JPS6016867A - High hardness sintered body - Google Patents

High hardness sintered body

Info

Publication number
JPS6016867A
JPS6016867A JP58123855A JP12385583A JPS6016867A JP S6016867 A JPS6016867 A JP S6016867A JP 58123855 A JP58123855 A JP 58123855A JP 12385583 A JP12385583 A JP 12385583A JP S6016867 A JPS6016867 A JP S6016867A
Authority
JP
Japan
Prior art keywords
sintered body
powder
high hardness
hardness
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58123855A
Other languages
Japanese (ja)
Other versions
JPH0478584B2 (en
Inventor
幹夫 福原
哲也 満田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP58123855A priority Critical patent/JPS6016867A/en
Publication of JPS6016867A publication Critical patent/JPS6016867A/en
Publication of JPH0478584B2 publication Critical patent/JPH0478584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、実質的に金属相からなる結合相を含有してな
く、耐熱性、耐酸化性、耐摩耗性、耐食性、熱伝導性及
び電気伝導性の優れた硬質相からなる高硬度焼結体に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a hard material that does not contain a binder phase substantially consisting of a metal phase and has excellent heat resistance, oxidation resistance, abrasion resistance, corrosion resistance, thermal conductivity, and electrical conductivity. The present invention relates to a high-hardness sintered body consisting of phases.

従来、周期律表の4a 、 5a 、 6a族の遷移金
属中にC,N、0の非金属元素を固溶した侵入型化合物
は伽:焼結性材料であり、このままでは1600℃以下
の温度で緻密に焼結できないために鉄族金属を添加して
共晶反応による液相焼結を行い緻密化促進と同時に強度
を向上させた超硬合金が実用化されている。この超硬合
金、ザーメツト笠の複合合金は、鉄族金属からなる結合
相を有しているために高温高応力下で使用すると結合相
のりこ化に起因して塑性変形が進行したり、耐摩耗性が
低下したり、又鉄族金属からなる結合相の熱膨張率と4
a、5a、6a族金属の化合物からなる硬質相の熱膨張
率との差に起因すると考えられる熱亀裂が生じたり、更
に化学薬品及び腐食性ガス雰囲気中で使用すると結合相
である鉄族金属が腐食して使用できなくなるという問題
がある。
Conventionally, interstitial compounds in which nonmetallic elements such as C, N, and 0 are dissolved in transition metals of Groups 4a, 5a, and 6a of the periodic table are sinterable materials, and as they are, they can be used at temperatures below 1600°C. Since it cannot be sintered densely, cemented carbide alloys have been put into practical use in which iron group metals are added and liquid-phase sintering is carried out through a eutectic reaction to promote densification and improve strength at the same time. This cemented carbide and the composite alloy of Zamezto Kasa have a binder phase made of iron group metals, so when used under high temperature and high stress conditions, plastic deformation progresses due to the binder phase becoming glutinous, and wear resistance increases. The thermal expansion coefficient of the binder phase made of iron group metal and 4
Thermal cracks may occur due to the difference in thermal expansion coefficient of the hard phase consisting of compounds of Group A, 5A, and 6A metals, and furthermore, when used in a chemical or corrosive gas atmosphere, iron group metals as a binder phase may occur. There is a problem that the metal corrodes and becomes unusable.

本発明の高硬度焼結体は、−に記のような問題点を解決
したもので、実質的に金属からなる結合相を含有してな
く高硬度、低比重で熱伝導性、電気伝導性、耐食性及び
耐酸化性に侵れた焼結体を提供するものである。即ち本
発明の高硬度焼結体は、Ti、Zr、Hf、V、Nb、
Ta、Tbの炭化物、窒化物、酸化物の中から選ばれた
2種以上を組合わせた固溶体化合物と不可避的不純物と
からなる焼結体である。
The high-hardness sintered body of the present invention solves the problems listed in (-), and has high hardness, low specific gravity, thermal conductivity, and electrical conductivity without substantially containing a binder phase made of metal. The present invention provides a sintered body with excellent corrosion resistance and oxidation resistance. That is, the high hardness sintered body of the present invention contains Ti, Zr, Hf, V, Nb,
This is a sintered body made of a solid solution compound that is a combination of two or more selected from carbides, nitrides, and oxides of Ta and Tb, and inevitable impurities.

