JPS62170451A - Sintered hard alloy - Google Patents

Sintered hard alloy

Info

Publication number
JPS62170451A
JPS62170451A JP61013532A JP1353286A JPS62170451A JP S62170451 A JPS62170451 A JP S62170451A JP 61013532 A JP61013532 A JP 61013532A JP 1353286 A JP1353286 A JP 1353286A JP S62170451 A JPS62170451 A JP S62170451A
Authority
JP
Japan
Prior art keywords
hard
phase
hard phase
group
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61013532A
Other languages
Japanese (ja)
Inventor
Masao Maruyama
丸山 正男
Hiroaki Goto
裕明 後藤
Toshihiro Iida
飯田 俊博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61013532A priority Critical patent/JPS62170451A/en
Publication of JPS62170451A publication Critical patent/JPS62170451A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the hardness and rupture toughness of a hard sintered alloy consisting of a hard phase of the carbide, nitride or carbonitride of a group IVa, Va or VIa metal of the periodic table and a binding phase of an iron group metal by controlling the average grain sizes of coarse grains and fine grains forming the hard phase. CONSTITUTION:A hard sintered alloy is composed of a hard phase of one or more kinds of compounds selected among the carbides, nitrides and carbonitrides of the group IVa, Va and VIa metals of the periodic table, 5-30wt% binding phase of an iron group metal and inevitable impurities. The hard phase is composed of a group of coarse grains and a group of fine grains, the ratio in average grain size between the groups is regulated to 1:>=3 and a structure of 0.25-0.9mum average thickness is provided to the binding phase. Thus, >=1,000 Vickers hardness (Hv) and >=10 rupture toughness (Kic) are obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 切削工具、耐摩工具用として耐折損性を改善した超硬合
金、サーメット等の焼結硬質合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to sintered hard alloys such as cemented carbide and cermet with improved breakage resistance for use in cutting tools and wear-resistant tools.

〔従来技術〕[Prior art]

超硬合金、サーメットは切削工具、耐摩工具として機械
加工分野で広く使用されているが、その加工条件は年々
厳しくなり、これら硬質焼結合金への要求はますます高
度のものとなり、単に硬度抗折力といった特性の改善で
は対応しにくくなっている。そのため、これら1iil
!質焼結合金の硬質相成分や結合金属相の組合せに種々
改良が加えるべく努力されている。
Cemented carbide and cermet are widely used in the machining field as cutting tools and wear-resistant tools, but the processing conditions are becoming stricter year by year, and the demands on these hard sintered alloys are becoming more and more advanced. It is becoming difficult to respond by improving properties such as rupture strength. Therefore, these 1iil
! Efforts have been made to make various improvements in the combination of hard phase components and bonding metal phases in quality sintered alloys.

この硬質合金の用途の中で、エンドミル、マイクロドリ
ル等の微少送り工具において、使用中に微少チッピング
が生じ、これが溶着を発生せしめ、寿命に到るという現
象がある。これは切削中の発熱9機械的応力によって微
少の亀裂が発止するためである。
Among the uses of this hard alloy, micro-feed tools such as end mills and micro drills have a phenomenon in which micro-chipping occurs during use, which causes welding and shortens the life of the tool. This is because minute cracks start due to heat generation 9 and mechanical stress during cutting.

この亀裂の発生をできるだけ遅らせる為に、又亀裂が発
生しても工具全体として折損に耐えられるように、硬質
相全体を微粒化したり、結合相の組成比を増加したりし
た改良が行われているが、工具全体の耐折損性と微少亀
裂の進展の双方を阻止できる合金はまだ見出されていな
い。
In order to delay the occurrence of this crack as much as possible, and so that the tool as a whole can withstand breakage even if a crack occurs, improvements have been made such as making the entire hard phase atomized and increasing the composition ratio of the binder phase. However, an alloy that can prevent both the breakage resistance of the entire tool and the propagation of microcracks has not yet been found.

(発明が解決しようとする問題点) 本発明は上述の如き工具合金に発生する微少亀裂の発生
を遅らせ、又亀裂が発生しても全体とじて工具折損に対
する砥抗力(耐折損性)を向上せしめようとするもので
ある。
(Problems to be Solved by the Invention) The present invention delays the occurrence of microcracks that occur in tool alloys as described above, and improves the overall abrasive resistance (breakage resistance) against tool breakage even if cracks occur. It is an attempt to coerce them.

WC−Co合金の場合、亀裂の発生は強度の低いCo相
(結合相)の厚みが小さい程発生が少ない。
In the case of WC-Co alloys, the smaller the thickness of the Co phase (bonding phase), which has lower strength, the less cracks will occur.

