical patent/JP5743585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は切削工具に関し、特に耐塑性変形性に優れた超硬合金からなる切削工具に関する。   The present invention relates to a cutting tool, and more particularly to a cutting tool made of a cemented carbide excellent in plastic deformation resistance.

従来から金属の切削加工に広く用いられている超硬合金は、WCを主体とする硬質相と、Co等の鉄族金属の結合相からなるWC−Co系合金に周期表第4、5、6族金属の炭化物、窒化物、炭窒化物等の固溶相を分散せしめた系が知られている。この超硬合金は、切削工具として、主に炭素鋼、合金鋼等の切削加工に利用されているが、高速・強断続加工に対応する切削工具が要求されている。   Conventionally, cemented carbide widely used for metal cutting is a WC-Co alloy composed of a hard phase mainly composed of WC and a binding phase of an iron group metal such as Co. A system in which a solid solution phase such as a carbide, nitride, carbonitride or the like of a Group 6 metal is dispersed is known. Although this cemented carbide is mainly used for cutting of carbon steel, alloy steel, etc. as a cutting tool, a cutting tool corresponding to high-speed and strong interrupted processing is required.

例えば、特許文献1では、焼成条件を工夫して、TaまたはNbを含有する斑点状析出物を1個以下にした超硬合金が開示されている。また、特許文献2では、Zrが多い芯部と、TaおよびNbを含む外周部とからなるB1型固溶体を備えた超硬合金が開示されている。さらに、特許文献3では、Tiを主成分とする硬質相とZrを主成分とする硬質相との2種類の固溶体相を分散させた超硬合金が開示されている。   For example, Patent Document 1 discloses a cemented carbide in which the firing conditions are devised to reduce the number of spotted precipitates containing Ta or Nb to one or less. Patent Document 2 discloses a cemented carbide including a B1-type solid solution composed of a core portion rich in Zr and an outer peripheral portion containing Ta and Nb. Further, Patent Document 3 discloses a cemented carbide in which two types of solid solution phases, a hard phase mainly composed of Ti and a hard phase mainly composed of Zr, are dispersed.

特開2005−105398号公報JP 2005-105398 A 特開2002−239812号公報JP 2002-239812 A 特開平06−093473号公報Japanese Patent Application Laid-Open No. 06-093473

しかしながら、特許文献1に記載されているようにB1型固溶相が析出しない超硬合金の場合、高速加工の断続切削のような切刃が高温となりかつ強い衝撃を受ける切削加工では耐塑性変形性が不十分であり、切刃が変形して加工精度が低下したり、加工面が粗くなるという問題があった。   However, as described in Patent Document 1, in the case of a cemented carbide in which a B1 type solid solution phase does not precipitate, the plastic blade is deformed in a cutting process where the cutting edge is subjected to a high temperature and a strong impact such as intermittent cutting in high-speed processing. However, the cutting edge is deformed and machining accuracy is lowered, and the machining surface becomes rough.

また、特許文献2のようにB1型固溶相が有芯構造からなる超硬合金でも、高速・断続切削加工に要求される耐塑性変形性を満足するには不十分であった。   Further, even a cemented carbide having a B1 type solid solution phase having a cored structure as in Patent Document 2 is insufficient to satisfy the plastic deformation resistance required for high-speed / intermittent cutting.

さらに、特許文献3のようにTiを主成分とする硬質相とZrを主成分とする硬質相との2種類の硬質相(B1型固溶体相)を含む超硬合金でも、高速・断続の切削加工に要求される耐塑性変形性が十分であるとは言えなかった。そのため、切刃が高温になり衝撃を受ける切削のような高速・断続切削加工においては切刃が塑性変形し、塑性変形からの異常摩耗および膜剥離が生じて工具寿命が短くなるという問題があった。   Further, even in a cemented carbide containing two types of hard phases (B1 type solid solution phase) of a hard phase mainly composed of Ti and a hard phase mainly composed of Zr as in Patent Document 3, high-speed, intermittent cutting is performed. It could not be said that the plastic deformation resistance required for processing was sufficient. Therefore, in high-speed / intermittent cutting such as cutting where the cutting edge becomes hot and impacted, the cutting edge is plastically deformed, causing abnormal wear and film peeling from the plastic deformation, resulting in a short tool life. It was.

