JP2737677B2 - Nitrogen-containing sintered hard alloy - Google Patents
Nitrogen-containing sintered hard alloyInfo
- Publication number
- JP2737677B2 JP2737677B2 JP6324603A JP32460394A JP2737677B2 JP 2737677 B2 JP2737677 B2 JP 2737677B2 JP 6324603 A JP6324603 A JP 6324603A JP 32460394 A JP32460394 A JP 32460394A JP 2737677 B2 JP2737677 B2 JP 2737677B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- nitrogen
- peak
- alloy
- hard alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、窒素含有焼結硬質合金
に関し、特に切削加工用工具の材質として極めて耐熱衝
撃性に優れ、かつ耐摩耗性及び強度に富み、湿式切削に
も使用可能な窒素含有焼結硬質合金に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen-containing sintered hard alloy, and more particularly to a cutting tool which is extremely excellent in thermal shock resistance, has excellent wear resistance and strength, and can be used for wet cutting. It relates to a nitrogen-containing sintered hard alloy.
【0002】[0002]
【従来の技術】Tiを主成分とする炭窒化物などを硬質
相とし、これをNiとCoからなる金属で結合した窒素
を含有する焼結硬質合金が切削工具としてすでに実用化
されている。この窒素含有焼結硬質合金は、従来の窒素
を含有しない焼結硬質合金に比べ硬質相が著しく微粒に
なるため耐高温クリープ特性が大幅に改善されるためW
Cを主成分としたいわゆる超硬合金と並んで切削工具と
して広く使用されてきている。しかしながら、この窒素
含有焼結硬質合金は、 主成分であるTiの炭窒化物の熱伝導度が超硬合金の
主成分であるWCの熱伝導率に比べて著しく小さいた
め、この窒素含有焼結硬質合金の熱伝導度は超硬合金の
約1/2であること、 熱膨張係数も、同様に主成分の特性値に依存して窒素
含有焼結硬質合金のそれは超硬合金に比べ1.3倍にな
ること、 などの理由により熱衝撃に対する抵抗が低くなる。この
ため、特に熱衝撃の厳しくなる条件下での切削、例えば
フライス切削や角材の旋盤による切削加工、また、切込
みの大きく変動する湿式での倣い切削などには、被覆超
硬合金などに比べて信頼性が低いのが現状だった。この
ような問題に対して、例えば、特開平2−15139号
公報や、特開平5−9646号公報で、強靱なサーメッ
トが開示されている。2. Description of the Related Art A sintered hard alloy containing nitrogen in which a carbon nitride or the like containing Ti as a main component is used as a hard phase and bonded with a metal composed of Ni and Co has already been put into practical use as a cutting tool. This nitrogen-containing sintered hard alloy has a remarkably fine hard phase compared to a conventional sintered hard alloy not containing nitrogen.
It has been widely used as a cutting tool along with a so-called cemented carbide containing C as a main component. However, in this nitrogen-containing sintered hard alloy, the thermal conductivity of the carbonitride of Ti, which is the main component, is significantly smaller than the thermal conductivity of WC, which is the main component of the cemented carbide. The thermal conductivity of the hard alloy is about の of that of the cemented carbide, and the coefficient of thermal expansion also depends on the characteristic value of the main component. For example, the resistance to thermal shock is reduced. For this reason, cutting under particularly severe conditions of thermal shock, such as milling and cutting of square bars with a lathe, and wet copying where the depth of cut fluctuates greatly, compared to coated cemented carbide, etc. The current situation was low reliability. To solve such a problem, for example, JP-A-2-15139 and JP-A-5-9646 disclose tough cermets.
