JPH0813077A - Nitrogen-containing sintered hard alloy - Google Patents

Nitrogen-containing sintered hard alloy

Info

Publication number
JPH0813077A
JPH0813077A JP15344794A JP15344794A JPH0813077A JP H0813077 A JPH0813077 A JP H0813077A JP 15344794 A JP15344794 A JP 15344794A JP 15344794 A JP15344794 A JP 15344794A JP H0813077 A JPH0813077 A JP H0813077A
Authority
JP
Japan
Prior art keywords
peak
alloy
intensity
ray diffraction
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15344794A
Other languages
Japanese (ja)
Inventor
Kazutaka Isobe
和孝 磯部
Keiichi Tsuda
圭一 津田
Akihiko Ikegaya
明彦 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15344794A priority Critical patent/JPH0813077A/en
Publication of JPH0813077A publication Critical patent/JPH0813077A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the hard alloy extremely excellent in thermal shock resistance by regulating an X-ray diffraction peak of higher intensity on a low angle side so that it has a specific half-width, in a nitrogen-containing sintered hard alloy having a specific composition and having two peaks of B1 structure. CONSTITUTION:The nitrogen-containing sintered hard alloy, which consists of 75-95wt.% of hard phase consisting of Ti and one or more kinds among the carbides, nitrides, and carbonitrides of one or more kinds among the group IVa, Va, and VIa transition metals of the Periodic Table and multiple carbonitrides of them and 5-25wt.% of binding phase containing Ni, Co, and inevitable impurities and in which two peaks of B1 structure are detected by the X-ray diffraction measurement, is prepared. In a peak of higher intensity, detected on a low angle side, between two peaks of B1 structure from the same diffracting plane in the X-ray diffraction measurement of this alloy, the half-width of the X-ray diffraction peak measured in the surface part of the alloy is regulated so that it becomes 40-<60% of the half-width of the X-ray diffraction peak measured in the inner part at a depth of >=1mm from the surface of the alloy. By this method, the alloy usable for wet cutting can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒素含有焼結硬質合金
に関し、特に切削加工用工具の材質として極めて耐熱衝
撃性に優れ、かつ耐摩耗性及び強度に富み、湿式切削に
も使用可能な窒素含有焼結硬質合金に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen-containing sintered hard alloy, and particularly as a material for a cutting tool, it has excellent thermal shock resistance, wear resistance and strength, and can be used for wet cutting. The present invention relates to a nitrogen-containing sintered hard alloy.

【0002】[0002]

【従来の技術】Tiを主成分とする炭窒化物などを硬質
相とし、これをNiとCoからなる金属で結合した窒素
を含有する焼結硬質合金が切削工具としてすでに実用化
されている。この窒素含有焼結硬質合金は、従来の窒素
を含有しない焼結硬質合金に比べ硬質相が著しく微粒に
なるため耐高温クリープ特性が大幅に改善されるためW
Cを主成分としたいわゆる超硬合金と並んで切削工具と
して広く使用されてきている。しかしながら、この窒素
含有焼結硬質合金は、 主成分であるTiの炭窒化物の熱伝導度が超硬合金の
主成分であるWCの熱伝導率に比べて著しく小さいた
め、この窒素含有焼結硬質合金の熱伝導度は超硬合金の
約1/2であること、 熱膨張係数も、同様に主成分の特性値に依存して窒素
含有焼結硬質合金のそれは超硬合金に比べ1.3倍にな
ること、などの理由により熱衝撃に対する抵抗が低くな
る。このため、特に熱衝撃の厳しくなる条件下での切
削、例えばフライス切削や角材の旋盤による切削加工、
また、切込みの大きく変動する湿式での倣い切削などに
は、被覆超硬合金などに比べて信頼性が低いのが現状で
あった。 このような問題に対して、以下に示す様に様々な改良が
試みられている。例えば、特開平2−15139号公報
では、Tiを炭化物等換算で50重量%以上、W等6a
族元素を炭化物換算で40重量%未満、N/C+Nの原
子比が0.4〜0.6の高窒素含有したものを焼結雰囲
気を制御して表面粗さを向上させ、表層部に高靱性、高
硬度の改質部を形成させることが、また、特開平5−9
646号公報では、Tiを主成分としW,Mo,Crを
炭化物換算で合計40重量%未満含有したものを焼結後
の冷却工程を制御して表面部に内部よりも結合相の減少
した領域を形成し表面に圧縮応力を残すサーメットが開
示されている。
2. Description of the Related Art Sintered hard alloys containing carbon as a main component such as carbonitrides as a hard phase and containing nitrogen bonded with a metal composed of Ni and Co have already been put to practical use as cutting tools. In this nitrogen-containing sintered hard alloy, the high-temperature creep resistance is significantly improved because the hard phase becomes significantly finer than that of the conventional nitrogen-free sintered hard alloy.
It has been widely used as a cutting tool along with so-called cemented carbide containing C as a main component. However, in this nitrogen-containing sintered hard alloy, the thermal conductivity of the carbonitride of Ti, which is the main component, is significantly smaller than the thermal conductivity of WC, which is the main component of the cemented carbide. The thermal conductivity of the hard alloy is about 1/2 of that of the cemented carbide, and the thermal expansion coefficient also depends on the characteristic value of the main component, and that of the nitrogen-containing sintered hard alloy is 1. The resistance to thermal shock is reduced due to such factors as tripled. For this reason, cutting under conditions in which thermal shock is particularly severe, such as milling and lathe cutting of square timber,
In addition, the present situation is that reliability is lower than that of coated cemented carbide and the like for wet-type profile cutting in which the depth of cut varies greatly. Various improvements have been attempted to solve such problems as described below. For example, in Japanese Unexamined Patent Publication (Kokai) No. 2-15139, 50% by weight or more of Ti in terms of carbides, 6a of W, etc.
A group element containing less than 40% by weight in terms of carbide and containing high nitrogen with an atomic ratio of N / C + N of 0.4 to 0.6 improves the surface roughness by controlling the sintering atmosphere, and has a high surface layer. Forming a modified portion having toughness and high hardness is also disclosed in JP-A-5-9.
In Japanese Patent No. 646, a region containing Ti as a main component and containing W, Mo, and Cr in a total amount of less than 40% by weight in terms of carbide is controlled in a cooling step after sintering to reduce a binder phase in the surface portion as compared with the inside. There is disclosed a cermet that forms a groove and leaves a compressive stress on the surface.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
いずれの公報に開示されたサーメットにおいても、耐摩
耗性及び靱性は向上しているが、被覆超硬合金に比べれ
ば耐欠損性は不十分であり、耐熱衝撃性、特に熱亀裂の
発生や、熱衝撃と機械的衝撃の両者に起因する亀裂の進
展による突発欠損が生じやすく、十分な信頼性が得られ
ない。すなわち、このような先行技術では、コーティン
グ工程を省略することによって製造コストが下げられる
ものの、性能的にはそれに見合っただけのものしか発揮
できない。これは、ある程度以上のTiの含有を前提と
したいわゆるサーメットという範疇においては、欠損に
対する強度向上を図ることにはおのずと限界があるとい
うことである。そこで発明者らは、種々の切削における
温度分布などの切削現象の解析と、工具内の材料成分の
配置との詳細な研究をしてきた結果、本発明に到達し
た。本発明は、従来の高価な被覆超硬合金でしか使用で
きなかった厳しい熱衝撃を受ける条件下での加工におい
ても、表面被覆を施すことなく高い信頼性を持って使用
可能な切削工具用窒素含有焼結硬質合金を提供すること
を目的とする。
However, the cermets disclosed in any of the above publications have improved wear resistance and toughness, but have insufficient fracture resistance as compared with coated cemented carbide. Therefore, thermal shock resistance, especially thermal cracking, and sudden cracking due to crack propagation due to both thermal shock and mechanical shock are likely to occur, and sufficient reliability cannot be obtained. That is, in such a prior art, although the manufacturing cost can be reduced by omitting the coating process, only the performance which is commensurate with it can be exhibited. This means that in the category of so-called cermet, which is premised on the inclusion of Ti to a certain extent or more, there is a limit to improving the strength against defects. Therefore, the present inventors have arrived at the present invention as a result of detailed research on analysis of cutting phenomena such as temperature distribution in various cuttings and arrangement of material components in a tool. INDUSTRIAL APPLICABILITY The present invention is a nitrogen for cutting tool which can be used with high reliability without surface coating even in processing under severe thermal shock that could only be used with conventional expensive coated cemented carbide. An object is to provide a sintered hard alloy containing.