本発明の高硬度焼結体は、Ti、Zr、Hf、V。The high hardness sintered body of the present invention includes Ti, Zr, Hf, and V.

Nb、Ta、Thの炭化物、窒化物、酸化物の内、金相
学的に全率固溶もしくは溶解度ギャップが存在する2種
以上を組合わせることによってスピノーダル分解又はパ
イノーダル分解を発生させ、実質的に金属からなる結合
相を含有してなくても1600℃以下の低い温度で緻密
な焼結体にして実用可能な靭性と高硬度、低比重でしか
も熱伝導性、電気伝導性、耐食性及び耐酸化性に優れる
ようにしたものである。Ti、Zr、Hf、V、Nb、
Ta、Thの炭化物、窒化物、酸化物の中の2種以上を
組合わせてスピノーダル分解又はパイノーダル分解を発
生しない組成比では、略2000 ℃以上の高温焼結に
する必要が生[得られる焼結体の結晶粒子は粗大化して
焼結体の諸特性を低下させるために金相学的に全率固溶
もしくは溶解度ギャップが存在する2種の化合物の内、
1種を5モル%以上存在させる組成比にしてスピノーダ
ル分解又はパイ/−タル分解を発生させることが望まし
い。スピノーダル分解又はパイノーダル分解を起こさせ
る組成比にすると低温で緻密な焼結体になるために焼結
体の結晶粒子が微細となって一層高硬度、高靭性及び耐
熱性の傾向が高まる。
By combining two or more of carbides, nitrides, and oxides of Nb, Ta, and Th that have a complete solid solution or a solubility gap metallographically, spinodal decomposition or pinodal decomposition occurs, and substantially metal It has toughness, high hardness, low specific gravity, and has thermal conductivity, electrical conductivity, corrosion resistance, and oxidation resistance that can be made into a compact sintered body at a low temperature of 1600°C or less even without containing a binder phase. It is designed to be excellent in Ti, Zr, Hf, V, Nb,
If two or more of carbides, nitrides, and oxides of Ta and Th are combined at a composition ratio that does not cause spinodal decomposition or pinodal decomposition, it is necessary to sinter at a high temperature of about 2000 °C or higher [the resulting sintered material]. Of the two types of compounds that have a complete solid solution or a solubility gap metallographically, the crystal grains of the compact become coarse and the various properties of the sintered compact deteriorate.
It is desirable that spinodal decomposition or pi/tal decomposition occur by setting the composition ratio such that one kind is present in an amount of 5 mol % or more. When the composition ratio is set to cause spinodal decomposition or pinodal decomposition, a dense sintered body is formed at a low temperature, so that the crystal grains of the sintered body become finer and tend to have higher hardness, higher toughness, and higher heat resistance.

本発明の高硬度焼結体は、金属からなる結合相を含有し
ていないことがら耐食性が著しく優れており、4a族の
金属化合物を主体にして窒素含有量の多い焼結体にする
ことによって美麗な黄金色の色調になり、しかも高硬度
で耐スクラッチ性に優れてカリ、低密度であることがら
時計用外装部品、釣りA部品等の装飾品用部品に利用で
きる。
The high-hardness sintered body of the present invention has extremely excellent corrosion resistance because it does not contain a metal binder phase, and by making the sintered body mainly composed of group 4a metal compounds and having a high nitrogen content, It has a beautiful golden color, has high hardness, excellent scratch resistance, and has low potash and density, so it can be used for decorative parts such as watch exterior parts and fishing A parts.