【0003】又、窒素含有焼結硬質合金は、特公昭56
−51201号公報などに開示されているように、硬質
相粒子がいわゆる有芯二重構造を呈しTiとNが富化さ
れている芯部とW,Moが富化されNが貧化している周
辺部とで形成されている。このような二重構造の合金は
X線回折測定(Cu−Kα線)をすると、図3に示すよ
うに同じB1構造の同一回折面からのピークが2つに分
離されて検出される。ここで回折角の低角側の強度の強
いピークは周辺部のもので、高角側の強度の低いピーク
は芯部のものである。A nitrogen-containing sintered hard alloy is disclosed in
As disclosed in, for example, Japanese Patent Application Publication No. 51201, a hard phase particle has a so-called cored double structure, and a core portion in which Ti and N are enriched, and W and Mo are enriched and N is poor. It is formed with the peripheral part. When such an alloy having a double structure is subjected to X-ray diffraction measurement (Cu-Kα ray), as shown in FIG. 3, peaks from the same diffraction plane having the same B1 structure are separated into two and detected. Here, the peak with a high intensity on the low angle side of the diffraction angle is that of the peripheral portion, and the peak with a low intensity on the high angle side is that of the core.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記い
ずれの公報に開示されたサーメットにおいても、耐摩耗
性及び靱性は向上しているが、被覆超硬合金に比べれば
耐欠損性は不十分であり、耐熱衝撃性、特に熱亀裂の発
生や、熱衝撃と機械的衝撃の両者に起因する亀裂の進展
による突発欠損が生じやすく、十分な信頼性が得られな
い。そこで本発明者らは、種々の切削における温度分布
などの切削現象の解析と、工具内の材料成分の配置との
詳細な研究をしてきた結果、本発明に達した。本発明
は、従来の高価な被覆超硬合金でしか使用できなかった
厳しい熱衝撃を受ける条件下での加工においても、表面
被覆を施すことなく高い信頼性を持って使用可能な切削
工具用窒素含有焼結硬質合金を提供することを目的とす
る。However, the cermets disclosed in any of the above publications have improved wear resistance and toughness, but have insufficient fracture resistance as compared with coated cemented carbide. In addition, thermal shock resistance, particularly thermal cracking, and sudden loss due to crack propagation caused by both thermal shock and mechanical shock are likely to occur, and sufficient reliability cannot be obtained. Then, the present inventors have conducted detailed research on the analysis of cutting phenomena such as temperature distribution in various cutting and the arrangement of material components in a tool, and as a result, have reached the present invention. The present invention is a cutting tool nitrogen for cutting tools that can be used with high reliability without applying a surface coating, even in machining under severe thermal shock conditions that could only be used with conventional expensive coated cemented carbide. It is an object of the present invention to provide a sintered hard alloy.
【0005】[0005]
【課題を解決するための手段】硬質相粒子の有芯構造の
芯部(黒芯)の割合を、合金内部に対し合金表面部の方
が同等もしくは大きいある範囲内にすることが工具性
能、特に耐摩耗性を著しく向上させられるという知見を
得、本発明に到達した。すなわち、本発明の窒素含有焼
結硬質合金は、Tiと、周期律表の4a、5a、6a族
から選ばれたTiを除く少なくとも1種の遷移金属の炭
化物、窒化物、炭窒化物あるいはこれらの複合炭窒化物
の少なくとも1種以上からなる硬質相が75〜95重量
%で、Ni及びCo並びに不可避不純物を含む結合相が
5〜25重量%であり、X線回折測定でB1構造のピー
クが2種類検出される窒素含有焼結硬質合金において、
X線回折における2つのB1構造の同一回折面からのピ
ークにおいて、回折角の高角側に検出される強度の小さ
いピークの強度をIS 、回折角の低角側に検出される強
度の大きいピークの強度をIL とし、合金表面部でのI
S /IL で表わされるピーク強度比をIH 、合金の1m
m以上内部でのIS /IL で表わされるピーク強度比を
IN としたときのIH /IN が、0.5以上3.0以下
である事を特徴とする窒素含有焼結硬質合金である。本
発明における硬質相は、75重量%未満では耐摩耗性、
耐塑性変形性の低下が著しく、95重量%を越えると強
度、靱性が不足し好ましくない。本発明のIH /I
N は、0.5未満は耐摩耗性が不足し、3.0を越える
と所望の耐熱衝撃性を得ることができない。本発明では
B1構造の硬質相だけでなく、内部にWC相を存在させ
ても良い。Means for Solving the Problems The ratio of the core portion (black core) of the core structure of the hard phase particles is set to be within a certain range in which the alloy surface portion is equal to or larger than the alloy inside, and the tool performance, In particular, they have found that wear resistance can be significantly improved, and have reached the present invention. That is, the nitrogen-containing sintered hard alloy of the present invention is a carbide, nitride, carbonitride or a carbide of Ti and at least one transition metal other than Ti selected from Groups 4a, 5a and 6a of the periodic table. 75 to 95% by weight of a hard phase composed of at least one of the following composite carbonitrides, 5 to 25% by weight of a binder phase containing Ni, Co and unavoidable impurities, and a peak of the B1 structure in X-ray diffraction measurement. In a nitrogen-containing sintered hard alloy where two types are detected,
Among the peaks from the same diffraction plane of the two B1 structures in X-ray diffraction, the intensity of the small intensity peak detected on the high angle side of the diffraction angle is I s , and the intensity of the high intensity peak detected on the low angle side of the diffraction angle. strength of the I L, I at the alloy surface portion
S / the peak intensity ratio represented by I L I H, 1m alloys
The peak intensity ratio represented by I S / I L inside or m is I H / I N when the I N, the nitrogen-containing sintered hard, characterized in that it is 0.5 to 3.0 Alloy. The hard phase in the present invention has a wear resistance of less than 75% by weight,
The plastic deformation resistance is remarkably reduced, and if it exceeds 95% by weight, strength and toughness are insufficient, which is not preferable. I H / I of the present invention
If N is less than 0.5, the abrasion resistance is insufficient, and if it exceeds 3.0, the desired thermal shock resistance cannot be obtained. In the present invention, not only the hard phase having the B1 structure but also the WC phase may be present inside.