本発明の目的は、高速かつ断続切削加工によって発生する塑性変形を抑えて、優れた耐摩耗性、耐欠損性を発揮することができる切削工具を提供することにある。   An object of the present invention is to provide a cutting tool capable of exhibiting excellent wear resistance and fracture resistance by suppressing plastic deformation caused by high-speed and intermittent cutting.

本発明の切削工具は、WCを80〜94質量%、Coを5〜15質量%、Tiを炭化物換算量で0.1〜5質量%、Nbを炭化物換算量で0.1〜10質量%、TiおよびNbを除く周期表第4、5および6族金属の群から選ばれる少なくとも1種の炭化物(WCを除く)を0〜10質量%の割合で含有して、WC相と、B1型固溶相と、前記Coを主体とする結合相とからなり、かつ前記B1型固溶相は単一構造からなるとともに前記Tiと前記Nbの濃度が最高となる位置が異なる超硬合金からなる。 In the cutting tool of the present invention, WC is 80 to 94% by mass, Co is 5 to 15% by mass, Ti is 0.1 to 5% by mass in terms of carbide, and Nb is 0.1 to 10% by mass in terms of carbide. , Containing at least one carbide (excluding WC ) selected from the group of metals of Group 4, 5 and 6 of the periodic table excluding Ti and Nb in a proportion of 0 to 10% by mass, and B1 type It consists of a solid solution phase and a binder phase mainly composed of Co, and the B1-type solid solution phase is made of a cemented carbide having a single structure and different positions where the concentrations of Ti and Nb are highest. .

ここで、前記超硬合金の表面から5〜10μmの深さにわたって前記B1型固溶相が存在しない表面領域が存在するとともに、該表面領域よりも内側においては、前記B1型固溶相が5〜20面積%の割合で存在してもよい。   Here, there is a surface region where the B1 type solid solution phase does not exist over a depth of 5 to 10 μm from the surface of the cemented carbide, and the B1 type solid solution phase is 5 inside the surface region. It may be present at a rate of ˜20 area%.

本発明の切削工具によれば、B1型固溶相中の組成がランダムに分布している構成からなるために、高温での応力やクラックの進展に対する変形や破壊の向きがランダムであり、総合的にB1型固溶相の高温での硬度と耐変形性をともに高めることができて、B1型固溶相がクラックの進展を抑制できるとともに超硬合金の変形を抑制できる結果、超硬合金の耐塑性変形性を向上できる。   According to the cutting tool of the present invention, since the composition in the B1 type solid solution phase is randomly distributed, the direction of deformation and fracture with respect to the stress and crack progress at high temperature is random, As a result, both the hardness and deformation resistance of the B1 type solid solution phase at a high temperature can be improved, and the B1 type solid solution phase can suppress the progress of cracks and the deformation of the cemented carbide. The plastic deformation resistance of can be improved.

本発明の切削工具を構成する超硬合金は、WC相、結合相、B1型固溶相から形成されている。そして、WCを80〜94質量%、Coを5〜15質量%、Tiを炭化物換算量で0.1〜5質量%、Nbを炭化物換算量で0.1〜10質量%、TiおよびNbを除く周期表第4、5および6族金属の群から選ばれる少なくとも1種の炭化物(WCを除く)、窒化物および炭窒化物のうちの少なくとも1種を0〜10質量%の割合で含有する。そして、この超硬合金は、WC相と、B1型固溶相と、前記Coを主体とする結合相とからなり、前記B1型固溶相は有芯構造ではなくて単一構造からなるとともに、前記Tiと前記Nbの濃度が最高となる位置が異なっている。   The cemented carbide constituting the cutting tool of the present invention is formed of a WC phase, a binder phase, and a B1 type solid solution phase. And WC is 80-94 mass%, Co is 5-15 mass%, Ti is 0.1-5 mass% in carbide conversion amount, Nb is 0.1-10 mass% in carbide conversion amount, Ti and Nb. Excluding at least one of carbides (excluding WC), nitrides and carbonitrides selected from the group of metals of Group 4, 5 and 6 of the periodic table excluding 0 to 10% by mass . The cemented carbide is composed of a WC phase, a B1 type solid solution phase, and a bonded phase mainly composed of Co. The B1 type solid solution phase is not a cored structure but a single structure. The positions where the concentrations of Ti and Nb are highest are different.

