WO1992002651A1 - Hard alloy - Google Patents

Hard alloy Download PDF

Info

Publication number
WO1992002651A1
WO1992002651A1 PCT/JP1990/000966 JP9000966W WO9202651A1 WO 1992002651 A1 WO1992002651 A1 WO 1992002651A1 JP 9000966 W JP9000966 W JP 9000966W WO 9202651 A1 WO9202651 A1 WO 9202651A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard alloy
atoms
cutting
alloy according
present
Prior art date
Application number
PCT/JP1990/000966
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Izumi
Yukimichi Kakuma
Original Assignee
Nippon Carbide Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Kogyo Kabushiki Kaisha filed Critical Nippon Carbide Kogyo Kabushiki Kaisha
Priority to EP19900910903 priority Critical patent/EP0495101A4/en
Publication of WO1992002651A1 publication Critical patent/WO1992002651A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides

Definitions

  • Honoki is a new hard alloy. More specifically, it has excellent hardness and toughness.
  • titanium carbide that can be machined into cutting tools such as drills and end mills that require a sharp edge angle
  • the present invention relates to a tough superhard alloy based on nitride and / or carbonitride.
  • TiC-based alloys Hard alloys based on titanium carbides, nitrides, and carbonitrides (hereinafter abbreviated as “TiC-based alloys” for the sake of simplicity) have been replaced by conventional WC-based alloys. It is lighter in weight, has higher hardness, has better oxidation resistance, has less chemical affinity with other metals, and is used in some parts such as bytes.
  • TiC-based alloys are generally inferior in toughness and poor in secondary workability, such as sharp cutting edges with a small cutting edge angle, so that they are used for tools with relatively large cutting edges such as bytes.
  • one of the metals such as M0, W, Nb, Ta, Cr, V, Zr, Hf, etc. It has often been proposed to add two or more types of carbides or nitrides [for example, Japanese Patent Publication No. 52-9403, Japanese Patent Publication No. 55-14856, Japanese Patent Publication No. 55-40998, Japanese Patent Publication No. No. 56-32384 and Japanese Patent Publication No. 56-32386].
  • the toughness deficiency is improved to some extent by these conventional TiC-based alloys, the toughness is not large enough to be satisfactory, and the cutting edge is It is difficult to machine a sharp cutting tool, such as a drill, and it is difficult to machine a drill with a small blade diameter and high precision. Even if it can be added, it can be used practically Then, it was broken or chipped in a short time, and it was not enough as a cutting tool.
  • the present inventors have conducted intensive studies to develop a high-toughness TiC-based alloy that has solved the above-mentioned disadvantages, and as a result, have completed the present invention. Disclosure of the invention
  • Ti ⁇ W, Mo, V, Nb, Ta, Ni, Co, C and N are contained as essential components; Ti, W, Mo, At least 80 at.% Of the sum of V, Nb and Ta is present in the form of carbides, nitrides and Z or carbonitrides; the content of each of the above elements is based on the weight i of the hard alloy, Ti 24 to 45%, W 4 to 28%, Mo 2 to 5%, V 0.1 to 2.5%, Nb 2 to 20%, Ta 2 to 20%, Ni 5.7 to 37.9%, and Co 7.1 to 39.3%; the sum of Nb and Ta is 4 to 23%, and the weight ratio of Ta / Nb is in the range of 0.9 to 3.5.
  • the content of the sum of Ni and Co (Ni + C0 :) is 20 to 45% and the weight ratio of Ni / Co is in the range of 0.4 to 1.8; And the weight ratio of Nip: child (C atom + N atom) is in the range of 0.30 -0.60, and (the total amount of C atom and N atom) Z (the above metal urine except Ni and Co) Hard alloy is provided atomic ratio of the total amount) and Toku ⁇ to be within the range of 0.8 to 1.0.
  • Figure 1 is a side view of the straight shank drill, where H indicates the torsion angle and A indicates the tip angle (135 degrees).
  • Fig. 2 is an enlarged view of the cutting edge of the straight shank drill shown in Fig. 1.
  • P indicates the single-step clearance angle
  • S indicates the two-step clearance angle
  • (90-P) indicates the blade angle. It is.
  • FIG. 3 is a side view of the tip portion of the cutter.
  • FIG. 4 is a plan view of the cutting edge portion of the power cutter of FIG. 3, in which indicates the cutting edge angle.
  • the hard alloy of the present invention is composed of 10 kinds of elements of Ti, W, Mo, V, Nb, Ta, Ni, Co, C and N as essential components.
  • the content ratio of these constituent elements can be in the range shown in the following table in terms of metal based on the weight of the final hard alloy. However, the inside of the katsuki shows a suitable range.
  • T i 24-45 (28-40, especially 30-35)
  • W 4-28 (6-25, especially 10-20)
  • 'Mo 2-15 (3-12, especially 5-8)
  • V 0.1 -2.5 (0.2 ⁇ 2.0, especially 0.3 ⁇ 0)
  • T a / N b weight ratio 0.9-3.5 (1.0 to 2.5, especially 1.2
  • N i / C o weight ratio
  • Ti, W, Mo, V, Nb and Ta that is, at least 80 atomic%, preferably 85 atomic% or more of the total of these metallic elements, particularly 90 atomic% % Or more is contained in the hard alloy in the form of carbides, nitrides and Z or carbonitrides, and Nb is present substantially in the form of carbides, and Ta is substantially in the form of nitrides. Desirably it exists in a state.
  • N atoms and N atoms derived from carbides, nitrides, and carbon or carbonitrides in the hard alloy of the present invention are mutually balanced, and N atoms / (. Atoms +
  • the weight ratio of (1 ⁇ atoms) should be in the range of 0.30 to 0.60. If it is out of this range, it will be difficult to obtain a high toughness alloy intended by the present invention.
  • the preferred range of the weight ratio of N atom Z (C atom + N atom) is 0.33 to 0.50, and more preferably 0.35 to 0.45.
  • the carbides, nitrides, and Z or carbonitrides of the metal elements constituting the hard alloy of the present invention are selected so that the weight ratio of N atoms Z (C atoms + N atoms) falls within the above range. It is important to control those combinations.
  • the balance between the total amount of C atoms and N atoms and the total amount of metal waste excluding Ni and Co is also important, and (the total amount of C atoms and N atoms). / (Total amount of metal atoms excluding Ni and C0) It is desirable that the atomic ratio be in the range of 0.8 to 1.0, preferably 0.82 to 0.98, and particularly 0.85 to 0.96. It is difficult to get Incidentally, the hard alloy of the present invention, in addition to the metal components mentioned above, also in inevitable impurities brought in accompanying the manufacture raw s fee in the alloy C r and F e, etc. contain trace No problem.
  • the hard alloy of the present invention described above generally comprises, as starting materials, nitrides, nitrides and / or carbonitrides of the metal components Ti, W, Mo, V, Nb and Ta, and N It can be manufactured by using i and Co metal in the desired composition ratio for the final alloy product and subjecting it to compounding, grinding, mixing, drying, forming, sintering, etc. in a manner known per se. it can.
  • metal components Ti, W, Mo, V, Nb and Ta can also be used in the form of a simple metal. : Should not exceed 20 at.% Of the sum of these metal components and should preferably be less than 15 at.%, In particular less than 10 at. If decarburization or denitrification is likely to occur during the sintering process, it is desirable not to use a force that further reduces the amount of metal added as a single metal.
  • starting materials particularly suitable for producing the hard alloys of the present invention require the elements Ti, W, Mo, V, Nb, Ta, Ni, Co, C and N. These components are contained in the above-mentioned ratios, and each metal component of Ti, W, V, Nb and Ta is substantially present in the form of carbide, nitride and carbon or carbonitride. Mo is at least partially metal simple and the rest is carbide, Ni and Co are present in the form of a raw powder substantially as a simple metal, and in particular, Nb is substantially in the form of a carbide, and Conveniently, Ta is used in a substantially nitrided state.
  • the starting material is compounded with a binder and a dispersion medium.
  • the binder include camphor, paraffin, liquid paraffin, and high molecular compounds (eg, polyvinyl butyral, polyacrylic acid ester, etc.).
  • the dispersion medium include methyl alcohol, ethyl alcohol, and the like. Organic solvents such as acetone, toluene, xylene, and methyl acetate are included.
  • the amount of the binder and the dispersing medium is usually in the range of 20 to 70% by weight, preferably 40 to 60% by weight, respectively, based on the starting materials.
  • the above formulation is then ground and mixed.
  • This pulverization and mixing can be carried out using a pulverizer such as a pole mill, attritor, vibrating mill, or the like. It is desirable to keep it below 5 microns.
  • the uniform dispersion formulation thus obtained is then dried to remove the dispersion medium. Drying can be carried out according to a conventional method using a dryer such as a spray drier, a Herschel mixer, or a vacuum drier, whereby the content of the dispersion medium is reduced to about 0.01% by weight or less. It is preferable to do it.
  • a dryer such as a spray drier, a Herschel mixer, or a vacuum drier
  • the temperature is 10 to 80 ° C, preferably 30 to 60 ° C, and the degree of vacuum is 10 to 11 to 1. 0 " 8 mmHg, time: 0.1 to 3 hours.
  • the dispersion formulation thus dried is then processed by a molding machine to the desired Into a molded product having a shape suitable for the intended use.
  • a molding machine a press molding machine such as a rubberless machine or a powder press machine is mainly used, and in some cases, an extrusion molding machine or an injection molding machine can also be used.
  • a plasticizer, a solvent and the like it is also possible to appropriately add a plasticizer, a solvent and the like in order to enhance the fluidity of the compound.
  • the molding pressure etc. but blending composition generally, 0 .5 ⁇ 2 .0 t / on preferably appropriately within the range of 1 ⁇ 1 .5 t Zcm 2 I think that the.
  • the molded product obtained as described above is fired in a vacuum or in an inert gas atmosphere.
  • a vacuum or in an inert gas atmosphere.
  • 1 0-1 0 as vacuum that can be applied when the - 5 marrow H g preferably about 1 0 _ 2 to 1 0 - is appropriately within a range of 3 niniH g, also an inert gas Examples thereof include argon, helium, and nitrogen.