【0006】[0006]
【作用】本発明により、表面に有芯構造の芯部を多くす
るとこの部分が本質的に耐アブレッシブ磨耗性や耐熱
性、化学的安定性に優れるため耐磨耗性を高めることが
でき、内部を強度に富む有芯構造の周辺部分を増やすこ
とができ、工具強度を向上でき、全体として高性能な工
具となる。ただし、芯部を余り多くすると表面部の強度
が低下してしまう。According to the present invention, when a core having a cored structure is increased on the surface, this part is essentially excellent in abrasive wear resistance, heat resistance, and chemical stability, so that the wear resistance can be increased. The peripheral portion of the cored structure with high strength can be increased, the tool strength can be improved, and a high-performance tool as a whole can be obtained. However, if the number of the cores is too large, the strength of the surface portion is reduced.
【0007】本発明の合金は、所望の原料を湿式混合
し、型押し成形し、真空から、窒素雰囲気中で1400
〜1700℃程度で焼結後、脱炭脱窒素雰囲気中で徐冷
することによって調製することができる。[0007] The alloy of the present invention is obtained by wet mixing desired raw materials, embossing, and vacuuming to 1400 in a nitrogen atmosphere.
After sintering at about 1700 ° C., it can be prepared by gradually cooling in a decarburized and denitrified atmosphere.
【0008】以下、本発明を実施例により更に詳細に説
明するが、本発明の限定を意図するものではない。Hereinafter, the present invention will be described in more detail with reference to Examples, but is not intended to limit the present invention.
(実施例1)平均粒径2μmで有芯構造の外郭部分が反
射電子顕微鏡像で真っ白に見え、芯部分が真っ黒に見え
る(Ti0.85Ta0.05Nb0.04W0.06)(C
0.55N0.45)粉末と、同0.7μmのWC粉末と、同
1.5μmのNi粉末とCo粉末をそれぞれ45重量
%、40重量%、7重量%、8重量%を湿式混合後、型
押し成形し、10-2Torrの真空中で1200℃で脱
ガス後、窒素ガス分圧20から50Torrで1490
℃にて1時間焼結後、真空中で2.5℃/分で冷却し、
試料1を調製した。この試料1の表面ラッピング面での
X線のCu−Kα線B1構造の(220)面からの回折
曲線から求めた強度比IH が0.1、表面から1mm内
部での強度比IN が0.18で、IH /IN =0.56
であった(図1参照)。試料1と同一合金組成となるよ
うにTiCN35重量%、TaC4重量%、NbC2重
量%、WC44重量%、Ni7重量%、Co8重量%配
合し試料1と同一条件で焼結し試料2を調製し、また、
TiCN46重量%、TaC8重量%、Mo2 C8重量
%、WC20重量%、Ni6重量%、Co12重量%配
合し試料1と同一条件で焼結し試料3を調製し、試料
1、試料2と同一の型押し成形体をそれぞれ窒素分圧5
Torrで1430℃で焼結し、CO分圧200Tor
rで冷却し、それぞれ試料4、試料5を調製した。(Example 1) The outer part of the cored structure having an average particle size of 2 μm looks pure white in a reflection electron microscope image and the core part looks pure black (Ti 0.85 Ta 0.05 Nb 0.04 W 0.06 ) (C
0.55 N 0.45 ) Powder, WC powder of 0.7 μm, Ni powder and Co powder of 1.5 μm, 45% by weight, 40% by weight, 7% by weight, and 8% by weight, respectively, are wet-mixed and then pressed. After molding and degassing at 1200 ° C. in a vacuum of 10 −2 Torr, a nitrogen gas partial pressure is 1490 at a pressure of 20 to 50 Torr.