一方亀裂の進展のしにくさは、亀裂伝播に要するエネル
ギーの高さ、即ちCo相内〉WC粒内、又はwc−wc
界面>WC−Co界面の順となる。この亀裂の進展抵抗
を示す代用特性としてに+c(破壊靭性)として示すと
、第2図に定性的に示す如く、硬度が高いと破壊靭性は
低下するのが普通である。
On the other hand, the difficulty of crack propagation is due to the high energy required for crack propagation, that is, within the Co phase>inside the WC grains, or wc-wc
The order is interface>WC-Co interface. When +c (fracture toughness) is used as a substitute characteristic to indicate the crack propagation resistance, as qualitatively shown in FIG. 2, the fracture toughness usually decreases as the hardness increases.

この場合、硬度が高いことは硬質粒子の粒度が細かくな
ることと一敗する。
In this case, high hardness is comparable to finer particle size of the hard particles.

本発明は、同−結合相量、同し硬さでも破壊靭性を向上
させ、耐溶着性、靭性、耐熱性を改善しようとするもの
である。即ち第2図においてAよりBの方向に合金特性
を向上せしめんとするものである。
The present invention aims to improve fracture toughness and improve welding resistance, toughness, and heat resistance even with the same amount of binder phase and the same hardness. That is, the alloy properties are intended to be improved in the direction of B from A in FIG.

[問題点を解決するための手段〕 本発明は周期律表N a + V a r VT a族
金属の炭化物、窒化物3炭窒化物の1種又は2種以上で
ある硬質相と、鉄属金属の1種又は2種以上の結合相と
不可避的不純物とからなる硬質合金において、硬質相の
粒子を粗粒子群と微粒子群との平均粒子サイズをコント
ロールすることにより硬度、破壊靭性を向上せしめるも
のである。
[Means for Solving the Problems] The present invention provides a hard phase that is one or more types of carbides, nitrides, and 3 carbonitrides of metals in group N a + V a r VT a of the periodic table; In a hard alloy consisting of one or more metal binder phases and unavoidable impurities, hardness and fracture toughness are improved by controlling the average particle size of the coarse and fine particles of the hard phase. It is something.

上記において、硬質相とはWC,TiC,TiN。In the above, the hard phase refers to WC, TiC, and TiN.

MoC,CRtCs、TaC,TaNbC,TaN、 
NbN等であり、鉄属金属はFe、Ni、Goであり、
その量は合金全体の5〜30重量%である。
MoC, CRtCs, TaC, TaNbC, TaN,
NbN, etc., and the ferrous metals are Fe, Ni, Go,
Its amount is 5-30% by weight of the total alloy.

そして硬質相の粗粒子群の平均粒子サイズと微粒子群の
それとの大きさが、微粒:粗粒又は粗粒:微粒が1:3
以上異なっていること、又粗粒子量と微粒子量が重量比
でljl〜1:3の範囲にあることが必要である。
The average particle size of the coarse particles in the hard phase and the size of the fine particles are 1:3: fine: coarse, or coarse: fine.
It is necessary that the above difference be made, and that the amount of coarse particles and the amount of fine particles be in a weight ratio of 1:1 to 1:3.

このように硬質相粒子の分散状態をコントロールするこ
とによって結合相の平均自由行程が制御され、その結果
、合金硬度ヴイソカース硬度(Hv)で1100以上で
破壊靭性(Kic単位M N / m 3/2)が10
以上の耐折損性の硬質合金が得られる。即ち、本発明の
合金の組織は模式的に表現すれば、第1図に示す如く、
結合相3中に硬質相の粗粒子群1と硬質相の微粒子群2
が分散しており、亀裂の発生は微粒子群の存在によって
遅らせ、又発生した亀裂4は粗微粒子群によって伝播を
阻止するものである。
By controlling the dispersion state of the hard phase particles in this way, the mean free path of the binder phase is controlled, and as a result, when the alloy hardness Visokers hardness (Hv) is 1100 or more, the fracture toughness (Kic unit M N / m 3/2 ) is 10
A hard alloy with the above breakage resistance can be obtained. That is, the structure of the alloy of the present invention can be schematically expressed as shown in FIG.
Hard phase coarse particle group 1 and hard phase fine particle group 2 in binder phase 3
are dispersed, the occurrence of cracks is delayed by the presence of the fine particles, and the cracks 4 that have occurred are prevented from propagating by the coarse and fine particles.

超硬合金の代表的組成であるWC−Co系の場合は、上
記の条件を満たすものが、同−Co量であっても、従来
の均一微粒WCのみの超硬合金に較べて破壊靭性が著し
く向上する。
In the case of the WC-Co system, which is a typical composition of cemented carbide, those that satisfy the above conditions have a lower fracture toughness than conventional cemented carbide containing only uniform fine grained WC, even with the same amount of -Co. Significantly improved.