  • the sintering conditions can be changed over a wide range according to the raw material composition, the shape of the molded product, the molding conditions, and the like. Is usually about 1200 to about 170 ° C., particularly about 130 to about 160 ° C. The range of C is appropriate, and the firing time is about 0.1 to 3 hours, particularly about 0.5 to 1 hour.
  • the intended hard alloy of the present invention is obtained. This hard alloy can be made into a final product suitable for each application by cutting, polishing, and finishing with a diamond wheel or the like into a shape suitable for
  • the hard alloy provided by the present invention can be suitably used as a material for cutting tools, particularly cutting tools requiring hardness and toughness.
  • a cutting tool made of a TiC-based alloy has been used only for a part of the pipe because of its inferior toughness despite having excellent cutting characteristics as described above.
  • many proposals have been made to cover the surface of a tough cutting tool with a TiC-based alloy as a method of utilizing the cutting characteristics while supplementing the low toughness of the TiC-based alloy for example, No. 6 1-501 034, Japanese Unexamined Patent Publication No. 60-162782, Japanese Unexamined Patent Publication No. 61-96072, Japanese Unexamined Patent Application Publication No. 61-2321 / 175, Japanese Unexamined Patent Publication No. 61-24 No. 7673, Japanese Patent Publication No. 62-44572 and Japanese Patent Application Laid-Open No. 62-93376).
  • cutting tool includes the cutting tools described in “JIS Handbook Tools” published on April 12, 1988 (1st edition, 1st edition), edited by the Japan Standards Association. Includes pite, drill, milling machine, reamer, hobbing tool, broach, threading tool, hacksaw and its frames, machinery
  • Knits are tools with cutting edges at the end of the shank or body used for lathes, boring machines, planing machines, shaping machines, vertical milling machines, etc.
  • solid bytes, bladed pipes, welding bytes, filters There are a brazing byte, a clamp byte, a throwaway byte, an insertion byte, an assembly byte, and the like, and the hard alloy of the present invention includes, among others, a peeling byte, a cutting byte, a clamp byte, and a thrower. It is particularly suitable for processing into wavy bytes.
  • a drill is a tool mainly used for drilling, which has a cutting edge at the tip and a groove for discharging chips into the body.
  • Milling cutters are also called milling cutters, which have a cutting edge on the outer peripheral surface, end surface or side surface, and are tools for rotary cutting, and are mainly used for milling machines.
  • a pore type milling cutter and a shank type milling cutter.
  • pore type mills include flat mills, slab cutters, side mills, single edge mills, union mills, face mills, shell end mills, groove mills, sit mills, metal saws and cold saws.
  • the hard alloy of the present invention is particularly suitable for flat mills and shell end mills. It is preferably used.
  • shank tie milling mills For example, end mills, single-flute end mills, two-flute end mills, three-flute end mills, multi-flute end minoles, double-ended end minoles, tapered end mills, ponoré end mills, tapered pole end mills, and radius end dominoles , Square end mill, ⁇ -shaped end mill, High helix end mill, For semi-finishing
  • the hard alloy of the present invention has high toughness in addition to high hardness, so that if the hard alloy of the present invention is used, the cutting edge angle is 4 is 0 to 170 degrees.
  • a cutting tool having a sharp edge angle of preferably 45 to 90 degrees, more preferably 50 to 70 degrees can be easily machined.
  • the “edge angle” of the cutting tool is the angle of the edge of the cutting edge formed by the rake face and the flank face [for example, in the drill shown in FIG.
  • the step clearance angle) is the zero angle of the cutting edge.
  • Cutting tools obtained by using the hard alloy of the present invention are not only suitable for processing metals having high hardness, but also are suitable for processing relatively soft metals such as aluminum and copper. It turned out to be a good effect. In particular, this trend is due to the recently developed 30,000-80,000 rpm high-speed processing machine. This is remarkable when used as a tool.
  • the hard alloy of the present invention can be processed into a cutting tool other than a cutting tool.
  • Other blades other than cutting tools are listed in “Blue Books, Blade Trivia Dictionary, Illustration 'All of Blades”, published by Kobunsha Co., Ltd., the first press, August 20, 1986, by Hidefumi Tachibana.
  • Cutting tools other than the cutting tools used are included, and specific examples thereof include cutting tools of the Kanna group, kitchen knife group, saw group, scissors group, file group and whetstone group, and cutting tools for cutting soil.
  • the knife of the Kanna tribe is a knife having a function of cutting straight, and includes, for example, a canna, an axe, a flea, a nata, a razor, a chisel, a pencil sharpener, and the like.
  • the hard alloy of the present invention can be suitably used for pencil sharpening and the like, especially for force razors.
  • the knife of the kitchen knife family is a knife having a function of cutting by applying a pushing force, for example, a knife, a rotary knife, a knife, a knife and a cutter, and the present invention is preferably applied to a knife, a knife and a cutter. Can be used advantageously.
  • the saw blade is a blade having a function of cutting with a number of aligned teeth, and includes, for example, a saw, a circular saw, a saw blade knife, and a chainsaw.
  • a saw blade knife 7 is preferable.
  • the cutting blades of the scissors are cutting blades having a function that can be held between blades, and the hard alloys of the present invention include, for example, scissors, clippers, razors, lawn mowers, shears, punches, pliers, snacks, wire cutting, cutting, and the like. It is preferably used as a material for at least the blade portion of scissors, razors and pliers.
  • File-type knives are knives in which stubborn blades are aligned, specifically, files, graters, sandpaper, slivers, holes, knives sharpeners and croakers. Can advantageously utilize the hard alloys of the present invention in files and knife sharpeners.
  • Whetstone-type blades are hard particles
  • the hard alloy of the present invention can be applied to a paper file, a grinder, a fiber cleaner, a metal brush, or the like, preferably a grinder.
  • the blade that cuts the soil is a blade that has the function of cutting soil, sand, and rocks, and is used for agriculture, horticulture, civil engineering, and mining. And a rock drill, etc., but the hard alloy according to the present invention exerts an excellent ability particularly for a rock drill.
  • the hard alloy of the present invention since the hard alloy of the present invention has high toughness in addition to high hardness, it can be processed into a cutting tool other than the cutting tool as described above.
  • a cutting edge having a sharp edge of 10 to 40 degrees, preferably 12 to 35 degrees, more preferably 15 to 30 degrees is used. It can be processed into blades other than tools.
  • cutting edge angle for a cutting tool other than the cutting tool refers to the angle of the tip cutting edge formed by the rake face and the flank face, and specifically, for example, is indicated by in the cutter shown in FIG. Angle.
  • the hard alloy of the present invention can be machined into a blade with a sharp edge, and the blade using the hard alloy of the present invention has very little chipping of the blade and wear of the blade. There are various excellent advantages such as very little and little welding to metal during use.
  • a sintered body of TiC and TiN having an average particle size of 1 ⁇ (TiCZ 11 ⁇ : 50/50, hereinafter referred to as TiCN), 2 ⁇ WC powder, 3 Mo 2 C and Mo powders, 2-3 ⁇ VC powders, 2-3 NbC and NbN powders, 1-2; «TaC and TaN powders, 4 Ni powders and 2 C 0 powders were mixed as shown in Table 1, and these powders were mixed with ethyl alcohol 50% i% ⁇ polyvinyl butyral double: ft% and dioctyl lid as a plasticizer.
  • the mixture obtained by drying under reduced pressure was pressure-molded at 1 T0 nZcm 2 by a rubber bubbling machine.
  • Table 2 shows the toughness and hardness of the obtained alloy.
  • the methods for measuring physical properties are as follows.
  • the drill machined from the hard alloy of the present invention can be sharply prepared even when the cutting edge angles are 74 degrees and 65 degrees without any chipping of the cutting edges.
  • a drill machined from a Ti-based alloy having a composition other than that of the present invention suffers from chipping of the cutting edge and is not practically usable. In this case, the cutting edge is severely damaged or the metal to be cut is significantly welded. I got it.
  • the end mill made of the hard alloy of the present invention has no cutting edge and hardly adheres to the metal to be cut, indicating that it is an excellent cutting tool.
  • the hard alloy prepared in the above Examples and Comparative Examples was finish-processed with a diamond grindstone into a cutter having a blade angle of 16 degrees (hereinafter referred to as cutter A) and a cutter having a blade angle of 24 degrees (hereinafter referred to as cutter B). (See Figures 3 and 4 for details).
  • the line speed of this film was set to 5 mZrain.
  • a power putting test was performed with the above power meter.
  • the cutter made of the hard alloy of the present invention was able to finish sharply at any of the cutting edge angles of 16 degrees and 24 degrees, but was processed from an alloy having a composition other than the present invention.
  • Most of the power cutters of the comparative examples had a remarkable loss of the cutting edge and could not have a sharp cutting edge.
  • the cutters that could be sharply finished were subjected to a cutting test, and the cutting edge was damaged or worn, so that none of them could be used practically.
  • the cutter according to the present invention did not show any chipping after the cutting test, and had very little wear on the cutting edge, indicating that it was a practically useful cutting tool.
  • the hard alloy provided by the present invention has high hardness and excellent toughness, and is suitably used as a material for cutting tools, particularly cutting tools requiring hardness and Z or toughness. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drilling Tools (AREA)