【0004】[0004]

【課題を解決するための手段】窒素含有焼結硬質合金
は、特公昭56−51201号公報などに開示されてい
るように、硬質相粒子がいわゆる有芯二重構造を呈しT
iとNが富化されている芯部とW,Moが富化されNが
貧化している周辺部とで形成されている。このような二
重構造の合金はX線回折測定(Cu−Kα線)をする
と、図1に示すように回折角の低角側の強度の強いピー
クは周辺部のもので、高角側の強度の低いピークは芯部
のものである。
In a nitrogen-containing sintered hard alloy, the hard phase particles have a so-called cored double structure, as disclosed in Japanese Patent Publication No. 56-51201.
It is formed of a core portion enriched with i and N and a peripheral portion enriched with W and Mo and depleted of N. When an X-ray diffraction measurement (Cu-Kα ray) is performed on such an alloy having a double structure, as shown in FIG. 1, the strong peaks on the low angle side of the diffraction angle are in the peripheral portion, and the high-angle intensity is high. The low peak of is for the core.

【0005】本発明者らは、耐熱衝撃性、特に熱亀裂の
発生や、熱衝撃と機械的衝撃の両者に起因する亀裂の進
展による突発欠損が生じなく、従来の高価な被覆超硬合
金でしか使用できなかった厳しい熱衝撃を受ける条件下
での加工、例えばフライス切削や角材の旋盤による切削
加工、また、切込みの大きく変動する湿式での倣い切削
などにも、表面被覆を施すことなく高い信頼性を持って
使用可能な切削工具用の窒素含有焼結硬質合金を開発す
べく鋭意研究を行った。その結果、合金表面部の組成・
構造を、有芯構造の芯部の割合を減らし、周辺部の構造
の存在比を多くかつ均質で歪の少ない状態にすることが
耐摩耗性、耐熱衝撃性、靱性を著しく向上させられると
いう知見を得、本発明に到達した。
The inventors of the present invention have proposed a conventional expensive coated cemented carbide, which does not cause thermal shock resistance, particularly thermal cracking, or sudden cracking due to crack propagation caused by both thermal shock and mechanical shock. It is not necessary to apply a surface coating for machining under conditions subject to severe thermal shock, which could only be used, such as milling and lathe cutting of square timber, and wet profile cutting where the cutting depth fluctuates greatly. We have conducted intensive research to develop a nitrogen-containing sintered hard alloy for cutting tools that can be used reliably. As a result, the composition of the alloy surface
The finding that reducing the proportion of the core portion of the cored structure and making the structure abundance ratio of the peripheral portion large and homogeneous and less strain can significantly improve wear resistance, thermal shock resistance and toughness And reached the present invention.

【0006】すなわち、本発明の窒素含有焼結硬質合金
は、第1にTiと、周期律表の4a,5a,6a族から
選ばれたTiを除く少なくとも1種の遷移金属の炭化
物、窒化物、炭窒化物あるいはこれらの複合炭窒化物の
少なくとも1種以上からなる硬質相が75〜95重量%
で、Ni及びCo並びに不可避不純物を含む結合相が5
〜25重量%であり、X線回折測定でB1構造のピーク
が2種類検出される窒素含有焼結硬質合金において、X
線回折測定における2つのB1構造の同一回折面からの
ピークのうち低角側に検出される強度の大きい方のピー
クにおけるX線回折ピークの半価幅(以下、半価幅とい
う)が、合金表面部で測定する半価幅が、合金の1mm
以上内部で測定する半価幅に対し40%以上60%未満
である事を特徴とする窒素含有焼結硬質合金である。
That is, the nitrogen-containing sintered hard alloy of the present invention comprises, firstly, Ti and at least one transition metal carbide or nitride other than Ti selected from the groups 4a, 5a and 6a of the periodic table. 75 to 95% by weight of hard phase composed of at least one kind of carbonitride or composite carbonitride
And the binder phase containing Ni and Co and inevitable impurities is 5
In the nitrogen-containing sintered hard alloy in which two peaks of B1 structure are detected by X-ray diffraction measurement,
The half width (hereinafter referred to as the half width) of the X-ray diffraction peak of the peak with the higher intensity detected on the low angle side of the peaks from the same diffraction surface of the two B1 structures in the line diffraction measurement is the alloy. Half width measured on the surface is 1 mm of alloy
The nitrogen-containing sintered hard alloy is characterized in that it is 40% or more and less than 60% with respect to the half width measured inside.

【0007】さらに第2の発明は同じ窒素含有焼結硬質
合金において、X線回折における2つのB1構造の同一
回折面からのピークにおいて、回折角の高角側に検出さ
れる強度の小さいピークの強度をIs 、回折角の低角側
に検出される強度の大きいピークの強度をIL とし、合
金表面部でのIs /IL で表わされるピーク強度比をI
H 、合金の1mm以上内部でのIs /IL で表わされる
ピーク強度比をIN としたときのIH /IN が、0.0
1以上0.95以下である事を特徴とする窒素含有焼結
硬質合金である。望ましくは0.01以上0.3以下で
ある。
The second invention is the same nitrogen-containing sintered hard alloy, and in the peaks from the same diffraction plane of two B1 structures in X-ray diffraction, the intensity of the small peak detected on the high angle side of the diffraction angle. Is I s , the intensity of the peak with high intensity detected on the lower angle side of the diffraction angle is I L, and the peak intensity ratio represented by I s / I L on the alloy surface is I
H, is I H / I N when the peak intensity ratio represented by I s / I L inside 1mm or more alloy was I N, 0.0
It is a nitrogen-containing sintered hard alloy characterized by being 1 or more and 0.95 or less. It is preferably 0.01 or more and 0.3 or less.