又、本発明の高硬度焼結体は、電気伝導性が優れている
ために放電加工も容易であることがら複雑な形状の加工
も可能で、耐食性、高硬度であることを加味するとノズ
ル、メカニカルシーtv、、 サポートホールド治具、
印字ビン用ガイド、摺動部材等並びに窒素含有量の多い
焼結体は、ガラス溶解用モールド、レンズ成形用耐熱モ
ールド、磁気ヘッド基盤、テープカッター等と耐摩耗性
材料として利用できる。更に本発明の高硬度焼結体は、
熱伝導性が優れており、金属からなる結合相を含有して
いないので被剛材との耐反応性も良いことから硬質黒鉛
、樹脂等の非鉄金属の切削用工具にも利用できるもので
ある。
In addition, the high hardness sintered body of the present invention has excellent electrical conductivity and is easy to perform electric discharge machining, so it is possible to process complicated shapes. Mechanical seat tv, support hold jig,
Guides for printing bottles, sliding members, etc., and sintered bodies with a high nitrogen content can be used as wear-resistant materials for glass melting molds, heat-resistant molds for lens molding, magnetic head bases, tape cutters, etc. Furthermore, the high hardness sintered body of the present invention is
It has excellent thermal conductivity, and since it does not contain a metal binder phase, it has good reaction resistance with rigid materials, so it can also be used as a cutting tool for non-ferrous metals such as hard graphite and resin. .

本発明の高硬度焼結体を製造するための出発原料は、微
細粒子を使用する程焼結過程において化合物中の金属原
子及び侵入型の非金属原子が相互拡jfflしてスピノ
ーダル分解又はパイノーダル分解による相分薙現象を起
し易くなって、焼結を促進するために一層低温での焼結
が可能となり、このために焼結体の結晶粒子が微a<こ
なって高硬度、高靭性化の傾向が高くなる。このことか
ら出発原料は、108m以下特に0.1μm以下のもの
が望ましいが酸化等が生じるための取扱い上から2μm
以下のものが望ましい。出発原料が粗粒のときは、混合
粉砕を強化すればよいがこのときには不純物の混入が多
くなる傾向になるので用途によって使い分ける必要があ
る。出発原料の構成は、(a)Ti。
The starting material for producing the high-hardness sintered body of the present invention is such that the finer particles are used, the more metal atoms and interstitial nonmetal atoms in the compound expand mutually during the sintering process, resulting in spinodal decomposition or pinodal decomposition. This makes it easier for the phase splitting phenomenon to occur, making it possible to sinter at even lower temperatures to promote sintering, and for this reason, the crystal grains of the sintered body become microscopic, resulting in high hardness and high toughness. The tendency of For this reason, it is preferable that the starting material be 108 m or less, especially 0.1 μm or less, but 2 μm or less for handling reasons due to oxidation, etc.
The following are desirable. When the starting material is coarse particles, the mixing and pulverization may be strengthened, but since this tends to increase the amount of impurities mixed in, it is necessary to use it properly depending on the purpose. The composition of the starting raw material is (a) Ti.

Zr、Hf、V、Nb、Ta、Thの金属粉末の中の2
種以」二からなる混合粉末を用いて雰囲気調整により反
応焼結する方法、(b)Ti、Zr、Hf、V、Nb、
Ta。
2 of metal powders of Zr, Hf, V, Nb, Ta, and Th
A method of reaction sintering by adjusting the atmosphere using a mixed powder consisting of two species, (b) Ti, Zr, Hf, V, Nb,
Ta.

Thの金属粉末の1種以上とT i、Z r + Hf
 、V +Nb、Ta、Thの炭化物粉末、窒化物粉末
、酸化物粉末及びこれらの相互固溶体化合物粉末の1種
以上とからなる混合粉末を用いて雰囲気調整により反応
焼結する方法、(c) T i+ Z r 、Hf +
 V + N b 、T a 。
One or more metal powders of Th and T i, Z r + Hf
, V + Nb, Ta, Th carbide powder, nitride powder, oxide powder, and a method of reaction sintering by adjusting the atmosphere using a mixed powder consisting of one or more of these mutual solid solution compound powders, (c) T i+ Z r , Hf +
V + N b , T a .