After sintering at 2.5 ° C / min for 1 hour in vacuum,
Sample 1 was prepared. Intensity ratio I H determined from the diffraction curve from (220) plane of Cu-K [alpha line B1 structure of X-ray on the surface lapping surface of the sample 1 is 0.1, the intensity ratio I N at 1mm inside from the surface 0.18, I H / I N = 0.56
(See FIG. 1). 35% by weight of TiCN, 4% by weight of TaC, 2% by weight of NbC, 44% by weight of WC, 7% by weight of Ni, and 8% by weight of Co were blended so as to have the same alloy composition as Sample 1, and sintered under the same conditions as Sample 1 to prepare Sample 2, Also,
A mixture of 46% by weight of TiCN, 8% by weight of TaC, 8% by weight of Mo 2 C, 20% by weight of WC, 6% by weight of Ni, and 12% by weight of Co was mixed and sintered under the same conditions as Sample 1 to prepare Sample 3, which was the same as Samples 1 and 2. Each of the embossed compacts is nitrogen partial pressure
Sinter at 1430 ° C with Torr, CO partial pressure 200 Torr
After cooling at r, Samples 4 and 5 were prepared, respectively.
【0009】また、平均粒径2μmの(Ti0.87Nb
0.07W0.06)(C0.5 N0.5 )粉末と、同1.5μmの
Ni粉末とCo粉末をそれぞれ85重量%、7重量%、
8重量%を湿式混合後、型押し成形し、10-2Torr
の真空中で1200℃で脱ガス後、窒素ガス分圧15T
orrで1480℃にて1時間焼結後、真空(10-5T
orr)中で超徐冷(0.5〜5℃/分)して試料6を
調製し、同じくCO2 5Torr中で徐冷(5〜10℃
/分)して試料7を調製し、N2 中で急冷(100To
rr、10〜50℃/分)して試料8を調製した。Ti
CN35重量%、NbC6重量%、WC44重量%、N
i8重量%、Co7重量%配合したものを、試料6、
7、8と同一条件で焼結してそれぞれ試料9、10、1
1を調製した。また、TiCN56重量%、NbC8重
量%、Mo2C8重量%、WC10重量%、Ni10重
量%、Co8重量%配合したものを、試料1、4と同一
条件で焼結してそれぞれ試料12、13を調製し、それ
ぞれのIH /IN を求め、焼結肌で工具形状CNMG4
32を作成して下記耐摩耗性評価と耐熱衝撃性評価の切
削テストに付して、得られた結果を表1及び図2に示
す。試料2、9、10、11には合金組織の内部にWC
が析出していた。Further, (Ti 0.87 Nb) having an average particle size of 2 μm
0.07 W 0.06 ) (C 0.5 N 0.5 ) powder, and 85 wt% and 7 wt% of 1.5 μm Ni powder and Co powder, respectively.
After wet mixing 8% by weight, embossing is performed, and 10 −2 Torr is applied.
After degassing at 1200 ° C in a vacuum, partial pressure of nitrogen gas is 15T
After sintering at 1480 ° C for 1 hour at vacuum or vacuum (10 -5 T
orr) in ultra-slow cooling (0.5 to 5 ° C./min) to prepare Sample 6, which is also slowly cooled in CO 2 5 Torr (5 to 10 ° C.).