【0008】第3の発明は同じ窒素含有焼結硬質合金に
おいて、X線回折角の低角側に検出される強度の大きい
ピークのピーク位置において、合金の1mm以上内部で
測定するX線回折ピーク位置に対し合金表面部で測定す
るX線回折ピーク位置が、低角側に存在する事を特徴と
する窒素含有焼結硬質合金である。
A third aspect of the present invention is the same nitrogen-containing sintered hard alloy, the X-ray diffraction peak measured within 1 mm or more of the alloy at the peak position of the peak of high intensity detected on the low angle side of the X-ray diffraction angle. The nitrogen-containing sintered hard alloy is characterized in that the X-ray diffraction peak position measured at the alloy surface portion with respect to the position is present on the low angle side.

【0009】第4の発明は同じ窒素含有焼結硬質合金に
おいて、WC相を存在させることを特徴とするが、表面
部ではほとんど存在させないことが必要で、具体的には
WCの(110)ピークの強度をIWC、2つのB1構造
の(220)ピークのうち低角側に検出される強度の大
きいピークの強度をIB1とし、合金の1mm以上内部で
のIWC/IB1で表される強度比をIWN、合金表面部での
WC/IB1で表される強度比をIWHとしたとき、IWN
0.1以上0.95未満で、IWH/IWNが0.2以下で
ある事を特徴とする窒素含有焼結硬質合金である。第5
の発明は上述第1と第2の発明を、第6の発明は上述第
3と第1又は第5の発明を、第7の発明は上述第4と第
1、第5又は第6の発明をそれぞれ結合させたものであ
る。
The fourth invention is characterized in that the WC phase is present in the same nitrogen-containing sintered hard alloy, but it is necessary that the WC phase is hardly present. Specifically, the WC (110) peak is required. the larger the peak intensity of the intensity detected in the low angle side of the intensity of the I WC, two B1 structure (220) peak and I B1, is represented by I WC / I B1 inside than 1mm alloys that when the intensity ratio I WN, the intensity ratio expressed by I WC / I B1 at the alloy surface portion was I WH, below 0.95 I WN is 0.1 or more, I WH / I WN 0 It is a nitrogen-containing sintered hard alloy characterized by being less than 0.2. Fifth
Of the invention is the above-mentioned first and second inventions, the sixth invention is the above-mentioned third and first or fifth inventions, and the seventh invention is the above-mentioned fourth and first, fifth or sixth inventions. Are combined with each other.

【0010】[0010]

【作用】以下、本発明における限定理由などについて詳
細に述べる。本発明における硬質相は、75重量%未満
では耐摩耗性、耐塑性変形性の低下が著しく、95重量
%を越えると強度、靱性が不足し好ましくない。本発明
の表面部の強度の大きい方のピークの半価幅は、内部の
半価幅に対し40%以上60%未満である。40%未満
では耐塑性変形性が劣り、60%以上では耐熱衝撃性が
不十分で好ましくない。本発明のIH /IN は、0.0
1未満は実質的に製造不可能で、0.95を越えると所
望の耐熱衝撃性を得ることができない。望ましい上限値
は0.3である。また、本発明におけるX線回折角の強
度の大きいピークのピーク位置において、内部で測定す
るピーク位置に対し表面部で測定するピーク位置が、低
角側に存在すると所望の耐熱衝撃性と耐摩耗性が得られ
るが高角側に存在すると特に耐熱衝撃性と耐塑性変形性
が劣る。例えばX線のCu−Kα線で回折角61度付近
に検出できるB1構造の(220)面からの回折曲線
(図2参照)の場合では、表面部の回折角が0.01〜
0.2度低角側にシフトしていることが必要である。
The reason for limitation in the present invention will be described in detail below. If the hard phase in the present invention is less than 75% by weight, abrasion resistance and plastic deformation resistance are significantly deteriorated, and if it exceeds 95% by weight, strength and toughness are insufficient, which is not preferable. The half-value width of the peak of the surface portion of the present invention having a higher intensity is 40% or more and less than 60% of the inner half-value width. If it is less than 40%, the plastic deformation resistance is poor, and if it is 60% or more, the thermal shock resistance is insufficient, which is not preferable. I H / I N of the present invention is 0.0
If it is less than 1, it cannot be manufactured substantially, and if it exceeds 0.95, the desired thermal shock resistance cannot be obtained. A desirable upper limit value is 0.3. Further, in the peak position of the peak having a high intensity of the X-ray diffraction angle in the present invention, when the peak position measured on the surface portion is on the low angle side with respect to the peak position measured internally, the desired thermal shock resistance and abrasion resistance are obtained. However, if it exists on the high angle side, the thermal shock resistance and the plastic deformation resistance are particularly poor. For example, in the case of a diffraction curve from the (220) plane of the B1 structure that can be detected by a Cu-Kα ray of X-ray near a diffraction angle of 61 degrees (see FIG. 2), the diffraction angle of the surface portion is 0.01 to
It is necessary to shift to the low angle side by 0.2 degrees.

【0011】さらに本発明では内部にWC相を存在さ
せ、表面部にはほとんど存在させないことを特徴とし、
WNが0.1未満では亀裂の進展抵抗が不十分で著しく
靱性が劣化、0.95以上ではWC相が表面にも多く残
存するようになり次に述べる。IWH/IWNが0.2以下
にできない。IWH/IWNが0.2を越えると耐摩耗性・
耐クレータ摩耗性(被削材との高温拡散摩耗などのケミ
カルな反応で生じる摩耗)が劣化し好ましくない。
Further, the present invention is characterized in that the WC phase is present inside and is hardly present on the surface portion,
If I WN is less than 0.1, crack propagation resistance is insufficient and the toughness is significantly deteriorated. If I WN is 0.95 or more, a large amount of WC phase remains on the surface. I WH / I WN cannot be less than 0.2. Wear resistance when I WH / I WN exceeds 0.2
Crater wear resistance (wear caused by chemical reaction such as high temperature diffusion wear with the work material) deteriorates, which is not preferable.

