JPH05294739A - Titanium diboride-based sintered compact and its production - Google Patents

Titanium diboride-based sintered compact and its production

Info

Publication number
JPH05294739A
JPH05294739A JP4092778A JP9277892A JPH05294739A JP H05294739 A JPH05294739 A JP H05294739A JP 4092778 A JP4092778 A JP 4092778A JP 9277892 A JP9277892 A JP 9277892A JP H05294739 A JPH05294739 A JP H05294739A
Authority
JP
Japan
Prior art keywords
weight
parts
titanium diboride
based sintered
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4092778A
Other languages
Japanese (ja)
Inventor
Hiroshi Ono
小野  浩
Osamu Miura
修 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP4092778A priority Critical patent/JPH05294739A/en
Publication of JPH05294739A publication Critical patent/JPH05294739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a titanium diboride-based sintered compact having high strength, high hardness, excellent corrosion and heat resistance and very high fracture toughness. CONSTITUTION:A titanium diobride-based compact contg. 0.5-99.5 pts.wt. (expressed in terms of V and Mo) vanadium compd. and/or molybdenum compd., 1-50 pts.wt. nitride, 0.5-10 pts.wt. carbon and 1-50 pts.wt. zirconium oxide in titanium diboride is subjected to atmospheric sintering at 1,600-2,200 deg.C in vacuum or in a nonoxidizing atmosphere to produce the objective titanium diboride-based sintered compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高硬度耐磨耗、耐熱性
材料として有用な二ホウ化チタン系焼結体およびその製
造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium diboride-based sintered body useful as a material having high hardness, abrasion resistance and heat resistance, and a method for producing the same.

【0002】[0002]

【従来技術と解決しようとする課題】従来より、二ホウ
化チタン系焼結体は、切削工具、耐熱材、熱機関の部品
材料、ロケット材料等の高硬度耐磨耗、耐熱性等の要求
される材料、または高電気伝導度を利用した材料として
極めて有用であることが知られている。
Conventionally, titanium diboride-based sintered bodies have been required to have high hardness and wear resistance, heat resistance, etc. for cutting tools, heat resistant materials, heat engine parts materials, rocket materials, etc. It is known that it is extremely useful as a material to be used or a material utilizing high electric conductivity.

【0003】しかしながら、二ホウ化チタン単体では焼
結性に乏しいため、得られた焼結体自体も抗折力も低
く、脆いという問題点を抱えている。そのため種々の結
合剤を添加してその強度の増大を図ることが提案されて
おり、例えばTi,Cr,V,Ta,Nb,Mn,Mo
等の金属ホウ化物の少なくとも1種と結合剤金属化合物
を基本成分とし、これに金属炭化物、ケイ化物、窒化物
または酸化物の中から選ばれた添加物を添加し焼結する
方法(特開昭57-42578号) 、酸化ジルコニウム粉末の添
加(特開昭58-55378号)、Fe,Co,NiとWとの複
合ホウ化物の添加(特開昭60-103080 号) 、 ケイ化モリ
ブデン添加(特開昭60-195061 号)、金属ホウ化物と炭
窒化チタンの添加(特開昭61-97169号)等、種々の金属
焼結助剤または複合剤としての副成分を添加し、焼結す
る方法が知られている。
However, since titanium diboride alone has poor sinterability, the obtained sintered body itself has a low bending resistance and is fragile. Therefore, it has been proposed to add various binders to increase the strength thereof. For example, Ti, Cr, V, Ta, Nb, Mn, Mo.
A method in which at least one kind of metal boride and the like, and a binder metal compound are used as basic components, and an additive selected from metal carbides, silicides, nitrides or oxides is added to this and sintered. 57-42578), addition of zirconium oxide powder (JP-A-58-55378), addition of complex boride of Fe, Co, Ni and W (JP-A-60-103080), addition of molybdenum silicide. (JP-A-60-195061), addition of metal boride and titanium carbonitride (JP-A-61-97169), various metal sintering aids or auxiliary components as a composite agent, and sintering. It is known how to do it.

