JPS61147841A - Hyperfine-grained sintered hard alloy - Google Patents
Hyperfine-grained sintered hard alloyInfo
- Publication number
- JPS61147841A JPS61147841A JP26535084A JP26535084A JPS61147841A JP S61147841 A JPS61147841 A JP S61147841A JP 26535084 A JP26535084 A JP 26535084A JP 26535084 A JP26535084 A JP 26535084A JP S61147841 A JPS61147841 A JP S61147841A
- Authority
- JP
- Japan
- Prior art keywords
- tin
- tic
- alloy
- hard
- hard phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、鋼の転削加工用の工具、特にソリッドエンド
ミルに好適なWC基焼結合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a WC-based sintered alloy suitable for tools for turning steel, particularly solid end mills.
WC基焼結合金は、この合金にTiC基焼結合金(以下
サーメットと記す)、At’zO*焼結合金(以下セラ
ミックスと記す)TiC,TiN。The WC-based sintered alloy includes TiC-based sintered alloy (hereinafter referred to as cermet), At'zO* sintered alloy (hereinafter referred to as ceramics), TiC, and TiN.
T iN C、A lzo s等の被覆層を施した表面
被覆合金(以下コーティング合金と記す)に比し、8!
械的強度、耐熱疲労性等に優れるため、サーメット、セ
ラミックス、コーティング合金では特に回転工具のよう
に繰り返し応力を受け、かつ熱変動が工具の刃先にかか
るような加工分野では大いにその特徴を発揮している。8! compared to surface-coated alloys (hereinafter referred to as coating alloys) with coating layers such as TiN C and Alzos.
Due to its excellent mechanical strength and thermal fatigue resistance, cermets, ceramics, and coated alloys are especially useful in machining fields where rotating tools are subject to repeated stress and thermal fluctuations are applied to the cutting edge of the tool. ing.
しかし最近はこれらの分野においても、作業条件の高能
率化が進み、さらに工具寿命改善の要求が高まりつつあ
る。However, recently, even in these fields, working conditions have become more efficient, and demands for improved tool life are increasing.
WC基焼結合金の硬質相中のWCは、機械的強度が高(
熱伝導率が大きい特徴を有するが、高温での鉄との反応
に対する安定性や耐酸化性等の特性が劣るため、これら
の特性に優れたTiCと組み合わせることにより、切削
時の耐摩耗性を改善することは周知である。しかしなが
ら、 TiCは機械的強度が低くまた熱伝導率も低いた
め、添加量の増大により切削靭性が低下するという問題
がある。WC in the hard phase of WC-based sintered alloy has high mechanical strength (
Although it has the characteristic of high thermal conductivity, it has poor properties such as stability against reaction with iron and oxidation resistance at high temperatures, so combining it with TiC, which has excellent properties, improves wear resistance during cutting. It is well known that it improves. However, since TiC has low mechanical strength and low thermal conductivity, there is a problem that cutting toughness decreases as the amount added increases.
本発明は、ソリッドエンドミル、ドリル等に広範囲に使
用されている題微粒子合金(以下マイクロアロイと記す
)のように、WC粒子を微細1化することにより分散強
化を図って強度を増加させる手段を複合炭窒化物に応用
し、マイクロアロイの強度の低下を最小限に抑えるとと
もに、組成を最適にして耐熱疲労性、耐溶着性、靭性等
に優れ、工具寿命を長く保つことができるマイクロアロ
イを提供することを目的とするものである。The present invention provides a means for increasing strength by dispersing and strengthening WC particles by making WC particles finer, such as the micro-particle alloy (hereinafter referred to as micro-alloy) that is widely used in solid end mills, drills, etc. By applying this to composite carbonitrides, we have created a microalloy that minimizes the decrease in strength of the microalloy, has an optimized composition, has excellent thermal fatigue resistance, welding resistance, toughness, etc., and can maintain a long tool life. The purpose is to provide
本発明は、WCとB−1型の結晶構造を有する(TiW
)CNからなる硬質相と、Coを主体とするFe族金属
からなる結合相で構成された題硬合金において、硬質相
の成分の内Tiおよび/またはWの炭化物および/また
は窒化物の部分における(TiC+TiN)/ (Ti
C+TiN+WC)の比(モル比)が5/100〜15
/100の範囲にあり、またTiN/(TiC十T i
N )の比(モル比)が10/100〜50/100の
範囲にあるNを含有し、それら硬質相が合金全量の75
〜90重量%を占めるとともに、前記Coを主体とする
結合相が10〜25重量%を占めることを特徴とするも
のである。The present invention has a WC and B-1 type crystal structure (TiW
) In the hard alloy composed of a hard phase consisting of CN and a binder phase consisting of a Fe group metal mainly composed of Co, in the carbide and/or nitride portion of Ti and/or W among the components of the hard phase. (TiC+TiN)/ (Ti
C+TiN+WC) ratio (molar ratio) is 5/100 to 15
/100, and TiN/(TiC+Ti
The hard phase accounts for 75% of the total amount of the alloy.