Thの炭化部、窒化物、酸化物の単−化合物粉末及びこ
れらの171互固溶体化合物粉末からなる混合粉末を用
いて非酸化性雰囲気中で焼結する方法が考えられる。こ
の内(a)ω)の金属粉末の混入したものを出発原料と
するのは、反応焼結時間が長くなったり、焼結体の中に
金属が残存して耐食性及び硬さを低下させるために(c
)の構成を出発原料とするのが望ましい。(c)の構成
の中でも複合化合物粉末のみを出発原料とするよりも複
合化合物粉末と単−化合物粉末又は単一化合物粉末と単
一化合物粉末を出発原料とする組合わせがよく、特に焼
結過程での同相拡散による緻密化と同時にスピノーダル
分解又はパイノーダル分解による相分離現象を生じさせ
て低温で焼結し、微細粒子による変調構造の組織からな
る焼結体にするためには2種以上の単一化合物粉末を出
発原料として使用することが望ましい。この出発原料と
して使用する単−化合物粉末又は複合化合物粉末は、金
属元素と非金属元素のモル比が同一である重比化合物で
あっても侵入型元素である炭諧、窒素、酸素の非金属が
欠乏又は過剰に固溶した不定比化合物である亜化学量論
組成であっても本発明の高硬度焼結体が得られる。
A possible method is to sinter in a non-oxidizing atmosphere using a mixed powder consisting of a mono-compound powder of a carbonized portion of Th, a nitride, an oxide, and a powder of a 171 mutual solid solution compound of these. Among these, using (a)ω) mixed metal powder as the starting material is because the reaction sintering time becomes longer and the metal remains in the sintered body, reducing corrosion resistance and hardness. To (c
) is preferably used as a starting material. Among the configurations (c), it is better to use a combination of a composite compound powder and a single compound powder or a single compound powder and a single compound powder as starting materials rather than using only a composite compound powder as a starting material, especially during the sintering process. At the same time as densification by in-phase diffusion, phase separation phenomenon by spinodal decomposition or pinodal decomposition is caused and sintered at low temperature to produce a sintered body with a modulated structure of fine particles. It is desirable to use a single compound powder as starting material. Even if the single compound powder or composite compound powder used as the starting material is a heavy ratio compound in which the molar ratio of metallic elements and nonmetallic elements is the same, it may contain nonmetallic interstitial elements such as carbon, nitrogen, and oxygen. The high hardness sintered body of the present invention can be obtained even if it has a substoichiometric composition, which is a non-stoichiometric compound in which the solid solution is deficient or excessive.

本発明の高硬度焼結体の製造工程の内、出発原料の混合
粉砕は、ステンレス製容器、超硬合金を内張すした容器
又はウレタンゴムを内張すした容器を使用してステンレ
ス製ボール、超硬合金製ボール又は表面被覆したボール
と共に混合粉砕する。
In the manufacturing process of the high-hardness sintered body of the present invention, the starting materials are mixed and pulverized using a stainless steel container, a container lined with cemented carbide, or a container lined with urethane rubber. , mixed and ground with cemented carbide balls or surface-coated balls.

粉砕効果を高めて出発原料を微細化するには、ステンレ
ス製容器又は超硬合金を内張すした容器を使用して超硬
合金製ボールと共に混合粉砕するのがよく、又、アセト
ン、ヘキサン、ベンゼン、アルコール等の有機溶媒を加
えて湿式混合粉砕するのがよい。耐食性及び高温での耐
摩耗性を利用する用途向は等で主として金属からなる不
純物を考慮する必要があるときはウレタンゴムで内張す
した容器を使用して表面被覆したボールと共に混合する
のがよい。不純物は、混合粉砕工程から混入する比率が
高く、混合粉砕工程で使用する超硬合金の内、超硬合金
の主成分である4a、5a、6a族全金属化物が不純物
として混入するのは割合問題がないのに対して超硬合金
の結合相である鉄族金属の混入は2体積%以下出来れば
1体積%以下にするのが望ましい。
In order to improve the grinding effect and make the starting materials finer, it is best to use a stainless steel container or a container lined with cemented carbide to mix and grind together with cemented carbide balls. It is preferable to add an organic solvent such as benzene or alcohol and perform wet mixing and pulverization. For applications that utilize corrosion resistance and abrasion resistance at high temperatures, etc., and when it is necessary to take into account impurities mainly made of metal, it is recommended to use a container lined with urethane rubber and mix with balls whose surface is coated. good. A high proportion of impurities are mixed in during the mixing and pulverizing process, and only a small percentage of the cemented carbide used in the mixing and pulverizing process contains all group 4a, 5a, and 6a group metallizations, which are the main components of the cemented carbide. While there is no problem, it is desirable that the amount of iron group metals that are the binder phase of cemented carbide is kept at 2% by volume or less, preferably 1% by volume or less.

