JP5127264B2 - TiCN-based cermet - Google Patents

TiCN-based cermet Download PDF

Info

Publication number
JP5127264B2
JP5127264B2 JP2007043815A JP2007043815A JP5127264B2 JP 5127264 B2 JP5127264 B2 JP 5127264B2 JP 2007043815 A JP2007043815 A JP 2007043815A JP 2007043815 A JP2007043815 A JP 2007043815A JP 5127264 B2 JP5127264 B2 JP 5127264B2
Authority
JP
Japan
Prior art keywords
hard phase
cermet
area
average particle
ticn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007043815A
Other languages
Japanese (ja)
Other versions
JP2007231421A (en
Inventor
徹 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007043815A priority Critical patent/JP5127264B2/en
Publication of JP2007231421A publication Critical patent/JP2007231421A/en
Application granted granted Critical
Publication of JP5127264B2 publication Critical patent/JP5127264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、切削工具部材、耐摩耗性工具部材等に適する靱性と硬度をともに備えたTiCN基サーメットに関するものである。   The present invention relates to a TiCN-based cermet having both toughness and hardness suitable for cutting tool members, wear-resistant tool members, and the like.

従来より、耐摩耗性工具や切削工具用合金としてTiC基サーメットやTiCN基サーメットが開発されており、特に靭性を改善したTiCN基サーメットが広く用いられている。   Conventionally, TiC-based cermets and TiCN-based cermets have been developed as wear-resistant tools and cutting tool alloys, and TiCN-based cermets with improved toughness have been widely used.

かかるTiCN基サーメットにおいては、特に耐欠損性を向上させることが求められており、例えば、特許文献1では、硬質相の固溶状態、具体的には芯部が黒色の有芯構造をなす硬質相と芯部が白色の有芯構造をなす硬質相との存在割合、およびその粒度を最適化することによって高速切削等にて発生する熱衝撃に対して優れた耐久性を改善できることが開示されている。
特開平8−199283号公報
Such TiCN-based cermets are particularly required to have improved fracture resistance. For example, in Patent Document 1, the hard phase is in a solid solution state, specifically, a hard core having a cored structure with a black core. It is disclosed that by optimizing the existence ratio of the phase and the hard phase having a core structure with a white core, and the particle size thereof, it is possible to improve the excellent durability against thermal shock generated by high-speed cutting, etc. ing.
JP-A-8-199283

しかしながら、上記特許文献1にて開示されたサーメットにおいても熱衝撃に対する耐久性は未だ不十分で切削性能の改良に限界があり、更なる耐熱衝撃性の改善および耐欠損性、耐摩耗性の向上が求められていた。   However, even with the cermet disclosed in Patent Document 1, the durability against thermal shock is still insufficient, and there is a limit to the improvement of cutting performance, and further improvement of thermal shock resistance and improvement of fracture resistance and wear resistance. Was demanded.

本発明は、上記課題を解決するためのもので、その目的はTiCN基サーメットの硬質相の固溶状態を場所毎に適正化して組織の最適化を図ることにより更なる耐欠損性の向上および耐欠損性、耐摩耗性の向上を図ることにある。   The present invention is for solving the above-mentioned problems, and its purpose is to further improve the fracture resistance by optimizing the structure by optimizing the solid solution state of the hard phase of the TiCN-based cermet for each place and The purpose is to improve chipping resistance and wear resistance.

本発明においては、原料粉末の粒径、焼成条件の適正化によって、上記硬質相の固溶状態を各部分に合わせてそれぞれ最適化し、サーメット内部において硬質相の微粒化による強度、硬度向上と、サーメット表面における硬度維持と耐熱衝撃性向上とをともに満足させることができる結果、サーメット全体としての耐欠損性および耐摩耗性がともに向上するとともに、サーメットの耐摩耗性を維持できることを知見した。   In the present invention, by optimizing the particle size of the raw material powder and the firing conditions, the solid solution state of the hard phase is optimized according to each part, and the strength and hardness improvement by atomizing the hard phase inside the cermet, As a result of satisfying both the hardness maintenance and the thermal shock resistance improvement on the cermet surface, it was found that both the fracture resistance and the wear resistance of the cermet as a whole are improved, and the wear resistance of the cermet can be maintained.

すなわち、本発明のTiCN基サーメットは、TiCNと、Ti以外の周期律表IVa、
VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物およ
び炭窒化物の少なくとも一種を含む硬質相を、CoおよびNiの少なくとも1種の結合相1〜30重量%にて結合してなるTiCN基サーメットであって、該TiCN基サーメットの任意断面の走査型電子顕微鏡(SEM)写真において、前記硬質相が金属成分としてTiを80重量%以上含有する第1硬質相と金属成分としてTiが30〜70重量%、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金
属の総量が70〜30重量%、CoおよびNiの結合相金属の総量が0〜3重量%の割合からなる第2硬質相とからなり、
前記サーメット中の表面に前記第1硬質相の面積比率S1ssが80面積%以上で深さ5μm以下の極表面領域が存在するとともに、該極表面領域の内側に表面領域が存在し、該極表面領域から20μm深さまでの範囲を表面領域、該表面領域の内側を内部としたとき、
前記内部における第1硬質相の平均粒径d1inが0.05〜1.5μmで、前記内部の全体に占める第1硬質相の面積比率S1inが50〜70面積%からなるとともに、
前記表面領域における前記第1硬質相の平均粒径d1sfと前記内部における第1硬質相の平均粒径d1inとの比(d1sf/d1in)が1.1〜3で、前記表面領域に占める第1硬質相の面積比率S1sfと前記内部における第1硬質相の面積比率S1inとの比(S1sf/S1in)が0.3〜0.7からなり、
前記表面領域sfに占める第2硬質相の面積比率S2sfと前記内部に占める第2硬質相の面積比率S2inとの比S2sf/S2inが1.5〜4であることを特徴とするものである。
That is, the TiCN-based cermet of the present invention includes TiCN and a periodic table IVa other than Ti,
1-30 wt% of a hard phase comprising at least one carbide, nitride and carbonitride of at least one metal selected from Group Va and VIa metals, at least one binder phase of Co and Ni A TiCN-based cermet formed by bonding in a scanning electron microscope (SEM) photograph of an arbitrary cross section of the TiCN-based cermet, wherein the hard phase contains at least 80 wt% Ti as a metal component And 30 to 70% by weight of Ti as a metal component, 70 to 30% by weight of the total amount of at least one metal selected from metals of Group IVa, Va and VIa other than Ti, and Co and Ni The second hard phase is composed of a total amount of binder phase metal of 0 to 3% by weight,
With the area ratio S 1ss depth 5μm less polar surface area of 80 area% or more of the first hard phase in the surface of the cermet is present, then there is a surface area inside the polar surface area, the polar When the range from the surface region to the depth of 20 μm is the surface region, and the inside of the surface region is the inside,
The average particle diameter d 1in of the first hard phase in the inside is 0.05 to 1.5 μm, and the area ratio S 1in of the first hard phase occupying the whole inside is 50 to 70 area%,
The ratio between the average particle diameter d 1in the first hard phase in the inner and the average particle diameter d 1SF of the first hard phase in the surface region (d 1sf / d 1in) is 1.1 to 3, the surface area the ratio between the area ratio S 1in of the first hard phase (S 1sf / S 1in) consists 0.3-0.7 in the inner and the area ratio S 1SF of the first hard phase occupying the,
The ratio S 2sf / S 2in between the area ratio S 2sf of the second hard phase in the surface region sf and the area ratio S 2in of the second hard phase in the interior is 1.5 to 4. Is.