/ Min) to prepare Sample 7, quenched in N 2 (100 To
rr, 10 to 50 ° C / min) to prepare Sample 8. Ti
35% by weight of CN, 6% by weight of NbC, 44% by weight of WC, N
Sample 6, containing 8% by weight of i and 7% by weight of Co,
Sintered under the same conditions as in Samples 7, 8
1 was prepared. A mixture of 56% by weight of TiCN, 8% by weight of NbC, 8% by weight of Mo 2 C, 10% by weight of WC, 10% by weight of Ni, and 8% by weight of Co was sintered under the same conditions as Samples 1 and 4 to obtain Samples 12 and 13, respectively. After preparation, each I H / I N was determined, and the tool shape CNMG4
No. 32 was prepared and subjected to the following cutting tests for abrasion resistance evaluation and thermal shock resistance evaluation, and the obtained results are shown in Table 1 and FIG. Samples 2, 9, 10, and 11 have WC inside the alloy structure.
Was precipitated.
【0010】耐摩耗切削テスト 工具形状 SNMG432 被削材 SCM435(HB =240)丸棒 切削速度 200m/分 送り 0.3mm/rev. 切込み 1.5mm 切削油 水溶性 切削時間 10分 判定 逃げ面摩耗幅VB (mm) 耐熱衝撃性切削テスト 被削材 SCM435(HB =220)丸棒 切削速度 250m/分 送り 0.23mm/rev. 切込み 2.0→0.2mmに変動 切削油 水溶性 切削時間 15分 判定 20切刃中の欠損切刃数 (個)Wear resistance cutting test Tool shape SNMG432 Work material SCM435 (H B = 240) Round bar Cutting speed 200 m / min Feed 0.3 mm / rev. Depth of cut 1.5mm Cutting oil Water soluble Cutting time 10 minutes Judgment Flank wear width V B (mm) Thermal shock resistant cutting test Work material SCM435 (H B = 220) Round bar Cutting speed 250m / min Feed 0.23mm / rev . Cutting depth fluctuates from 2.0 to 0.2 mm Cutting oil Water-soluble Cutting time 15 minutes Judgment Number of missing cutting edges in 20 cutting edges (pieces)
【0011】[0011]
【表1】 [Table 1]
【0012】[0012]
【発明の効果】上述のように本発明によれば、切削工具
として特に熱衝撃の厳しい条件での切削、例えばフライ
ス切削や角材の旋盤による切削加工、また、切込みの大
きく変動する湿式での倣い切削加工など、従来は高価な
被覆超硬合金工具でした使用じできなかった加工領域に
対し、コーティングなしで極めて信頼性が高い窒素含有
焼結硬質合金を提供できるという効果を奏する。As described above, according to the present invention, as a cutting tool, cutting under particularly severe conditions of thermal shock, for example, milling or cutting of a square bar by a lathe, or wet copying in which the cutting depth greatly varies. The present invention has an effect that a highly reliable nitrogen-containing sintered hard alloy can be provided without a coating in a machining area, such as cutting, where a conventionally expensive coated cemented carbide tool could not be used.
【図1】図1は実施例の中の試料1の、(a)表面部、
(b)内部のX線Cu−Kα線の回折曲線である。FIG. 1 shows (a) a surface portion of a sample 1 in an embodiment,
(B) It is a diffraction curve of the inside X-ray Cu-Kα ray.
【図2】図2は実施例の中の試料2の、(a)表面部、
(b)内部のX線Cu−Kα線の回折曲線である。FIG. 2 shows (a) a surface portion of Sample 2 in the embodiment;
(B) It is a diffraction curve of the inside X-ray Cu-Kα ray.
【図3】図3は有芯二重構造をもつ窒素含有焼結硬質合
金のX線のCu−Kα線の典型的な従来サーメットであ
るB1構造(220)面からの回折曲線である。FIG. 3 is a diffraction curve from a B1 structure (220) plane which is a typical conventional cermet of X-ray Cu-Kα rays of a nitrogen-containing sintered hard alloy having a cored double structure.
Claims (1)
から選ばれたTiを除く少なくとも1種の遷移金属の炭
化物、窒化物、炭窒化物あるいはこれらの複合炭窒化物
の少なくとも1種以上からなる硬質相が75〜95重量
%で、Ni及びCo並びに不可避不純物を含む結合相が
5〜25重量%であり、X線回折測定でB1構造のピー
クが2種類検出される窒素含有焼結硬質合金において、
X線回折測定における2つのB1構造の同一回折面から
のピークにおいて、 回折角の高角側に検出される強度の小さいピークの強度
をIS 、回折角の低角側に検出される強度の大きいピー
クの強度をIL とし、合金表面部でのIS /I L で表さ
れるピーク強度比をIH 、合金の1mm以上内部でのI
S /IL で表されるピーク強度比をIN としたときのI
H /IN が、0.5以上3.0以下である事を特徴とす
る窒素含有焼結硬質合金。1. Ti and 4a, 5a, 6a group of the periodic table
Charcoal of at least one transition metal excluding Ti selected from
, Nitride, carbonitride or composite carbonitride of these
75 to 95% by weight of a hard phase comprising at least one of
%, The binder phase containing Ni and Co and unavoidable impurities is
5 to 25% by weight, and the peak of the B1 structure is determined by X-ray diffraction measurement.