【0012】本発明の窒素含有焼結硬質合金は、一般
に、Tiと周期律表4a、5a、6a族から選ばれるT
iを除く少なくとも1種の遷移金属を含む炭窒化物粉
末、WC粉末、及びNiやCoの鉄族金属粉末を湿式混
合後、型押して成形し1〜10-2Torr程度の真空中
で1000〜1200℃で脱ガス後、窒素ガス分圧2〜
70Torrで1400〜1500℃に0.5〜3時間
焼結し、10-5〜10-1Torr程度の真空中で0.5
〜10℃/分の割合で冷却し調製する。なお上記の方法
で原料の平均粒径は0.5〜5μmの範囲とするのが好
ましい。
The nitrogen-containing sintered hard alloy of the present invention is generally selected from Ti and T selected from Groups 4a, 5a and 6a of the Periodic Table.
Carbonitride powder containing at least one transition metal other than i, WC powder, and iron group metal powder of Ni or Co are wet-mixed and then pressed and molded into a vacuum of about 1 to 10 -2 Torr from 1000 to After degassing at 1200 ° C., nitrogen gas partial pressure 2 to
Sintered at 1400 to 1500 ° C. for 0.5 to 3 hours at 70 Torr and 0.5 in a vacuum of 10 −5 to 10 −1 Torr.
Prepare by cooling at a rate of -10 ° C / min. The average particle size of the raw material is preferably 0.5 to 5 μm by the above method.

【0013】以下に本発明のその他の実施態様を要約し
て示す。 (1)第1の発明と第3及び第4の発明の組合せからな
るもの (2)第2の発明と第3及び第4の発明の少なくとも1
つとの組合せからなるもの。 (3)第3の発明と第4の発明との組合せからなるも
の。 (4)Tiと周期律表4a、5a、6a族から選ばれる
Tiを除く少なくとも1種の遷移金属を含む炭窒化物粉
末、WC粉末、及びNiやCoの鉄族金属粉末を湿式混
合後、型押して成形し1〜10-2Torr程度の真空中
で1000〜1200℃で脱ガス後、窒素ガス分圧2〜
70Torrで1400〜1500℃に0.5〜3時間
焼結し、10-5〜10-1Torr程度の真空中で0.5
〜10℃/分の割合で冷却し調製することを特徴とする
請求項1〜7のいずれか、又は上記(1)〜(3)のい
ずれかに記載の窒素含有焼結硬質合金の製造方法。 (5)原料粉末の平均粒径が0.5〜5μmの範囲にあ
る上記(4)に記載の窒素含有焼結硬質合金の製造方
法。
The other embodiments of the present invention will be summarized below. (1) A combination of the first invention and the third and fourth inventions (2) At least one of the second invention and the third and fourth inventions
A combination of two. (3) A combination of the third invention and the fourth invention. (4) After wet mixing Ti and carbonitride powders containing at least one transition metal other than Ti selected from groups 4a, 5a, and 6a of the periodic table, WC powders, and iron group metal powders of Ni and Co, After pressing and molding, degassing in a vacuum of about 1 to 10 -2 Torr at 1000 to 1200 ° C, and then partial pressure of nitrogen gas 2 to
Sintered at 1400 to 1500 ° C. for 0.5 to 3 hours at 70 Torr and 0.5 in a vacuum of 10 −5 to 10 −1 Torr.
The method for producing a nitrogen-containing sintered hard alloy according to any one of claims 1 to 7 or any of the above (1) to (3), characterized by cooling at a rate of -10 ° C / min. . (5) The method for producing a nitrogen-containing sintered hard alloy as described in (4) above, wherein the raw material powder has an average particle size in the range of 0.5 to 5 μm.

【0014】[0014]

【実施例】以下本発明と下記の実施例により更に詳細に
説明するがこれにより本発明を限定するものではない。 〔実施例1〕平均粒径2μmで有芯構造の外郭部分が反
射電子顕微鏡で真っ白に見え、芯部分が真っ黒に見える
(Ti0.85Ta0.05Nb0.040.06)(C0.550.45
粉末と、同0.7μmのWC粉末と、同1.5μmのN
i粉末とCo粉末をそれぞれ45重量%、40重量%、
7重量%、8重量%を湿式混合後、型押し成形し、10
-2Torrの真空中で1200℃で脱ガス後、窒素ガス分圧
20Torrで1450℃にて1時間焼結後、真空中で2.
5℃/分で冷却し、試料1を作成した。この試料1のX
線のCu−Kα線B1構造の(220)面からの回折曲
線の強度の強い方のピークの半価幅(以下、半価幅とい
う)が、表面から1mm内部で0.27度、表面ラッピ
ング面で0.14度と52%に減少していた。試料1と
同一合金組成となるようにTiCN35重量%、TaC
4重量%、NbC2重量%、WC44重量%、Ni7重
量%、Co8重量%配合し試料1と同一条件で焼結し試
料2を、また、TiCN46重量%、TaC8重量%、
Mo2C8重量%、WC20重量%、Ni6重量%、C
o12重量%配合し試料1と同一条件で焼結し試料3
を、試料1、試料2と同一の型押し成形体を窒素分圧5
Torrで1400℃で焼結しCO分圧200Torrで冷却
し、それぞれ試料4、試料5を作成した。それぞれの
(表面の半価幅)/(内部の半価幅)は、62%、63
%、76%、71%であった。各試料1〜5の窒素含有
焼結硬質合金で焼結肌で工具形状CNMG432を作成
し下記耐熱衝撃性評価の切削テストを行った。(試料1
は本発明品、試料2〜5は比較品)
EXAMPLES The present invention and the following examples will be explained in more detail below, but the present invention is not limited thereby. [Example 1] With an average particle size of 2 μm, the outer portion of the cored structure looks white with a reflection electron microscope, and the core looks black (Ti 0.85 Ta 0.05 Nb 0.04 W 0.06 ) (C 0.55 N 0.45 ).
Powder, 0.7 μm WC powder, and 1.5 μm N
i powder and Co powder are 45 wt%, 40 wt%,
Wet-mixing 7% by weight and 8% by weight, and then press-molding to obtain 10
After degassing in a vacuum of -2 Torr at 1200 ° C, sintering at 1450 ° C for 1 hour at a nitrogen gas partial pressure of 20 Torr, and then in vacuum.2.
Sample 1 was prepared by cooling at 5 ° C / min. X of this sample 1
Line of Cu-Kα line B1 structure, the half-value width (hereinafter, referred to as the half-value width) of the peak of the intensity of the diffraction curve from the (220) plane is 0.27 degrees within 1 mm from the surface, and the surface wrapping is performed. In terms of surface, it decreased to 0.14 degrees and 52%. 35% by weight of TiCN and TaC so as to have the same alloy composition as Sample 1.
4% by weight, 2% by weight of NbC, 44% by weight of WC, 7% by weight of Ni, 8% by weight of Co were mixed and sintered under the same conditions as those of the sample 1, 46% by weight of TiCN, 8% by weight of TaC,
Mo2C 8% by weight, WC 20% by weight, Ni 6% by weight, C
o 12 wt% was blended and sintered under the same conditions as Sample 1 and Sample 3
The same partial pressure as the sample 1 and sample 2 with a nitrogen partial pressure of 5
Samples 4 and 5 were prepared by sintering at 1400 ° C. with Torr and cooling at a CO partial pressure of 200 Torr. The respective (front half width) / (inner half width) is 62%, 63
%, 76% and 71%. A tool shape CNMG432 was prepared with a sintered surface of each of the nitrogen-containing sintered hard alloys of Samples 1 to 5 and a cutting test for thermal shock resistance evaluation was performed as described below. (Sample 1
Is the product of the present invention, and samples 2 to 5 are comparative products)

【0015】耐熱衝撃性切削テストThermal shock resistance cutting test

【表1】 結果、試料1は、2個しか欠損しなかったが試料2〜5
は、それぞれ14、16、18、13個欠損した。
[Table 1] As a result, although only two samples 1 were missing, samples 2-5
Had 14, 16, 18, and 13 defects, respectively.