Abstract

A titanium-base hard alloy containing titanium, tungsten, molybdenum, vanadium, niobium, tantalum, nickel, cobalt, carbon, and nitrogen as the essential ingredients each in a specified proportion, wherein at least 80 atomic % in total of titanium, tungsten, molybdenum, vanadium, niobium, and tantalum are present in the form of carbides, nitrides and/or carbonitrides. This alloy has high hardness and excellent toughness and is suited for use in making various tools, especially cutting tools which are required to have sharp tool angles, such as a twist drill or an end mill.

Description

明 細 害  Harm
硬質合金  Hard alloy
技術分野  Technical field
本癸明は新規な硬質合金に関し、 さらに詳しくは、 髙硬度で且つ靭性 に優れており、 特に鋭利な刃角が要求される ドリルやエン ドミル等の切 削工具に加工可能なチタンの炭化物、 窒化物及び/又は炭窒化物をべ一 スとする髙靭性超硬質合金に関する。  Honoki is a new hard alloy. More specifically, it has excellent hardness and toughness. In particular, titanium carbide that can be machined into cutting tools such as drills and end mills that require a sharp edge angle, The present invention relates to a tough superhard alloy based on nitride and / or carbonitride.
背景技術  Background art
チタンの炭化物、 窒化物及びノ又は炭窒化物をベースとする硬質合金 (以下、 簡単のため "T i C基合金" と略称する) は、 従来の WCをべ ースとする硬贊合金に比べて軽量であり、 硬度が大きく耐酸化性に優れ、 他の金属との化学的親和性が少なく、 バイ 卜などに一部使用されている。  Hard alloys based on titanium carbides, nitrides, and carbonitrides (hereinafter abbreviated as “TiC-based alloys” for the sake of simplicity) have been replaced by conventional WC-based alloys. It is lighter in weight, has higher hardness, has better oxidation resistance, has less chemical affinity with other metals, and is used in some parts such as bytes.
しかし、 T i C基合金は一般に靭性に劣り、 また刃先角度を小さく し た鋭利な刃先などの二次加工性に劣るため、 バイ トなど刃先角度の比铰 的大きな工具などに使用されるにとどまり、 刃先角度の小さいドリルや 特に細い小さいドリルに使用するには多大の困難があった。 T i C基合 金の靭性不足の改善のため、 従来から T i C基合金に M 0、 W、 N b、 T a、 C r、 V、 Z r、 H f 等の金属の 1種又は 2種以上の炭化物又は 窒化物を添加することが多く提案されている [例えば、 特公昭 52 - 9 403号公報、 特公昭 55 - 1 4856号公報、 特公昭 55 - 4009 8号公報、 特公眧 56 - 32384号公報及び特公昭 56 - 32386 号公報等参照] 。  However, TiC-based alloys are generally inferior in toughness and poor in secondary workability, such as sharp cutting edges with a small cutting edge angle, so that they are used for tools with relatively large cutting edges such as bytes. However, it was very difficult to use it for drills with a small edge angle and especially for small drills. To improve the toughness of the TiC base alloy, one of the metals such as M0, W, Nb, Ta, Cr, V, Zr, Hf, etc. It has often been proposed to add two or more types of carbides or nitrides [for example, Japanese Patent Publication No. 52-9403, Japanese Patent Publication No. 55-14856, Japanese Patent Publication No. 55-40998, Japanese Patent Publication No. No. 56-32384 and Japanese Patent Publication No. 56-32386].
これらの従来提案されている T i C基合金によって靭性不足は或る程 度改善されるが、 しかし十分に満足できる程靭性は大きくなく、 刃先が 鋭利な切削工具、 例えばドリル等に加工することが困難であり、 さらに、 刃径が小さく且つ精度の高いドリル等にも加工が困難であり、 また、 加 ェできたとしても、 実用的に使用すると短時間のうちに折損したり、 刃 欠が生じてしまい、 切削工具としては未だ十分なものではなかった。 本発明者らは上記の如き欠点を解消した高靭性の T i C基合金を開発 すべく鋭意研究を行った結果、 本発明を完成するに至ったものである。 発明の開示 Although the toughness deficiency is improved to some extent by these conventional TiC-based alloys, the toughness is not large enough to be satisfactory, and the cutting edge is It is difficult to machine a sharp cutting tool, such as a drill, and it is difficult to machine a drill with a small blade diameter and high precision. Even if it can be added, it can be used practically Then, it was broken or chipped in a short time, and it was not enough as a cutting tool. The present inventors have conducted intensive studies to develop a high-toughness TiC-based alloy that has solved the above-mentioned disadvantages, and as a result, have completed the present invention. Disclosure of the invention
しかして、 本発明によれば、 T iゝ W、 Mo、 V、 N b、 T a、 N i、 C o、 C及び Nの各元素を必須成分として含有し; T i、 W、 Mo、 V、 N b及び T aの合計の少なくとも 80原子%は炭化物、窒化物及び Z又 は炭窒化物の状態で存在し;上記各元素の含有量は、 硬質合金の重 iを 基準としてそれぞれ、 T i 24~45%、 W4〜28%、 Mo 2〜l 5 %、 V 0.1 ~2.5%、 N b 2~20%、 T a 2〜20%、 N i 5.7 〜 37.9 %及び C o 7.1 ~ 3 9 · 3 %であり ; N bと T aとの合計 CN b + T a ) の含有量が 4 ~ 23%であって且つ T a /N bの重量比 力 s 0.9〜 3.5の範囲内にあり ; N i と C oとの合計(N i + C 0:)の含 有量が 20 ~ 45 %であって且つ N i / C oの重量比が 0.4 ~ 1.8の 範囲内におり ;そして Nip:子ノ (C原子 +N原子) の重量比が 0.30 -0.6 0の範囲内にあり、 且つ (C原子と N原子の合計量) Z (N i 及び C oを除く上記金属尿子の合計量) の原子比が 0.8~ 1.0の範囲 内にあることを特徵とする硬質合金が提供される。  Thus, according to the present invention, Ti ゝ W, Mo, V, Nb, Ta, Ni, Co, C and N are contained as essential components; Ti, W, Mo, At least 80 at.% Of the sum of V, Nb and Ta is present in the form of carbides, nitrides and Z or carbonitrides; the content of each of the above elements is based on the weight i of the hard alloy, Ti 24 to 45%, W 4 to 28%, Mo 2 to 5%, V 0.1 to 2.5%, Nb 2 to 20%, Ta 2 to 20%, Ni 5.7 to 37.9%, and Co 7.1 to 39.3%; the sum of Nb and Ta is 4 to 23%, and the weight ratio of Ta / Nb is in the range of 0.9 to 3.5. The content of the sum of Ni and Co (Ni + C0 :) is 20 to 45% and the weight ratio of Ni / Co is in the range of 0.4 to 1.8; And the weight ratio of Nip: child (C atom + N atom) is in the range of 0.30 -0.60, and (the total amount of C atom and N atom) Z (the above metal urine except Ni and Co) Hard alloy is provided atomic ratio of the total amount) and Toku徵 to be within the range of 0.8 to 1.0.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図はス トレートシヤンク ドリルの側面図であり、 図中、 Hはネジ レ角度、 Aは先端角 ( 1 35度) を示す。 第 2図は第 1図のス ト レー トシヤンク ドリルの刃先部の拡大面であり、 図中、 Pは 1段逃げ角、 Sは 2段逃げ角を示し、 (90— P) が刃先角 度である。 Figure 1 is a side view of the straight shank drill, where H indicates the torsion angle and A indicates the tip angle (135 degrees). Fig. 2 is an enlarged view of the cutting edge of the straight shank drill shown in Fig. 1. In the figure, P indicates the single-step clearance angle, S indicates the two-step clearance angle, and (90-P) indicates the blade angle. It is.
第 3図はカッターの先端部分の側面図である。 第 4図は第 3図の力 ッタ一の刃先部分の平面図であり、 図中、 は刃先角度を示す。  FIG. 3 is a side view of the tip portion of the cutter. FIG. 4 is a plan view of the cutting edge portion of the power cutter of FIG. 3, in which indicates the cutting edge angle.
発明の実施態様 Embodiment of the Invention
本発明の硬質合金は、 T i、 W、 Mo、 V、 N b、 T a、 N i、 C o、 C及び Nの 1 0種類の元素を必須成分と して構成されているものであり、 これら構成元素の含有割合は、 最終の硬質合金の重量を基準にして金属 換算で下記表に示す範囲内とすることができる。 ただしカツコ内は好適 範囲を示す。  The hard alloy of the present invention is composed of 10 kinds of elements of Ti, W, Mo, V, Nb, Ta, Ni, Co, C and N as essential components. The content ratio of these constituent elements can be in the range shown in the following table in terms of metal based on the weight of the final hard alloy. However, the inside of the katsuki shows a suitable range.
金属成分 含有割合 (%) Metal component content (%)
T i 24- 45 (28~40、 特に 30〜 35) W 4〜28 (6~25、 特に 1 0〜20) ' Mo 2〜1 5 (3~12、 特に 5〜8)  T i 24-45 (28-40, especially 30-35) W 4-28 (6-25, especially 10-20) 'Mo 2-15 (3-12, especially 5-8)
V 0.1 -2.5 (0.2〜2.0、 特に 0.3 〜し 0) V 0.1 -2.5 (0.2 ~ 2.0, especially 0.3 ~ 0)
N b 2〜20 (3~1 7、 特に 5〜1 5) T a 2〜20 (3~17、 特に 5~1 5)  N b 2 ~ 20 (3 ~ 17, especially 5 ~ 15) T a 2 ~ 20 (3 ~ 17, especially 5 ~ 15)
(N b+T a) 4~23 (7~20、 特に 1 0~1 7)(N b + T a) 4 to 23 (7 to 20, especially 10 to 17)
T a/N b (重量比) 0.9-3.5 (1.0〜2.5、 特に 1.2 T a / N b (weight ratio) 0.9-3.5 (1.0 to 2.5, especially 1.2
〜2.0)  ~ 2.0)
N i 5.7~37.9(7.0〜30、 特に 8.0  N i 5.7 ~ 37.9 (7.0 ~ 30, especially 8.0
〜20) C o 7.1 ~39.3(8.0〜35、 特に 9.0 ~ 20) C o 7.1 to 39.3 (8.0 to 35, especially 9.0
-20)  -20)
(N i + C o ) 20〜45 (20 ~35、 特に 20〜30) (N i + Co) 20-45 (20-35, especially 20-30)
N i /C o (重量比) 0.4〜1.8(0.6~1.5、 特に 0.8〜N i / C o (weight ratio) 0.4 to 1.8 (0.6 to 1.5, especially 0.8 to
B 1.2) B 1.2)
また、 上記構成元素のうち、 T i、 W、 Mo、 V、 N b及びT aの大 部分、 すなわち、 これら金属元素の合計の少なくとも 80原子%、 好ま しくは 85原子%以上、 特に 90原子%以上は、 炭化物、 窒化物及び Z 又は炭窒化物の状態で硬質合金中に含まれており、 そして、 N bは実質 的に炭化物の状態で存在し、 T aは実質的に窒化物の状態で存在するの が望ましい。  Of the above constituent elements, most of Ti, W, Mo, V, Nb and Ta, that is, at least 80 atomic%, preferably 85 atomic% or more of the total of these metallic elements, particularly 90 atomic% % Or more is contained in the hard alloy in the form of carbides, nitrides and Z or carbonitrides, and Nb is present substantially in the form of carbides, and Ta is substantially in the form of nitrides. Desirably it exists in a state.