本発明の高硬度焼結体の製造工程の内、混合粉末の成形
は、混合粉砕した粉末を黒鉛モールドに充填して非酸化
性雰囲気中でホットプレスする方法、又は混合粉砕した
粉末にパラフィン、カンファ等の成形助剤を添加して必
要ならば顆粒状にした後金型モールドに充填して加圧成
形したり、もしくはラバープレス等の静水圧加圧によっ
て成形する。このようにして成形した粉末圧粉体を直接
焼結したり、又は粉末圧粉体を焼結温度よりも低い温度
で予備焼結した後切断、研削、切削等の機械加工を施し
てから焼結することもできる。
In the manufacturing process of the high-hardness sintered body of the present invention, the mixed powder is molded by filling the mixed and pulverized powder into a graphite mold and hot pressing it in a non-oxidizing atmosphere, or by adding paraffin to the mixed and pulverized powder. If necessary, it is made into granules by adding a molding aid such as camphor, and then filled into a metal mold and molded under pressure, or is molded by hydrostatic pressure using a rubber press or the like. The powder compact formed in this way can be directly sintered, or the powder compact can be pre-sintered at a temperature lower than the sintering temperature and then subjected to mechanical processing such as cutting, grinding, cutting, etc., and then sintered. It can also be tied.

本発明の高硬度焼結体の製造工程の内、焼結は、非酸化
性雰囲気中で無加圧焼結又は加圧焼結したり並びに減圧
状又は真空中で焼結することができる。特に窒素元素の
含有した焼結体を得るときには、脱窒の防止からN2ガ
スを含有した非酸化性雰囲気中で焼結することが望まし
い。更に上記糸件で焼結したものを熱間静水圧加圧法(
HIP)によって再処理することにより一層緻密で高靭
性の焼結体にすることもできる。
In the manufacturing process of the high-hardness sintered body of the present invention, sintering can be performed by pressureless sintering or pressure sintering in a non-oxidizing atmosphere, or by sintering under reduced pressure or in a vacuum. Particularly when obtaining a sintered body containing nitrogen element, it is desirable to sinter in a non-oxidizing atmosphere containing N2 gas to prevent denitrification. Furthermore, the material sintered using the above method was subjected to hot isostatic pressing (
It is also possible to obtain a sintered body that is denser and has higher toughness by reprocessing it by HIP).

以下に実施例に従って本発明の高硬度焼結体を具体的に
説明する。
EXAMPLES The high hardness sintered body of the present invention will be specifically explained below according to Examples.

実施例1 平均粒度0.2〜3μmの各種単一化合物粉末を所定の
割合に配合し、この配合粉末に3〜5%のパラフィンを
成形助剤として添加後アセトン溶媒中、WCC超超硬合
金製ボール用いて7、テンレス容器にて混合粉砕した。
Example 1 Various single compound powders with an average particle size of 0.2 to 3 μm were blended in a predetermined ratio, and after adding 3 to 5% paraffin as a forming aid to this blended powder, WCC cemented carbide was prepared in an acetone solvent. The mixture was mixed and pulverized in a stainless steel container using a manufactured ball.

得られた混合粉末から溶媒を蒸発乾燥後、この混合粉末
を1t7/讐〜5t/caの加圧力で成形し、10−3
〜I O” rr!I;+ Hfl (7) X 空又
は非酸化性ガス雰囲気中1300’l:〜1600”C
の温度で30〜90分保持にて焼1fi Lだ。各試料
の配合組成及び焼結条件を第1表に示し、得られた各試
料の焼結体の諸特性を第2表に示した。
After the solvent was evaporated and dried from the obtained mixed powder, the mixed powder was molded with a pressure of 1 t/h~5 t/ca, and 10-3
~I O" rr! I; + Hfl (7) X 1300'l in empty or non-oxidizing gas atmosphere: ~1600"C
Bake 1fi L at a temperature of 30 to 90 minutes. Table 1 shows the compounding composition and sintering conditions of each sample, and Table 2 shows the properties of the sintered body of each sample.

以下余白 第2表に示した諸特性の内、耐食性試験は塩化ナトリウ
ム、硫化ナトリウム、尿素、ショ糖、アンモニア水、乳
酸からなるPH3,9〜5.0に調整した人工汗に各試
料を浸漬して鋺面研摩面の腐食状態を観察したものであ
る。
Among the various properties shown in Table 2 below, the corrosion resistance test was performed by immersing each sample in artificial sweat containing sodium chloride, sodium sulfide, urea, sucrose, aqueous ammonia, and lactic acid, adjusted to pH 3.9 to 5.0. This is an observation of the state of corrosion on the polished surface.

実施例2 平均粒度0.2〜3μmの各種単一化合物粉末及び複合
化合物粉末を所定の割合に配合1−1実施例1と同様に
して焼結体を得た。各試料の配合組成及び焼結条件を第
3表に示し、得られた各試料の焼結体の諸特性を実施例
1と同様にしてめ、その結果を第4表に示した。
Example 2 Various single compound powders and composite compound powders having an average particle size of 0.2 to 3 μm were blended at predetermined ratios 1-1 to obtain a sintered body in the same manner as in Example 1. The composition and sintering conditions of each sample are shown in Table 3, and the various properties of the sintered body of each sample obtained were determined in the same manner as in Example 1, and the results are shown in Table 4.

以下余白 実施例3 平均粒度0.5〜5μmの不定比化合物からなる単−化
合物粉末及び複合化合物粉末を所定の割合に配合し、実
施例1と同様にして焼結体を得た。各試料の配合組成及
び焼結条件を第5表に示し、得られた各試料の焼結体の
諸特性を実施例Iと同様にしてめ、その結果を第6表に
示した。
Example 3 A sintered body was obtained in the same manner as in Example 1 by blending a mono-compound powder and a composite compound powder consisting of a non-stoichiometric compound with an average particle size of 0.5 to 5 μm in a predetermined ratio. The composition and sintering conditions of each sample are shown in Table 5, and the various properties of the sintered body of each sample obtained were determined in the same manner as in Example I, and the results are shown in Table 6.

以下余白 19頁 以上実施例1,2.3と比較に市販の超硬合金及びサー
メットを人工汗をこよる耐食試験を行ったところ市販の
超硬合金及びサーメットは金属結合相が腐食して曇りが
生じた。又実施例1の試料番号8,9.実施例2の試料
番号14、実施例3の試料番号21の焼結体の鏡面状態
は、美麗な黄金色系の色調であった。このような諸特性
から本発明の高硬度焼結体は、装飾品用材料、切削工具
用部品及び種々の耐摩耗用部品にと産業上応用範囲の広
い材料である。
Below are 19 pages of blank space. In comparison with Examples 1 and 2.3, commercially available cemented carbides and cermets were subjected to corrosion resistance tests using artificial sweat. occurred. Moreover, sample numbers 8 and 9 of Example 1. The mirror surface state of the sintered bodies of Sample No. 14 of Example 2 and Sample No. 21 of Example 3 had a beautiful golden yellow tone. Due to these characteristics, the high-hardness sintered body of the present invention is a material with a wide range of industrial applications, including materials for decorative items, parts for cutting tools, and various wear-resistant parts.

特許出願人 東芝タンガロイ株式会社 特開口aGO−16867(7)Patent applicant: Toshiba Tungaloy Corporation Special opening aGO-16867 (7)

Claims (1)

【特許請求の範囲】 (t)Ti、Zr、Hf’、V、Nb、Ta、Thの炭
化物、窒化物及び酸化物の中から選ばれた2錘以上の固
溶体化合物と不可避的不純物とからなることを特徴とす
る高硬度焼結体。 (2)上記固溶体化合物がスピノーダル分等又はパイノ
ーダル分解による変調構造の組織であることを特徴とす
る特許請求の範囲第1項記載の高硬度焼結体。 (3)上記固溶体化合物が金属元素に対して非金属元素
の欠乏又は過剰である亜化学量論組成からなることを特
徴とする特許詰1求の範囲第1項及び第2項記載の高硬
度焼結体。
[Claims] (t) Consists of two or more solid solution compounds selected from carbides, nitrides, and oxides of Ti, Zr, Hf', V, Nb, Ta, and Th, and inevitable impurities. A high hardness sintered body characterized by: (2) The high-hardness sintered body according to claim 1, wherein the solid solution compound has a modulated structure due to spinodal components or pinodal decomposition. (3) High hardness according to paragraphs 1 and 2 of the scope of the patent application, characterized in that the solid solution compound has a substoichiometric composition in which nonmetallic elements are deficient or in excess with respect to metallic elements. Sintered body.
JP58123855A 1983-07-07 1983-07-07 High hardness sintered body Granted JPS6016867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123855A JPS6016867A (en) 1983-07-07 1983-07-07 High hardness sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123855A JPS6016867A (en) 1983-07-07 1983-07-07 High hardness sintered body

Publications (2)

Publication Number Publication Date
JPS6016867A true JPS6016867A (en) 1985-01-28
JPH0478584B2 JPH0478584B2 (en) 1992-12-11

Family

ID=14871061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123855A Granted JPS6016867A (en) 1983-07-07 1983-07-07 High hardness sintered body

Country Status (1)

Country Link
JP (1) JPS6016867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118674A (en) * 1983-11-30 1985-06-26 東芝タンガロイ株式会社 Heat resistant high hardness sintered body
US4910171A (en) * 1987-03-26 1990-03-20 Agency Of Industrial Science And Technology Titanium hafnium carbide-boride metal based ceramic sintered body
WO2020017191A1 (en) * 2018-07-17 2020-01-23 住友電気工業株式会社 Sintered body, powder, and production method for powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426810A (en) * 1977-08-01 1979-02-28 Sumitomo Electric Industries Sintered body for tool and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426810A (en) * 1977-08-01 1979-02-28 Sumitomo Electric Industries Sintered body for tool and method of making same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118674A (en) * 1983-11-30 1985-06-26 東芝タンガロイ株式会社 Heat resistant high hardness sintered body
JPH0547509B2 (en) * 1983-11-30 1993-07-16 Toshiba Tungaloy Co Ltd
US4910171A (en) * 1987-03-26 1990-03-20 Agency Of Industrial Science And Technology Titanium hafnium carbide-boride metal based ceramic sintered body
WO2020017191A1 (en) * 2018-07-17 2020-01-23 住友電気工業株式会社 Sintered body, powder, and production method for powder
CN112399966A (en) * 2018-07-17 2021-02-23 住友电气工业株式会社 Sintered body, powder, and powder production method
JPWO2020017191A1 (en) * 2018-07-17 2021-08-05 住友電気工業株式会社 Sintered body

Also Published As

Publication number Publication date
JPH0478584B2 (en) 1992-12-11

Similar Documents

Publication Publication Date Title
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
JPH0475190B2 (en)
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
JPH03505862A (en) High hardness wear resistant material
US5905937A (en) Method of making sintered ductile intermetallic-bonded ceramic composites
JPS6016867A (en) High hardness sintered body
US4880600A (en) Method of making and using a titanium diboride comprising body
US4859124A (en) Method of cutting using a titanium diboride body
JPH0411506B2 (en)
JP2502322B2 (en) High toughness cermet
JPS58213842A (en) Manufacture of high strength cermet
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JP2863829B2 (en) High toughness, high strength, high hardness alumina-based composite material
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
US4885030A (en) Titanium diboride composite body
JPS60103148A (en) Boride-base high-strength sintered hard material
JP2978052B2 (en) Composition for powder metallurgy and method for producing the same
JPS59232967A (en) Zirconia base sintered body
JPS60131867A (en) High abrasion resistance superhard material
JPH08120352A (en) Method for reproducing cemented carbide composition and production of cemented carbide
WO1984004713A1 (en) Method of making and using a titanium diboride comprising body
JPH0687656A (en) Sintered compact based on tantalum-containing multiple compound and its production
JPH0585830A (en) Sintered zirconium boride and its production
JPS60118674A (en) Heat resistant high hardness sintered body
JPH0559481A (en) Sintered hard alloy having high hardness