【0016】〔実施例2〕平均粒径2μmの(Ti0.87
Nb0.070.06)(C0.5 0.5 )粉末と、同1.5μ
mのNi粉末とCo粉末をそれぞれ85重量%、7重量
%、8重量%を湿式混合後、型押し成形し、10-2Torr
の真空中で1200℃で脱ガス後、窒素ガス分圧5Torr
で1450℃にて1時間焼結後、表1に示す冷却をし、
併記したI H /IN (X線のCu−Kα線B1構造の
(220)面からの回折曲線を使用)を得た。これら
を、下記耐摩耗試験と実施例1中の耐熱衝撃テストを実
施し、その結果も表1に記す。
Example 2 (Ti with an average particle size of 2 μm)0.87
Nb0.07W0.06) (C0.5N0.5) Powder and same 1.5μ
85% by weight of Ni powder and 7% by weight of Co powder, respectively.
%, 8 wt% by wet mixing, and then press molding, 10-2Torr
Nitrogen gas partial pressure 5 Torr after degassing at 1200 ℃ in vacuum
After sintering at 1450 ° C. for 1 hour, cooling as shown in Table 1
I described together H/ IN(X-ray Cu-Kα ray B1 structure
(Using the diffraction curve from the (220) plane). these
The following abrasion resistance test and thermal shock test in Example 1 were performed.
The results are shown in Table 1.

【0017】耐摩耗切削テストWear-resistant cutting test

【表2】 [Table 2]

【0018】[0018]

【表3】 徐冷:3〜10℃/分 超徐冷:0.5〜5℃/分 炉冷:5〜15℃/分 急冷:10〜100℃/分[Table 3] Slow cooling: 3 to 10 ° C / min Super slow cooling: 0.5 to 5 ° C / min Furnace cooling: 5 to 15 ° C / min Rapid cooling: 10 to 100 ° C / min

【0019】〔実施例3〕平均粒径2μmの(Ti0.85
Ta0.05Nb0.040.06)(C0.550.45)粉末と、同
0.7μmのWC粉末と、同1.5μmのNi粉末とC
o粉末をそれぞれ52重量%、30重量%、10重量
%、8重量%を湿式混合後、型押し成形し、10-2Torr
の真空中で1200℃で脱ガス後、窒素ガス分圧20To
rrで1480℃にて1時間焼結後、真空中で1.5℃/
分で冷却し、試料13を作成した。試料13と同一合金
組成となるようにTiCN38重量%、TaC4重量
%、NbC2重量%、WC38重量%、Ni10重量
%、Co8重量%配合し試料13と同一条件で焼結し試
料14を、また、TiCN46重量%、NbC8重量
%、Mo2C8重量%、WC20重量%、Ni10重量
%、Co8重量%配合し試料13と同一条件で焼結し試
料15を、試料13、15と同一の型押し成形体を窒素
分圧15Torrで1430℃で焼結しCO分圧180Torr
で冷却し、それぞれ試料16、17を作成した。さら
に、試料13、15と同一の型押し成形体を窒素分圧1
5Torrで1430℃で焼結し、真空中で5℃で冷却し、
試料18、19を作成した。
Example 3 (Ti 0.85 with an average particle size of 2 μm)
Ta 0.05 Nb 0.04 W 0.06 ) (C 0.55 N 0.45 ) powder, 0.7 μm WC powder, 1.5 μm Ni powder and C
o 52% by weight, 30% by weight, 10% by weight, and 8% by weight of powder were wet-mixed with each other, and subjected to embossing molding to obtain 10 -2 Torr
Nitrogen gas partial pressure 20To after degassing at 1200 ℃ in vacuum
rr at 1480 ° C. for 1 hour, then in vacuum at 1.5 ° C. /
Sample 13 was prepared by cooling in minutes. 38% by weight of TiCN, 4% by weight of TaC, 2% by weight of NbC, 38% by weight of WC, 10% by weight of Ni, and 8% by weight of Co were mixed so as to have the same alloy composition as the sample 13, and the sample 14 was sintered under the same conditions as the sample 13, and 46% by weight of TiCN, 8% by weight of NbC, 8% by weight of Mo2C, 20% by weight of WC, 10% by weight of Ni, and 8% by weight of Co were mixed and sintered under the same conditions as the sample 13 to obtain a sample 15 and an embossed compact identical to the samples 13 and 15. Sintered at 1430 ℃ with nitrogen partial pressure of 15 Torr and CO partial pressure of 180 Torr
And cooled to prepare Samples 16 and 17, respectively. Further, the same embossed molded body as Samples 13 and 15 was subjected to nitrogen partial pressure 1
Sintered at 1430 ° C at 5 Torr, cooled at 5 ° C in vacuum,
Samples 18 and 19 were prepared.

【0020】それぞれのX線のCu−Kα線B1構造の
(220)面からの回折曲線を使用しての表面部のピー
ク位置の内部のピーク位置からの回折角ずれ角(低角へ
のずれを−、高角へのずれを+)と、各試料の窒素含有
焼結硬質合金で焼結肌で工具形状CNMG432を作成
し、下記耐熱衝撃性評価の切削テスト(2)を行い結果
を併せて第2表に記した。
Diffraction angle deviation angle (deviation to a low angle) from the internal peak position of the peak position of the surface portion using the diffraction curve from the (220) plane of the Cu-Kα ray B1 structure of each X-ray. -, The deviation to a high angle is +), and a tool shape CNMG432 was prepared with a sintered skin using the nitrogen-containing sintered hard alloy of each sample, and the cutting test (2) for the thermal shock resistance evaluation described below was performed. The results are shown in Table 2.