90% by weight, and the binder phase mainly composed of Co accounts for 10 to 25% by weight.
TiNを添加すると、添加時の形態によらず、TiC,
WCと固溶反応を生じてB−1型固溶体(TiW)CN
粒子を微細化する。さらに、結晶相中へのWの固溶が着
しく進み、耐熱疲労性、靭性等を顕著に増大させる。When TiN is added, TiC,
A solid solution reaction occurs with WC to form B-1 type solid solution (TiW)CN.
Refine particles. Furthermore, the solid solution of W into the crystal phase progresses steadily, significantly increasing thermal fatigue resistance, toughness, etc.
本発明合金において、(T iC十T iN ) /(
TiC+TiN+WC)の比(モル比)を5/100〜
i 5/100の範囲に限定した理由は、この比が5/
100未満では添加による効果が見られず、15/10
0を超えて添加すると実質的にB−1型固溶体が多(な
り、合金の強度低下が着しいからである。In the alloy of the present invention, (T iC + T iN ) /(
TiC+TiN+WC) ratio (mole ratio) from 5/100
The reason for limiting the range to i 5/100 is that this ratio is 5/100.
If it is less than 100, no effect of addition is seen, and 15/10
This is because if it is added in excess of 0, the B-1 type solid solution becomes substantially large and the strength of the alloy is seriously reduced.
またTiN/ (TiC+TiN)の比(モル比)を
10/100〜50/100の範囲に限定した理由は、
10/100未満では添加による効果が見られず、50
/100を超えて添加すると、焼結性が悪くなり合金の
強度が劣化するか1らで訊る−
さらに、本発明合金の硬質相の一部をTaC。Also, the ratio (molar ratio) of TiN/(TiC+TiN) is
The reason for limiting it to the range of 10/100 to 50/100 is
If it is less than 10/100, no effect of addition can be seen;
If it is added in excess of /100, the sinterability will deteriorate and the strength of the alloy will deteriorate.
NbCの1種または2種で0.5〜15%置換するとT
iNの添加による実用上の効果をさらに助長し、B−1
型固溶体相の強度上昇、粒子の粗大化抑制効果に寄与す
る。しかし置換量が15重量%を超えると強度が低下す
るので実用には供し得ない。When 0.5 to 15% of NbC is substituted with one or two types, T
The practical effect of the addition of iN is further promoted, and B-1
Contributes to increasing the strength of the mold solid solution phase and suppressing particle coarsening. However, if the amount of substitution exceeds 15% by weight, the strength decreases and it cannot be put to practical use.
なお、一般のマイクロアロイには粒子の粗大化抑制のた
めV、Cr等が添加されているが、B−1型固溶相と併
用しても問題はない。Note that although V, Cr, etc. are added to general microalloys in order to suppress coarsening of particles, there is no problem even if they are used in combination with the B-1 type solid solution phase.
次に本発明のマイクロアロイについて実施例により説明
する。Next, the microalloy of the present invention will be explained using examples.
(実施例1)
市販のWC粉末(平均粒径0.7μm)、T1CN粉末
(TiN/(TiC+TiN)比1/10゜2/10.
3/10.4/10.5/10.6/10)(平均粒径
1.O#a+)、Co粉末(同1゜3μm)を用い、第
1表に示す組成で混合後、成型し、1350℃で1時間
焼結を行なった。(Example 1) Commercially available WC powder (average particle size 0.7 μm), T1CN powder (TiN/(TiC+TiN) ratio 1/10° 2/10.