本発明の硬質合金中の炭化物、 窒化物及びノ又は炭窒化物に由来する C原子と N原子のそれぞれの量は互にバランスしていることが重要であ り、 N原子/ (。原子+1^原子) の重量比は 0.30~0.60の範囲内 にあるべきである。 この範囲をはずれると本発明が目的としている高靭 性の合金を取得することが困難となる。 しかして N原子 Z (C原子 +N 原子) の重量比の好適範囲は 0.33〜0.50であり、 さらに好適には 0.35〜 0.45である。 従って、 本発明の硬質合金を構成する前記金 属元素の炭化物、 窒化物及び Z又は炭窒化物は、 N原子 Z (C原子+N 原子) の重量比が上記の範囲内に入るように、 それらの組合わせをコン トロールすることが重要である。  It is important that the respective amounts of C atoms and N atoms derived from carbides, nitrides, and carbon or carbonitrides in the hard alloy of the present invention are mutually balanced, and N atoms / (. Atoms + The weight ratio of (1 ^ atoms) should be in the range of 0.30 to 0.60. If it is out of this range, it will be difficult to obtain a high toughness alloy intended by the present invention. Thus, the preferred range of the weight ratio of N atom Z (C atom + N atom) is 0.33 to 0.50, and more preferably 0.35 to 0.45. Therefore, the carbides, nitrides, and Z or carbonitrides of the metal elements constituting the hard alloy of the present invention are selected so that the weight ratio of N atoms Z (C atoms + N atoms) falls within the above range. It is important to control those combinations.
さらに、 本発明の硬質合金においては、 C原子と N原子の合計量と N i及び C oを除く金属屎子の合計量のパランスも重要であり、 (C原 子と N原子の合計量) / (N i及び C 0を除く金属原子の合計量) の原 子比が 0.8〜 1 .0の範囲内、 好ましくは 0.82~0.98、 就中 0. 8 5 - 0.96の範囲内にあることが望ましく、 該原子比が上記の範囲 から逸脱すると概して高靭性の合金を得ることがむずかしくなる。 なお、 本発明の硬質合金は、 以上に述べた金属成分に加えて、 製造原 s 料に随伴して合金内に持ち込まれる不可避不純物と して C r及び F e等 を微量含有していても支障はない。 Further, in the hard alloy of the present invention, the balance between the total amount of C atoms and N atoms and the total amount of metal waste excluding Ni and Co is also important, and (the total amount of C atoms and N atoms). / (Total amount of metal atoms excluding Ni and C0) It is desirable that the atomic ratio be in the range of 0.8 to 1.0, preferably 0.82 to 0.98, and particularly 0.85 to 0.96. It is difficult to get Incidentally, the hard alloy of the present invention, in addition to the metal components mentioned above, also in inevitable impurities brought in accompanying the manufacture raw s fee in the alloy C r and F e, etc. contain trace No problem.
以上に述べた本発明の硬質合金は、 一般に、 出発原料として、 T i、 W、 Mo、 V、 N b及び T aの各金属成分の崁化物、 窒化物及び 又 は炭窒化物、 並びに N i及び C o金属を最終合金製品に望まれる組成割 合で用い、 それ自体既知の方法で、 配合、 粉砕、 混合工程、 乾燥工程、 成形工程、 焼結工程等に付すことにより製造することができる。  The hard alloy of the present invention described above generally comprises, as starting materials, nitrides, nitrides and / or carbonitrides of the metal components Ti, W, Mo, V, Nb and Ta, and N It can be manufactured by using i and Co metal in the desired composition ratio for the final alloy product and subjecting it to compounding, grinding, mixing, drying, forming, sintering, etc. in a manner known per se. it can.
し力 し、 T i、 W、 Mo、 V、 N b及び T aの金属成分の一部は金属 単体の形で用いることもできるが、 その場合、 金属単体の!:はこれら金 属成分の合計の 20原子%を越えてはならず、 好ましくは 1 5原子%未 満、 特に 1 0原子%未満にすべきである。 また、 焼結工程に、 脱炭、 脱 窒が起きる可能性がある場合には、 金属単体で加える金属成分をさらに 少なくする力、、 用いない方が望ましい。  Some of the metal components Ti, W, Mo, V, Nb and Ta can also be used in the form of a simple metal. : Should not exceed 20 at.% Of the sum of these metal components and should preferably be less than 15 at.%, In particular less than 10 at. If decarburization or denitrification is likely to occur during the sintering process, it is desirable not to use a force that further reduces the amount of metal added as a single metal.
上記金属成分のうち、 Moの少なく とも一部を金属単体の形で用いた 場合、 特に物性に優れた硬質合金を製造することができ、 好適である。  If at least a part of Mo is used in the form of a simple metal, a hard alloy having particularly excellent physical properties can be produced, which is preferable.
しかして、 本発明の硬質合金を製造するのに特に好適な出発屎料は、 T i、 W、 Mo、 V、 N b、 T a、 N i、 C o、 C及び Nの各元素を必 須成分と してこれらを前記の割合で含有し、 その際 T i、 W、 V、 N b 及び T aの各金属成分は実質的に炭化物、 窒化物及びノ又は炭窒化物の 状態で存在し、 Moは少なく とも一部が金属単体で且つ残りが炭化物、 窒化物及び 又は炭窒化物の状態で存在し、 そして N i及び C oは実質 的に金属単体と して存在する原料粉末混合物であり、 特に、 N bは実質 的に炭化物の状態で、 そして T aは実質的に窒化物の状態で用いるのが 好都合である。 Thus, starting materials particularly suitable for producing the hard alloys of the present invention require the elements Ti, W, Mo, V, Nb, Ta, Ni, Co, C and N. These components are contained in the above-mentioned ratios, and each metal component of Ti, W, V, Nb and Ta is substantially present in the form of carbide, nitride and carbon or carbonitride. Mo is at least partially metal simple and the rest is carbide, Ni and Co are present in the form of a raw powder substantially as a simple metal, and in particular, Nb is substantially in the form of a carbide, and Conveniently, Ta is used in a substantially nitrided state.
まず、 配合工程では、 一般的には、 上記出発原料をパイ ンダ一及び分 散媒体と配合する。 バイ ンダーとしては例えばカンファー、 パラフィ ン、 流動パラ フィ ン、 高分子化合物(例えばポリ ビニルブチラール、 ポリア クリル酸エステルなど)等が挙げられ、 また、 分散媒体としては例えば メチルアルコール、 ェチルアルコーソレ、 ァセ ン、 トルエン、 キシレン、 酢酸メチル等の有機溶剤が包含される。 これらバインダー及び分散媒 体の配合量は通常、 上記出発原料に対して各々、 2 0 ~ 7 0重量%、 好 ましくは 4 0〜6 0重量%の範囲内が適当である。  First, in the compounding step, generally, the starting material is compounded with a binder and a dispersion medium. Examples of the binder include camphor, paraffin, liquid paraffin, and high molecular compounds (eg, polyvinyl butyral, polyacrylic acid ester, etc.). Examples of the dispersion medium include methyl alcohol, ethyl alcohol, and the like. Organic solvents such as acetone, toluene, xylene, and methyl acetate are included. The amount of the binder and the dispersing medium is usually in the range of 20 to 70% by weight, preferably 40 to 60% by weight, respectively, based on the starting materials.
上記の配合物は次いで粉碎、 混合する。 この粉砕、 混合は通常行なわ れていると同様に、 ポールミル、 ア トライター、 振動ミル等の粉碎 *混 合装置を用いて行なうことができ、 これによつて配合材料の粒径が一般 に 1 . 5 ミクロン以下となるようにすることが望ましい。  The above formulation is then ground and mixed. This pulverization and mixing can be carried out using a pulverizer such as a pole mill, attritor, vibrating mill, or the like. It is desirable to keep it below 5 microns.
このようにして得られる均一な分散配合物は次いで乾燥して分散媒体 を除去する。 乾燥は常法に従いスプレー ドライヤー、 ヘルシェルミキサ 一、 真空乾燥機等の乾燥機を用いて実施することができ、 それによつて 分散媒体の含有量が約 0 . 0 1重量%以下になるまで乾燥することが好 ましい。 例えば、 真空乾燥機中で乾燥を行なう場合の乾燥条件の一例と しては、 温度: 1 0〜 8 0 °C、 好ましくは 3 0〜 6 0 °C、 真空度: 1 0 一1〜 1 0 "8 mmH g、 時間: 0 . 1〜 3時間が挙げられる。 The uniform dispersion formulation thus obtained is then dried to remove the dispersion medium. Drying can be carried out according to a conventional method using a dryer such as a spray drier, a Herschel mixer, or a vacuum drier, whereby the content of the dispersion medium is reduced to about 0.01% by weight or less. It is preferable to do it. For example, as an example of drying conditions when drying is performed in a vacuum dryer, the temperature is 10 to 80 ° C, preferably 30 to 60 ° C, and the degree of vacuum is 10 to 11 to 1. 0 " 8 mmHg, time: 0.1 to 3 hours.
このようにして乾燥した分散配合物は次いで、 成形機によって、 所望 の用途に応じた形状の成形物に成型する。 成形機と しては主と して、 ラ バーブレス機ゃ粉末プレス機等の加圧成形機が使用されるカ、 場合によつ ては、 押出成形機や射出成形機も使用可能である。 押出成形又は射出成 形によって成型する場合は、 配合物の流動性を高めるため、 適宜可塑剤、 溶剤等を添加することも可能である。 上記加圧成形機で成形する場合、 その成形圧力は配合組成などによっても異なるが、 一般には、 0 .5 ~ 2 .0 t /on 好ましくは 1 ~ 1 .5 t Zcm2の範囲内が適当と思われる。 その他、 鈴木壽編 「超硬合金と焼結硬質材料——基礎と応用一」 3 0 9〜 3 7 2頁(昭和 6 1年 2月 2 0 日、 丸善(株)発行); セラ ミ ックス編 集委員会講座小委員会編 「セラ ミ ックス製造プロセス一粉末調整と成 形一」 2 1 4 ~ 2 1 9頁(昭和 5 9年 1 0月初版、社団法人日本セラミ ックス協会発行);素木洋一著 「セラ ミ ックス製造プロセス I」 2 3 9 ~ 2 4 1頁( 1 9 7 8年 1 0月 1 0 Θ第 1版、 技報堂出版(株)発行)等の文 献に記載の方法も適用できる。 The dispersion formulation thus dried is then processed by a molding machine to the desired Into a molded product having a shape suitable for the intended use. As a molding machine, a press molding machine such as a rubberless machine or a powder press machine is mainly used, and in some cases, an extrusion molding machine or an injection molding machine can also be used. In the case of molding by extrusion molding or injection molding, it is also possible to appropriately add a plasticizer, a solvent and the like in order to enhance the fluidity of the compound. When molding in the compression molding machine, the molding pressure etc. but blending composition, generally, 0 .5 ~ 2 .0 t / on preferably appropriately within the range of 1 ~ 1 .5 t Zcm 2 I think that the. Others, edited by Hisashi Suzuki, “Cemented Carbide and Sintered Hard Materials—Basics and Applications,” pp. 309-372 (published by Maruzen Co., Ltd. on February 20, 1986); Editing Committee Lecture Sub-Committee “Ceramics Manufacturing Process-Powder Adjustment and Forming-” pp. 214-219 (published by the Japan Ceramics Association) Yoichi Motoki, “Ceramics Manufacturing Process I”, pp. 239-241 (1980, October 10 Θ First edition, published by Gihodo Shuppan Co., Ltd.) The method is also applicable.