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】〔実施例4〕平均粒径2μmの(Ti0.85
Ta0.090.06)(C0.6 0.4 )粉末と、同0.7μ
mのWC粉末と、同1.5μmのNi粉末とCo粉末を
それぞれ45重量%、40重量%、8重量%、7重量%
を湿式混合後、型押し成形し、10-2Torrの真空中で1
200℃で脱ガス後、窒素ガス分圧を1480℃まで5
〜20Torrと漸増し1480℃にて1時間焼結後、真空
中で2℃/分で冷却し、試料20を作成した。試料20
と同一合金組成となるようにTiCN35重量%、Nb
C6重量%、WC44重量%、Ni8重量%、Co7重
量%配合し試料13と同一条件で焼結し試料21を、ま
た、TiCN46重量%、NbC8重量%、Mo2C8
重量%、WC20重量%、Ni10重量%、Co8重量
%配合し試料20と同一条件で焼結し試料22を作成
し、それぞれのIWNとIWH/IWNを、試料20で0.4
1、0.05、試料21で0.55、0.51、試料2
2で0.01以下、0.01以下、とした。試料20〜
22を用い実施例2と同様の耐摩耗切削テストを実施し
た結果、それぞれのVB は、0.14mm、0.29m
m、0.33mmであった。また、実施例3と同様の耐
熱衝撃性切削テスト(2)を実施した結果、欠損切刃数
は、それぞれ、3個、18個、13個であった。(試料
20は本発明品、試料21〜22は比較品)。
Example 4 (Ti 0.85 with an average particle size of 2 μm)
Ta 0.09 W 0.06 ) (C 0.6 N 0.4 ) powder and 0.7μ
m WC powder and the same 1.5 μm Ni powder and Co powder of 45% by weight, 40% by weight, 8% by weight and 7% by weight, respectively.
Wet-blended and then stamped and molded in a vacuum of 10 -2 Torr.
After degassing at 200 ℃, nitrogen gas partial pressure up to 1480 ℃ 5
After gradually increasing to -20 Torr and sintering at 1480 ° C for 1 hour, sample 20 was prepared by cooling in vacuum at 2 ° C / min. Sample 20
35% by weight of TiCN and Nb so that the same alloy composition as
C6 wt%, WC44 wt%, Ni8 wt%, Co7 wt% were mixed and sintered under the same conditions as Sample 13, and Sample 21 was used. TiCN 46 wt%, NbC8 wt%, Mo2C8
% By weight, 20% by weight of WC, 10% by weight of Ni and 8% by weight of Co were mixed together and sintered under the same conditions as the sample 20 to prepare a sample 22. Each I WN and I WH / I WN of the sample 20 was 0.4.
1, 0.05, sample 21 0.55, 0.51, sample 2
2 was 0.01 or less and 0.01 or less. Sample 20-
As a result of carrying out the same abrasion-resistant cutting test as in Example 2 using No. 22, V B was 0.14 mm and 0.29 m, respectively.
m and 0.33 mm. Further, as a result of performing a thermal shock resistance cutting test (2) similar to that of Example 3, the number of defective cutting edges was 3, 18, and 13, respectively. (Sample 20 is a product of the present invention, and samples 21 to 22 are comparative products).

【0024】〔実施例5〕試料23として、平均粒径2
μmの(Ti0.85Ta0.05Nb0.040.06)(C 0.55
0.45)粉末と、同0.7μmのWC粉末と、同1.5μ
mのNi粉末とCo粉末をそれぞれ47重量%、38重
量%、7重量%、8重量%を配合し、試料24として試
料23と同一合金組成となるようにTiCN37重量
%、TaC4重量%、NbC2重量%、WC42重量
%、Ni7重量%、Co8重量%配合、さらに、試料2
4としてTiCN50重量%、TaC2重量%、NbC
8重量%、Mo2C5重量%、WC19重量%、Ni8
重量%、Co8重量%配合し、それぞれを湿式混合後、
型押し成形し、10-2Torrの真空中で1200℃で脱ガ
ス後、窒素ガス分圧20Torrで1450℃にて1時間焼
結後、真空中で2℃/分で冷却し、切削用焼結肌チップ
CNMG432を作成した。また、試料23〜25と同
様に焼結し、冷却のみCO分圧200Torrで行ったもの
をそれぞれ試料26、27、28とした。それぞれの
(裏面の半価幅)/(内部の半価幅)、IH 、IN 、I
H /IN (X線のCu−Kα線B1構造の(220)面
からの回折曲線を使用)、ピーク位置ずれ角、IWN、I
WH/IWN、実施例2と同様の耐摩耗切削テスト結果、実
施例3と同様の耐熱衝撃性切削テスト(2)を実施した
結果、下記靱性テスト結果を表3に併記する。(試料2
3は本発明品、試料24〜28は比較品)
[Example 5] Sample 23 had an average particle size of 2
μm (Ti0.85Ta0.05Nb0.04W0.06) (C 0.55N
0.45) Powder, 0.7 μm WC powder, 1.5 μm
m Ni powder and Co powder are 47% by weight and 38% by weight, respectively.
%, 7% by weight, 8% by weight, and tested as sample 24.
37 weight of TiCN so that it has the same alloy composition as material 23
%, TaC 4% by weight, NbC 2% by weight, WC 42% by weight
%, Ni 7 wt%, Co 8 wt%, and Sample 2
4 as TiCN 50% by weight, TaC 2% by weight, NbC
8 wt%, Mo2C5 wt%, WC19 wt%, Ni8
% By weight and Co 8% by weight, and after wet-mixing each of them,
Molded and molded, 10-2Degas at 1200 ° C in a Torr vacuum
After that, bake for 1 hour at 1450 ° C with a partial pressure of nitrogen gas of 20 Torr.
After binding, cool at 2 ° C / min in a vacuum, and insert a sintered skin chip for cutting
CNMG432 was created. Also, the same as Samples 23-25
Like sintering and cooling only at a CO partial pressure of 200 Torr
Were designated as Samples 26, 27 and 28, respectively. each
(Full width at half maximum) / (Full width at half maximum), IH, IN, I
H/ IN((220) plane of Cu-Kα ray B1 structure of X-ray
From the above), peak position deviation angle, IWN, I
WH/ IWNA wear resistance cutting test result similar to that of Example 2,
The same thermal shock resistance cutting test (2) as in Example 3 was carried out.
As a result, the following toughness test results are also shown in Table 3. (Sample 2
3 is the product of the present invention, and samples 24 to 28 are comparative products)

【0025】靱性切削テストToughness cutting test

【表6】 [Table 6]

【0026】[0026]

【表7】 [Table 7]

【0027】[0027]

【発明の効果】上述のように本発明によれば、切削工具
として特に熱衝撃の厳しい条件での切削、例えばフライ
ス切削や角材の旋盤による切削加工、また、切込みの大
きく変動する湿式での倣い切削加工など、従来は高価な
被覆超硬合金工具でしか使用できなかった加工領域に対
し、コーティングなしで極めて信頼性が高い窒素含有焼
結硬質合金を提供できるという効果を有する。
As described above, according to the present invention, as a cutting tool, cutting under particularly severe conditions of thermal shock, for example, milling cutting or cutting with a lathe of square timber, and wet copying with greatly varying cutting depth. It has an effect that a highly reliable nitrogen-containing sintered hard alloy can be provided without a coating to a processing region such as a cutting process which can be conventionally used only with an expensive coated cemented carbide tool.

【図面の簡単な説明】[Brief description of drawings]

【図1】は有芯二重構造をもつ窒素含有焼結硬質合金の
X線のCU−Kα線の典型的なB1構造(422)面か
らの回折曲線である。
FIG. 1 is a diffraction curve from a typical B1 structure (422) plane of X-ray CU-Kα line of a nitrogen-containing sintered hard alloy having a cored double structure.