ここで、上記構成において、前記表面領域sfにおける前記第2硬質相の平均粒径d2sfと前記サーメットの内部における第2硬質相の平均粒径d2inとの比d2sf/d2inが1.5〜1.7であることを特徴とする。
Here, in the above configuration, the ratio d 2sf / d 2in the average particle diameter d 2in the second hard phase in the interior of the average particle diameter d 2SF and the cermet put that before Symbol second hard phase in the surface region sf There characterized by 1.5 to 1.7 der Rukoto.

また、上記構成において、前記サーメット内部における第1硬質相の平均粒径d1inが0.05〜1.5μmで、該サーメット内部に占める第1硬質相の面積比率S1inが40〜80面積%であることを特徴とする。 Moreover, in the said structure, the average particle diameter d1in of the 1st hard phase in the said cermet is 0.05-1.5 micrometers, and the area ratio S1in of the 1st hard phase which occupies this cermet inside is 40-80 area%. It is characterized by being.

さらに、上記構成において、前記第1硬質相が金属成分としてTiを80重量%以上含有するとともに、前記第2硬質相が金属成分としてTiが30〜70重量%、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の総量
が70〜30重量%、Coおよび/またはNiの結合相金属の総量が0〜3重量%の割合からなることが、サーメットの硬度を高めつつ靭性を維持できる点で重要である
Furthermore, in the said structure, while the said 1st hard phase contains 80 weight% or more of Ti as a metal component, the said 2nd hard phase is 30 to 70 weight% of Ti as a metal component, periodic table IVa other than Ti, Total amount of at least one metal selected from group metals Va and VIa
There 70-30 wt%, the total amount of binding phase metal of Co and / or Ni is formed of a rate of 0-3% by weight, it is important in that it can maintain the toughness while increasing the hardness of the cermet.

上記本発明のTiCN基サーメットによれば、硬質相の固溶状態を各部分に合わせてそれぞれ最適化し、サーメット内部において硬質相の微粒化による強度、硬度向上と、サーメット表面における硬度維持と耐熱衝撃性の向上とをともに満足させることができる結果、サーメット全体としての耐欠損性および耐摩耗性がともに向上する。   According to the TiCN-based cermet of the present invention, the solid solution state of the hard phase is optimized according to each part, the strength and hardness are improved by atomizing the hard phase inside the cermet, the hardness is maintained on the cermet surface, and the thermal shock is applied. As a result of being able to satisfy both the improvement in property, both the fracture resistance and the wear resistance of the cermet as a whole are improved.

本発明のTiCN基サーメット(以下、単にサーメットと略す。)について、その表面を含む任意断面についての走査型電子顕微鏡(SEM)写真である図1(a)および内部の任意断面についてのSEM写真である図1(b)を基に説明する。   FIG. 1A is a scanning electron microscope (SEM) photograph of an arbitrary cross section including the surface of the TiCN-based cermet of the present invention (hereinafter simply referred to as cermet), and an SEM photograph of an internal arbitrary cross section. This will be described with reference to FIG.

図1によれば、本発明のTiCN基サーメット(以下、単にサーメットと略す。)1は、TiCNとTi以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物および炭窒化物の少なくとも一種とが固溶してなる硬質相2を、1〜30重量%のCoおよび/またはNiの結合相3で硬質相2を結合した構成からなり、図1によれば、硬質相2は、黒色の第1硬質相2aと灰白色の第2硬質相2bとからなり、本発明によれば、サーメット1の内部(図1(b))とは異なる組織からなる表面領域sf(図1(a))が存在する。   According to FIG. 1, the TiCN-based cermet (hereinafter simply referred to as cermet) 1 of the present invention is at least one selected from TiCN and Periodic Tables IVa, Va and VIa metals other than Ti. The hard phase 2 formed by dissolving at least one of metal carbide, nitride, and carbonitride is a structure in which the hard phase 2 is bonded with a binder phase 3 of 1 to 30% by weight of Co and / or Ni. According to FIG. 1, the hard phase 2 consists of a black first hard phase 2a and an off-white second hard phase 2b. According to the present invention, the inside of the cermet 1 (FIG. 1 (b)) There is a surface region sf (FIG. 1A) composed of different tissues.