又、TiC,TaC,TaNbC,TaN、 TiN、
 T1CN等を含有する複合硬質相の超硬合金、サーメ
フトの場合、硬質i故粒子のサイズが0.5μ以下とし
、粗粒子の平均粒子サイズを3μ以上とすることによっ
て、第2図Bに示す如き特性改善かは\完全に達成する
ことができる。
Also, TiC, TaC, TaNbC, TaN, TiN,
In the case of the composite hard phase cemented carbide containing T1CN etc. Such characteristic improvements can be completely achieved.

硬質相の粒子サイズが1:3未満程度の差では、従来の
均一微粒子硬質相を有する硬質合金に較べて破壊靭性の
向上の効果は認められない。即ち、亀裂発生抑制の効果
が少ない。又、粗粒子群と微粒子群の重量比率で微:粗
又は粗:微が1:1〜l:3以外では亀裂伝播抑制の効
果が少なく、却って抵折力が低下する傾向がある。
If the particle size of the hard phase differs by less than 1:3, no improvement in fracture toughness will be observed compared to conventional hard alloys having a uniform fine-grained hard phase. That is, the effect of suppressing crack generation is small. Further, if the weight ratio of the coarse particles to the fine particles is other than 1:1 to 1:3 (fine:coarse) or coarse:fine (1:1 to 1:3), the effect of suppressing crack propagation will be small, and the refracting strength will tend to decrease.

以下実施例によって説明する。This will be explained below using examples.

実施例I WC粉末とCo粉末を混合し、Co量を7〜16%変化
さしたものW C’lt1度の2種類のものを使用し硬
質相としての粒度分散の異なる合金を作成し、ヴイソカ
ース硬度、Hv法破壊靭性CK IC)を測定し第1表
の結果を得た。
Example I WC powder and Co powder were mixed and the amount of Co was varied by 7 to 16%. Two types of WC'lt 1 degree were used to create an alloy with different particle size distribution as a hard phase. The hardness and Hv fracture toughness (CK IC) were measured and the results shown in Table 1 were obtained.

これらの合金にてエンドミル(φ5.02枚刃)を作製
し、被削材:5US304に対し、切削速度V =  
60m/min、  A d = 5+no+  Rd
 −1mm、 送りf =0.05mm/刃の条件で乾
式切削した結果を第1表に併せて示す。
An end mill (φ5.02 blades) was made from these alloys, and the cutting speed V =
60m/min, A d = 5+no+ Rd
Table 1 also shows the results of dry cutting under the conditions of -1 mm and feed f = 0.05 mm/blade.

実施例2 WC−TiC−TaCからなる硬質相とCoが10%か
らなる超硬合金において、硬質相の硬質粒子サイズの異
なるものを作成し、ヴイソカース硬度、破壊靭性を測定
した結果、第2表の通りである。
Example 2 A cemented carbide consisting of a hard phase consisting of WC-TiC-TaC and 10% Co was prepared with different hard particle sizes in the hard phase, and the Visocurs hardness and fracture toughness were measured. Table 2 shows the results. It is as follows.

第  2  表 〔発明の効果〕 本発明の合金は加工中の亀裂発生が少なく、その結果耐
溶着性が向上し、オーステナイト系ステンレス等の溶着
し易い材料の切削工具(スローアウェイチップ、エンド
ミル)としての寿命が向上した。
Table 2 [Effects of the Invention] The alloy of the present invention has less cracking during processing, and as a result has improved welding resistance, and can be used as a cutting tool (throw-away tip, end mill) for materials that easily weld, such as austenitic stainless steel. The lifespan of has been improved.

又耐折損性が向上したことにより、細径エンドミルやプ
リント基板用のマイクロドリルとしての性能も向上した
Also, due to improved breakage resistance, the performance as a small diameter end mill or a micro drill for printed circuit boards has also been improved.

又、本発明合金は、CVD、PV法による耐摩耗被覆を
施すことによって、その切削特性は更に1    向上
することもわか9た。
It has also been found that the cutting properties of the alloy of the present invention can be further improved by 1 when coated with wear-resistant coating by CVD or PV.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明合金の顕微鏡組織を模式的に示す図であ
り、第2図は本発明合金と従来の硬質合金の硬度と破壊
靭性との関係を示す比較図である。 −A−1図 第2図 一一硬麿  (Hv)
FIG. 1 is a diagram schematically showing the microscopic structure of the alloy of the present invention, and FIG. 2 is a comparative diagram showing the relationship between the hardness and fracture toughness of the alloy of the present invention and a conventional hard alloy. -A-1 Figure 2 Figure 11 Hard Maro (Hv)

Claims (3)