【図2】は有芯二重構造をもつ窒素含有焼結硬質合金の
X線のCu−Kα線のB1構造(220)面からの回折
曲線である。
FIG. 2 is a diffraction curve from a B1 structure (220) plane of an X-ray Cu-Kα line of a nitrogen-containing sintered hard alloy having a cored double structure.

【図3】は実施例5の中の試料23の、(a)表面部、
(b)内部のX線Cu−Kα線の回折曲線である。
3 (a) is a surface portion of Sample 23 in Example 5, FIG.
(B) An internal X-ray Cu-Kα ray diffraction curve.

【図4】は同じく試料24の、(a)表面部、(b)内
部のX線Cu−Kα線の回折曲線である。
FIG. 4 is a diffraction curve of an X-ray Cu-Kα ray of (a) surface portion and (b) inside of the sample 24.

【図5】は同じく試料25の、(a)表面部、(b)内
部のX線Cu−Kα線の回折曲線である。
5A and 5B are diffraction curves of X-ray Cu-Kα ray of (a) surface portion and (b) inside of Sample 25, respectively.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Tiと、周期律表の4a,5a,6a族
から選ばれたTiを除く少なくとも1種の遷移金属の炭
化物、窒化物、炭窒化物あるいはこれらの複合炭窒化物
の少なくとも1種以上からなる硬質相が75〜95重量
%で、Ni及びCo並びに不可避不純物を含む結合相が
5〜25重量%であり、X線回折測定でB1構造のピー
クが2種類検出される窒素含有焼結硬質合金において、
X線回折測定における2つのB1構造の同一回折面から
のピークのうち低角側に検出される強度の大きい方のピ
ークにおいて、合金表面部で測定するX線回折ピークの
半価幅が、合金の1mm以上内部で測定するX線回折ピ
ークの半価幅に対し40%以上60%未満である事を特
徴とする窒素含有焼結硬質合金。
1. At least one of a carbide, a nitride, a carbonitride or a composite carbonitride of Ti and at least one transition metal other than Ti selected from the groups 4a, 5a and 6a of the periodic table. 75 to 95% by weight of a hard phase consisting of one or more species, 5 to 25% by weight of a binder phase containing Ni and Co and inevitable impurities, and 2 types of peaks of B1 structure detected by X-ray diffraction measurement. In sintered hard alloy,
Of the two peaks from the same diffraction plane of the B1 structure in the X-ray diffraction measurement, the half-value width of the X-ray diffraction peak measured at the alloy surface portion is the peak with the higher intensity detected on the low angle side. Nitrogen-containing sintered hard alloy, characterized in that it is 40% or more and less than 60% with respect to the half width of the X-ray diffraction peak measured inside 1 mm or more.
【請求項2】 Tiと、周期律表の4a,5a,6a族
から選ばれたTiを除く少なくとも1種の遷移金属の炭
化物、窒化物、炭窒化物あるいはこれらの複合炭窒化物
の少なくとも1種以上からなる硬質相が75〜95重量
%で、Ni及びCo並びに不可避不純物を含む結合相が
5〜25重量%であり、X線回折測定でB1構造のピー
クが2種類検出される窒素含有焼結硬質合金において、
X線回折における2つのB1構造の同一回折面からのピ
ークにおいて、回折角の高角側に検出される強度の小さ
いピークの強度をIs 、回折角の低角側に検出される強
度の大きいピークの強度をIL とし、合金表面部でのI
s /IL で表されるピーク強度比をIH 、合金の1mm
以上内部でのIs /IL で表されるピーク強度比をIN
としたときのIH /IN が、0.01以上0.95以下
である事を特徴とする窒素含有焼結硬質合金。
2. At least one of a carbide, a nitride, a carbonitride or a composite carbonitride of Ti and at least one transition metal other than Ti selected from the groups 4a, 5a and 6a of the periodic table. 75 to 95% by weight of a hard phase consisting of one or more species, 5 to 25% by weight of a binder phase containing Ni and Co and inevitable impurities, and 2 types of peaks of B1 structure detected by X-ray diffraction measurement. In sintered hard alloy,
In the peaks from the same diffraction plane of two B1 structures in X-ray diffraction, the intensity of the peak having a small intensity detected on the high angle side of the diffraction angle is I s , and the intensity of the peak having a high intensity detected on the low angle side of the diffraction angle is large. Let I L be the strength of
The peak intensity ratio expressed by s / I L is I H , the alloy is 1 mm
The peak intensity ratio represented by I s / I L in the above is I N
And I H / I N when the is a nitrogen-containing sintered hard alloy, wherein the at 0.01 to 0.95.
【請求項3】 Tiと、周期律表の4a,5a,6a族
から選ばれたTiを除く少なくとも1種の遷移金属の炭
化物、窒化物、炭窒化物あるいはこれらの複合炭窒化物
の少なくとも1種以上からなる硬質相が75〜95重量
%で、Ni及びCo並びに不可避不純物を含む結合相が
5〜25重量%であり、X線回折測定でB1構造のピー
クが2種類検出される窒素含有焼結硬質合金において、
X線回折角の低角側に検出される強度の大きいピークの
ピーク位置において、合金の1mm以上内部で測定する
X線回折ピーク位置に対し合金表面部で測定するX線回
折ピーク位置が、低角側に存在する事を特徴とする窒素
含有焼結硬質合金。
3. At least one of a carbide, a nitride, a carbonitride or a composite carbonitride of Ti and at least one transition metal other than Ti selected from the groups 4a, 5a and 6a of the periodic table. 75 to 95% by weight of a hard phase consisting of one or more species, 5 to 25% by weight of a binder phase containing Ni and Co and inevitable impurities, and 2 types of peaks of B1 structure detected by X-ray diffraction measurement. In sintered hard alloy,
At the peak position of the high intensity peak detected on the lower side of the X-ray diffraction angle, the X-ray diffraction peak position measured on the alloy surface is lower than the X-ray diffraction peak position measured inside the alloy of 1 mm or more. Nitrogen-containing sintered hard alloy characterized by existing on the corner side.
【請求項4】 Tiと、周期律表の4a,5a,6a族
から選ばれたTiを除く少なくとも1種の遷移金属の炭
化物、窒化物、炭窒化物あるいはこれらの複合炭窒化物
の少なくとも1種以上からなる硬質相が75〜95重量
%で、Ni及びCo並びに不可避不純物を含む結合相が
5〜25重量%であり、X線回折測定でB1構造のピー
クが2種類検出される窒素含有焼結硬質合金において、
WCの(110)ピークの強度をIWC、2つのB1構造
の(220)ピークのうち低角側に検出される強度の大
きいピークの強度をIB1とし、合金の1mm以上内部で
のIWC/IB1で表される強度比をIWN、合金表面部での
WC/IB1で表される強度比をIWHとしたとき、IWN
0.1以上0.95未満で、IWH/IWNが0.2以下で
ある事を特徴とする窒素含有焼結硬質合金。
4. At least one of a carbide, a nitride, a carbonitride or a composite carbonitride of Ti and at least one transition metal other than Ti selected from the groups 4a, 5a and 6a of the periodic table. 75 to 95% by weight of a hard phase consisting of one or more species, 5 to 25% by weight of a binder phase containing Ni and Co and inevitable impurities, and 2 types of peaks of B1 structure detected by X-ray diffraction measurement. In sintered hard alloy,
The intensity of the (110) peak of WC is I WC , and the intensity of the peak having the higher intensity detected on the lower angle side of the (220) peaks of the two B1 structures is I B1, and I WC within 1 mm or more of the alloy When the strength ratio represented by / I B1 is I WN and the strength ratio represented by I WC / I B1 on the alloy surface is I WH , I WN is 0.1 or more and less than 0.95, and I A nitrogen-containing sintered hard alloy having a WH / I WN of 0.2 or less.
【請求項5】 X線回折における2つのB1構造の同一
回折面からのピークにおいて、回折角の高角側に検出さ
れる強度の小さいピークの強度をIS 、回折角の低角側
に検出される強度の大きいピークの強度をIL とし、合
金表面部でのIS /IL で表されるピーク強度比を
H 、合金の1mm以上内部でのIS /I L で表される
ピーク強度比をIN としたときのIH /IN が、0.0
1以上0.95以下である事を特徴とする請求項1に記
載の窒素含有焼結硬質合金。
5. The identity of two B1 structures in X-ray diffraction
In the peak from the diffraction plane, it is detected on the high angle side of the diffraction angle.
The intensity of the peak with a small intensityS, Low angle side of diffraction angle
The intensity of the peak with high intensity detected inLAnd then
I on the gold surfaceS/ ILThe peak intensity ratio represented by
IH, I within 1 mm of alloyS/ I LRepresented by
The peak intensity ratio is INI whenH/ INBut 0.0
It is 1 or more and 0.95 or less, It describes in Claim 1 characterized by the above-mentioned.
The listed nitrogen-containing sintered hard alloy.
【請求項6】 X線回折角の低角側に検出される強度の
大きいピークのピーク位置において、合金の1mm以上
内部で測定するX線回折ピーク位置に対し合金表面部で
測定するX線回折ピーク位置が、低角側に存在する事を
特徴とする請求項1または5に記載の窒素含有焼結硬質
合金。
6. The X-ray diffraction measured on the alloy surface portion with respect to the X-ray diffraction peak position measured inside 1 mm or more of the alloy at the peak position of the high intensity peak detected on the low angle side of the X-ray diffraction angle. The nitrogen-containing sintered hard alloy according to claim 1 or 5, wherein the peak position is on the lower angle side.
【請求項7】 WCの(110)ピークの強度をIWC
2つのB1構造の(220)ピークのうち低角側に検出
される強度の大きいピークの強度をIB1とし、合金の1
mm以上内部でのIWC/IB1で表される強度比をIWN
合金表面部でのIWC/IB1で表される強度比をIWHとし
たとき、IWNが0.1以上0.95未満で、IWH/IWN
が0.2以下である事を特徴とする請求項1または5ま
たは6に記載の窒素含有焼結硬質合金。
7. The intensity of the (110) peak of WC is I WC ,
Of the (220) peaks of the two B1 structures, the intensity of the peak having a high intensity detected on the low angle side is defined as I B1 and the intensity of the alloy is 1
The strength ratio represented by I WC / I B1 inside mm or more is I WN ,
Assuming that the strength ratio represented by I WC / I B1 on the alloy surface is I WH , I WN is 0.1 or more and less than 0.95, and I WH / I WN
Is 0.2 or less, The nitrogen-containing sintered hard alloy according to claim 1, 5 or 6, characterized in that.
JP15344794A 1994-07-05 1994-07-05 Nitrogen-containing sintered hard alloy Pending JPH0813077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15344794A JPH0813077A (en) 1994-07-05 1994-07-05 Nitrogen-containing sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15344794A JPH0813077A (en) 1994-07-05 1994-07-05 Nitrogen-containing sintered hard alloy