図1によれば、サーメット1内部(図1(b):in)における第1硬質相2aの平均粒径d1inが0.05〜1.5μmで、サーメット1内部において第1硬質相2aが占める面積比率S1inが40〜80面積%からなるとともに、サーメット1表面(図1(a))に第1硬質相2aの平均粒径d1sfと、前記サーメット1内部における第1硬質相2aの平均粒径d1inとの比(d1sf/d1in)が1.1〜3で、サーメット1表面部に占める第1硬質相の面積比率S1sfとサーメット内部に占める第1硬質相の面積比率S1inとの比(S1sf/S1in)が0.3〜0.7からなる表面領域(図1(a):sf)が存在している。 According to FIG. 1, the average particle diameter d 1in of the first hard phase 2a in the cermet 1 (FIG. 1 (b): in) is 0.05 to 1.5 μm, and the first hard phase 2a is in the cermet 1. The area ratio S 1in occupies 40 to 80 area%, the average particle diameter d 1sf of the first hard phase 2a on the surface of the cermet 1 (FIG. 1 (a)), and the first hard phase 2a inside the cermet 1 the ratio between the average particle diameter d 1in (d 1sf / d 1in ) is 1.1 to 3, the area ratio of the first hard phase occupying the cermet 1 surface portion S 1SF and the area ratio of the first hard phase occupies the internal cermet surface area ratio of the S 1in (S 1sf / S 1in ) consists of 0.3 to 0.7 (Fig. 1 (a): sf) is present.

これによって、サーメット1の強度を高めることができるとともに、サーメット1表面における硬度を維持しつつ、熱伝導率、ヤング率を高めてサーメット1の表面における耐熱衝撃性を向上でき、特に高速切削、高送り切削や湿式切削等過酷な熱衝撃が発生するような条件においてもサーメット1の耐摩耗性および耐欠損性を向上させることができる。   As a result, the strength of the cermet 1 can be increased, and the thermal conductivity and Young's modulus can be increased while maintaining the hardness of the surface of the cermet 1, thereby improving the thermal shock resistance on the surface of the cermet 1. The wear resistance and fracture resistance of the cermet 1 can be improved even under conditions that cause severe thermal shock such as feed cutting and wet cutting.

なお、上記平均粒径(d、d)および面積比率(S、S)は、走査型電子顕微鏡(SEM)写真について市販の画像解析装置を用いることによって測定することができる。 Incidentally, the average particle size (d 1, d 2) and the area ratio (S 1, S 2), for scanning electron microscope (SEM) photograph can be measured by using a commercially available image analyzer.

ここで、上記サーメット1内部における第1硬質相2aの平均粒径d1inが0.05μmより小さいと、硬質相同士の凝集によって組織が不均質となり強度低下を招くとともに、サーメット1内部の熱伝導率が低下する傾向にある。逆に、d1inが0.5μmを超えると、サーメット1の強度、硬度が低下していずれも耐欠損性、耐摩耗性が低下する傾向にある。d1inの望ましい範囲は0.1〜0.3μmである。 Here, when the average particle diameter d 1in of the first hard phase 2a inside the cermet 1 is smaller than 0.05 μm, the structure becomes inhomogeneous due to aggregation of the hard phases, leading to a decrease in strength, and heat conduction inside the cermet 1. The rate tends to decrease. On the other hand, when d 1in exceeds 0.5 μm, the strength and hardness of the cermet 1 are lowered, and both the chipping resistance and the wear resistance tend to be lowered. desired range of d 1in is 0.1 to 0.3 [mu] m.

また、第1硬質相2aの面積比率S1in50面積%より少ないか、または70面積%より多いと、サーメット1の強度、硬度が低下する。S1in の範囲は50〜70面積%である。
On the other hand, when the area ratio S 1in of the first hard phase 2a is less than 50 area% or more than 70 area%, the strength and hardness of the cermet 1 are lowered. Range of S 1in is 50-70 area%.

さらに、サーメット1内部における第2硬質相2bの平均粒径d2inは0.6μm〜2μmであることが第2硬質相2bの分散状態を良好として強度を高める点で望ましい。d2inのさらに望ましい範囲は0.8〜1.5μmである。 Further, the average particle diameter d2in of the second hard phase 2b in the cermet 1 is desirably 0.6 μm to 2 μm from the viewpoint of improving the strength by making the dispersed state of the second hard phase 2b good. A more desirable range of d 2in is 0.8 to 1.5 μm.

また、サーメット1内部に占める第2硬質相2bの面積比率S2inは5〜40面積%であることが、サーメット1の粒子を微粒なまま十分に焼結せしめることができ、強度が向上する点で望ましい。面積比率S2inのさらに望ましい範囲は10〜30面積%である。 Further, the area ratio S2in of the second hard phase 2b occupying the cermet 1 is 5 to 40% by area, so that the particles of the cermet 1 can be sufficiently sintered while being fine and the strength is improved. Is desirable. A more desirable range of the area ratio S2in is 10 to 30 area%.

一方、サーメット1の表面領域sfにおいては、サーメット1表面に第1硬質相2aの平均粒径d1sfとサーメット1内部における第1硬質相2aの平均粒径d1inとの比(d1sf/d1in)が1.1よりも小さいと熱伝導率および耐塑性変形性が低下してしまい、逆に、前記比(d1sf/d1in)が3よりも大きいとサーメット1表面における硬度が低下して耐摩耗性が低下する傾向にある。なお、サーメット1表面領域における第2硬質相2bの平均粒径d2sfは1μm〜3μmであることが、サーメット1表面の熱伝導率および耐塑性変形性を維持するとともに耐欠損性を高める点で望ましい。d2sfの望ましい範囲は1.2〜2μmである。 On the other hand, in the surface region sf of the cermet 1, the ratio of the average particle diameter d 1in the first hard phase 2a in the average particle diameter d 1SF and the cermet 1 inside the first hard phase 2a in the cermet 1 surface (d 1sf / d 1in) is small and will heat conductivity and plastic deformation resistance is lower than 1.1, conversely, the hardness decreases at greater cermets 1 surface than the ratio (d 1sf / d 1in) 3 Therefore, the wear resistance tends to decrease. The average particle diameter d 2sf of the second hard phase 2b in the cermet 1 surface region is 1 μm to 3 μm in terms of maintaining the thermal conductivity and plastic deformation resistance of the cermet 1 surface and increasing the fracture resistance. desirable. A desirable range of d 2sf is 1.2 to 2 μm.