上記構成により、B1型固溶相中に各元素がランダムに分布しているために、高温での応力やクラックの進展に対する変形や破壊の向きがランダムであり、総合的にB1型固溶相の高温での硬度と耐変形性をともに高めることができて、B1型固溶相がクラックの進展を抑制できるとともに超硬合金の変形を抑制できる結果、超硬合金の耐塑性変形性を向上できる。   With the above configuration, since each element is randomly distributed in the B1 type solid solution phase, the direction of deformation and fracture with respect to the stress and crack progress at high temperature is random, and the B1 type solid solution phase is comprehensively obtained. The B1 type solid solution phase can suppress the progress of cracks and the deformation of the cemented carbide, thereby improving the plastic deformation resistance of the cemented carbide. it can.

すなわち、B1型固溶相中の金属元素の分布が均一である場合には、高温での応力やクラックの進展に対する変形や破壊が大きくて超硬合金の変形が大きくなる。また、有芯構造からなるB1型固溶相では、高温での応力やクラックの進展に対する変形や破壊の向きが一様であるために、総合的にB1型固溶相の高温での硬度と耐変形性が十分でなく、超硬合金の耐塑性変形性が不十分となる。   That is, when the distribution of the metal element in the B1-type solid solution phase is uniform, deformation and destruction with respect to stress and crack growth at high temperatures are large, and deformation of the cemented carbide becomes large. In addition, in the B1 type solid solution phase having a cored structure, since the direction of deformation and fracture with respect to the stress and crack progress at high temperature is uniform, the hardness at high temperature of the B1 type solid solution phase is comprehensively determined. The deformation resistance is not sufficient, and the plastic deformation resistance of the cemented carbide becomes insufficient.

ここで、前記超硬合金の表面から5〜10μmの深さにわたって前記B1型固溶相が存在しない表面領域が存在するとともに、該表面領域よりも内側においては、前記B1型固溶相が5〜20面積%の割合で存在することが、高温における耐塑性変形性を最適化する上で望ましい。   Here, there is a surface region where the B1 type solid solution phase does not exist over a depth of 5 to 10 μm from the surface of the cemented carbide, and the B1 type solid solution phase is 5 inside the surface region. It is desirable to exist at a ratio of ˜20 area% in order to optimize the plastic deformation resistance at high temperature.

なお、TiとNbの濃度が最高となる位置が異なるとは、オージェ分光分析(AES)にてB1型固溶体相の各元素のマッピングをとって、TiとNbの濃度が最高となる位置の差がB1型固溶体相の最大径に対して10%以上離れている状態を指す。
また、超硬合金のB1型固溶相について有芯構造であるか否かを確認するには、走査型電子顕微鏡(SEM)の反射電子像(BEI)で鏡面加工された超硬合金の断面組織を観察し、観察される各B1型固溶相について均一な色調であるかどうかを確認することにより有芯構造をなしているかどうかを確認できる。
In addition, the position where the concentration of Ti and Nb becomes the highest is different from the position where the concentration of Ti and Nb becomes the highest by mapping each element of the B1 type solid solution phase by Auger spectroscopic analysis (AES). Indicates a state of being separated by 10% or more with respect to the maximum diameter of the B1 type solid solution phase.
In addition, in order to confirm whether or not the B1 type solid solution phase of the cemented carbide has a cored structure, the cross section of the cemented carbide mirror-finished with a backscattered electron image (BEI) of a scanning electron microscope (SEM). By observing the structure and confirming whether or not the observed B1 type solid solution phase has a uniform color tone, it can be confirmed whether or not a cored structure is formed.

(製造方法)
上述した本発明の切削工具を構成する超硬合金の製造方法の一例について説明する。まず、WC(WC)粉末を80〜94質量%と、金属Co(Co)粉末を5〜15質量%と、B1型固溶相を形成するための化合物粉末として、NbC粉末を0.1〜10質量%、TiC粉末を0.1〜5質量%、他のB1型固溶相を形成するための化合物粉末を10質量%以下の比率で調合する。このとき、B1型固溶相を形成するための化合物原料粉末であるTiC粉末の平均粒径を0.5〜2μm、NbC粉末の平均粒径を0.5〜2μm、WC粉末の平均粒径を0.5〜10μm、金属Co粉末の平均粒径を1.0〜2.0μmと調整するとともに、下記混合、焼成工程によって、本発明の切削工具を形成する超硬合金を作製することができる。
(Production method)
An example of the manufacturing method of the cemented carbide which comprises the cutting tool of this invention mentioned above is demonstrated. First, 80 to 94% by mass of WC (WC) powder, 5 to 15% by mass of metal Co (Co) powder, and 0.1 to NbC powder as a compound powder for forming a B1-type solid solution phase. 10% by mass, 0.1% by mass to 5% by mass of TiC powder, and other compound powders for forming a B1-type solid solution phase are prepared at a ratio of 10% by mass or less. At this time, the average particle diameter of the TiC powder, which is the compound raw material powder for forming the B1 type solid solution phase, is 0.5 to 2 μm, the average particle diameter of the NbC powder is 0.5 to 2 μm, and the average particle diameter of the WC powder. Is adjusted to 0.5 to 10 μm, and the average particle size of the metal Co powder is adjusted to 1.0 to 2.0 μm, and the cemented carbide forming the cutting tool of the present invention is manufactured by the following mixing and firing process. it can.

この調合した粉末に溶媒を加えて、所定時間混合・粉砕してスラリーとする。この際、NbC粉末およびTiC粉末以外の原料を先行して5〜20時間混合・粉砕した後、NbC粉末およびTiC粉末を投入して0.5〜2時間混合・粉砕する。このスラリーにバインダを添加してさらに混合し、スプレードライヤー等を用いてスラリーを乾燥しながら混合粉末の造粒を行う。次に、造粒された顆粒を用いてプレス成形により切削工具形状に成形を行う。その後、焼成炉にて脱脂を行った後、焼成炉の温度を1380〜1450℃の焼成温度に上げて1〜1.5時間焼成して超硬合金を作製することができる。   A solvent is added to the prepared powder and mixed and pulverized for a predetermined time to form a slurry. At this time, raw materials other than NbC powder and TiC powder are mixed and pulverized for 5 to 20 hours in advance, and then NbC powder and TiC powder are added and mixed and pulverized for 0.5 to 2 hours. A binder is added to the slurry and further mixed, and the mixed powder is granulated while drying the slurry using a spray dryer or the like. Next, the granulated granules are molded into a cutting tool shape by press molding. Then, after degreasing in a firing furnace, the temperature of the firing furnace is raised to a firing temperature of 1380 to 1450 ° C. and fired for 1 to 1.5 hours, whereby a cemented carbide can be produced.

ここで、上記工程において、原料として用いるNbC粉末とTiC粉末の粉砕時間が2時間を超える場合、または焼成温度が1500℃を超える場合には、B1型固溶体相中のTi元素とNb元素の最高濃度位置が一致する。   Here, in the above process, when the pulverization time of the NbC powder and TiC powder used as raw materials exceeds 2 hours, or when the firing temperature exceeds 1500 ° C., the highest of Ti element and Nb element in the B1 type solid solution phase Concentration positions match.

そして、作製された超硬合金について、所望によって超硬合金の表面を研磨加工したり、切刃部にホーニング加工を施したりする。さらに、所望によって、超硬合金の表面に化学気相蒸着(CVD)法や、物理気相蒸着(PVD)法によって、公知の硬質被覆層を成膜して切削工具としてもよい。特にCVD法によって成膜した場合には、超硬合金からなる基体に塑性変形が生じることがないので、硬質被覆層が超硬合金からなる基体の塑性変形量に追従できずに超硬合金と硬質被覆層との界面から剥離してしまうこともなく、耐摩耗性・耐欠損性とも優れるものとなる。   And about the produced cemented carbide alloy, the surface of a cemented carbide alloy is grind | polished as needed, or a honing process is given to a cutting blade part. Furthermore, if desired, a known hard coating layer may be formed on the surface of the cemented carbide by a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method to form a cutting tool. In particular, when the film is formed by the CVD method, plastic deformation does not occur in the substrate made of cemented carbide, so the hard coating layer cannot follow the amount of plastic deformation of the substrate made of cemented carbide and It does not peel off from the interface with the hard coating layer, and is excellent in wear resistance and fracture resistance.

表1に示す平均粒径のWC(WC)粉末、金属Co(Co)粉末および表1に示す化合物粉末を表1に示す比率で調合して、これに有機溶剤を加えて混合・粉砕した後、保形剤を添加してさらに混合し、できたスラリーをスプレードライヤーに投入して造粒粉末を作製した。次に、この造粒粉末を用いて、プレス成形により切削工具形状(CNMG120408PS)に成形を行い、焼成炉にて450℃で3時間脱脂を行った後、表1に示す温度および時間で保持して焼成前の熱処理を行い、その後に表1に示す条件で焼成して超硬合金を作製した。   After preparing the WC (WC) powder, the metal Co (Co) powder having the average particle size shown in Table 1 and the compound powder shown in Table 1 in the ratio shown in Table 1, adding an organic solvent to this and mixing and grinding The shape-retaining agent was added and further mixed, and the resulting slurry was put into a spray dryer to produce a granulated powder. Next, using this granulated powder, it was molded into a cutting tool shape (CNMG120408PS) by press molding, degreased at 450 ° C. for 3 hours in a firing furnace, and then held at the temperature and time shown in Table 1. Then, heat treatment was performed before firing, followed by firing under the conditions shown in Table 1 to produce a cemented carbide.

そして、上記CNMG120408PSの略平板形状の超硬合金の表面に対して、両主面を研磨加工し、さらに切刃部にホーニング加工を施した。さらに、この加工した超硬合金の表面に化学気相蒸着(CVD)法によって、0.5μmの窒化Ti(TiN)膜、5.0μmの柱状の結晶構造をなす炭窒化Ti(TiCN)膜、2.0μmのα型酸化アルミニウム(Al)膜、1.0μmの窒化Ti(TiN)膜を順次成膜した。 And both main surfaces were grind | polished with respect to the surface of the said substantially plate-shaped cemented carbide alloy of said CNMG120408PS, and also the honing process was given to the cutting-blade part. Further, a 0.5 μm Ti nitride (TiN) film, a 5.0 μm columnar crystal structure Ti (TiCN) film is formed on the surface of the cemented carbide by chemical vapor deposition (CVD), A 2.0 μm α-type aluminum oxide (Al 2 O 3 ) film and a 1.0 μm Ti nitride (TiN) film were sequentially formed.

Figure 0005743585
Figure 0005743585

得られた工具について、鏡面加工された超硬合金の断面組織をオージェ分光分析(AES)および透過型電子顕微鏡(TEM)観察にてTiとNbの分布状態を確認した。また、超硬合金の破面について走査型電子顕微鏡(SEM)の反射電子像(BEI)で観察し、観察される各B1型固溶相について均一な色調であるかどうかを確認することにより有芯構造をなしているかどうかを確認した。   About the obtained tool, the distribution state of Ti and Nb was confirmed by the Auger spectroscopic analysis (AES) and the transmission electron microscope (TEM) observation of the cross-sectional structure of the mirror-finished cemented carbide. Also, the fracture surface of the cemented carbide is observed with a backscattered electron image (BEI) of a scanning electron microscope (SEM), and it is confirmed by confirming whether or not each observed B1 type solid solution phase has a uniform color tone. It was confirmed whether the core structure was made.

また、超硬合金の鏡面研磨加工面について走査型電子顕微鏡による3000倍の観察を行い、任意3箇所に対して電子線マイクロアナライザ(EPMA)にて各金属元素の濃度分布を測定し、B1型固溶相の特定を行い、これをルーゼックスにより画像解析することによって、B1型固溶相の面積%を算出した。また、この測定データから、超硬合金の表面にB1型固溶相が存在しない表面領域の厚みを測定した。結果は表2に示した。   Further, the mirror polished surface of the cemented carbide is observed 3000 times with a scanning electron microscope, the concentration distribution of each metal element is measured with an electron beam microanalyzer (EPMA) at any three locations, and the B1 type The solid solution phase was specified, and this was subjected to image analysis with Luzex to calculate the area% of the B1 type solid solution phase. Further, from this measurement data, the thickness of the surface region where the B1-type solid solution phase does not exist on the surface of the cemented carbide was measured. The results are shown in Table 2.

そして、この工具を用いて下記の条件により、連続切削試験および強断続切削試験を行い、耐摩耗性および耐欠損性を評価した。   Then, using this tool, a continuous cutting test and a strong interrupted cutting test were performed under the following conditions to evaluate the wear resistance and fracture resistance.

(切込変動切削条件)
被削材 :SCM435
工具形状:CNMG120408PS
切削速度:300m/分
送り速度:0.3mm/rev
切り込み:2.0mm(3秒切削毎に切込変動)
切削時間:15分
切削液 :エマルジョン15%+水85%混合液
評価項目:顕微鏡にて切刃を観察し、フランク摩耗量・先端摩耗量を測定
(強断続切削条件)
被削材 :SCM440 4本溝入材
工具形状:CNMG120408PS
切削速度:300m/分
送り速度:0.35mm/rev
切り込み:1.5mm
切削液 :エマルジョン15%+水85%混合液
評価項目:欠損に至る衝撃回数
衝撃回数1000回時点で顕微鏡にて切刃の状態を観察
結果は表2に示した。
(Cutting variable cutting conditions)
Work material: SCM435
Tool shape: CNMG120408PS
Cutting speed: 300 m / min Feeding speed: 0.3 mm / rev
Cutting depth: 2.0mm (cutting fluctuation every 3 seconds cutting)
Cutting time: 15 minutes Cutting fluid: Mixture of 15% emulsion + 85% water Evaluation item: Observe the cutting edge with a microscope and measure the amount of flank wear and tip wear (strong interrupted cutting conditions)
Work Material: SCM440 Four Groove Tool Shape: CNMG120408PS
Cutting speed: 300 m / min Feed rate: 0.35 mm / rev
Cutting depth: 1.5mm
Cutting fluid: Mixture of 15% emulsion + 85% water Evaluation item: Number of impacts leading to defects
Table 2 shows the observation results of the state of the cutting edge with a microscope at the time of impact of 1000 times.

Figure 0005743585
Figure 0005743585

表1、2に示す結果より、B1型固溶体相が析出しない試料No.8では塑性変形が大きくて摩耗、欠損性能ともに悪いものであった。また、B1型固溶体相内のTiとNbの濃度が最高となる位置が異なる試料No.6、7でも、摩耗、欠損性能がともに悪かった。   From the results shown in Tables 1 and 2, Sample No. No B1 solid solution phase precipitated. In No. 8, plastic deformation was large and both wear and chipping performance were poor. In addition, the sample Nos. 1 and 2 in which the positions where the concentrations of Ti and Nb in the B1-type solid solution phase become maximum are different. 6 and 7 also had poor wear and chipping performance.

これに対して、B1型固溶相は単一構造からなるとともにTiとNbの濃度が最高となる位置が異なる試料No.1〜5では、切込変動切削においても、強断続切削においても塑性変形は発生せず、長寿命であり、硬質被覆層の剥離や欠損も発生せず耐摩耗性および耐欠損性とも優れた切削性能を有するものであった。   On the other hand, the B1 type solid solution phase has a single structure and the sample No. Nos. 1 to 5 show no plastic deformation, long life, no peeling or chipping of the hard coating layer, and excellent wear resistance and fracture resistance in both cutting variation cutting and strong interrupted cutting. It had cutting performance.

Claims (2)

WCを80〜94質量%、Coを5〜15質量%、Tiを炭化物換算量で0.1〜5質量%、Nbを炭化物換算量で0.1〜10質量%、TiおよびNbを除く周期表第4、5および6族金属の群から選ばれる少なくとも1種の炭化物(WCを除く)を0〜10質量%の割合で含有して、WC相と、B1型固溶相と、前記Coを主体とする結合相とからなり、かつ前記B1型固溶相は単一構造からなるとともに前記Tiと前記Nbの濃度が最高となる位置が異なる超硬合金からなる切削工具。 WC is 80 to 94% by mass, Co is 5 to 15% by mass, Ti is 0.1 to 5% by mass in terms of carbide, Nb is 0.1 to 10% by mass in terms of carbide, and a period excluding Ti and Nb It contains at least one carbide (excluding WC ) selected from the group of Tables 4, 5 and 6 metals in a proportion of 0 to 10% by mass, and includes a WC phase, a B1 solid solution phase, and the Co A cutting tool made of a cemented carbide composed of a cemented phase mainly composed of bismuth and the B1 type solid solution phase having a single structure and different positions where the concentrations of Ti and Nb are highest. 前記超硬合金の表面から5〜10μmの深さにわたって前記B1型固溶相が存在しない表面領域が存在するとともに、該表面領域よりも内側においては、前記B1型固溶相が5〜20面積%の割合で存在する請求項1に記載の切削工具。   There is a surface region where the B1 type solid solution phase does not exist over a depth of 5 to 10 μm from the surface of the cemented carbide, and the B1 type solid solution phase is 5 to 20 areas inside the surface region. The cutting tool according to claim 1, which is present in a percentage.
JP2011028719A 2011-02-14 2011-02-14 Cutting tools Active JP5743585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011028719A JP5743585B2 (en) 2011-02-14 2011-02-14 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028719A JP5743585B2 (en) 2011-02-14 2011-02-14 Cutting tools

Publications (2)

Publication Number Publication Date
JP2012166299A JP2012166299A (en) 2012-09-06
JP5743585B2 true JP5743585B2 (en) 2015-07-01

Family

ID=46970975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028719A Active JP5743585B2 (en) 2011-02-14 2011-02-14 Cutting tools

Country Status (1)

Country Link
JP (1) JP5743585B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147841A (en) * 1984-12-18 1986-07-05 Hitachi Metals Ltd Hyperfine-grained sintered hard alloy
JP2002166307A (en) * 2000-11-30 2002-06-11 Kyocera Corp Cutting tool
JP4005787B2 (en) * 2001-10-19 2007-11-14 京セラ株式会社 Surface coated cemented carbide
JP2003191109A (en) * 2001-12-25 2003-07-08 Kyocera Corp Cemented carbide and cutting tool using it
JP4936761B2 (en) * 2006-03-28 2012-05-23 京セラ株式会社 Cutting tools

Also Published As

Publication number Publication date
JP2012166299A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
KR102326622B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
KR101419616B1 (en) Surface-coated cutting tool and manufacturing method thereof
KR102107879B1 (en) Surface-coated cutting tool
JP6044336B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
KR101417542B1 (en) Surface-coated cutting tool and manufacturing method thereof
KR101701186B1 (en) Cutting tool
JP4936761B2 (en) Cutting tools
JP6276288B2 (en) Cutting tools
JP5031182B2 (en) Cemented carbide
JP5835306B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP2015139868A (en) Surface-coated cutting tool exhibiting chipping resistance over a long period in cutting work of high-hardness steel
JP2015101748A (en) Cemented carbide and surface-coated cutting tool prepared using the same
JP2008238314A (en) Cutting tool, its manufacturing method, and cutting method
JP5743585B2 (en) Cutting tools
JP2011093003A (en) Surface-coated member
JP5424935B2 (en) Surface coating tool
JP2009172697A (en) Wc-based cemented carbide cutting tool showing excellent chipping resistance, thermal crack resistance and wear resistance in high-speed intermittent heavy cutting
CN103962587A (en) Surface coated cutting tool
JP6028374B2 (en) Target and hard coating coated cutting tool
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN105693253B (en) Cubic boron nitride sintered body cutting tool having excellent chipping resistance
JP5835305B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP6346066B2 (en) Cutting tool and manufacturing method
JP2016064470A (en) Surface coat cutting tool excellent in chipping resistance and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150428

R150 Certificate of patent or registration of utility model

Ref document number: 5743585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150