Publications (1)

Publication Number Publication Date
JPH0813077A true JPH0813077A (en) 1996-01-16

Family

ID=15562756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15344794A Pending JPH0813077A (en) 1994-07-05 1994-07-05 Nitrogen-containing sintered hard alloy

Country Status (1)

Country Link
JP (1) JPH0813077A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105100A (en) * 2008-10-29 2010-05-13 Kyocera Corp Cermet sintered body and cutting tool
JP5574955B2 (en) * 2008-09-26 2014-08-20 京セラ株式会社 Cermet sintered body and cutting tool
EP2505289A4 (en) * 2009-11-26 2017-08-02 Kyocera Corporation Rotation tool
WO2017179657A1 (en) * 2016-04-13 2017-10-19 京セラ株式会社 Cutting insert and cutting tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574955B2 (en) * 2008-09-26 2014-08-20 京セラ株式会社 Cermet sintered body and cutting tool
US9074270B2 (en) 2008-09-26 2015-07-07 Kyocera Corporation Sintered cermet and cutting tool
JP2010105100A (en) * 2008-10-29 2010-05-13 Kyocera Corp Cermet sintered body and cutting tool
EP2505289A4 (en) * 2009-11-26 2017-08-02 Kyocera Corporation Rotation tool
WO2017179657A1 (en) * 2016-04-13 2017-10-19 京セラ株式会社 Cutting insert and cutting tool

Similar Documents

Publication Publication Date Title
US4843039A (en) Sintered body for chip forming machining
US5066553A (en) Surface-coated tool member of tungsten carbide based cemented carbide
KR102441723B1 (en) Cermet, cutting tool, and method for manufacturing cermet
EP2450136A1 (en) Cermet and coated cermet
JP2004292905A (en) Compositionally graded sintered alloy and method of producing the same
EP2631026A1 (en) Tool comprising sintered cubic boron nitride
CN110168121B (en) Cemented carbide and cutting tool
EP0687744B1 (en) Nitrogen-containing sintered hard alloy
JPH0813077A (en) Nitrogen-containing sintered hard alloy
JP2737676B2 (en) Nitrogen-containing sintered hard alloy
JP4703122B2 (en) Method for producing TiCN-based cermet
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JP2893886B2 (en) Composite hard alloy material
JP2737677B2 (en) Nitrogen-containing sintered hard alloy
JP2801484B2 (en) Cemented carbide for cutting tools
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JP2815533B2 (en) Cutting equipment for milling
KR20000047918A (en) Sintered Body Having High Hardness and High Strength
JP4126451B2 (en) Cemented carbide
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JPH08225877A (en) Nitrogen-containing sintered hard alloy
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JPH0673560A (en) Coated sintered hard alloy member and its production
JP2835255B2 (en) Cemented carbide
WO2022172729A1 (en) Cemented carbide and cutting tool which comprises same as base material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628