In a nitrogen-containing sintered hard alloy where two types of cracks are detected,
From the same diffraction plane of two B1 structures in X-ray diffraction measurement
Intensity of small peak detected at high angle side of diffraction angle at peak
To IS, A strong intensity peak detected on the lower angle side of the diffraction angle
The strength of theLAnd I at the alloy surfaceS/ I LRepresented by
The peak intensity ratioH, I within 1 mm of the alloy
S/ ILThe peak intensity ratio represented byNI when
H/ INIs 0.5 or more and 3.0 or less.
Nitrogen-containing sintered hard alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6324603A JP2737677B2 (en) | 1994-12-27 | 1994-12-27 | Nitrogen-containing sintered hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6324603A JP2737677B2 (en) | 1994-12-27 | 1994-12-27 | Nitrogen-containing sintered hard alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08176720A JPH08176720A (en) | 1996-07-09 |
JP2737677B2 true JP2737677B2 (en) | 1998-04-08 |
Family
ID=18167671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6324603A Expired - Lifetime JP2737677B2 (en) | 1994-12-27 | 1994-12-27 | Nitrogen-containing sintered hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2737677B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5127110B2 (en) * | 2004-01-29 | 2013-01-23 | 京セラ株式会社 | TiCN-based cermet and method for producing the same |
JP5127264B2 (en) * | 2007-02-23 | 2013-01-23 | 京セラ株式会社 | TiCN-based cermet |
US8202344B2 (en) * | 2007-05-21 | 2012-06-19 | Kennametal Inc. | Cemented carbide with ultra-low thermal conductivity |
JP4974980B2 (en) * | 2008-08-25 | 2012-07-11 | 京セラ株式会社 | TiCN-based cermet |
-
1994
- 1994-12-27 JP JP6324603A patent/JP2737677B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08176720A (en) | 1996-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4769070A (en) | High toughness cermet and a process for the production of the same | |
KR100973626B1 (en) | Cermet insert and cutting tool | |
EP2474634A1 (en) | Super hard alloy and cutting tool using same | |
EP0392519A2 (en) | Surface-coated tool member of tungsten carbide based cemented carbide | |
EP2425028A1 (en) | Cemented carbide tools | |
EP2631026A1 (en) | Tool comprising sintered cubic boron nitride | |
JP7272353B2 (en) | Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method | |
JP2737677B2 (en) | Nitrogen-containing sintered hard alloy | |
JP2616655B2 (en) | Titanium carbonitride-based cermet cutting tool with excellent wear resistance | |
JP2737676B2 (en) | Nitrogen-containing sintered hard alloy | |
JPH10182233A (en) | Titanium aluminum nitride-base sintered material and its production | |
CN112840050A (en) | Hard metal with toughening structure | |
EP4129540A1 (en) | Cutting tool made of wc-based cemented carbide | |
JP7432109B2 (en) | Cemented carbide and cutting tools | |
JPH08199283A (en) | Titanium carbonitride-base alloy | |
JP3803694B2 (en) | Nitrogen-containing sintered hard alloy | |
JPH0813077A (en) | Nitrogen-containing sintered hard alloy | |
JP2801484B2 (en) | Cemented carbide for cutting tools | |
JPS597349B2 (en) | Coated cemented carbide tools | |
JP2748583B2 (en) | Surface-coated tungsten carbide based cemented carbide cutting tool with excellent adhesion of hard coating layer | |
JP7473871B2 (en) | WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool | |
JP2697553B2 (en) | Titanium carbonitride cermet cutting tool with excellent toughness | |
JP3303688B2 (en) | Cemented carbide end mill with excellent wear resistance with cutting edge | |
JP3493587B2 (en) | Titanium carbonitride-based cermet cutting tool with excellent wear resistance | |
JPH0530881B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100116 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |