JPH07822B2 - High density metal boride based ceramics - Google Patents

High density metal boride based ceramics

Info

Publication number
JPH07822B2
JPH07822B2 JP62119561A JP11956187A JPH07822B2 JP H07822 B2 JPH07822 B2 JP H07822B2 JP 62119561 A JP62119561 A JP 62119561A JP 11956187 A JP11956187 A JP 11956187A JP H07822 B2 JPH07822 B2 JP H07822B2
Authority
JP
Japan
Prior art keywords
boride
metal
weight
metal boride
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62119561A
Other languages
Japanese (ja)
Other versions
JPS63282234A (en
Inventor
忠彦 渡辺
毅 道津
一久 菖蒲
由紀夫 甲斐
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP62119561A priority Critical patent/JPH07822B2/en
Publication of JPS63282234A publication Critical patent/JPS63282234A/en
Publication of JPH07822B2 publication Critical patent/JPH07822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、切削工具材料、特に木工用切削工具および耐
摩耗材料として好適な、高密度を有する新規金属ホウ化
物基セラミックスに関するものである。
Description: TECHNICAL FIELD The present invention relates to a novel metal boride-based ceramic having a high density, which is suitable as a cutting tool material, particularly as a woodworking cutting tool and an abrasion resistant material.

従来の技術 これまで、切削工具材料として、主として、タングステ
ンカーバイトが用いられてきたが、最近資源的に原料不
足の傾向があるため、これに代わるべき材料として金属
ホウ化物、例えば二ホウ化チタン焼結体が注目を浴びる
ようになってきた。
2. Description of the Related Art Tungsten carbide has been mainly used as a cutting tool material up to now, but since there is a tendency for a shortage of raw materials recently, metal boride such as titanium diboride is used as an alternative material. Sintered bodies have come into the spotlight.

ところで、この金属ホウ化物焼結体は、耐熱性、耐酸化
性、高温における強度及び硬度が優れ、資源的にも入手
しやすいものであるが、焼結性に難点がある上に、切削
工具とするには耐衝撃性が低いという欠点がある。
By the way, this metal boride sintered body is excellent in heat resistance, oxidation resistance, strength and hardness at high temperature, and is easily available in terms of resources. However, it has a difficulty in sinterability and a cutting tool. Has the drawback of low impact resistance.

このため、特に難焼結性を改善する目的で、ホウ化物に
対し、Co、Ni、Fe、Cuなどの金属を数10重量%という比
較的多い量で配合することが提案されているが(特開昭
51-30213号公報)、このように多量の金属を配合すると
ホウ化物が金属と反応し、変質するため、所望の耐衝撃
性セラミックスを得ることができない。
For this reason, it has been proposed to mix metals such as Co, Ni, Fe, and Cu with borides in a relatively large amount of several tens wt% for the purpose of improving flame retardancy. JPA
51-30213), when such a large amount of metal is blended, the boride reacts with the metal and deteriorates, so that the desired impact-resistant ceramics cannot be obtained.

また、本発明者らは先にホウ化物の結合剤として、ホウ
化コバルト、ホウ化ニッケル、ホウ化鉄などの鉄族金属
ホウ化物を添加することを提案した。(特公昭56-41690
号公報、特公昭56-45984号公報、特開昭54-72779号公
報、特開昭56-23246号公報)。
Further, the present inventors have previously proposed to add an iron group metal boride such as cobalt boride, nickel boride, and iron boride as a boride binder. (Japanese Patent Publication Sho 56-41690
JP-B-56-45984, JP-A-54-72779, JP-A-56-23246).

このようにして得たセラミックスは、耐衝撃性に関し、
若干の改善はなされたものの、まだ必ずしも満足すべき
ものではないため、さらにこれに炭窒化チタンを添加し
て靭性を向上させたものを開発したが(特開昭61-97169
号公報)、このものも耐衝撃性が不十分で利用分野が制
限される上に、結合剤として用いられるCo、Fe、Niのホ
ウ化物は、それ自体の価格が高いため得られるセラミッ
クスがコスト高のものとならざるを得ないという欠点が
ある。
The ceramics thus obtained have impact resistance
Although some improvements have been made, they are not necessarily satisfactory yet. Therefore, a titanium carbonitride was further added to improve the toughness (JP-A-61-97169).
This publication also has insufficient impact resistance to limit the field of application, and the borides of Co, Fe, and Ni used as binders are expensive, and the resulting ceramics are costly. It has the disadvantage of being expensive.

発明が解決しようとする課題 本発明の目的は、切削工具や耐摩耗工具として広範囲に
使用できる安価で耐衝撃性を有する金属ホウ化物セラミ
ックスを提供することである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to provide an inexpensive and impact resistant metal boride ceramics which can be widely used as a cutting tool or an abrasion resistant tool.

課題を解決するための手段 本発明者らは、まず安価な結合剤を見つけ出すため、種
々の実験を行ってきたが、Co、Fe、Niを微量添加する
と、これらの金属とホウ化物とは焼結時に反応を起し、
例えばCoはCoB、Co2B、Co3Bなどに変化するが、TiB2
主体とした六方晶系ホウ化物は六方晶系のままで存在す
ることが判明した。このことからホウ化コバルト、ホウ
化ニッケル、ホウ化鉄を用いないでも安価なCo、Fe、Ni
を用いてもよいことが判明した。その鉄族金属の添加量
は0.1〜5重量%、さらに好ましくは、0.5〜4重量%の
範囲である。
Means for Solving the Problems The present inventors first conducted various experiments in order to find an inexpensive binder, but when a small amount of Co, Fe, and Ni were added, these metals and boride were burned. A reaction occurs at the time of conclusion,
For example, Co was changed to CoB, Co 2 B, Co 3 B, etc., but it was found that the hexagonal boride mainly composed of TiB 2 remains in the hexagonal system. Therefore, inexpensive Co, Fe, Ni without using cobalt boride, nickel boride, or iron boride
It has been found that may be used. The amount of the iron group metal added is in the range of 0.1 to 5% by weight, more preferably 0.5 to 4% by weight.

次に本発明者らは、耐衝撃性をもたせるため、鋭意研究
を重ねてきたが、耐衝撃性は、靭性を高めるだけでな
く、欠陥となる大粒や気孔を除去しなければならないこ
とが判明した。そこで微粒子化したホウ化金属粉原料を
作製し、焼結体を得ようとしたが、微細化したホウ化金
属粉は酸化しやすく、かえって、気孔が多くなり耐衝撃
性を著しく改善することはできなかった。そこで酸素除
去効果のある添加剤を探したのであるが、はからずも、
炭化物や炭窒化物にその効果があること、さらに複炭化
物や複炭窒化物に著しい酸素除去効果があることが判明
し、耐衝撃性も酸素除去により改善できることを確認
し、本発明をなすに至った。すなわち、本発明は、
(A)TiB2を主体とした六方晶系ホウ化物から成る金属
ホウ化物基本成分に対し、(B)結合剤用金属成分とし
てCo、Fe及びNiの中から選ばれた少なくとも1種を全重
量に基づき0.1〜5重量%の範囲の量で、また(C)T
i、Hf、W及びZrの中から選ばれた少なくとも1種の金
属の炭化物、複合炭化物、炭窒化物又は複合炭窒化物の
中から選ばれた少なくとも1種を全重量に基づき0.1〜1
0重量%の範囲の量で添加した混合物の焼結体から成る
高密度金属ホウ化物基セラミックスを提供するものであ
る。
Next, the present inventors have conducted intensive studies in order to impart impact resistance, but it has been found that impact resistance must not only enhance toughness but also remove defective large grains and pores. did. Therefore, we tried to obtain a sintered body by producing a finely divided metal boride powder raw material, but the finely divided metal boride powder is easy to oxidize, and rather, the number of pores increases and impact resistance is not significantly improved. could not. So I searched for an additive that has an oxygen-removing effect.
It was confirmed that carbides and carbonitrides have the effect, and that double carbides and carbonitrides have a remarkable oxygen removing effect, and it was confirmed that the impact resistance can be improved by removing oxygen, and thus the present invention is made. I arrived. That is, the present invention is
(A) The total weight of at least one selected from Co, Fe and Ni as the metal component for the binder (B) is the basic component of the metal boride composed mainly of TiB 2 hexagonal boride. In an amount ranging from 0.1 to 5% by weight, and also (C) T
0.1 to 1 based on the total weight of at least one selected from among carbides, composite carbides, carbonitrides or composite carbonitrides of at least one metal selected from i, Hf, W and Zr.
The present invention provides a high-density metal boride-based ceramic comprising a sintered body of a mixture added in an amount in the range of 0% by weight.

本発明の(A)成分すなわち基本成分としては、TiB2
用いられるが、このものは必ずしも単独である必要はな
く、これまでTiB2に少量添加してもその六方晶系構造を
保持することが知られ、通常の耐衝撃性セラミックスに
おいてTiB2と併用されている金属ホウ化物を含んでいて
もよい。このようなTiB2と併用しうる金属ホウ化物とし
ては、例えばZrB2、CrB2、VB2、TaB2、MbB2、MnB2、MoB
2、HfB2、YB2、AlB2、MgB2などの金属二ホウ化物、Cr
B、VB、ZrB、TaB、MbB、MoB、HfB、YB,AlB、MgBなどの
金属一ホウ化物、W2B5、Mo2B5などの金属五二ホウ化物
を挙げることができる。これらは、単独で用いてもよい
し、また2種以上組合せて用いてもよい。
Although TiB 2 is used as the component (A) of the present invention, that is, the basic component, it is not always necessary to use TiB 2 alone, and it is necessary to maintain its hexagonal structure even if a small amount is added to TiB 2. However, it may contain a metal boride which is commonly used in combination with TiB 2 in ordinary impact resistant ceramics. Examples of such metal borides that can be used in combination with TiB 2 include ZrB 2 , CrB 2 , VB 2 , TaB 2 , MbB 2 , MnB 2 and MoB.
2 , metal diboride such as HfB 2 , YB 2 , AlB 2 and MgB 2 , Cr
Examples thereof include metal monoborides such as B, VB, ZrB, TaB, MbB, MoB, HfB, YB, AlB, and MgB, and metal pentaborides such as W 2 B 5 and Mo 2 B 5 . These may be used alone or in combination of two or more.

次に、(B)成分として用いられる結合剤用金属はこれ
までそのホウ化物が金属ホウ化物基焼結体の結合剤とし
て通常使用されているものであって、Co、Fe、Niがあ
る。これらは単独で用いてもよいし、また2種以上組合
せて用いてもよい。
Next, as the binder metal used as the component (B), its boride has been conventionally used as a binder for metal boride-based sintered bodies, and there are Co, Fe and Ni. These may be used alone or in combination of two or more.

この結合剤用金属の添加量は、原料組成物全量に基づき
0.1〜5重量%の範囲で選ばれる。この量が0.1重量%未
満の場合には十分緻密化しないし、また5重量%以上で
は焼結時にセラミックス表面に発汗してしまい、これ以
上添加しても意味がない。
The amount of this binder metal added is based on the total amount of the raw material composition.
It is selected in the range of 0.1 to 5% by weight. If this amount is less than 0.1% by weight, it will not be sufficiently densified, and if it is 5% by weight or more, it will cause sweating on the ceramic surface during sintering, and it is meaningless to add more than this.

本発明においては、前記した(A)成分と(B)成分と
から成る基本成分に炭化物、複炭化物、炭窒化物および
複炭窒化物の少なくとも1種を添加することが必要であ
る。
In the present invention, it is necessary to add at least one of carbide, double carbide, carbonitride, and double carbonitride to the basic component consisting of the above-mentioned component (A) and component (B).

この炭化物としては、Ti、Zr、Hfの炭化物がある。This carbide includes Ti, Zr, and Hf carbides.

また、複炭化物としては、Ti、Zr、Hf、WとCとからな
る複炭化物である。
Further, the double carbide is Ti, Zr, Hf, and a double carbide composed of W and C.

また、複炭窒化物としては、Ti、Zr、HfとCとNとから
なる複炭窒化物である。炭素と窒素の原子比C/Nが1/9〜
9のものが好ましい。この原子比C/Nが9以上のものを
用いると複炭化物と同じ効果になる。また、1/9以下に
なると複窒化物となり添加効果がない。
The double carbonitride is a double carbonitride composed of Ti, Zr, Hf, C and N. Carbon / nitrogen atomic ratio C / N is 1/9 ~
9 is preferable. If the atomic ratio C / N is 9 or more, the same effect as double carbide is obtained. If it is less than 1/9, it becomes a double nitride and has no effect.

また、炭窒化物としてはZr、Hf、Tiの炭窒化物であり、
炭素と窒素の原子比率C/Nは1/9〜9の範囲が好ましい。
これ以外の範囲になると炭化物や窒化物の添加と同様の
効果となる。
The carbonitrides are Zr, Hf, and Ti carbonitrides,
The atomic ratio C / N of carbon and nitrogen is preferably in the range of 1 / 9-9.
Within the range other than this range, the same effect as the addition of carbide or nitride is obtained.

本発明のセラミックス、前記した各成分を平均粒径4μ
m以下、好ましくは2μm以下に分級した原料を用いる
方が好ましい。また製造法は、これらの原料粉の混合物
を、これまで知られているホットプレス法、普通焼結
体、熱間静水圧焼結法によって製造することができる。
The ceramics of the present invention, each of the above-mentioned components having an average particle size of 4 μm
It is preferable to use a raw material classified to m or less, preferably 2 μm or less. In addition, as a manufacturing method, a mixture of these raw material powders can be manufactured by a conventionally known hot pressing method, an ordinary sintered body, or a hot isostatic pressing method.

例えば、原料粉末混合物を型に充てんして0.5〜10ton/c
m2程度のプレス圧により冷間圧縮し、次いでラバープレ
スによりさらに0.5〜10ton/cm2程度の静水圧で形成す
る。もちろん、どちらか一方で成形してもよいし、また
泥漿法により成形してもよい。次に、このようにして得
られた圧粉体を真空中又はアルゴン、水素、二酸化炭素
ガスなど中性若しくは還元性雰囲気中において、1300〜
2000℃好ましくは1400〜1700℃の温度で30〜300分間焼
結する。さらに必要であれば、熱間静水圧焼結法によ
り、アルゴンガスなどによる2ton/cm2以下程度の圧力の
もとで1200〜1700℃で5〜300分間焼結する。この際、
圧粉体を金属缶中に入れることにより普通焼結工程を省
略することもできる。
For example, the raw powder mixture is filled in a mold and 0.5-10 ton / c
It is cold-pressed by a press pressure of about m 2 and then further formed by a rubber press with a hydrostatic pressure of about 0.5 to 10 ton / cm 2 . Of course, either one may be molded, or the slurry method may be used. Next, the green compact obtained in this manner is vacuumed or in a neutral or reducing atmosphere such as argon, hydrogen or carbon dioxide gas at 1300-
Sintering is performed at a temperature of 2000 ° C., preferably 1400-1700 ° C. for 30-300 minutes. Further, if necessary, it is sintered by hot isostatic pressing at 1200 to 1700 ° C. for 5 to 300 minutes under a pressure of about 2 ton / cm 2 or less by argon gas or the like. On this occasion,
The normal sintering step can be omitted by placing the green compact in a metal can.

また、別の方法によると、原料粉末混合物を例えば黒鉛
型などの型に充てんしたのち、真空中又はアルゴン、水
素、二酸化炭素ガスなどの中性若しくは還元性雰囲気中
において、ダイ圧力50〜300kg/cm2、温度1300〜2000
℃、好ましくは、1400〜1700℃の条件で、10〜200分間
加熱焼結する、いわゆるホットプレス法を用いて焼結す
る。
Further, according to another method, after filling the raw material powder mixture into a mold such as a graphite mold, in vacuum or in a neutral or reducing atmosphere such as argon, hydrogen, carbon dioxide gas, the die pressure 50 ~ 300 kg /. cm 2 , temperature 1300-2000
C., preferably 1400 to 1700.degree. C., and sintered by using a so-called hot pressing method, which is heat sintering for 10 to 200 minutes.

このようにして、各種切削工具として好適な金属ホウ化
物基セラミックスが得られる。
In this way, metal boride-based ceramics suitable for various cutting tools can be obtained.

実施例 次に実施例及び比較例により本発明をさらに詳細に説明
する。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 粒径4μm以下に分級してTiB2 95重量%、Co 1重量%
及びTiCN 4重量%から成る粉末混合物を、混合機により
十分に混合したのち、黒鉛型に充てんし、真空中、ダイ
圧力200kg/cm2、温度1600℃において60分間加熱焼結し
た。このようにして、靭性値(K1C)3.5MPa1/2、空隙率
0.3Vol%、硬度(Hv)2100kg/mm2の焼結体が得られた。
Example 1 95% by weight of TiB 2 and 1% by weight of Co were classified into particles having a particle size of 4 μm or less.
After thoroughly mixing the powder mixture consisting of 4% by weight of TiCN and 4% by weight of TiCN with a mixer, the mixture was filled in a graphite mold and heated and sintered in a vacuum at a die pressure of 200 kg / cm 2 and a temperature of 1600 ° C. for 60 minutes. Thus, the toughness value (K 1 C) is 3.5MPa 1/2 and the porosity is
A sintered body with 0.3 Vol% and hardness (Hv) of 2100 kg / mm 2 was obtained.

比較例1〜5 TiB2に対し、TaB2 5重量%とNi 0〜6重量%を含み、炭
化物、複合炭化物、炭窒化物又は複合炭窒化物を含まな
い混合物を原料とし、真空中、ダイ圧力200kg/cm2、温
度1500℃において60分間加熱焼結させた。このようにし
て得た焼結体の物性を第1表に示す。
Comparative Examples 1 to 5 Based on TiB 2 , 5% by weight of TaB 2 and 0 to 6% by weight of Ni were used as a raw material, and a mixture containing no carbide, complex carbide, carbonitride or complex carbonitride was used as a raw material. It was heated and sintered at a pressure of 200 kg / cm 2 and a temperature of 1500 ° C. for 60 minutes. The physical properties of the thus obtained sintered body are shown in Table 1.

この表から明らかなように、(C)成分又は(B)成分
と(C)成分を欠くものは空隙率が大きく、緻密になら
ない。
As is clear from this table, those lacking the component (C) or the component (B) and the component (C) have a large porosity and do not become dense.

実施例2〜5、比較例6 TiB2に対し、TaB2 6重量%とCo 1重量%を含ませた混合
物に、TiCN 0〜6重量%を添加したものを原料として用
い、真空中、ダイ圧力200kg/cm2、温度1500℃において6
0分間加熱焼結させた。このようにして得た焼結体の物
性を第2表に示す。
Examples 2 to 5 and Comparative Example 6 A mixture of 6% by weight of TaB 2 and 1% by weight of Co with respect to TiB 2 and 0 to 6% by weight of TiCN was used as a raw material. 6 at pressure 200 kg / cm 2 and temperature 1500 ° C
It was heated and sintered for 0 minutes. The physical properties of the thus obtained sintered body are shown in Table 2.

この表から明らかなように、(C)成分を含まないもの
は空隙率が大きく密度が低くなる。
As is clear from this table, those which do not contain the component (C) have a large porosity and a low density.

実施例6〜15 第3表に示す組成の原料を用い、実施例2〜5と同じ焼
結条件で焼結して得た焼結体の物性を第3表に示す。
Examples 6 to 15 Table 3 shows the physical properties of sintered bodies obtained by sintering the raw materials having the compositions shown in Table 3 under the same sintering conditions as in Examples 2 to 5.

発明の効果 本発明によると、微細粉体を原料とした気孔のないホウ
化金属系セラミックスが得られ、安価な上に耐衝撃性に
優れた切削工具材や耐摩耗材料として用いることができ
る。
EFFECTS OF THE INVENTION According to the present invention, pore-free metal boride-based ceramics obtained from fine powder can be obtained, and can be used as a cutting tool material or wear resistant material that is inexpensive and has excellent impact resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菖蒲 一久 佐賀県鳥栖市宿町字野々下807番地1 九 州工業技術試験所内 (72)発明者 甲斐 由紀夫 福岡県大牟田市浅牟田町3の1 東京高級 炉材株式会社技術開発研究所内 (56)参考文献 特開 昭60−165340(JP,A) 特公 昭61−50909(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichihisa Ibuhisa 807 Nonoshita, Toji City, Tosu City, Saga Prefecture 1 Inside Kyushu Industrial Technology Laboratory (72) Inventor Yukio Kai 1-3, Asmuta Town, Omuta City, Fukuoka Prefecture (56) References JP-A-60-165340 (JP, A) JP-B-61-50909 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(A)TiB2を主体とした六方晶系ホウ化物
から成る金属ホウ化物基本成分に対し、(B)結合剤用
金属成分としてCo、Fe及びNiの中から選ばれた少なくと
も1種を全重量に基づき0.1〜5重量%の範囲の量で、
また(C)Ti、Hf、W及びZrの中から選ばれた少なくと
も1種の金属の炭化物、複合炭化物、炭窒化物又は複合
炭窒化物の少なくとも1種を全重量に基づき0.1〜10重
量%の範囲の量で添加した混合物の焼結体から成る高密
度金属ホウ化物基セラミックス。
1. At least one selected from Co, Fe and Ni as a metal component for a binder (B) with respect to (A) a metal boride basic component consisting of a hexagonal boride mainly composed of TiB 2. One in an amount ranging from 0.1 to 5% by weight, based on total weight,
Further, (C) at least one kind of carbide, compound carbide, carbonitride or compound carbonitride of at least one metal selected from Ti, Hf, W and Zr is 0.1 to 10% by weight based on the total weight. High density metal boride based ceramics consisting of a sintered body of a mixture added in an amount in the range of.
JP62119561A 1987-05-15 1987-05-15 High density metal boride based ceramics Expired - Lifetime JPH07822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119561A JPH07822B2 (en) 1987-05-15 1987-05-15 High density metal boride based ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119561A JPH07822B2 (en) 1987-05-15 1987-05-15 High density metal boride based ceramics

Publications (2)

Publication Number Publication Date
JPS63282234A JPS63282234A (en) 1988-11-18
JPH07822B2 true JPH07822B2 (en) 1995-01-11

Family

ID=14764372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119561A Expired - Lifetime JPH07822B2 (en) 1987-05-15 1987-05-15 High density metal boride based ceramics

Country Status (1)

Country Link
JP (1) JPH07822B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034286C (en) * 1992-12-24 1997-03-19 吴立新 Iron boride hard metals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165340A (en) * 1984-02-09 1985-08-28 Toshiba Tungaloy Co Ltd Selectively and partially modified sintered alloy
JPS6150909A (en) * 1984-08-20 1986-03-13 Ichimaru Fuarukosu Kk Skin-beautifying cosmetic containing water-soluble extract of vegetable crude drug

Also Published As

Publication number Publication date
JPS63282234A (en) 1988-11-18

Similar Documents

Publication Publication Date Title
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
JPH08944B2 (en) Mixed sintered metal materials based on boride, nitride and iron binder metals
JP2005132654A (en) Ceramic composite material and its manufacturing process
US4492764A (en) Sintered ceramic body containing titanium carbonitride
JP2829229B2 (en) Silicon nitride ceramic sintered body
EP0392381B1 (en) Silicon nitride ceramics containing a metal silicide phase
JP2005281084A (en) Sintered compact and manufacturing method therefor
US4808557A (en) Sintered titanium carbo-nitride ceramics
US5036028A (en) High density metal boride-based ceramic sintered body
JPH07822B2 (en) High density metal boride based ceramics
US4704372A (en) High-strength molybdenum silicide-based ceramic material and process for producing the same
JPH0411506B2 (en)
JPH0579627B2 (en)
JPS632913B2 (en)
JPS60103148A (en) Boride-base high-strength sintered hard material
JP2815686B2 (en) Composite sintered cutting tool material with excellent chipping resistance and its manufacturing method
JPH0432034B2 (en)
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPH0122233B2 (en)
JPH07172924A (en) Highly tough sintered compact for tool and its production
JP2931917B2 (en) Manufacturing method of ceramic sintered body
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JP3132849B2 (en) High toughness high pressure phase boron nitride sintered body
JPS6332750B2 (en)
JPS60131867A (en) High abrasion resistance superhard material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term