また、サーメット1表面領域sfに占める第1硬質相2aの面積比率S1sfは5面積%〜40面積%であることが、サーメット1表面の熱伝導性および塑性変形性を向上させる点で望ましい。S1sfの望ましい範囲は7〜25面積%である。 In addition, it is desirable that the area ratio S 1sf of the first hard phase 2a in the cermet 1 surface region sf is 5% by area to 40% by area in terms of improving the thermal conductivity and plastic deformability of the cermet 1 surface. A desirable range of S 1sf is 7 to 25 area%.

また、サーメット1表面領域sfに占める第1硬質相の面積比率S1sfと前記サーメット内部に占める第1硬質相の面積比率S1inとの比(S1sf/S1in)が図2のように0.3より小さいとサーメット1の熱伝導率および耐塑性変形性が低下し、逆に0.7を超えると第1硬質相および結合相不足によってサーメット1表面の耐欠損性が低下する傾向にある。面積比率の比(S1sf/S1in)は1.1〜2、特に1.2〜1.8であることが望ましい。 The ratio between the area ratio S 1in of the first hard phase occupying the cermet inside the area ratio S 1SF of the first hard phase occupying the cermet 1 surface area sf (S 1sf / S 1in) is as shown in FIG. 2 0 If it is smaller than .3, the thermal conductivity and plastic deformation resistance of the cermet 1 are lowered. Conversely, if it exceeds 0.7, the fracture resistance of the cermet 1 surface tends to be lowered due to the lack of the first hard phase and the binder phase. . The ratio of the area ratio (S 1sf / S 1in) is 1.1 to 2, and is preferably 1.2 to 1.8.

なお、第2硬質相2bの面積比率S2sfは50〜80面積%、特に60〜75面積%であることが、サーメット1表面の耐欠損性および耐摩耗性の点で望ましい。 The area ratio S2sf of the second hard phase 2b is preferably 50 to 80 area%, particularly 60 to 75 area%, from the viewpoint of fracture resistance and wear resistance of the cermet 1 surface.

さらに、本発明によれば、灰白色の第2硬質相2bの中心には白色部2cが存在するとともに、サーメット1内部(図1(b))における白色部2cの存在割合がサーメット1表面(図1(a))における白色部2cの存在割合よりも多いことが、サーメット1内部の硬質相2(2a、2b)を微粒化してサーメット1の強度を高めるとともにサーメット1表面における硬質相2(2a、2b)の固溶状態を最適化してサーメット1の耐熱衝撃性を高める点で望ましい。   Furthermore, according to the present invention, the white portion 2c is present at the center of the grayish white second hard phase 2b, and the proportion of the white portion 2c in the cermet 1 (FIG. 1B) is the surface of the cermet 1 (see FIG. 1 (a)) is larger than the abundance of the white portion 2c, the hard phase 2 (2a, 2b) inside the cermet 1 is atomized to increase the strength of the cermet 1 and the hard phase 2 (2a on the surface of the cermet 1). 2b) is preferable in terms of improving the thermal shock resistance of the cermet 1 by optimizing the solid solution state.

また、第1硬質相2aとしては、金属成分としてTiを80重量%以上含有することが望ましく、特に、Tiが80〜98重量%、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属、特にW、Mo、Cr、NbおよびVの一種以上、さらにWを必須として含有する金属(本発明では固溶体金属と称す。)の総量が1〜15重量%、CoおよびNiの少なくとも1種の結合相金属の総量が0〜3重量%の割合からなることが望ましい。   Further, the first hard phase 2a preferably contains 80% by weight or more of Ti as a metal component, and in particular, Ti is 80 to 98% by weight of the periodic table IVa, Va and VIa group metals other than Ti. The total amount of at least one metal selected from among them, particularly one or more of W, Mo, Cr, Nb and V, and further containing W as an essential component (referred to as a solid solution metal in the present invention) is 1 to 15 weights. %, And the total amount of at least one binder phase metal of Co and Ni is preferably 0 to 3% by weight.

さらに、前記灰白色の第2硬質相2bとしては、第1硬質相2aに対して固溶体金属を多く含有することが望ましく、特に、Tiが30〜70重量%、固溶体金属の総量が70〜30重量%、Coおよび/またはNiの結合相金属の総量が0〜3重量%の割合からなることが望ましい。なお、上記硬質相中の金属成分の含有比率は透過型電子顕微鏡(TEM)のエネルギー分散分光分析(EDS)にて測定可能である。   Furthermore, the grayish white second hard phase 2b preferably contains a large amount of solid solution metal relative to the first hard phase 2a, and in particular, Ti is 30 to 70 wt%, and the total amount of solid solution metal is 70 to 30 wt%. It is desirable that the total amount of the binder phase metal of%, Co and / or Ni is 0 to 3% by weight. The content ratio of the metal component in the hard phase can be measured by energy dispersive spectroscopy (EDS) of a transmission electron microscope (TEM).

また、本発明によれば、硬質相2は、第1硬質相2aを芯部とし、第2硬質相2bを周辺部とする2重有芯構造をなしていることが、粒成長抑制効果を有しサーメット1が微細で均一な組織となるとともに、結合相3との濡れ性に優れるためにサーメット1の高強度化に寄与する点で望ましいが、全ての硬質相2が有芯構造をなしていなくてもよい。有芯構造の場合、第2硬質相2bの面積は、中心部の第1硬質相2aの面積を除いた環状部の面積である。   Further, according to the present invention, the hard phase 2 has a double-core structure in which the first hard phase 2a is a core part and the second hard phase 2b is a peripheral part. The cermet 1 has a fine and uniform structure and is excellent in wettability with the binder phase 3 so that it contributes to increasing the strength of the cermet 1, but all the hard phases 2 have a cored structure. It does not have to be. In the case of the cored structure, the area of the second hard phase 2b is the area of the annular portion excluding the area of the first hard phase 2a at the center.