【0004】しかし、上記方法はホットプレスによるも
のが多く、常圧焼結により製造されたものは抗折強度が
十分でなく、また破壊靱性も低い等の問題点があった。
However, many of the above methods are by hot pressing, and those manufactured by pressureless sintering have problems such as insufficient bending strength and low fracture toughness.

【0005】[0005]

【課題を解決するための手段】本発明者らはこのような
現状に鑑み、二ホウ化チタン焼結体の高強度、高硬度、
耐熱性および強靱性の付与について鋭意研究を重ねた結
果、バナジウム化合物および/またはモリブデン化合
物、炭素および窒化物とともに酸化ジルコニウム粉末を
添加剤として加えることにより、破壊靱性が大きく改善
されることを見いだし本発明に到達したものである。
In view of the present situation, the present inventors have considered that the titanium diboride sintered body has high strength and high hardness,
As a result of extensive studies on imparting heat resistance and toughness, it was found that the addition of zirconium oxide powder as an additive together with vanadium compound and / or molybdenum compound, carbon and nitride greatly improves the fracture toughness. The invention has been reached.

【0006】すなわち本発明は、二ホウ化チタン(Ti
2 )100重量部に対し、バナジウム化合物および/
またはモリブデン化合物をバナジウム(V)またはモリ
ブデン(Mo)換算で0.5〜99.5重量部、窒化物
を1〜50重量部、炭素を0.5〜10重量部および酸
化ジルコニウム(ZrO2 )を1〜50重量部含有する
二ホウ化チタン系焼結体、および二ホウ化チタン(Ti
2 )100重量部に対し、バナジウム化合物および/
またはモリブデン化合物をバナジウム(V)またはモリ
ブデン(Mo)換算で0.5〜99.5重量部、窒化物
を1〜50重量部、炭素を0.5〜10重量部および酸
化ジルコニウム(ZrO2 )を1〜50重量部添加、混
合した成形体を、真空中または非酸化性雰囲気におい
て、温度1600〜2200℃の範囲内で常圧焼結する
ことを特徴とする二ホウ化チタン系焼結体の製造法であ
る。
That is, the present invention relates to titanium diboride (Ti
B 2 ) 100 parts by weight of vanadium compound and /
Alternatively, the molybdenum compound is 0.5 to 99.5 parts by weight in terms of vanadium (V) or molybdenum (Mo), the nitride is 1 to 50 parts by weight, the carbon is 0.5 to 10 parts by weight, and zirconium oxide (ZrO 2 ). A titanium diboride-based sintered body containing 1 to 50 parts by weight, and titanium diboride (Ti
B 2 ) 100 parts by weight of vanadium compound and /
Alternatively, the molybdenum compound is 0.5 to 99.5 parts by weight in terms of vanadium (V) or molybdenum (Mo), the nitride is 1 to 50 parts by weight, the carbon is 0.5 to 10 parts by weight, and zirconium oxide (ZrO 2 ). 1 to 50 parts by weight of and mixed with a molded body, which is subjected to atmospheric pressure sintering in a temperature range of 1600 to 2200 ° C. in a vacuum or a non-oxidizing atmosphere, and a titanium diboride-based sintered body is characterized. Is a manufacturing method.

【0007】本発明に用いられる二ホウ化チタンの製造
法としては、金属チタンとの直接反応やチタニア等の酸
化物の還元反応を利用した方法等いずれの製造法によっ
て得られたものでもよいが、高純度でかつ微粉末である
ことが好ましい。具体的には、純度98%以上、平均粒径
5μm以下、より好ましくは2μm以下である。
The titanium diboride used in the present invention may be produced by any method such as a direct reaction with metallic titanium or a method utilizing a reduction reaction of oxides such as titania. It is preferable that the powder has high purity and is a fine powder. Specifically, the purity is 98% or more, the average particle size is 5 μm or less, and more preferably 2 μm or less.

【0008】本発明において添加するバナジウム化合物
は、V,VC,VB,VB2 ,VO,V2 5 ,VNお
よびV3 N等であり、好ましくはVC,VB,VNが使
用される。
The vanadium compound added in the present invention includes V, VC, VB, VB 2 , VO, V 2 O 5 , VN and V 3 N, and preferably VC, VB, VN are used.

【0009】またモリブデン化合物としては、Mo,M
oSiO2 ,MoN,MoO2 ,MoO3 ,MoC,M
oB,Mo2 B,MoB2 およびMoSi2 等であり、
好適にはMoN,MoC,MoB,MoB2 ,MoSi
2 が使用される。
Molybdenum compounds include Mo and M
oSiO 2 , MoN, MoO 2 , MoO 3 , MoC, M
oB, Mo 2 B, MoB 2 and MoSi 2, etc.,
Preferably MoN, MoC, MoB, MoB 2 , MoSi
2 is used.

【0010】これらバナジウム化合物またはモリブデン
化合物の粒径は10μm以下、特に5μm以下が好まし
い。上記化合物の添加の際は上記化合物をそれぞれ1種
類添加してもよく、またそれらの内の何種類かを選んで
一緒に加えてもよい。
The particle size of the vanadium compound or molybdenum compound is preferably 10 μm or less, more preferably 5 μm or less. When adding the above compounds, one kind of each of the above compounds may be added, or some of them may be selected and added together.

【0011】その添加量は、二ホウ化チタン(以下主成
分と略す。)に対し、VまたはMo換算で合計が0.5
〜99.5重量部であり、0.5重量部より少ない場合
は焼結体の粒成長が起こるため得られた焼結体が高強度
高靱性とならず、一方99.5重量部より多い場合は焼
結体中に添加剤の量が増加し、抗折強度の低下を招くた
め好ましくない。
The total amount of addition of titanium diboride (hereinafter abbreviated as main component) is 0.5 in terms of V or Mo.
˜99.5 parts by weight, and if less than 0.5 parts by weight, grain growth of the sintered body occurs, so the obtained sintered body does not have high strength and high toughness, while it is more than 99.5 parts by weight. In this case, the amount of the additive increases in the sintered body, resulting in a decrease in bending strength, which is not preferable.

【0012】次に、窒化物についてであるが、本発明で
添加する窒化物は、TiN,ZrN,TaN,NbN,
CrN,AlNおよびBN等であり、これらの粒径は1
0μm以下、特に5μm以下が好ましい。
Next, regarding nitrides, the nitrides added in the present invention are TiN, ZrN, TaN, NbN,
CrN, AlN, BN, etc., whose particle size is 1
It is preferably 0 μm or less, and particularly preferably 5 μm or less.

【0013】これら窒化物の添加量は主成分に対し1〜
50重量部であり、1重量部より少ない場合は靱性の向
上がみられず、一方50重量部より多い場合は、抗折強
度の低下を招くため好ましくない。
The amount of addition of these nitrides is 1 to the main component.
If it is less than 1 part by weight, the toughness is not improved. On the other hand, if it is more than 50 parts by weight, the bending strength is lowered, which is not preferable.

【0014】次に炭素添加についてであるが、炭素材料
の主たる添加目的は、焼結を促進させるものであり、二
ホウ化チタン粉末に含まれる酸化物(例えばFe,C
a,Mg,Nb等の酸化物)や雰囲気中の酸素を除去
し、非酸化性雰囲気を保持するために極めて有用な作用
を呈すものである。
Next, regarding the addition of carbon, the main purpose of the addition of the carbon material is to promote the sintering, and the oxide contained in the titanium diboride powder (eg Fe, C).
(a, Mg, Nb, etc.) and oxygen in the atmosphere are removed, and an extremely useful action is provided for maintaining a non-oxidizing atmosphere.