上記の如く して得られる成形物は真空中又は不活性ガス雰囲気中で焼 成する。 その際に適用しうる真空度としては一般に 1 0 〜 1 0 -5随 H g程度、 好ましくは 1 0 _2~ 1 0 -3niniH gの範囲内が適当であり、 また、 不活性ガスと しては例えばアルゴン、 ヘリ ウム、 窒素等が挙げられる。 焼結条件は原料組成や成形物の形状、 成形条件等に応じて広い範囲に わたって変えることができるが、 比較的低温において有機物をほぼ完全 に除去した後に昇温することが望ましく、 焼成温度は通常約 1 2 0 0 ~ 約 1 7 0 0 °C、 特に約 1 3 0 0〜約 1 6 0 0。Cの範囲内が適当であり、 また、 焼成時間は大体 0 . 1 〜 3時間、 殊に 0 .5 ~ 1時間程度で充分で ある。 以上の如く焼成することにより、 目的とする本発明の硬質合金が得ら れる。 この硬質合金はダイャモンド砥石等でそれぞれの用途に適した形 状に切削、 研磨及び仕上げ加工を行なうことによ りそれぞれの用途に適 した最終製品にすることができる。 The molded product obtained as described above is fired in a vacuum or in an inert gas atmosphere. Generally 1 0-1 0 as vacuum that can be applied when the - 5 marrow H g, preferably about 1 0 _ 2 to 1 0 - is appropriately within a range of 3 niniH g, also an inert gas Examples thereof include argon, helium, and nitrogen. The sintering conditions can be changed over a wide range according to the raw material composition, the shape of the molded product, the molding conditions, and the like. Is usually about 1200 to about 170 ° C., particularly about 130 to about 160 ° C. The range of C is appropriate, and the firing time is about 0.1 to 3 hours, particularly about 0.5 to 1 hour. By firing as described above, the intended hard alloy of the present invention is obtained. This hard alloy can be made into a final product suitable for each application by cutting, polishing, and finishing with a diamond wheel or the like into a shape suitable for each application.
例えば、 本発明により提供される硬質合金は、 刃物、 殊に硬度と靭性 とが要求される切削工具の材料として好適に使用することができる。 従来、 T i C基合金よりなる切削工具は、 前述のとおり優れた切削特 性を有しているにも拘らず、 靭性が劣るため、 パイ 卜の一部に使用され ているにすぎない。 また、 T i C基合金の低靭性を補いつつ、 切削特性 を利用する方法として、 靭性の高い切削工具の表面に T i C基合金を被 覆する提案が多数されている (例えば、 特公昭 6 1 - 5 1 034号公報、 特開昭 60 - 1 62782号公報、 特開眧 6 1 - 96072号公報、 特 開昭 6 1 - 2 3 1 1 75号公報、 特開昭 6 1 - 24 7673号公報、 特 開昭 62 - 445 72号公報及び特開昭 62 - 93376号公報等) 。  For example, the hard alloy provided by the present invention can be suitably used as a material for cutting tools, particularly cutting tools requiring hardness and toughness. Conventionally, a cutting tool made of a TiC-based alloy has been used only for a part of the pipe because of its inferior toughness despite having excellent cutting characteristics as described above. In addition, many proposals have been made to cover the surface of a tough cutting tool with a TiC-based alloy as a method of utilizing the cutting characteristics while supplementing the low toughness of the TiC-based alloy (for example, No. 6 1-501 034, Japanese Unexamined Patent Publication No. 60-162782, Japanese Unexamined Patent Publication No. 61-96072, Japanese Unexamined Patent Application Publication No. 61-2321 / 175, Japanese Unexamined Patent Publication No. 61-24 No. 7673, Japanese Patent Publication No. 62-44572 and Japanese Patent Application Laid-Open No. 62-93376).
しかしながら、 Τ ί C基合金による鋭利な刃角を有する刃物、 殊に切 削工具は未だ提案されていない。  However, a cutting tool having a sharp cutting angle made of a C-based alloy, particularly a cutting tool, has not yet been proposed.
本明細書において 「切削工具」 には、 日本規格協会編、 1 988年 4 月 1 2日 (第 1版第 1刷) 発行一 J I Sハンドブック 工具」 に記載の 切削工具が包含され、 具体的には、 パイ ト、 ドリル、 フライ ス、 リーマ、 歯切工具、 ブローチ、 ねじ加工工具、 ハクソー及びそのフ レーム、 機械 In this specification, the term “cutting tool” includes the cutting tools described in “JIS Handbook Tools” published on April 12, 1988 (1st edition, 1st edition), edited by the Japan Standards Association. Includes pite, drill, milling machine, reamer, hobbing tool, broach, threading tool, Hacksaw and its frames, machinery
■r ■ r
刃物等が挙げられ、 好ましくはバイ ト、 ドリル及びフライ スである。 ノく ィ トは施盤、 中ぐり盤、 平削り盤、 形削り盤、 立削り盤などに使用され る、 シャンク又はボディーの端に切れ刃を持つ工具であり、 その種類と してはバイ トの構造により、 むくバイ 卜、 付刃パイ ト、 溶接バイ ト、 ろ う付バイ ト、 クラ ンプバイ ト、 スローァウェイバイ 卜、 差込みバイ ト、 組立バイ ト等があるが、 本発明の硬質合金は中でもむくバイ ト、 付刃バ ィ ト、 クラ ンプバイ ト及びスローァウェイバイ 卜に加工するのに特に好 適である。 Examples thereof include cutting tools, and preferred are bytes, drills, and milling cutters. Knits are tools with cutting edges at the end of the shank or body used for lathes, boring machines, planing machines, shaping machines, vertical milling machines, etc. Depending on the structure of the machine, solid bytes, bladed pipes, welding bytes, filters There are a brazing byte, a clamp byte, a throwaway byte, an insertion byte, an assembly byte, and the like, and the hard alloy of the present invention includes, among others, a peeling byte, a cutting byte, a clamp byte, and a thrower. It is particularly suitable for processing into wavy bytes.
また、 ドリル (dr i l l) は先端に切れ刃を持ち且つボディーに切り く ずを排出するための溝を持つ、 主と して穴あけを行なうのに用いる工具 であり、 その種類には、 その機能又は用途により、 ルーマ形ドリル、 コ ァー ドリル、 シェルドリル、 センタ穴ドリル、 角穴ドリル、 皿取り ドリ ル、 ターゲッ ト ドリル、 ガン ドリル及びスベー ド ドリル等があるが、 本 発明の硬質合金は特にルーマ形ドリル、 コア一ドリル、 及びスペー ド ド リルに有利に用いることができる。  A drill is a tool mainly used for drilling, which has a cutting edge at the tip and a groove for discharging chips into the body. Or, depending on the application, there are luma type drill, core drill, shell drill, center hole drill, square hole drill, dish drill, target drill, gun drill, blade drill, etc., but the hard alloy of the present invention is In particular, it can be advantageously used for a luma type drill, a core drill, and a speed drill.
さらに、 フライ ス (mi l l ing cut ter) はミーリングカツタともいい、 その外周面、 端面又は側面に切れ刃をもち、 回転切削する工具であって、 主と してフライ ス盤に使用される力 その種類はその機能又は用途によ り、 ポアタイ プフライ ス及びシャンクタイプフライスがある。 ポアタイ プフラ イ スの例には、 平フライ ス、 スラブカツタ、 側フライ ス、 片刃側 フライ ス、 組合側フライ ス、 正面フライ ス、 シェルエン ドミル、 溝フラ イ ス、 すわりフライ ス、 メ タルソー、 コール ドソー、 セグメ ン ト ソー、 角度フライ ス、 片面フライ ス、 不等角フラ イ ス、 等角フライ ス、 二番取 り フライ ス、 内丸フライ ス、 外丸フラ イ ス、 片面取りフライ ス、 両面取 フライ ス、 イ ンポリュー ト フライ ス、 スブロケッ ト フライ ス、 スブライ ンフライ ス、 セレーシヨ ンフライ ス、 ねじ切りフライ ス、 総形フライ ス 等が挙げられるが、 本発明の硬質合金は中でも平フライ ス及びシェルェ ン ドミルに好適に使用される。 一方、 シャンクタイブフライ スには例^ ば、 エン ドミル、 一枚刃ェン ドミル、 二枚刃ェン ドミル、 三枚刃ェン ド ミル、 多刃エンドミノレ、 両頭エンドミノレ、 テーパ刃エンドミメレ、 ポーノレ エン ドミル、 テーパーポールエン ドミル、 ラ ジアスエン ドミノレ、 スクェ アルエン ドミル、 緣形エン ドミル、 強ねじれ刃エン ドミル、 中仕上げ用Milling cutters are also called milling cutters, which have a cutting edge on the outer peripheral surface, end surface or side surface, and are tools for rotary cutting, and are mainly used for milling machines. Depending on the function or application, there are two types: a pore type milling cutter and a shank type milling cutter. Examples of pore type mills include flat mills, slab cutters, side mills, single edge mills, union mills, face mills, shell end mills, groove mills, sit mills, metal saws and cold saws. , Segment saw, angle milling, single-sided milling, non-conformal milling, conformal milling, secondary milling, inner round milling, outer round milling, single-sided milling, double-sided milling , Impulse milling, sprocket milling, slab milling, serration milling, thread milling, and general milling.The hard alloy of the present invention is particularly suitable for flat mills and shell end mills. It is preferably used. On the other hand, for shank tie milling mills ^ For example, end mills, single-flute end mills, two-flute end mills, three-flute end mills, multi-flute end minoles, double-ended end minoles, tapered end mills, ponoré end mills, tapered pole end mills, and radius end dominoles , Square end mill, 緣 -shaped end mill, High helix end mill, For semi-finishing
5 エン ドミル、 荒削り エン ドミル、 キー溝ェン ドミル、 歯切ェン ドミル、 座ぐり フライ ス、 平ねじ沈めフライ ス、 皿小ねじ沈めフライ ス、 六角穴 付きボル ト用沈めフライ ス、 面取りフライ ス、 歯車面取りフライ ス、 あ り溝フライ ス、 ク リ スマスカツタ、 T溝フライ ス、 半月キー溝フライ ス、 及びホロ一ミル等が挙げられるが、 本発明の硬質合金は例えばェンドミ5 End mill, roughing end mill, keyway end mill, gear cutting end mill, counterbore milling machine, flat screw sinking mill, countersunk screw sinking mill, hexagon socket bolt sinking mill, chamfering mill , A chamfering mill, a grooved milling cutter, a crisp smash cutter, a T-slot milling machine, a half-moon keyway milling machine, a honey mill, and the like.
1 0 ル、 一枚刃エン ドミル、 二枚刃エン ドミル、 三枚刃エン ドミル、 多刃ェ ン ドミソレ、 ポールエン ドミ レ、 スクェアジレエン ドミノレ、 強ねじれ刃ェン ドミル等の構成材料として用いた場合に特に優れた性能を発揮する。 本発明の硬質合金は、 前述したとおり、 高い硬度に加えて、 優れた靭 性を併有しているので、 本発明の硬質合金を使用すれば、 刃先角度が 4 i s 0 ~ 1 7 0度、 好ましくは 4 5 ~ 9 0度、 さらに好ましくは 5 0〜 7 0 度という鋭利な刃先角度をもつ切削工具にも容易に加工することができ るという優れた特徴がある。 ここで切削工具についていう 「刃先角度」 とは、 スクイ面と逃げ面とからなる先端刃先の刃角である [例えば、 添 付第 2図に示すドリルにおいては、 9 0度- P度 ( 1段逃げ角) が刃先 0 角度である] 。 Used as a component material for 10-mm, single-flute end mills, 2-flute end mills, 3-flute end mills, multi-flute end mills, pole end milles, square iron dominoles, and high-helix end mills In particular, it exhibits excellent performance. As described above, the hard alloy of the present invention has high toughness in addition to high hardness, so that if the hard alloy of the present invention is used, the cutting edge angle is 4 is 0 to 170 degrees. There is an excellent feature that a cutting tool having a sharp edge angle of preferably 45 to 90 degrees, more preferably 50 to 70 degrees can be easily machined. Here, the “edge angle” of the cutting tool is the angle of the edge of the cutting edge formed by the rake face and the flank face [for example, in the drill shown in FIG. The step clearance angle) is the zero angle of the cutting edge.]
本発明の硬質合金を用いて得られる切削工具、 例えばドリル、 エン ド ミル等は硬度の高い金属の加工に適しているのみならず、 アルミニゥ厶 や銅の如き比較的柔かい金属の加工にも著るしい効果があることが判明 した。 特に、 この傾向は最近開発された 3 ~ 8万回転ノ分の高速加工機 の工具と して使用した場合に顕著である。 Cutting tools obtained by using the hard alloy of the present invention, such as drills and end mills, are not only suitable for processing metals having high hardness, but also are suitable for processing relatively soft metals such as aluminum and copper. It turned out to be a good effect. In particular, this trend is due to the recently developed 30,000-80,000 rpm high-speed processing machine. This is remarkable when used as a tool.
また、 本発明の硬質合金は、 切削工具以外の刃物に加工することもで きる。 切削工具以外の刃物と しては、 橘本英文著、 昭和 6 1年 8月 2 0 日、 第 1刷、 (株) 講談社発行 「ブルーブックス、 刃物雑学辞典、 図解 ' 刃物のすべて」 に記載されている切削工具以外の刃物が包含され、 具体 的には、 カンナ族、 包丁族、 ノコギリ族、 ハサミ族、 ヤスリ族及び砥石 族の刃物や土を切る刃物等が挙げられる。 カンナ族の刃物は、 真直ぐ切 り進む機能を有する刃物であって、 例えば、 カンナ、 斧、 ノ ミ、 ナタ、 カミ ソ リ、 彫刻刀及び鉛筆削等挙げられ、 これらの中で力ミ ソリ、 鉛筆 削等、 特に力ミソリに対して本発明の硬質合金を好適に用いることがで きる。 また、 包丁族の刃物は引き押しを加えて切る機能を有する刃物で あって、 例えば、 包丁、 回転包丁、 ナイ フ、 缣及びカッター等であり、 好ましくは包丁、 ナイフ及びカッターに対して本発明の硬質合金が有利 に使える。 ノコギリ族の刃物は多数の並んだ歯で切る機能を有する刃物 であって、 例えば、 ノ コギリ、 丸ノ コ、 ノコギリ刃ナイ フ、 チェーンソ 一等が挙げられ、 好ましくはノコギリ刃ナイ 7である。 ハサミ族の刃物 は刃ではさんできる機能を有する刃物であって、 本発明の硬質合金は例 えばハサミ、 バリカン、 ヒゲソ リ、 芝刈り機、 シヤー、 パンチ、 ペンチ、 ッメキリ、 針金切り、 喰切等、 好ましくはハサミ、 ヒゲソリ及びペンチ の少く とも刃の部分の材料と して好適である。 ヤスリ族の刃物はがんじ ような刃が整列している刃物であって、 具体的には、 ヤスリ、 おろし金、 ッメヤスリ、 スリバチ、 穴目ヤスリ、 ナイ フシャープナー及びトクサ等 であり、 好しくはヤスリ及びナイフシャープナーにおいて本発明の硬質 合金を有利に利用することができる。 砥石族の刃物は硬い粒子による刃 物であって、 例えば、 紙ヤスリ、 グラインダー、 ファイバークリーナー 及びメタルタヮシ等、 好ましくはグラィンダ一に対して本発明の硬質合 金を適用することができる。 土を切る刃物は土、 砂、 岩石を切る機能を 有する刃物であって、 農耕、 園芸、 土木、 採鉱用に使用する刃物であり、 5 具体的には、 クヮ、 ショベル、 ツルハシ、 ブルトーザの刃及び削岩機等 が挙げられるが、 本発明に硬質合金は特に削岩機に対して優れた能力を 発揮する。 Further, the hard alloy of the present invention can be processed into a cutting tool other than a cutting tool. Other blades other than cutting tools are listed in “Blue Books, Blade Trivia Dictionary, Illustration 'All of Blades”, published by Kobunsha Co., Ltd., the first press, August 20, 1986, by Hidefumi Tachibana. Cutting tools other than the cutting tools used are included, and specific examples thereof include cutting tools of the Kanna group, kitchen knife group, saw group, scissors group, file group and whetstone group, and cutting tools for cutting soil. The knife of the Kanna tribe is a knife having a function of cutting straight, and includes, for example, a canna, an axe, a flea, a nata, a razor, a chisel, a pencil sharpener, and the like. The hard alloy of the present invention can be suitably used for pencil sharpening and the like, especially for force razors. The knife of the kitchen knife family is a knife having a function of cutting by applying a pushing force, for example, a knife, a rotary knife, a knife, a knife and a cutter, and the present invention is preferably applied to a knife, a knife and a cutter. Can be used advantageously. The saw blade is a blade having a function of cutting with a number of aligned teeth, and includes, for example, a saw, a circular saw, a saw blade knife, and a chainsaw. A saw blade knife 7 is preferable. The cutting blades of the scissors are cutting blades having a function that can be held between blades, and the hard alloys of the present invention include, for example, scissors, clippers, razors, lawn mowers, shears, punches, pliers, snacks, wire cutting, cutting, and the like. It is preferably used as a material for at least the blade portion of scissors, razors and pliers. File-type knives are knives in which stubborn blades are aligned, specifically, files, graters, sandpaper, slivers, holes, knives sharpeners and croakers. Can advantageously utilize the hard alloys of the present invention in files and knife sharpeners. Whetstone-type blades are hard particles The hard alloy of the present invention can be applied to a paper file, a grinder, a fiber cleaner, a metal brush, or the like, preferably a grinder. The blade that cuts the soil is a blade that has the function of cutting soil, sand, and rocks, and is used for agriculture, horticulture, civil engineering, and mining. And a rock drill, etc., but the hard alloy according to the present invention exerts an excellent ability particularly for a rock drill.
本発明の硬質合金は、 前述したとおり、 高硬度に加えて高靭性を有し ているため、 以上に述べた如き切削工具以外の刃物に加工することも可 As described above, since the hard alloy of the present invention has high toughness in addition to high hardness, it can be processed into a cutting tool other than the cutting tool as described above.
1 0 能であるという、 従来の硬質合金にはなかったユニークな特徵がある。 There is a unique feature that conventional hard alloys do not have, such as 10 ability.
しかして、 本発明の硬質合金を用いれば、 刃先角度が 1 0 ~ 4 0度、 好 ましくは 1 2〜3 5度、 さらに好ましくは 1 5 ~ 3 0度という鋭利な刃 先をもつ切削工具以外の刃物に加工することができる。 ここで、 切削ェ 具以外の刃物についていう 「刃先角度」 とはスクイ面と逃げ面とからな i s る先端刃先の角度をいい、 具体的には例えば添付第 4図に示すカッター において で示される角度である。  However, when the hard alloy of the present invention is used, a cutting edge having a sharp edge of 10 to 40 degrees, preferably 12 to 35 degrees, more preferably 15 to 30 degrees is used. It can be processed into blades other than tools. Here, the term "cutting edge angle" for a cutting tool other than the cutting tool refers to the angle of the tip cutting edge formed by the rake face and the flank face, and specifically, for example, is indicated by in the cutter shown in FIG. Angle.
以上に述べたとおり、 本発明の硬質合金は刃先が鋭利な刃物に加工す ることが可能であり、 しかも本発明の硬質合金を用いた刃物は刃先の欠 損が極めて少く、 刃先の摩耗も非常に少く、 且つ使用時に金属との溶着 0 も殆どない等の種々の優れた利点がある。  As described above, the hard alloy of the present invention can be machined into a blade with a sharp edge, and the blade using the hard alloy of the present invention has very little chipping of the blade and wear of the blade. There are various excellent advantages such as very little and little welding to metal during use.
実施例  Example
以下、 実施例により本発明をさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
実施例 1 ~ 2 1及び比較例 1 ~ 9  Examples 1-21 and Comparative Examples 1-9
A .—硬質合金の調製 原料粉末と して、 平均粒度 1 ^の T i Cと T i Nの焼結体 (T i CZ 丁 11^ : 5 0ノ50、 以下 T i C Nと記す) 、 2〃の WC粉末、 3 の Mo 2C及び Mo粉末、 2~3 ^の VC粉末、 2〜3 の N b C及び N b N粉末、 1 ~2;«の T a C及び T a N粉末、 4 の N i粉末および 2 の C 0粉末をそれぞれ表- 1記載のとおり配合し、 さらに、 これら粉 末に対し、 エチルアルコール 50重 i%\ ポリ ビニルプチラール 2重: ft %及び可塑剤と してジォクチルフタレー 卜(DOP)l重量%をそれぞれ 添加し、 ステンレス製ポールミルで 4 8時間粉砕混合した。 ただし、 表 一 1における硬質合金 No.20 (実施例一 20)の T i CNのみ、 T i CZ T i Nを 70/30とした。 A .—Preparation of hard alloy As the raw material powder, a sintered body of TiC and TiN having an average particle size of 1 ^ (TiCZ 11 ^ : 50/50, hereinafter referred to as TiCN), 2〃 WC powder, 3 Mo 2 C and Mo powders, 2-3 ^ VC powders, 2-3 NbC and NbN powders, 1-2; «TaC and TaN powders, 4 Ni powders and 2 C 0 powders were mixed as shown in Table 1, and these powders were mixed with ethyl alcohol 50% i% \ polyvinyl butyral double: ft% and dioctyl lid as a plasticizer. Then, 1% by weight of a rate (DOP) was added, and the mixture was pulverized and mixed with a stainless steel pole mill for 48 hours. However, only TiCN of hard alloy No. 20 (Example 20) in Table 1 was used, and TiCZTiN was set to 70/30.
次いで、 減圧乾燥により得られた混合物をラバブレス機により、 1 T 0 nZcm2で加圧成形した。 この成形体を 300〜500 °C、 1時間、 真空度 1 0一2 mmHgの条件下で脱バインダ一し、 更に 1 360 ~ 1 50 0で、 1時間、 真空度 1 0一3 irnnH gの条件下焼成し棒状硬質合金 ( 6 mmX 30 mm)を調製した。 Subsequently, the mixture obtained by drying under reduced pressure was pressure-molded at 1 T0 nZcm 2 by a rubber bubbling machine. The molded body 300 to 500 ° C, 1 hour, binder removal one under the conditions of vacuum degree 1 0 one 2 mmHg, further 1 360-1 50 0, 1 hour, a vacuum of 1 0 one 3 irnnH g It was fired under the conditions to prepare a rod-shaped hard alloy (6 mm X 30 mm).
B . 硬質合金の評価  B. Evaluation of hard alloy
得られた合金の靭性及び硬度を表- 2に示す。 なお、 物性の測定方法 は次のとおりである。  Table 2 shows the toughness and hardness of the obtained alloy. The methods for measuring physical properties are as follows.
( 1 ) 勒性の測定  (1) Measurement of brittleness
J I S B - 4 1 04に準じた 3点曲げ強度測定。  Three-point bending strength measurement according to JISB-4104.
(2) 硬度の測定  (2) Hardness measurement
(株) 島津製作所、 島津微小硬度計 N 036739により測定。  Measured by Shimadzu Micro Hardness Tester N036739.
表- 2より明らかなように、 本発明の硬質合金は、 高硬度であるにも 拘らず、 靭性が極めて高い。
Figure imgf000016_0001
表— 1 (その 2)
As is clear from Table 2, the hard alloy of the present invention has extremely high toughness despite its high hardness.
Figure imgf000016_0001
Table 1 (Part 2)
Figure imgf000017_0001
Figure imgf000017_0001
表一 1 (その 3 ) 硬質 配 合 組 成 分 燃 結 材 料 組 成 分 Table 1 (Part 3) Rigid combination composition Combustion material composition
合金 Ta  Alloy Ta
ヽ T iC wc TaC TaN NbC NbN Mo M02C N i Co vc Ti w Mo V Nb Ta (Nb+Ta) Nb 、N,i+C 比 例 1 18 40 3.2 6 0 6 0 3 2 12 9 0.8 45. S 3 4.9 0.7 5.3 5.5 10.8 1.0 0.3i 21 乙 n ヽ T iC wc TaC TaN NbC NbN Mo M0 2 CN i Co vc Ti w Mo V Nb Ta (Nb + Ta) Nb, N, i + C Ratio Example 1 18 40 3.2 6 0 6 0 3 2 12 9 0.8 45. S 3 4.9 0.7 5.3 5.5 10.8 1.0 0.3i 21 B