また、本発明によれば、サーメット1の強度、硬度、耐熱衝撃性のバランスを最適化する上で、d2sf/d2in=1.5〜1.7、S2sf/S2in=1.5〜4であることが望ましい。 Further, according to the present invention, the strength of the cermet 1, the hardness, in order to optimize the balance between thermal shock resistance, d 2sf / d 2in = 1.5~1.7 , S 2sf / S 2in = 1.5 It is desirable to be ~ 4.

さらに、サーメット1の耐欠損性および耐摩耗性の両立を図るために表面領域sfの厚みは20〜100μm、特に30〜50μmとすることが望ましい。また、表面領域sfのさらに表面部に位置する極表面に、第1硬質相2aの面積比率S1sが80面積%以上の極表面領域ssが存在することが、サーメット1の耐摩耗性を維持できる点で重要である。 Further, in order to achieve both fracture resistance and wear resistance of the cermet 1, the thickness of the surface region sf is preferably 20 to 100 μm, particularly preferably 30 to 50 μm. Further, the wear resistance of the cermet 1 is maintained by the presence of the pole surface region ss having the area ratio S 1s of the first hard phase 2a of 80 area% or more on the pole surface located further on the surface portion of the surface region sf. It is important in that it can be done.

なお、サーメット1におけるビッカース硬度は極表面領域ssで最大値をとり、内部に向かって次第にビッカース硬度が低下していくことが望ましい。これにより、高い耐摩耗性と耐欠損性の両方を有することができる。   In addition, it is desirable that the Vickers hardness in the cermet 1 takes a maximum value in the pole surface region ss and gradually decreases toward the inside. Thereby, it can have both high abrasion resistance and defect resistance.

また、本発明によれば、サーメット1の表面に別途硬質被覆層を被着形成してもよい。   Moreover, according to the present invention, a hard coating layer may be separately formed on the surface of the cermet 1.

(製造方法)
次に、本発明のTiCN基サーメットの製造方法について説明する。
(Production method)
Next, the manufacturing method of the TiCN base cermet of this invention is demonstrated.

まず、平均粒径0.1〜1.2μm、特に0.2〜0.9μmのTiCN粉末と、平均粒径0.1〜2μmのTiN粉末、上述した固溶体金属の炭化物粉末、窒化物粉末または炭窒化物粉末のいずれか1種と、Co粉末および/またはNi粉末とを混合した混合粉末を調整する。   First, TiCN powder having an average particle size of 0.1 to 1.2 μm, particularly 0.2 to 0.9 μm, TiN powder having an average particle size of 0.1 to 2 μm, the above-described solid solution metal carbide powder, nitride powder or A mixed powder obtained by mixing any one of the carbonitride powders with Co powder and / or Ni powder is prepared.

本発明によれば、上記TiCN原料粉末の平均粒径を0.1〜1.2μmの範囲に制御することが重要であり、この平均粒径が0.1μmより小さいと原料が凝集してサーメットが不均質な組織となり、逆に1.2μmを超えるとサーメットを上述した組織とすることができない。なお、TiCN原料粉末は他の固溶体金属原料とともに焼結によって第1硬質相と第2硬質相との有芯構造を形成することから、第1の硬質相2aの平均粒径はTiCN原料粉末の平均粒径より小さくなる傾向にある。   According to the present invention, it is important to control the average particle size of the TiCN raw material powder in the range of 0.1 to 1.2 μm. If the average particle size is smaller than 0.1 μm, the raw material aggregates and the cermet Becomes a heterogeneous structure, and conversely, if it exceeds 1.2 μm, the cermet cannot be made the above-described structure. Since the TiCN raw material powder forms a cored structure of the first hard phase and the second hard phase by sintering together with other solid solution metal raw materials, the average particle size of the first hard phase 2a is the same as that of the TiCN raw material powder. It tends to be smaller than the average particle size.

そして、この混合粉末にバインダーを添加して、プレス成形、押出成形、射出成形等の公知の成形方法によって所定形状に成形する。   And a binder is added to this mixed powder, and it shape | molds in a predetermined shape by well-known shaping | molding methods, such as press molding, extrusion molding, and injection molding.

次に、上記成形体を、平均粒径0.1〜1.2μmのTiCN粉末と、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少なくとも1種の金属の炭化物、窒化物および炭窒化物の粉末と、Coおよび/またはNiとを調合して所定形状に加工した後、(a)0.7〜2℃/minの昇温速度で1150〜1250℃まで昇温し、次いで(b)5〜15℃/minの昇温速度で1400〜1500℃まで昇温し、さらに(c)4〜14℃/minの昇温速度で1500〜1600℃まで昇温するとともに、前記昇温工程(b)(c)において窒素ガスまたは不活性ガスを10〜150Paの雰囲気となるように充填し、前記昇温工程(c)の最高温度にて所定時間維持し、降温する。
Next, the molded body is made of a carbide of at least one metal selected from TiCN powder having an average particle size of 0.1 to 1.2 μm and metals of groups IVa, Va and VIa other than Ti. After the nitride and carbonitride powders and Co and / or Ni are prepared and processed into a predetermined shape, (a) the temperature is increased to 1150 to 1250 ° C. at a temperature increase rate of 0.7 to 2 ° C./min. Then, (b) the temperature is raised to 1400-1500 ° C. at a temperature increase rate of 5-15 ° C./min, and (c) the temperature is increased to 1500-1600 ° C. at a temperature increase rate of 4-14 ° C./min. In addition, in the temperature raising step (b) (c), nitrogen gas or an inert gas is filled so as to have an atmosphere of 10 to 150 Pa , maintained at the maximum temperature in the temperature raising step (c) for a predetermined time, To do.