【0015】炭素源としては、石油コークス、グラファ
イト、カーボンブラックおよび炭化が可能なフェノール
樹脂、フラン樹脂、ポリイミド樹脂、ポリウレタン樹
脂、メラミン樹脂およびユリア樹脂等の熱硬化性樹脂、
石油タール、ピッチ等のタール製品等のものが挙げら
れ、これらの中でもカーボンブラック、グラファイト、
フェノール樹脂、フラン樹脂が好ましい。
Examples of the carbon source include petroleum coke, graphite, carbon black and thermosetting resins such as carbonizable phenol resin, furan resin, polyimide resin, polyurethane resin, melamine resin and urea resin,
Examples include tar products such as petroleum tar and pitch. Among these, carbon black, graphite,
Phenolic resins and furan resins are preferred.

【0016】炭素源の添加量は、主成分に対し0.5〜
10重量部であり、0.5重量部より少ない場合は緻密
化が困難であり、一方10重量部より多い場合は焼結体
中に遊離炭素が含まれ、粒成長が起こり、物性低下の原
因ともなるためこの範囲内での添加が好ましい。
The amount of carbon source added is 0.5 to the main component.
10 parts by weight, if less than 0.5 parts by weight, it is difficult to densify. On the other hand, if more than 10 parts by weight, free carbon is contained in the sintered body and grain growth occurs, causing deterioration of physical properties. Therefore, addition within this range is preferable.

【0017】本発明ではさらに、上記添加剤に酸化ジル
コニウムを添加する。その主たる添加目的は、焼結体の
靱性向上である。添加する酸化ジルコニウムの粒径は1
0μm以下、特に5μm以下が好ましい。
In the present invention, zirconium oxide is further added to the above additives. Its main purpose is to improve the toughness of the sintered body. The particle size of zirconium oxide added is 1
It is preferably 0 μm or less, and particularly preferably 5 μm or less.

【0018】酸化ジルコニウムの添加量は、主成分に対
し1〜50重量部であり、1重量部より少ない場合は靱
性向上効果が現れず、一方50重量部より多い場合は焼
結体の硬度低下の原因ともなるためこの範囲内での添加
が好ましい。
The amount of zirconium oxide added is 1 to 50 parts by weight with respect to the main component. If it is less than 1 part by weight, the toughness improving effect does not appear, while if it is more than 50 parts by weight, the hardness of the sintered body decreases. Therefore, addition within this range is preferable.

【0019】以上の如く本発明は、主成分二ホウ化チタ
ンに対し上記添加剤を所定量添加するものである。次に
上記組成粉末の混合については、一般的に行われている
方法により行うことができる。一例としてはボールミル
等を用い、有機溶媒中で混合する方法を採用することが
できる。この場合使用する有機溶媒としては、石油、エ
ーテル、ヘキサン、ベンゼン、トルエン等の炭化水素
類、メタノール、エタノール、プロパノール、イソプロ
パノール等の脂肪族アルコール等が採用される。
As described above, according to the present invention, a predetermined amount of the above-mentioned additive is added to the main component titanium diboride. Next, the mixing of the above-mentioned composition powder can be carried out by a commonly used method. As an example, a method using a ball mill or the like and mixing in an organic solvent can be adopted. As the organic solvent used in this case, hydrocarbons such as petroleum, ether, hexane, benzene and toluene, and aliphatic alcohols such as methanol, ethanol, propanol and isopropanol are used.

【0020】混合は5〜24時間程度行えばよく、これに
より凝集、凝結している各粉末が解砕され、均一に混合
される。その後溶媒を取り除いた後、例えば金型成形、
ラバープレス成形等により成形し、真空中またはアルゴ
ン、ヘリウム、窒素等の不活性ガス雰囲気中で常圧焼結
させるものである。
The mixing may be carried out for about 5 to 24 hours, whereby the aggregated and condensed powders are crushed and uniformly mixed. After removing the solvent, for example, mold molding,
It is formed by rubber press molding or the like, and is sintered under normal pressure in a vacuum or an inert gas atmosphere such as argon, helium, or nitrogen.

【0021】焼結温度は1600〜2200℃、焼結時
間はその形状等にも依存するが、0.5〜10時間が適
当である。温度が1600℃より低い場合、焼結が不十
分で相対密度が低く、一方2200℃より高い場合は粒
成長が起こり、抗折強度等の低下を招くと同時に熱エネ
ルギー的にも不利である。
The sintering temperature is 1600 to 2200 ° C., and the sintering time is 0.5 to 10 hours, though it depends on the shape and the like. When the temperature is lower than 1600 ° C., the sintering is insufficient and the relative density is low, while when it is higher than 2200 ° C., grain growth occurs, which causes deterioration of the bending strength and the like, and is also disadvantageous in terms of thermal energy.

【0022】なお、従来法の黒鉛型に原料粉末を充填
し、ホットプレス焼成して焼結させることもできる。本
発明で得られる焼結体は、前記した焼結助剤または添加
剤の使用によりその組織は緻密結晶、具体的には大部分
が5μm以下の結晶が均一に分散している極めて緻密な
微細結晶組織からなっているものである。
It is also possible to fill the raw material powder in a graphite mold of a conventional method, and hot-press and sinter it. The sintered body obtained according to the present invention has a dense crystal structure by using the above-mentioned sintering aid or additive, specifically, most of the crystal is 5 μm or less and is extremely dense and fine. It has a crystalline structure.

【0023】本発明において、破壊靱性値が大きく上が
ったのは、バナジウム化合物および/またはモリブデン
化合物と炭素、TiN,TaN等の窒化物に加え、酸化
ジルコニウムの添加によるところが大きく、これにより
従来品にない高強度、高靱性の焼結体が得られることと
なったものである。
In the present invention, the fracture toughness value is greatly increased largely due to the addition of vanadium compound and / or molybdenum compound and nitrides such as carbon, TiN, TaN, etc., and zirconium oxide. This is the reason why a sintered body having no high strength and high toughness can be obtained.

【0024】本発明で得られる焼結体は、添加助剤の相
互効果により強度、硬度、靱性ともに優れたものであ
り、具体的には、抗折強度が85kg/mm2 以上、室
温硬度HVが2000kg/mm2 以上で破壊靱性値が
5MN/m3/2 以上である。
The sintered body obtained in the present invention is excellent in strength, hardness and toughness due to the mutual effect of the additive aids. Specifically, the bending strength is 85 kg / mm 2 or more and the room temperature hardness HV. Is 2000 kg / mm 2 or more and the fracture toughness value is 5 MN / m 3/2 or more.

【0025】[0025]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明は係る実施例に限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.

【0026】実施例1〜8 TiB2 粉末(平均粒径1μm、純度99%)100重
量部に対し、バナジウム化合物、モリブデン化合物、窒
化物、炭素および酸化ジルコニウムを表1に示す化合物
および配合割合(試料組成)で添加し、ヘキサン溶媒を
用い、ナイロンポット、ナイロンボールにて24時間湿
式ボールミル混合を行った。
Examples 1 to 8 Vanadium compound, molybdenum compound, nitride, carbon and zirconium oxide were added to 100 parts by weight of TiB 2 powder (average particle size: 1 μm, purity: 99%). Sample composition), and using a hexane solvent, wet ball mill mixing was performed with a nylon pot and nylon balls for 24 hours.