3/10.4/10.5/10.6/10) (average particle size 1.O#a+) and Co powder (average particle size 1°3μm) were mixed with the composition shown in Table 1 and then molded. , sintering was performed at 1350° C. for 1 hour.
得られた合金について、その硬さ、抗折力、破壊靭性値
(K +c)を測定した。The hardness, transverse rupture strength, and fracture toughness value (K + c) of the obtained alloy were measured.
また、8φ、2枚刃のソリッドエンドミルを製作し、下
記条件にて切削試験を行なった。その結果を第2表に示
す。In addition, an 8φ, 2-flute solid end mill was manufactured and a cutting test was conducted under the following conditions. The results are shown in Table 2.
被 削 材 SCM440 (Hs 40)
切削速度45m/win
送 リ 0.02a+m/刃
。Work material SCM440 (Hs 40)
Cutting speed 45m/win Feed 0.02a+m/blade
.
切り込み深さ 8emm
切り込み中 41
切 削 油 油性
切削方式片削り
切削長さ 5輪
上記条件で切削した結果、B−1全固溶体を含まないも
の(NO,1)は境界摩耗で寿命となった。これに対し
、B−1全固溶体を含むもの(NO,2〜6)は境界摩
耗が少なく仕上面も良好であった。さらに、B−1全固
溶体を増やすと、強度不足のため定常部、境界部ともに
チッピングが増加した。Depth of cut 8emm During cutting 41 Cutting Oil Oil-based cutting method One-sided cutting Cutting length 5 wheels As a result of cutting under the above conditions, the one that does not contain B-1 total solid solution (NO, 1) reached the end of its life due to boundary wear. On the other hand, those containing the entire B-1 solid solution (NO, 2 to 6) had less boundary wear and a good finished surface. Furthermore, when the B-1 total solid solution was increased, chipping increased in both the stationary region and the boundary region due to insufficient strength.
(実施例2)
実施例1と同様の粉末を用いて第3表に示す組成で混合
後成型し、1350℃で1時間焼結を行なった。(Example 2) Using the same powder as in Example 1, the composition shown in Table 3 was mixed and then molded, followed by sintering at 1350° C. for 1 hour.
得られた合金について、その硬さ、抗折力、破壊靭性値
(K+c)を測定した。The hardness, transverse rupture strength, and fracture toughness value (K+c) of the obtained alloy were measured.
また、8φ、2枚刃のソリッドエンドミルを製作し、実
施例1と同じ条件で切削試験を行なった。その結果を第
4表に示す。In addition, an 8φ, two-flute solid end mill was manufactured, and a cutting test was conducted under the same conditions as in Example 1. The results are shown in Table 4.
以上のように、TiNを添加することにより粒子の粗大
化抑制効果が増し、合金の耐溶着性が良(なり、摩耗、
チッピングとも少なくなる。As described above, the addition of TiN increases the effect of suppressing particle coarsening, and improves the welding resistance of the alloy.
Chipping is also reduced.
しかし、TiNの比が高くなるにつれてB−1型固溶体
自体のell耗性が劣化するため合金自体の耐摩耗性も
悪くなる。However, as the TiN ratio increases, the wear resistance of the B-1 type solid solution itself deteriorates, and the wear resistance of the alloy itself also deteriorates.
(実施例3)
実施例1と同様の粉末とさらにTa (Nb) C粉末
(平均粒径1μl11)を用いて第5表に示す組成で混
合後成型し、1350℃で1時間焼結を1行なった。(Example 3) The same powder as in Example 1 and further Ta(Nb)C powder (average particle size 1 μl) were mixed with the composition shown in Table 5, then molded, and sintered at 1350°C for 1 hour. I did it.
得られた合金について物性を測定するとと(に、8φ2
枚刃のソリッドエンドミルを製作し、実施例1と同じ条
件で切削試験を行なった。その結果を第6表に示す。When measuring the physical properties of the obtained alloy,
A solid end mill with single blades was manufactured and a cutting test was conducted under the same conditions as in Example 1. The results are shown in Table 6.