本発明によれば、上記焼成時の昇温速度、および降温時に所定量の不活性ガスを充填した状態で降温することによって上述した組織のサーメットを作製することができる。   According to the present invention, the cermet having the above-described structure can be produced by lowering the temperature in a state where the temperature rise rate during the firing and a predetermined amount of inert gas is filled when the temperature is lowered.

マイクロトラック法による測定にて平均粒径0.7μm、または2μmのTiCN粉末、平均粒径1.5μmのTiN粉末、平均粒径2μmのTaC粉末、平均粒径1.5μmのNbC粉末、平均粒径1.1μmのWC粉末、平均粒径1.8μmのZrC粉末、平均粒径1.0μmのVC粉末、平均粒径2.4μmのNi粉末、および平均粒径1.9μmのCo粉末を表1に示す割合で調整した混合粉末をステンレス製ボールミルと超硬ボールを用いて、イソプロピルアルコール(IPA)にて湿式混合し、パラフィンを3重量%添加、混合した後、200MPaでCNMG120408にプレス成形し、表1に示す焼成条件で焼成した。なお、昇温工程(b)、(c)においてはNガスを表1に示す量だけ注入した。 TiCN powder with an average particle diameter of 0.7 μm or 2 μm, TiN powder with an average particle diameter of 1.5 μm, TaC powder with an average particle diameter of 2 μm, NbC powder with an average particle diameter of 1.5 μm, average particle A WC powder having a diameter of 1.1 μm, a ZrC powder having an average particle diameter of 1.8 μm, a VC powder having an average particle diameter of 1.0 μm, a Ni powder having an average particle diameter of 2.4 μm, and a Co powder having an average particle diameter of 1.9 μm are shown. The mixed powder adjusted in the ratio shown in 1 was wet mixed with isopropyl alcohol (IPA) using a stainless steel ball mill and cemented carbide balls, 3% by weight of paraffin was added and mixed, and then press molded into CNMG120408 at 200 MPa. And firing under the firing conditions shown in Table 1. In the temperature raising steps (b) and (c), N 2 gas was injected in an amount shown in Table 1.

得られたサーメットをダイヤモンド砥石によって加工し、下記条件にて切削性能を評価した。また、各試料について走査型電子顕微鏡(SEM)観察を行い、7000倍の写真任意5箇所について市販の画像解析ソフトを用いて7μm×7μmの領域で画像解析を行い、硬質相(第1硬質相、第2硬質相)の存在状態を確認した。
結果は表2に示した。
The obtained cermet was processed with a diamond grindstone, and the cutting performance was evaluated under the following conditions. In addition, each sample was observed with a scanning electron microscope (SEM), and image analysis was performed in an area of 7 μm × 7 μm using a commercially available image analysis software for arbitrary five places of 7000 × photographs to obtain a hard phase (first The existence state of the hard phase and the second hard phase) was confirmed.
The results are shown in Table 2.

(切削条件)
切削評価1
切削方法:旋削
連続切削(耐摩耗性評価)
切削速度:230m/min
送り :0.25mm/rev
切込み :2.0mm
被削材 :SCM435
切削状態:湿式(エマルジョン)
切削時間:10分
評価項目:逃げ面摩耗幅(mm)
切削評価2
切削方法:旋削
断続切削(耐欠損性評価)
被削材:S45C
被削材:4本溝入り丸棒
切削速度:100m/min
送りおよび切削時間:0.1mm/revで10秒間切削後、送りを0.05mm/revずつ上げて各10秒間ずつ切削(最大送り0.5mm/revまで)
切込み:2mm
評価項目:欠損するまでの総切削時間
切削状態:湿式(エマルジョン)

Figure 0005127264
Figure 0005127264
(Cutting conditions)
Cutting evaluation 1
Cutting method: Turning Continuous cutting (Abrasion resistance evaluation)
Cutting speed: 230 m / min
Feeding: 0.25mm / rev
Cutting depth: 2.0mm
Work material: SCM435
Cutting state: wet (emulsion)
Cutting time: 10 minutes Evaluation item: Flank wear width (mm)
Cutting evaluation 2
Cutting method: Turning Interrupted cutting (Evaluation of fracture resistance)
Work material: S45C
Work material: Round bar with 4 grooves Cutting speed: 100m / min
Feeding and cutting time: After cutting for 10 seconds at 0.1 mm / rev, feed is increased by 0.05 mm / rev and cut for 10 seconds each (up to a maximum feed of 0.5 mm / rev)
Cutting depth: 2mm
Evaluation item: Total cutting time until chipping Cutting state: Wet (emulsion)
Figure 0005127264
Figure 0005127264

表1、2より、本発明品である試料No.1〜4では、耐摩耗性と耐欠損性のともに優れた結果を示した。これに対して、単純な焼成パターンで焼成した試料No.5では、表面に所定の表面領域が形成されず、耐摩耗性および耐欠損性がともに低下した。原料として平均粒径2μmのTiCN粉末を用いた試料No.6では、焼結体内部の硬質粒子の平均粒径d1inが1.5μmを超えて硬度および強度が低下した結果、工具の摩耗が早期に進行した。さらに、昇温工程Bにおける昇温速度が4℃より遅く、焼成温度Cが1600℃を超える試料No.7では第1硬質相の平均粒径d1inとの比(d1sf/d1in)が1.1より小さく摩耗が激しいものであった。さらには、昇温速度Aが0.7℃/minより遅く、昇温工程bおよびcにて不活性ガスを導入しなかった試料No.8では第1硬質相の平均粒径d1inとの比(d1sf/d1in)が3を超えて大きく耐摩耗性が低下した。 From Tables 1 and 2, Sample No. In 1-4, the result which was excellent in both abrasion resistance and defect resistance was shown. On the other hand, sample No. fired with a simple firing pattern. In No. 5, a predetermined surface area was not formed on the surface, and both wear resistance and fracture resistance were reduced. Sample No. using TiCN powder having an average particle diameter of 2 μm as a raw material. In No. 6, the average particle diameter d 1in of the hard particles inside the sintered body exceeded 1.5 μm, and the hardness and strength decreased. As a result, tool wear progressed early. Furthermore, in the temperature rising step B, the heating rate is lower than 4 ° C., and the sample No. In 7 the ratio of the average particle diameter d 1in the first hard phase (d 1sf / d 1in) was intended reduced wear severe than 1.1. Furthermore, sample No. No. in which the heating rate A was slower than 0.7 ° C./min and no inert gas was introduced in the heating steps b and c. In 8 ratio between the average particle diameter d 1in the first hard phase (d 1sf / d 1in) has drops significantly wear resistance than 3.