【0027】ついでこの混合物を乾燥し、金型直径15
mm、厚さ10mmの円板において成形し、さらに1.5t
on/cm2 の圧力でラバープレスを行い、所定寸法の成
形体を得た。この成形体を黒鉛ルツボに入れ、アルゴン
ガス雰囲気中例えば1950℃(実施例1)の温度で2
時間常圧焼結を行った。焼結条件および得られた焼結体
の諸物性を表1に示す。なお、焼結体は均一に収縮し、
変形は全く認められず、組織は電子顕微鏡(SEM)に
よる観察の結果、平均粒径5μm以下の粒子が均一に分
散した極めて緻密な結晶構造を有していた。得られた焼
結体の特性を表1に示した。
The mixture is then dried and the mold diameter 15
mm, 10 mm thick disc, and 1.5t
Rubber pressing was performed at a pressure of on / cm 2 to obtain a molded product having a predetermined size. This molded body was placed in a graphite crucible and heated at a temperature of, for example, 1950 ° C. (Example 1) in an argon gas atmosphere,
Pressureless time sintering was performed. Table 1 shows the sintering conditions and various physical properties of the obtained sintered body. The sintered body shrinks uniformly,
No deformation was observed at all, and as a result of observation with an electron microscope (SEM), the structure had an extremely dense crystal structure in which particles having an average particle size of 5 μm or less were uniformly dispersed. The characteristics of the obtained sintered body are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】比較例1〜6 表2で示す試料組成のものを実施例1と同様な方法で調
整して成形体とし、所定の焼成条件で処理し、得られた
結果を比較例として同時に表2に示す。
Comparative Examples 1 to 6 A sample having the sample composition shown in Table 2 was prepared in the same manner as in Example 1 to obtain a molded body, which was treated under predetermined firing conditions, and the obtained results were simultaneously displayed as a comparative example. 2 shows.

【0030】[0030]

【表2】 [Table 2]

【0031】表から明らかなように、二ホウ化チタン系
焼結体の物性値をそれぞれ比較するとその破壊靱性値、
抗折強度、硬度において表1の実施例のものがそれに対
応した比較例よりも格段に優れており、焼結体の機械的
性質が向上していることが分かる。
As is apparent from the table, when comparing the physical properties of the titanium diboride-based sintered bodies, their fracture toughness values,
It can be seen that the bending strength and hardness of the examples of Table 1 are significantly superior to the corresponding comparative examples, and the mechanical properties of the sintered body are improved.

【0032】[0032]

【発明の効果】本発明の焼結体は、高強度、高硬度であ
り、かつ耐食性、耐熱性に優れているだけでなく、極め
て破壊靱性の高いものであり、また、本発明方法によれ
ばかかる優れた物性の焼結体を常圧焼結で得ることがで
きるため、複雑な形状も製造可能であり、切削材等の機
械加工材料や引抜ダイス等の耐磨耗性材料、その他二ホ
ウ化チタン系焼結体の特質を発揮した種々の用途に使用
でき、実用的価値が大である。
The sintered body of the present invention is not only high in strength and hardness, excellent in corrosion resistance and heat resistance, but also extremely high in fracture toughness, and according to the method of the present invention. For example, since it is possible to obtain a sintered body with such excellent physical properties by pressureless sintering, it is possible to manufacture complex shapes, such as machining materials such as cutting materials, wear-resistant materials such as drawing dies, and other two materials. It can be used in various applications where the characteristics of titanium boride-based sintered bodies are exhibited, and is of great practical value.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二ホウ化チタン(TiB2 )100重量
部に対し、バナジウム化合物および/またはモリブデン
化合物をバナジウム(V)またはモリブデン(Mo)換
算で0.5〜99.5重量部、窒化物を1〜50重量
部、炭素を0.5〜10重量部および酸化ジルコニウム
(ZrO2 )を1〜50重量部含有する二ホウ化チタン
系焼結体。
1. A vanadium compound and / or a molybdenum compound in an amount of 0.5 to 99.5 parts by weight in terms of vanadium (V) or molybdenum (Mo) per 100 parts by weight of titanium diboride (TiB 2 ) and a nitride. 1-50 parts by weight, carbon 0.5 to 10 parts by weight of zirconium oxide (ZrO 2) and containing 1 to 50 parts by weight titanium diboride based sintered body.
【請求項2】 二ホウ化チタン(TiB2 )100重量
部に対し、バナジウム化合物および/またはモリブデン
化合物をバナジウム(V)またはモリブデン(Mo)換
算で0.5〜99.5重量部、窒化物を1〜50重量
部、炭素を0.5〜10重量部および酸化ジルコニウム
(ZrO2 )を1〜50重量部添加、混合した成形体
を、真空中または非酸化性雰囲気において、温度160
0〜2200℃の範囲内で常圧焼結することを特徴とす
る二ホウ化チタン系焼結体の製造法。
2. A vanadium compound and / or a molybdenum compound in an amount of 0.5 to 99.5 parts by weight in terms of vanadium (V) or molybdenum (Mo) based on 100 parts by weight of titanium diboride (TiB 2 ) and a nitride. 1 to 50 parts by weight of carbon, 0.5 to 10 parts by weight of carbon, and 1 to 50 parts by weight of zirconium oxide (ZrO 2 ) were added and mixed, and the molded body was heated in vacuum or in a non-oxidizing atmosphere at a temperature of 160.
A method for producing a titanium diboride-based sintered body, which comprises performing atmospheric pressure sintering within a range of 0 to 2200 ° C.
JP4092778A 1992-04-13 1992-04-13 Titanium diboride-based sintered compact and its production Pending JPH05294739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4092778A JPH05294739A (en) 1992-04-13 1992-04-13 Titanium diboride-based sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4092778A JPH05294739A (en) 1992-04-13 1992-04-13 Titanium diboride-based sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH05294739A true JPH05294739A (en) 1993-11-09

Family

ID=14063883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4092778A Pending JPH05294739A (en) 1992-04-13 1992-04-13 Titanium diboride-based sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH05294739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171989B1 (en) 1994-09-29 2001-01-09 Kyocera Corporation Silver-colored sintered product and method of producing the same
KR100321939B1 (en) * 1999-07-03 2002-02-04 최동환 Titanium diboride sintered body with silicon nitride as a sintering aid and method for manufacture thereof
KR102050751B1 (en) * 2018-06-05 2019-12-04 (주)단단 Titanium boride sintered body and the manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171989B1 (en) 1994-09-29 2001-01-09 Kyocera Corporation Silver-colored sintered product and method of producing the same
DE19523531B4 (en) * 1994-09-29 2006-04-06 Kyocera Corp. Silver-colored sintered product and process for its production
KR100321939B1 (en) * 1999-07-03 2002-02-04 최동환 Titanium diboride sintered body with silicon nitride as a sintering aid and method for manufacture thereof
KR102050751B1 (en) * 2018-06-05 2019-12-04 (주)단단 Titanium boride sintered body and the manufacturing method of the same

Similar Documents

Publication Publication Date Title
US5543370A (en) Composite materials based on boron carbide, titanium diboride and elemental carbon and processes for the preparation of same
US4320204A (en) Sintered high density boron carbide
EP0349740B1 (en) Complex boride cermets
KR20190048811A (en) Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability
US5089447A (en) High hardness, wear resistant materials
JPH02239156A (en) Metal diboride-based sintered body and production thereof
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JPH05294739A (en) Titanium diboride-based sintered compact and its production
JPS63236763A (en) Boron carbide sintered body and manufacture
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JPH0585830A (en) Sintered zirconium boride and its production
JP3735397B2 (en) Titanium nitride sintered body and method for producing the same
JPH0687656A (en) Sintered compact based on tantalum-containing multiple compound and its production
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JPH0122233B2 (en)
CA2124167C (en) Composite materials based on boron carbide, titanium diboride and elemental carbon and processes for the preparation of same
JP2677287B2 (en) Nickel-molybdenum compound boride-based sintered body
EP0689525A1 (en) Complex multi-phase reaction sintered hard and wear resistant materials
JPH04325461A (en) Composite ceramics having self-lubricity and production thereof
JPH0610107B2 (en) High strength and high toughness TiB2 composite sintered body
JPH01261280A (en) Production of titanium diboride-based sintering form
JPH0725588B2 (en) Method for manufacturing SiC-TiC pressureless sintered body
JPH0432034B2 (en)
JPH10167833A (en) Boride ceramics and its production