以上のように、Ta (Nb)Cを添加することにより
合金の耐摩耗性、耐衝撃性、耐チッピング性が向上し、
TiNとの相乗効果がさらに顕著になる。As described above, the addition of Ta(Nb)C improves the wear resistance, impact resistance, and chipping resistance of the alloy.
The synergistic effect with TiN becomes even more pronounced.
(実施例4)
実施例3の第5表に示す本発明合金NO,14,16な
らびに市販のマイクロアロイA (BalWc−2,0
%TaC−14%Co)お上りB(BalWC−6,0
%TiC−6%TaC−14%Co)について物性を測
定するとともに、これらの合金で製作した8φ2枚刃の
ソリッドエンドミルにより下記の条件で切削試験を行な
った。(Example 4) Invention alloy NO, 14, 16 shown in Table 5 of Example 3 and commercially available microalloy A (BalWc-2,0
%TaC-14%Co)Original B (BalWC-6,0
%TiC-6%TaC-14%Co), and cutting tests were conducted under the following conditions using an 8φ two-flute solid end mill made of these alloys.
その結果を第7表に示す。The results are shown in Table 7.
第7表に見られるとおり、本発明合金を用いたものは耐
摩耗性、靭性ともに市販品より優れでいることがわかる
。As seen in Table 7, it can be seen that the products using the alloy of the present invention are superior to commercially available products in both wear resistance and toughness.
被 削 材 80M440 (Hs 40)
切 削 条 件 (切削油使用)
■=30IIl/IIin
Ad=8um
Rd=0.5aim
fz=0.02ma+/刃
〔発明の効果〕
上述のように、本発明合金は、耐摩耗性、靭性等に優れ
、これによって製作したソリッドエンドミル等の工具は
長寿命を保つので、工業上“多大の効果を奏するもので
ある。Work material 80M440 (Hs 40)
Cutting conditions (using cutting oil) ■=30IIl/IIin Ad=8um Rd=0.5aim fz=0.02ma+/blade [Effects of the invention] As described above, the alloy of the present invention has excellent wear resistance, toughness, etc. It has excellent properties, and tools such as solid end mills manufactured using this method have a long lifespan, so it has great industrial effects.
Claims (3)
Nからなる硬質相と、Coを主体とするFe族金属から
なる結合相で構成された超硬合金において、硬質相の成
分の内Tiおよび/またはWの炭化物および/または窒
化物の部分における(TiC+TiN)/(TiC+T
iN+WC)の比(モル比)が5/100〜15/10
0の範囲にあり、またTiN/(TiC+TiN)の比
(モル比)が10/100〜50/100の範囲にある
Nを含有し、それら硬質相が合金全量の75〜90重量
%を占めるとともに、前記Coを主体とする結合相が1
0〜25重量%を占めることを特徴とする超微粒子超硬
合金。(1) (TiW)C with WC and B-1 type crystal structure
In a cemented carbide composed of a hard phase consisting of N and a binder phase consisting of an Fe group metal mainly composed of Co, in the carbide and/or nitride portion of Ti and/or W among the components of the hard phase, ( TiC+TiN)/(TiC+T
iN+WC) ratio (molar ratio) is 5/100 to 15/10
0 and the ratio (molar ratio) of TiN/(TiC+TiN) is in the range of 10/100 to 50/100, and these hard phases account for 75 to 90% by weight of the total amount of the alloy. , the Co-based binder phase is 1
An ultrafine particle cemented carbide characterized by comprising 0 to 25% by weight.
TaC、NbCの1種または2種で0.5〜15重量%
置換したことを特徴とする超微粒子超硬合金。(2) In claim 1, a part of the hard phase is 0.5 to 15% by weight of one or both of TaC and NbC.
An ultrafine particle cemented carbide characterized by substitution.
在するWC相、B−1型固溶体硬質相とも平均粒径が1
μm以下であることを特徴とする超微粒子超硬合金。(3) In claim 1, both the WC phase and the B-1 type solid solution hard phase present in the final sintered body have an average particle size of 1.
An ultrafine cemented carbide characterized by a particle size of μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26535084A JPS61147841A (en) | 1984-12-18 | 1984-12-18 | Hyperfine-grained sintered hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26535084A JPS61147841A (en) | 1984-12-18 | 1984-12-18 | Hyperfine-grained sintered hard alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61147841A true JPS61147841A (en) | 1986-07-05 |
Family
ID=17415951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26535084A Pending JPS61147841A (en) | 1984-12-18 | 1984-12-18 | Hyperfine-grained sintered hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61147841A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996022399A1 (en) * | 1995-01-20 | 1996-07-25 | The Dow Chemical Company | Cemented ceramic tool made from ultrafine solid solution powders, method of making same, and the material thereof |
EP1526189A1 (en) * | 2003-10-23 | 2005-04-27 | Sandvik AB | Cemented carbide and method of making the same |
US7939013B2 (en) | 2005-04-20 | 2011-05-10 | Sandvik Intellectual Property Ab | Coated cemented carbide with binder phase enriched surface zone |
JP2012166299A (en) * | 2011-02-14 | 2012-09-06 | Kyocera Corp | Cutting tool |
CN110449593A (en) * | 2019-08-13 | 2019-11-15 | 西安理工大学 | A kind of steel bonded carbide head and preparation method thereof can be used for making coal cutting pick |
-
1984
- 1984-12-18 JP JP26535084A patent/JPS61147841A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996022399A1 (en) * | 1995-01-20 | 1996-07-25 | The Dow Chemical Company | Cemented ceramic tool made from ultrafine solid solution powders, method of making same, and the material thereof |
EP1526189A1 (en) * | 2003-10-23 | 2005-04-27 | Sandvik AB | Cemented carbide and method of making the same |
JP2005126824A (en) * | 2003-10-23 | 2005-05-19 | Sandvik Ab | Cemented carbide and method of making the same |
US7220480B2 (en) | 2003-10-23 | 2007-05-22 | Sandvik Intellectual Property Ab | Cemented carbide and method of making the same |
US8211358B2 (en) | 2003-10-23 | 2012-07-03 | Sandvik Intellectual Property Ab | Cemented carbide and method of making the same |
US7939013B2 (en) | 2005-04-20 | 2011-05-10 | Sandvik Intellectual Property Ab | Coated cemented carbide with binder phase enriched surface zone |
JP2012166299A (en) * | 2011-02-14 | 2012-09-06 | Kyocera Corp | Cutting tool |
CN110449593A (en) * | 2019-08-13 | 2019-11-15 | 西安理工大学 | A kind of steel bonded carbide head and preparation method thereof can be used for making coal cutting pick |
CN110449593B (en) * | 2019-08-13 | 2021-10-22 | 西安理工大学 | Steel-bonded hard alloy head for manufacturing coal cutting pick and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4145213A (en) | Wear resistant alloy | |
JP2890592B2 (en) | Carbide alloy drill | |
JP2926836B2 (en) | Nitrogen-containing cermet alloy | |
Paro et al. | Tool wear and machinability of HIPed P/M and conventional cast duplex stainless steels | |
US6326093B1 (en) | Cemented carbide insert and method of making same | |
JP2003508632A (en) | Coated milling inserts | |
US8101291B2 (en) | Coated cemented carbide insert particularly useful for heavy duty operations | |
KR20090130075A (en) | Tool | |
US20080050186A1 (en) | Cemented carbide inserts for milling of hard fe-based alloys more than 45 HRC | |
EP1327007B1 (en) | Tool for coldforming operations | |
JPS61147841A (en) | Hyperfine-grained sintered hard alloy | |
CN104278186A (en) | Carbide blade for automobile cast iron processing | |
JP2893886B2 (en) | Composite hard alloy material | |
JPH05171335A (en) | Differential layer surface refined sintered alloy and its manufacture | |
JPS6256943B2 (en) | ||
JP3206972B2 (en) | Fine-grain cemented carbide | |
EP1222316B1 (en) | Coated cemented carbide insert | |
JP2795210B2 (en) | Tough cermet drill | |
JP2801484B2 (en) | Cemented carbide for cutting tools | |
JPS62170451A (en) | Sintered hard alloy | |
Rosso et al. | Focus on carbide-tipped circular saws when cutting stainless steel and special alloys | |
JPH01111833A (en) | Wear-resistant alloy | |
JP2959065B2 (en) | Sintered hard alloy drill | |
JPH10298700A (en) | Cemented carbide | |
JP2002361503A (en) | Cutting tool |