本発明のTiCN基サーメットの(a)表面、(b)内部についての走査型電子顕微鏡写真である。It is a scanning electron micrograph about (a) surface and (b) inside of TiCN base cermet of the present invention. 従来のTiCN基サーメットの(a)表面、(b)内部についての走査型電子顕微鏡写真である。It is a scanning electron micrograph about (a) surface and (b) inside of the conventional TiCN base cermet.

符号の説明Explanation of symbols

1:TiCN基サーメット
2:硬質相
2a:第1硬質相
2b:第2硬質相
3:結合相
in:サーメット内部
sf:サーメット表面領域
ss:サーメット極表面領域
1: TiCN-based cermet 2: hard phase 2a: first hard phase 2b: second hard phase 3: bonded phase in: inside of cermet sf: cermet surface area ss: cermet pole surface area

Claims (2)

TiCNと、Ti以外の周期律表IVa、VaおよびVIa族の金属の中から選択される少
なくとも1種の金属の炭化物、窒化物および炭窒化物の少なくとも一種を含む硬質相を、CoおよびNiの少なくとも1種の結合相1〜30重量%にて結合してなるTiCN基サーメットであって、該TiCN基サーメットの任意断面の走査型電子顕微鏡(SEM)写真において、前記硬質相が金属成分としてTiを80重量%以上含有する第1硬質相と金属成分としてTiが30〜70重量%、Ti以外の周期律表IVa、VaおよびVIa族の金
属の中から選択される少なくとも1種の金属の総量が70〜30重量%、CoおよびNiの結合相金属の総量が0〜3重量%の割合からなる第2硬質相とからなり、
前記サーメット中の表面に前記第1硬質相の面積比率S1ssが80面積%以上で深さ5μm以下の極表面領域が存在するとともに、該極表面領域の内側に表面領域が存在し、該極表面領域から20μm深さまでの範囲を表面領域、該表面領域の内側を内部としたとき、
前記内部における第1硬質相の平均粒径d1inが0.05〜1.5μmで、前記内部の全体に占める第1硬質相の面積比率S1inが50〜70面積%からなるとともに、
前記表面領域における前記第1硬質相の平均粒径d1sfと前記内部における第1硬質相の平均粒径d1inとの比(d1sf/d1in)が1.1〜3で、前記表面領域に占める第1硬質相の面積比率S1sfと前記内部における第1硬質相の面積比率S1inとの比(S1sf/S1in)が0.3〜0.7からなり、
前記表面領域sfに占める第2硬質相の面積比率S2sfと前記内部に占める第2硬質相の面積比率S2inとの比S2sf/S2inが1.5〜4であることを特徴とするTiCN基サーメット。
A hard phase comprising TiCN and at least one of carbides, nitrides and carbonitrides of at least one metal selected from metals of Group IVa, Va and VIa of the periodic table other than Ti, Co and Ni A TiCN-based cermet bonded with 1 to 30% by weight of at least one bonded phase, wherein the hard phase is Ti as a metal component in a scanning electron microscope (SEM) photograph of an arbitrary cross section of the TiCN-based cermet. The total amount of at least one metal selected from the group consisting of metals in the periodic table IVa, Va and VIa other than Ti as the first hard phase containing at least 80% by weight and 30 to 70% by weight of Ti as the metal component Comprising a second hard phase consisting of 70 to 30% by weight and a total amount of Co and Ni binder phase metals of 0 to 3% by weight,
With the area ratio S 1ss depth 5μm less polar surface area of 80 area% or more of the first hard phase in the surface of the cermet is present, then there is a surface area inside the polar surface area, the polar When the range from the surface region to the depth of 20 μm is the surface region, and the inside of the surface region is the inside,
The average particle diameter d 1in of the first hard phase in the inside is 0.05 to 1.5 μm, and the area ratio S 1in of the first hard phase occupying the whole inside is 50 to 70 area%,
The ratio between the average particle diameter d 1in the first hard phase in the inner and the average particle diameter d 1SF of the first hard phase in the surface region (d 1sf / d 1in) is 1.1 to 3, the surface area the ratio between the area ratio S 1in of the first hard phase (S 1sf / S 1in) consists 0.3-0.7 in the inner and the area ratio S 1SF of the first hard phase occupying the,
The ratio S 2sf / S 2in between the area ratio S 2sf of the second hard phase in the surface region sf and the area ratio S 2in of the second hard phase in the interior is 1.5 to 4. TiCN-based cermet.
前記表面領域sfにおける前記第2硬質相の平均粒径d2sfと前記サーメットの内部における第2硬質相の平均粒径d2inとの比d2sf/d2inが1.5〜1.7であることを特徴とする請求項1記載のTiCN基サーメット。 The ratio d 2sf / d 2in between the average particle diameter d 2sf of the second hard phase in the surface region sf and the average particle diameter d 2in of the second hard phase inside the cermet is 1.5 to 1.7. The TiCN-based cermet according to claim 1.
JP2007043815A 2007-02-23 2007-02-23 TiCN-based cermet Expired - Fee Related JP5127264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043815A JP5127264B2 (en) 2007-02-23 2007-02-23 TiCN-based cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043815A JP5127264B2 (en) 2007-02-23 2007-02-23 TiCN-based cermet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004022282A Division JP5127110B2 (en) 2004-01-29 2004-01-29 TiCN-based cermet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007231421A JP2007231421A (en) 2007-09-13
JP5127264B2 true JP5127264B2 (en) 2013-01-23