Lit 0 29.2 32 6 0 6 0 3 2 12 9 0.8 23.0 30. 1 4.9 0.7 5.3 5.5 10.8 1.0 0.34 21 Lit 0 29.2 32 6 0 6 0 3 2 12 9 0.8 23.0 30.1 4.9 0.7 5.3 5.5 10.8 1.0 0.34 21
3 24 10 50 7 5 0 5 0 2 0 10 10 1 47.3 6.6 2 0.8 4.4 4.7 9.1 1.07 0.4 203 24 10 50 7 5 0 5 0 2 0 10 10 1 47.3 6.6 2 0.8 4.4 4.7 9.1 1.07 0.4 20
4 25 9 38 15 8 0 5 0 1 0 14 9 1 37 14. 1 1 0.8 4.4 7.5 11.9 1.7 0.36 234 25 9 38 15 8 0 5 0 1 0 14 9 1 37 14.1 1 0.8 4.4 7.5 11.9 1.7 0.36 23
5 26 6 30 18 9 0 8 0 3 2 14 10 0 28.4 16.9 4.9 0 7.1 8.5 15.6 1.2 0.33 245 26 6 30 18 9 0 8 0 3 2 14 10 0 28.4 16.9 4.9 0 7.1 8.5 15.6 1.2 0.33 24
6 27 0 · 32 18 9 0 8 0 3 2 14 10 4 25- 1 16. S 4.9 3 -2 7.1 8.5 15.6 1.2 0.35 246 27 0 ・ 32 18 9 0 8 0 3 2 14 10 4 25- 1 16.S 4.9 3 -2 7.1 8.5 15.6 1.2 0.35 24
7 28 7 44 10 1.1 0 1.1 0 8 0 13 15 0.8 40.1 9.4 8 0.6 O.S 0.9 1.8 1.0 0.4 287 28 7 44 10 1.1 0 1.1 0 8 0 13 15 0.8 40.1 9.4 8 0.6 O.S 0.9 1.8 1.0 0.4 28
8 29 0 34 7 22.6 0 5.6 0 4 0 11 15 0-8 26.7 6.6 4 0.6 5 21.2 26.2 4.24 0.3Ϊ 268 29 0 34 7 22.6 0 5.6 0 4 0 11 15 0 -8 26.7 6.6 4 0.6 5 21.2 26.2 4.24 0.3Ϊ 26
9 30 0 33.1 7 5.4 0 23.7 0 4 0 11 15 0.8 26- C 6.6 4 0.6 21 5.1 26.1 0.24 0.36 26 9 30 0 33.1 7 5.4 0 23.7 0 4 0 11 15 0.8 26- C 6.6 4 0.6 21 5.1 26.1 0.24 0.36 26
Z + 表一 2 (その 1 ) Z + Table 1 2 (Part 1)
Figure imgf000019_0001
表一 2 (その 2 )
Figure imgf000019_0001
Table 1 (Part 2)
Figure imgf000020_0001
実施例 2 2 ~ 6 3及び比較例 1 0 ~ 2 7 (切削工具及び刃物の調製及 び評価)
Figure imgf000020_0001
Examples 22 to 63 and Comparative Examples 10 to 27 (Preparation and evaluation of cutting tools and cutting tools)
( C - 1 ) ス ト レー トシャンク ドリル  (C-1) Straight shank drill
前記実施例及び比較例で得られた硬質合金をダイャモン ド研磨機によ り円柱体 (5 j^ mrn x 6 0 mm) に研磨し、 さらに表一 3に示すとおりス ト レー トシヤンク ドリル A及び Bに加工した (詳細は第 1、 2図参照) 。 得られたドリルの刃先の状態を観察しその結果を表— 4に示す。 表一 3 The hard alloys obtained in the above Examples and Comparative Examples were polished into cylindrical bodies (5 j ^ mrn x 60 mm) by a diamond polisher, and as shown in Table 13, straight shank drills A and B (see Figures 1 and 2 for details). The state of the cutting edge of the obtained drill was observed, and the results are shown in Table-4. Table 1 3
(単位:度)  (Unit: degree)
Figure imgf000021_0001
また、 被切削金属と して銅と S U S - 3 0 4を選定し、 表- 5に示し た切削条件でドリルによるせん孔試験を行い、 その結果も表一 4に示す, なお、 試験の評価基準は表一 6に示すとおりである。
Figure imgf000021_0001
In addition, copper and SUS-304 were selected as the metals to be cut, and drilling tests were performed with a drill under the cutting conditions shown in Table 5, and the results are also shown in Table 14. Is as shown in Table 1.
表一 4 (その 1 ) Table 1 (Part 1)
Figure imgf000022_0001
Figure imgf000022_0001
表— 4 (その 2) Table 4 (Part 2)
Figure imgf000023_0001
Figure imgf000023_0001
表一 5 Table 1 5
Figure imgf000024_0001
Figure imgf000024_0001
表一 6 Table 1 6
Figure imgf000024_0002
表一 4より明らかなように、 本発明の硬質合金から加工したドリルは, 刃先角度 7 4度及び 6 5度と しても、 刃先の欠損が全く認められず鋭利 に調製することができる。
Figure imgf000024_0002
As is clear from Table 1, the drill machined from the hard alloy of the present invention can be sharply prepared even when the cutting edge angles are 74 degrees and 65 degrees without any chipping of the cutting edges.
これに対し本発明以外の組成の T i基合金から加工したドリルは、 刃 先の欠損が生じてしまい、 実用的に使用できるものではなく、 また、 欠 損がみとめられなかったドリルでも切削試験をすると、 刃先の欠損が著 しく又は被切削金属の溶着が著しく、 実用的に使用できるものではなか つた。 On the other hand, a drill machined from a Ti-based alloy having a composition other than that of the present invention suffers from chipping of the cutting edge and is not practically usable. In this case, the cutting edge is severely damaged or the metal to be cut is significantly welded. I got it.
他方、 本発明の硬質合金を用いたドリルは、 切削試験後でも刃先の欠 損及び被切削金属との溶着は全く認められなかった。 このことから、 本 発明の硬質合金よりなる ドリルは極めて優れた切削工具であることがわ か 。  On the other hand, in the drill using the hard alloy of the present invention, chipping of the cutting edge and welding to the metal to be cut were not observed at all even after the cutting test. This indicates that the drill made of the hard alloy of the present invention is a very excellent cutting tool.
また、 エン ドミルについても同様であり、 本発明の硬質合金よりなる エン ドミルは刃先の欠損がなく、 被切削金属との溶着もほとんど認めら れず、 優れた切削工具であることがわかる。  The same applies to the end mill. The end mill made of the hard alloy of the present invention has no cutting edge and hardly adheres to the metal to be cut, indicating that it is an excellent cutting tool.
( C一 2 ) 刃物 (カッター)  (C-1 2) Cutter
前記実施例及び比較例で調製した硬質合金をダイヤモン ド砥石により、 刃先角度 1 6度のカッター (以後カッター Aと称する) 及び刃先角度 2 4度のカッター (以後カッター Bと称する) に仕上加工した (詳細は第 3 、 4図参照) 。  The hard alloy prepared in the above Examples and Comparative Examples was finish-processed with a diamond grindstone into a cutter having a blade angle of 16 degrees (hereinafter referred to as cutter A) and a cutter having a blade angle of 24 degrees (hereinafter referred to as cutter B). (See Figures 3 and 4 for details).
被切断材料と して、 炭酸カルシウム 8 %、 及び酸化チタ ン 5 %を含有 する厚さ 1 5 0;"のポリ塩化ビニルフィルムを選定し、 このフィルムの ライ ンスピー ドを 5 mZrainと し、 6 0 0 0 m上記力ッターで力ッティ ン グ試験を行った。  As the material to be cut, a polyvinyl chloride film containing 8% calcium carbonate and 5% titanium oxide and having a thickness of 150; "was selected. The line speed of this film was set to 5 mZrain. A power putting test was performed with the above power meter.
カツティ ング試験後、 カッターの刃先の摩耗度合及び刃の欠損状態を 調査し、 その結果を表- 7に示す。 また評価項目及び評価基準を表一 8 に示す 0 表— 7 (その 1 ) 硬質 力 タ ー A カ ツ タ Β 合金 カツタ一調製時 カッテイ ング試験後 力ッター調製時 カツティ ング試験後After the cutting test, the degree of wear on the blade edge of the cutter and the condition of the blade defect were investigated, and the results are shown in Table-7. The 0 indicating the evaluation items and evaluation criteria in Table one 8 Table 7 (Part 1) Hard force cutter A cutter A Alloy When cutter is prepared After cutting test After force cutter is prepared After cutting test
(No. ) の刃先の状態 刃先の状態 摩耗度 刃先の状態 刃先の状態 実施例- 43 1 ◎ ◎ ◎ ◎ ◎ (No.) Cutting edge condition Cutting edge condition Abrasion condition Cutting edge condition Cutting edge condition Example-43 1 ◎ ◎ ◎ ◎ ◎ ◎
44 2 ◎ 44 2 ◎
45 3 45 3
46 4  46 4
47 5  47 5
48 6  48 6
49 7  49 7
50 8 \1/  50 8 \ 1 /
51 9  51 9
52 10  52 10
53 11  53 11
54 12 ψο ®οο〇 ®◎>〇〇◎ .  54 12 ψο ®οο〇 ® ◎> 〇〇 ◎.
55 13  55 13
56 14  56 14
57 15  57 15
58 16 〇◎ 〇〇◎  58 16 〇 ◎ 〇〇 ◎
59 17  59 17
60 18  60 18
61 19  61 19
62 20  62 20
63 21  63 21
〇 〇◎◎ ψ 〇 〇 ◎◎ ψ
>〇 〇◎◎〇◎〇 表一 7 (その 2 ) 硬質 カ ッ タ ー A カ ツ タ B 合金 力ッター調製時 カツティ ング試験後 カツタ一調製時 カッテイ ング試驗後> 〇 〇 ◎◎ 〇 ◎ 〇 Table 1 7 (Part 2) Hard cutter A Cutter B alloy When preparing a power cutter After cutting test After preparing a cutter After cutting test
(No. ) の刃先の状態 刃先の状態 摩耗度 の刃先の状態 刃先の状態 摩耗度 比皎例- 19 22 X X X X X (No.) Cutting edge condition Cutting edge condition Wearing condition Cutting edge condition Cutting edge condition Wear ratio Ratio example 19-22 X X X X X
20 23  20 23
21 24  21 24
22 25  22 25
23 26  23 26
24 27  24 27
25 28  25 28
26 29  26 29
27 30 X X  27 30 X X
o〇Φ〇 X x X X Ιl  o〇Φ〇 X x X X Ιl
〇 > 表一 8. 〇> Table 1.
Figure imgf000028_0001
表一 7より明らかなとおり、 本発明の硬質合金よりなるカッターは、 刃先角度 1 6度及び 2 4度いずれの場合でも、 鋭利に仕上加工できたが、 本発明外の組成の合金から加工した比較例の力ッターのほとんどは刃先 の欠損が著しく、 鋭利な刃先にすることができなかった。
Figure imgf000028_0001
As is clear from Table 1, the cutter made of the hard alloy of the present invention was able to finish sharply at any of the cutting edge angles of 16 degrees and 24 degrees, but was processed from an alloy having a composition other than the present invention. Most of the power cutters of the comparative examples had a remarkable loss of the cutting edge and could not have a sharp cutting edge.
比較例の力ッターのうち鋭利に仕上加工できたカッターも、 カツティ ング試験を行うと、 刃先の欠損又は摩耗が生じて、 実用的に使用できる ものはなかった。  Of the power cutters of the comparative example, the cutters that could be sharply finished were subjected to a cutting test, and the cutting edge was damaged or worn, so that none of them could be used practically.
これに対し、 本発明によるカッターは、 カッティング試験後において、 刃欠は全く認められず、 また刃先の摩耗も極めて少く、 実用的に極めて 有用な刃物であることがわかった。  On the other hand, the cutter according to the present invention did not show any chipping after the cutting test, and had very little wear on the cutting edge, indicating that it was a practically useful cutting tool.
さらに、 力ミソリにおいても、 本発明の硬質合金を用いた力ミソリは、 刃先の欠損がなく、 また刃先の摩耗も極めて少いことが明らかになった。 産業上の利用可能性  Further, it was also revealed that the force razor using the hard alloy of the present invention had no cutting edge and very little wear on the cutting edge. Industrial applicability
以上述べたとおり、 本発明により提供される硬質合金は、 高硬度であ り且つ靭性に優れており、 刃物、 殊に硬度及び Zまたは靭性が要求され る切断工具の材料として好適に使用することができる。  As described above, the hard alloy provided by the present invention has high hardness and excellent toughness, and is suitably used as a material for cutting tools, particularly cutting tools requiring hardness and Z or toughness. Can be.

Claims

請 求 の 範 囲 The scope of the claims
1 . T i、 W、 Mo、 V、 N b、 T a、 N i、 C o、C及び Nの各元 素を必須成分と して含有し; T i、 W、 Mo、 V、 N b及び T aの合計 の少なく とも 80原子%は炭化物、 窒化物及び/又は炭窒化物の状態で 存在し ;上記各元素の含有量は、 硬質合金の重量を基準と してそれぞれ T i 24~45%、 W4〜28%、 Mo 2~ 1 5%、 V 0.卜 2.5%、 N b 2〜20%、 T a 2~20%、 N i 5.7〜37.9 %及び C o 7. 1〜 39.3 %であり; N bと T aとの合計 (N b + T a ) の含有量が 4 〜 23 %であって且つ T aZN bの重: ft比が 0.9 ~ 3.5の範囲内にあ り ; N i と C 0との合計(N i +C 0 )の含有量が 20~45%であって 且つ N i ZC 0の重量比が 0.4 ~ 1.8の範囲内にあり ; そして Nil子 / (0原子+1^原子) の重量比が 0.30〜0.60の範囲内にあり且つ (C原子と N原子の合計量) / (N i及び C 0を除く上記金属原子の合 計量) の原子比が 0.8~ 1.0の範囲内にあることを特徴とする硬質合 金。  1. Includes Ti, W, Mo, V, Nb, Ta, Ni, Co, C and N as essential components; Ti, W, Mo, V, Nb And at least 80 atomic% of the sum of Ta are present in the form of carbides, nitrides and / or carbonitrides; 45%, W4 ~ 28%, Mo 2 ~ 15%, V 0.2.5%, Nb 2 ~ 20%, Ta 2 ~ 20%, Ni 5.7 ~ 37.9% and Co 7.1 ~ 39.3 %; The content of the sum of Nb and Ta (Nb + Ta) is 4 to 23% and the weight: ft ratio of TaZNb is in the range of 0.9 to 3.5; The content of the sum of Ni and C0 (Ni + Co) is 20-45% and the weight ratio of NiZC0 is in the range of 0.4-1.8; and Nil child / (0 The atomic ratio of (atom + 1 ^ atom) is in the range of 0.30 to 0.60, and the atomic ratio of (total amount of C atoms and N atoms) / (total amount of the above metal atoms excluding Ni and C0) is 0.8. ~ 1.0 range Hard alloy which is characterized in that there.
2. T i、 W、 Mo、 V、 N b及び T aの合計の少なく とも 85原子 %が炭化物、 窒化物及び または炭窒化物の状態で存在する請求の範囲 第 1項記載の硬質合金。  2. The hard alloy according to claim 1, wherein at least 85 atomic% of the total of Ti, W, Mo, V, Nb, and Ta exists in a state of carbide, nitride, and / or carbonitride.
3. N bが実質的に N bの炭化物の状態で存在し、 T aが実質的に T aの窒化物の状態で存在する請求の範囲第 1記載の硬質合金。  3. The hard alloy according to claim 1, wherein Nb exists substantially in a carbide state of Nb, and Ta exists substantially in a nitride state of Ta.
4. 硬質合金の重量を基準と して、 T i 28~40%、 W6~25%、 Mo 3~ 1 2%、 V 0.2~2.0 %、 N b 3~ 1 7%、 T a 3〜 1 7%、 N i 7.0~3 0%及び C o 8.0~35 %含有する請求の範囲第 1項記 載の硬質合金。 4. Based on the weight of the hard alloy, Ti 28 to 40%, W 6 to 25%, Mo 3 to 12%, V 0.2 to 2.0%, Nb 3 to 17%, Ta 3 to 1 The hard alloy according to claim 1, containing 7%, Ni 7.0 to 30%, and Co 8.0 to 35%.
5. (N b +T a ) の含有量が?〜 2 0 %である請求の範囲第 1項記 載の硬質合金。 5. What is the content of (N b + T a)? The hard alloy according to claim 1, wherein the content of the hard alloy is about 20%.
6. 丁 &ノ:^ 13の重量比が1.0〜2.5である請求の範囲第 1項記載 の硬質合金。  6. The hard alloy according to claim 1, wherein the weight ratio of D & N: ^ 13 is 1.0 to 2.5.
7. (N i +C o) の含有量が 20~3 5 %である請求の範囲第 1項 記載の硬質合金。  7. The hard alloy according to claim 1, wherein the content of (Ni + Co) is 20 to 35%.
8. N i ZC oの重量比が 0.6~ 1 .5である請求の範囲第 1項記載 の硬質合金。  8. The hard alloy according to claim 1, wherein the weight ratio of NiZCo is 0.6 to 1.5.
9. N原子ノ (じ原子+ 原子) の重量比が 0.33~0.5 0である 請求の範囲第 1項記載の硬質合金。  9. The hard alloy according to claim 1, wherein the weight ratio of N atoms (atomic atoms + atoms) is 0.33 to 0.50.
1 0. (C原子と N原子の合計量) Z CN i及び C oを除く金属原子 の合計量) の原子比が 0.8 2~0.9 8の範囲内にある請求の範囲第 1 項記載の硬質合金。  10. The hard material according to claim 1, wherein the atomic ratio of (total amount of C atoms and N atoms) (total amount of metal atoms excluding ZCNi and Co) is in the range of 0.82 to 0.98. alloy.
1 1. 請求の範囲第 1項記載の硬質合金よりなる刃物。  1 1. A cutting tool made of the hard alloy according to claim 1.
1 2. 請求の範囲第 1項記載の硬質合金よりなる切削工具。  1 2. A cutting tool made of the hard alloy according to claim 1.
1 3. 刃先角度が 40~ 1 7 0度である請求の範囲第 1 2項記載の切 削工具。  1 3. The cutting tool according to claim 12, wherein the cutting edge angle is 40 to 170 degrees.
1 4. ドリル又はェン ドミルである請求の範囲第 1 2項記載の切削ェ 具。  1 4. The cutting tool according to claim 12, which is a drill or an end mill.
1 5. T i、 W、 Mo、 V、 N b、 T a、 N i、 C o、 C及び Nの各 元素を必須成分として請求の範囲第 1項に記載の割合で含有し、 その際 T i、 W、 V、 N b及び T aの各金属成分は実質的に炭化物、 窒化物及 びノ又は炭窒化物の状態で存在し、 Moは少なくとも一部が金属単体で 且つ残りが炭化物、 窒化物及び/又は炭窒化物の状態で存在し、 そして N i及び C oは実質的に金属単体と して存在する原料粉末混合物を焼成 することを特徴とする請求の範囲第 1項記載の硬質合金の製造法。 1 5. Each element of Ti, W, Mo, V, Nb, Ta, Ni, Co, C, and N is contained as an essential component at the ratio described in claim 1, and at that time, Each metal component of Ti, W, V, Nb and Ta exists substantially in the form of carbides, nitrides, and phosphorus or carbonitrides, and at least part of Mo is a simple metal and the remainder is carbide. Exist in the state of nitride and / or carbonitride, and 2. The method for producing a hard alloy according to claim 1, wherein a raw material powder mixture in which Ni and Co substantially exist as a simple metal is fired.
1 6 . 原料粉末混合物が、 N bを実質的に炭化物の状態で含有し、 T aを実質的に窒化物の状態で含有する請求の範囲第 1 5項記載の方法 c S  16. The method c S according to claim 15, wherein the raw material powder mixture contains Nb substantially in a carbide state, and contains Ta substantially in a nitride state.
PCT/JP1990/000966 1989-03-17 1990-07-30 Hard alloy WO1992002651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19900910903 EP0495101A4 (en) 1990-07-30 1990-07-30 Hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6559789A JPH02243735A (en) 1989-03-17 1989-03-17 Hard alloy

Publications (1)

Publication Number Publication Date
WO1992002651A1 true WO1992002651A1 (en) 1992-02-20

Family

ID=13291587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000966 WO1992002651A1 (en) 1989-03-17 1990-07-30 Hard alloy

Country Status (2)

Country Link
JP (1) JPH02243735A (en)
WO (1) WO1992002651A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107442818A (en) * 2017-09-21 2017-12-08 张家港钻通设备有限公司 A kind of High-strength drill bit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170451A (en) * 1986-01-23 1987-07-27 Sumitomo Electric Ind Ltd Sintered hard alloy
JPS6396242A (en) * 1986-10-09 1988-04-27 Toshiba Tungaloy Co Ltd High strength sintered alloy and its production
JPS63262443A (en) * 1987-04-21 1988-10-28 Mitsubishi Metal Corp Tungsten carbide based cemented carbide for cutting tool
JPS6431948A (en) * 1987-07-28 1989-02-02 Toshiba Tungaloy Co Ltd High strength sintered alloy
JPS6431949A (en) * 1987-07-28 1989-02-02 Toshiba Tungaloy Co Ltd High strength sintered alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170451A (en) * 1986-01-23 1987-07-27 Sumitomo Electric Ind Ltd Sintered hard alloy
JPS6396242A (en) * 1986-10-09 1988-04-27 Toshiba Tungaloy Co Ltd High strength sintered alloy and its production
JPS63262443A (en) * 1987-04-21 1988-10-28 Mitsubishi Metal Corp Tungsten carbide based cemented carbide for cutting tool
JPS6431948A (en) * 1987-07-28 1989-02-02 Toshiba Tungaloy Co Ltd High strength sintered alloy
JPS6431949A (en) * 1987-07-28 1989-02-02 Toshiba Tungaloy Co Ltd High strength sintered alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0495101A1 *

Also Published As

Publication number Publication date
JPH02243735A (en) 1990-09-27

Similar Documents

Publication Publication Date Title
US5186739A (en) Cermet alloy containing nitrogen
US5328875A (en) Cubic boron nitride-base sintered ceramics for cutting tool
US4769070A (en) High toughness cermet and a process for the production of the same
US4046517A (en) Cemented carbide material for cutting operation
JPH0711048B2 (en) High-strength nitrogen-containing cermet and method for producing the same
US4619698A (en) Cubic boron nitride-based very high pressure-sintered material for cutting tools
WO2010104094A1 (en) Cermet and coated cermet
EP0520403A2 (en) Hard sintered compact for tools
JP3331220B2 (en) Materials for shaft cutting tools
JP4229750B2 (en) Cubic boron nitride sintered body
EP0495101A1 (en) Hard alloy
WO1992002651A1 (en) Hard alloy
JP3353522B2 (en) Cemented carbide for tools processing wood-based hard materials
JPH02205654A (en) Hard alloy
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
US20040025631A1 (en) Abrasive and wear resistant material
JP5233124B2 (en) Cemented carbide and coated cemented carbide
JP2720951B2 (en) Cutting tool with high hardness composite sintered body as cutting edge
JP3319246B2 (en) Cermet cutting tool with excellent fracture resistance
JPH10193206A (en) Cutting tool whose cutting edge piece has excellent brazing joining strength
JPS602647A (en) Tungsten carbide-base sintered hard alloy for cutting tool
JPH04152004A (en) Cutting tool
JPH0343113A (en) End mill made of tungsten carbide group cemented carbide
JP2668977B2 (en) Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990910903

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990910903

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990910903

Country of ref document: EP