【特許請求の範囲】[Claims] (1)周期律表IVa、Va、VIa族金属の炭化物、窒化
物、炭窒化物の1種又は2種以上の硬質相と鉄族金属か
らなる重量比5〜30%の結合相及び不可避不純物から
なる硬質焼結合金において、硬質相が粗粒子群と微粒子
群からなり両者の平均粒子サイズが1:3以上異ってお
り、結合相の平均厚みが0.25μ〜0.9μなる組織
であり、ヴィッカース硬度(Hv)が1000以上で、
破壊靭性(K_i_c)が10以上であることを特徴と
する焼結硬質合金。
(1) A binder phase with a weight ratio of 5 to 30% consisting of one or more hard phases of carbides, nitrides, and carbonitrides of metals in groups IVa, Va, and VIa of the periodic table and iron group metals, and unavoidable impurities. In a hard sintered alloy, the hard phase is composed of a coarse particle group and a fine particle group, the average particle size of the two differs by 1:3 or more, and the average thickness of the binder phase is 0.25 μ to 0.9 μ. Yes, Vickers hardness (Hv) is 1000 or more,
A sintered hard alloy having a fracture toughness (K_i_c) of 10 or more.
(2)特許請求の範囲第1項記載の合金において、微粒
硬質相粒子が0.5μ以上で、粗粒硬質相粒子が3μ以
上であることを特徴とする焼結硬質合金。
(2) A sintered hard alloy according to claim 1, wherein the fine hard phase particles are 0.5μ or more and the coarse hard phase particles are 3μ or more.
(3)特許請求の範囲第1項記載の合金において、硬質
相がWC、結合相がCoであることを特徴とする焼結硬
質合金。
(3) A sintered hard alloy according to claim 1, wherein the hard phase is WC and the binder phase is Co.
JP61013532A 1986-01-23 1986-01-23 Sintered hard alloy Pending JPS62170451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61013532A JPS62170451A (en) 1986-01-23 1986-01-23 Sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61013532A JPS62170451A (en) 1986-01-23 1986-01-23 Sintered hard alloy

Publications (1)

Publication Number Publication Date
JPS62170451A true JPS62170451A (en) 1987-07-27

Family

ID=11835769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61013532A Pending JPS62170451A (en) 1986-01-23 1986-01-23 Sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS62170451A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002651A1 (en) * 1989-03-17 1992-02-20 Nippon Carbide Kogyo Kabushiki Kaisha Hard alloy
US5470372A (en) * 1992-06-22 1995-11-28 Sandvik Ab Sintered extremely fine-grained titanium-based carbonitride alloy with improved toughness and/or wear resistance
US5624766A (en) * 1993-08-16 1997-04-29 Sumitomo Electric Industries, Ltd. Cemented carbide and coated cemented carbide for cutting tool
JP2016087726A (en) * 2014-10-31 2016-05-23 三菱マテリアル株式会社 Diamond coated hard metal cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002651A1 (en) * 1989-03-17 1992-02-20 Nippon Carbide Kogyo Kabushiki Kaisha Hard alloy
US5470372A (en) * 1992-06-22 1995-11-28 Sandvik Ab Sintered extremely fine-grained titanium-based carbonitride alloy with improved toughness and/or wear resistance
US5624766A (en) * 1993-08-16 1997-04-29 Sumitomo Electric Industries, Ltd. Cemented carbide and coated cemented carbide for cutting tool
JP2016087726A (en) * 2014-10-31 2016-05-23 三菱マテリアル株式会社 Diamond coated hard metal cutting tool

Similar Documents

Publication Publication Date Title
Coelho et al. The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminium based alloys including MMC
Gille et al. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts
JP5308427B2 (en) Cemented carbide and cutting tools
US4145213A (en) Wear resistant alloy
US4956012A (en) Dispersion alloyed hard metal composites
JP2926836B2 (en) Nitrogen-containing cermet alloy
KR20010023664A (en) Tool for drilling/routing of printed circuit board materials
JPS61195951A (en) High toughness sintered hard alloy
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JP2006205301A (en) Surface-coated member and cutting tool
JPH08209335A (en) Coated hard member
JP2004076049A (en) Hard metal of ultra-fine particles
JPS62170451A (en) Sintered hard alloy
JPH0346538B2 (en)
CN112055757B (en) Composite sintered body
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JPS6176646A (en) Tungsten carbide-base sintered hard alloy
Grearson et al. The future of finer grain hard metals
JPS61147841A (en) Hyperfine-grained sintered hard alloy
JPH10193206A (en) Cutting tool whose cutting edge piece has excellent brazing joining strength
JP2006224198A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of highly reactive work material
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
JPH08176719A (en) Nitrogen-containing sintered hard alloy
JPS5941445A (en) Cubic boron nitride base high pressure sintered material for cutting tool
JP3368367B2 (en) Tungsten carbide based cemented carbide and cutting tools