Family

ID=38552302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043815A Expired - Fee Related JP5127264B2 (en) 2007-02-23 2007-02-23 TiCN-based cermet

Country Status (1)

Country Link
JP (1) JP5127264B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232846A (en) * 2015-01-16 2016-12-14 住友电气工业株式会社 Ceramic metal, cutting element and ceramic-metallic manufacture method
KR101816712B1 (en) 2016-11-10 2018-01-11 한국야금 주식회사 Cutting tools having hard coated layer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127110B2 (en) * 2004-01-29 2013-01-23 京セラ株式会社 TiCN-based cermet and method for producing the same
JP5273987B2 (en) * 2007-10-26 2013-08-28 京セラ株式会社 Cermet manufacturing method
JP5111259B2 (en) * 2008-06-26 2013-01-09 京セラ株式会社 Surface covering member
JP5188578B2 (en) * 2008-07-29 2013-04-24 京セラ株式会社 Cutting tools
JP6278232B2 (en) * 2013-11-01 2018-02-14 住友電気工業株式会社 cermet
JP6380016B2 (en) * 2014-11-05 2018-08-29 株式会社タンガロイ Cermet tools and coated cermet tools
CN109642277B (en) * 2016-08-22 2020-12-29 住友电气工业株式会社 Hard material and cutting tool

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170452A (en) * 1986-01-22 1987-07-27 Hitachi Carbide Tools Ltd Ticn-base cermet
JPS63286550A (en) * 1987-05-19 1988-11-24 Toshiba Tungaloy Co Ltd Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation
JPS63286549A (en) * 1987-05-19 1988-11-24 Toshiba Tungaloy Co Ltd Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JPH0713277B2 (en) * 1990-02-19 1995-02-15 株式会社不二越 High toughness cermet alloy
JPH08199283A (en) * 1994-07-29 1996-08-06 Hokkaido Sumiden Seimitsu Kk Titanium carbonitride-base alloy
JP2737677B2 (en) * 1994-12-27 1998-04-08 住友電気工業株式会社 Nitrogen-containing sintered hard alloy
JP2737676B2 (en) * 1994-12-27 1998-04-08 住友電気工業株式会社 Nitrogen-containing sintered hard alloy
JP2795210B2 (en) * 1995-02-22 1998-09-10 住友電気工業株式会社 Tough cermet drill
JP3152105B2 (en) * 1995-05-15 2001-04-03 三菱マテリアル株式会社 Titanium carbonitride cermet cutting tool
JPH10298696A (en) * 1997-04-24 1998-11-10 Sumitomo Electric Ind Ltd Titanium-carbonitride-base alloy
JPH10287946A (en) * 1997-04-17 1998-10-27 Sumitomo Electric Ind Ltd Titanium carbonitride-base alloy
JPH10298695A (en) * 1997-04-24 1998-11-10 Sumitomo Electric Ind Ltd Titanium-carbonitride-base alloy
JPH10298697A (en) * 1997-04-24 1998-11-10 Sumitomo Electric Ind Ltd Titanium-carbonitride-base alloy
JP2002292507A (en) * 2001-03-29 2002-10-08 Kyocera Corp Cutting tool made of cermet and its manufacturing method
JP4280048B2 (en) * 2002-09-27 2009-06-17 京セラ株式会社 Method for producing TiCN-based cermet
JP5127110B2 (en) * 2004-01-29 2013-01-23 京セラ株式会社 TiCN-based cermet and method for producing the same
JP4974980B2 (en) * 2008-08-25 2012-07-11 京セラ株式会社 TiCN-based cermet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232846A (en) * 2015-01-16 2016-12-14 住友电气工业株式会社 Ceramic metal, cutting element and ceramic-metallic manufacture method
CN106232846B (en) * 2015-01-16 2018-06-15 住友电气工业株式会社 The manufacturing method of cermet, cutting element and cermet
KR101816712B1 (en) 2016-11-10 2018-01-11 한국야금 주식회사 Cutting tools having hard coated layer

Also Published As

Publication number Publication date
JP2007231421A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5127264B2 (en) TiCN-based cermet
KR100186288B1 (en) High toughness cermet and process for preparing the same
KR102441723B1 (en) Cermet, cutting tool, and method for manufacturing cermet
JPWO2011002008A1 (en) Cermet and coated cermet
JP5989930B1 (en) Cermet and cutting tools
JP2012526664A (en) Composite cemented carbide rotary cutting tool and rotary cutting tool blank material
JP4280048B2 (en) Method for producing TiCN-based cermet
KR20040085050A (en) Sintered alloy having radient composition and method of producing the same
JP4974980B2 (en) TiCN-based cermet
JP5127110B2 (en) TiCN-based cermet and method for producing the same
JP5213326B2 (en) cermet
JP5273987B2 (en) Cermet manufacturing method
KR100996843B1 (en) TiCN BASE CERMET AND CUTTING TOOL AND METHOD FOR MANUFACTURING CUT ARTICLE USING THE SAME
KR101609972B1 (en) Sintered alloy for cutting tools
KR101807629B1 (en) Cermet tool
JP4703122B2 (en) Method for producing TiCN-based cermet
JP4172754B2 (en) TiCN-based cermet and method for producing the same
JP5031610B2 (en) TiCN-based cermet
JP5132678B2 (en) cermet
JP3359221B2 (en) TiCN-based cermet tool and its manufacturing method
KR101901725B1 (en) Sintered alloy for cutting tools and cutting tools
JP4172752B2 (en) TiCN-based cermet and method for producing the same
JP4969533B2 (en) Ti-based cermet
JP2002192406A (en) Cemented carbide throw-away cutting tip exercising superior abrasion resistance in high-speed cutting
WO2015163477A1 (en) Cermet and cutting tool

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5127264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees