JPS59223274A - Method of getting high strength silicon nitride reaction sintered body - Google Patents

Method of getting high strength silicon nitride reaction sintered body

Info

Publication number
JPS59223274A
JPS59223274A JP58095312A JP9531283A JPS59223274A JP S59223274 A JPS59223274 A JP S59223274A JP 58095312 A JP58095312 A JP 58095312A JP 9531283 A JP9531283 A JP 9531283A JP S59223274 A JPS59223274 A JP S59223274A
Authority
JP
Japan
Prior art keywords
sintered body
density
sintering
silicon nitride
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58095312A
Other languages
Japanese (ja)
Other versions
JPH0513908B2 (en
Inventor
市川 二朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58095312A priority Critical patent/JPS59223274A/en
Publication of JPS59223274A publication Critical patent/JPS59223274A/en
Publication of JPH0513908B2 publication Critical patent/JPH0513908B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高強度窒化珪素反応焼結体を得る方法にl!
I!する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for obtaining a high-strength silicon nitride reaction sintered body!
I! do.

窒化珪素Sf 3N4の製品のうち、反応焼結体とよぽ
れるものは、ふつう、Si粉末の成形体または(3i 
+Si 3N4)粉末混合物の成形体に窒素ガスを作用
させて窒化しつつ焼結覆ることにより製造されている。
Among products of silicon nitride Sf 3N4, those called reaction sintered bodies are usually molded bodies of Si powder or (3i
+Si 3N4) It is manufactured by applying nitrogen gas to a molded body of a powder mixture to nitriding it and sintering it.

 この種の製品は、耐熱衝撃性、硬度、高温での電気絶
縁性および化学的安定性にすぐれているうえ、反応焼結
時の収縮がほとんどなく、寸法ylIi度が高く得られ
るという利点があるため、耐火材料、耐摩耗材料、耐食
材料、絶縁材料などの用途に広く使用されている。
This type of product has excellent thermal shock resistance, hardness, electrical insulation properties at high temperatures, and chemical stability, and also has the advantage of almost no shrinkage during reaction sintering and a high degree of dimension. Therefore, it is widely used in applications such as fireproof materials, wear-resistant materials, corrosion-resistant materials, and insulation materials.

従来の窒化珪素反応焼結体の欠点は機械的に弱いことで
あって、曲げ強度は20Kg「/l1lI112程度高
くても30 K(] f 7mm2止まりであり、耐熱
構造用材r4としては不満足なことである。 これは珪
素を完全に窒化して得た製品でも、20〜30%の気孔
率をもつ比較的低密度の焼結体でしかないことが原因で
あって、高強度の反応焼結体を得るだめには、高密度の
ものを製造する必要がある。
The drawback of conventional silicon nitride reaction sintered bodies is that they are mechanically weak, and even if the bending strength is as high as 20Kg/l1lI112, it is only 30K(] f7mm2, which is unsatisfactory as a heat-resistant structural material R4. This is because even products obtained by completely nitriding silicon are only relatively low-density sintered bodies with a porosity of 20 to 30%. In order to obtain a body, it is necessary to manufacture something with high density.

より高密度の反応焼結体を製造できれば、常温から^瀉
にわたって強度だ番プでなく、その他の開時性をも改善
できるから、高温でも強度が低下しないという特徴を生
かして、耐熱構造用材料としCきわめて有用なものとな
る。
If a reaction sintered body with higher density can be produced, it will be possible to improve not only its strength from room temperature to temperature but also other opening properties. C is extremely useful as a material.

反応焼結体の密度を向上させるためにこれまでとられた
対策は、3iまたは(Si +Si 3N4)成形体の
密度を高めることである。 具体的には、まず粉末成形
圧力の増大であるが、実用できる限度で高い圧力を加え
ても、窒化後の製品の密度は、せいぜい2.39(1/
cm3 (理論密度の75%)でしかない。 粉末の粒
度を調節して種々の粒径のものを配合することも試みら
れたが、それでも反応焼結体の密度は2.54CI/c
m3が限弄とされていた。
The measures taken so far to increase the density of reaction sintered bodies are to increase the density of 3i or (Si + Si 3N4) compacts. Specifically, the first step is to increase the powder compaction pressure, but even if a high pressure is applied to the practical limit, the density of the product after nitriding is at most 2.39 (1/
cm3 (75% of the theoretical density). Attempts were made to adjust the particle size of the powder and blend powders with various particle sizes, but the density of the reaction sintered body was still 2.54 CI/c.
m3 was considered to be the limit.

さらに高密度の反応焼結体を得る目的で、3i底成形の
予備焼結、すなわち窒化に先立つ不活性雰囲気中での焼
結を導入して、3i底成形の高密度の焼結体をつくるこ
とが提案されたく特開昭52−121613号)。
In order to obtain a reaction sintered body with even higher density, we introduced pre-sintering of the 3i bottom molding, that is, sintering in an inert atmosphere prior to nitriding, to create a high density sintered body with the 3i bottom molding. This has been proposed in Japanese Patent Application Laid-open No. 121613/1983).

しかし、上記開示の方法は、予備焼結によるS:成形体
の高密度を実効あるものどするために、平均粒径0.2
μ以下というきわめて微細なSi粉末を使用することを
必須条件とりる。 そのような微粉末の製造が容易でな
いという問題は別にしても、1ηられる反応焼結体の密
度は、なお、2、390 /cm3 (理論密度の92
%)が限度であった。
However, in the method disclosed above, in order to effectively restore the high density of the S: compact due to preliminary sintering, the average grain size is 0.2
The essential condition is to use extremely fine Si powder of less than μ. Setting aside the problem that such fine powder is not easy to manufacture, the density of the reaction sintered body calculated by 1η is still 2,390/cm3 (92% of the theoretical density).
%) was the limit.

本発明者は、予備焼結を利用する3i底成形の高密度化
をさらにおし進めることを意図して協働者とともに研究
を重ね、最高3 、05g7crn3(理論密度の96
%)に達するきわめ′C高密度の反応焼結体を得ること
に成功し、りでに開示したく特開昭57−188465
号および57−188466号)。 その方法は、3i
粉末に特定量のホウ素を加えて焼結性を向上させるか、
または特定の元素、すなわちFe 、co 、Nt 、
Cr、MO、Mn SW、Ti、Zl’、T’a、Nb
、V。
The inventor of the present invention has conducted research together with his collaborators with the intention of further increasing the density of 3i bottom molding using pre-sintering, and has achieved a maximum density of 3.05g7crn3 (96% of the theoretical density).
%), we succeeded in obtaining a reaction sintered body with an extremely high C density, which we would like to disclose in Japanese Patent Application Laid-Open No. 57-188465.
No. 57-188466). The method is 3i
Add a certain amount of boron to the powder to improve sinterability, or
or specific elements, i.e. Fe, co, Nt,
Cr, MO, Mn SW, Ti, Zl', T'a, Nb
,V.

Mg、 Ca 、Cu 、7nおよび3nからえら/v
だ1種または2秒以上の元素またはその化合物を一定量
加えて、窒化を促進することを要旨とする。゛その後の
研究にJ:す、「eなどの窒化促進剤は焼結性向上の効
果もあり、広い添加量範囲で有用であることがわかった
。 上記Bおよびl”eなどの添加剤は、もちろ/V 
(lf用してもよく、それが好ましい。
Mg, Ca, Cu, 7n and 3n to gill/v
The gist is to promote nitriding by adding a certain amount of an element or a compound thereof for 1 or 2 seconds or more.゛In subsequent research, J: ``It was found that nitriding accelerators such as e have the effect of improving sinterability and are useful in a wide range of addition amounts. , Mochiro/V
(It is also possible to use lf, which is preferable.

さらに本発明者は、窒化珪素反応焼結体の強度を高める
直接的な手段は何か、という観点から考察を加えた。 
ぞの過稈で、反応焼結体は、その表層部の密度が内部の
(れにくらべて低いものがしばしばできること、この密
度の差が著しいものや、低密度の表層部が厚いものは、
強度に関して不満足であることを見出した。
Furthermore, the present inventors have added consideration from the viewpoint of what is the direct means to increase the strength of the silicon nitride reaction sintered body.
In reaction sintered compacts, the density of the surface layer is often lower than that of the inner layer.
It was found that the strength was unsatisfactory.

予備焼結体の表層部が低密度になる理由は、完全に明ら
かではないが、原料3iが粉末の表面にあるs+ 02
と反応してSiOなどの形で揮散づる現象が、表層部は
ど起りやすいためと考えられる。
The reason why the surface layer of the pre-sintered body has a low density is not completely clear, but the reason why the surface layer of the pre-sintered body has a low density is that the raw material 3i is on the surface of the powder.
This is thought to be because the phenomenon of reaction with SiO and volatilization in the form of SiO is more likely to occur in the surface layer.

この現象には、原料S1粉末の純度、ソース、粉砕法、
粒径および粒度分布、成形法および予備焼結条件づなわ
ち温度、時間、雰囲気など多くの因子が考えられるが、
ある程度はaGプら机ないものである。
This phenomenon includes the purity of the raw S1 powder, the source, the grinding method,
Many factors can be considered, such as particle size and particle size distribution, molding method and pre-sintering conditions, such as temperature, time, and atmosphere.
To some extent, aG is not available.

そこで、この対策として提案する本発明のへ強度窒化珪
素反応焼結体を1守る方法は、ホウ素またはその化合物
をBとして0.15〜5.0fflfTi%、ならびに
(または)Fe、Go、NiN15Cr1.Mn、W、
Ti、Zr、1−a、NtzV、Mg、Ca 、Cu 
、Znおよび3nの1種または2P!以上の元素または
その化合物を上記元素として(2種以上の場合は合計量
で)0.05〜2゜0重量%含有する珪素粉末を成形し
、成形体を不活性ガス雰囲気中でi、ioo℃以上であ
るがSlの融点よりは低い温度に加熱し゛(予備焼結し
得られた予備焼結体を1100〜1500℃の温度に加
熱し”CN 2を作用さU窒化することからなる^強度
窒化珪素反応焼結体の製法において、予II焼粘体の表
層部を除去したのち、窒化処理することを特徴とする。
Therefore, as a countermeasure to this problem, the method of protecting the strength silicon nitride reaction sintered body of the present invention is to use boron or its compound as B and 0.15 to 5.0 fflfTi%, and/or Fe, Go, NiN15Cr1. Mn, W.
Ti, Zr, 1-a, NtzV, Mg, Ca, Cu
, Zn and 3n or 2P! A silicon powder containing 0.05 to 2.0% by weight of the above elements or their compounds as the above elements (in the case of two or more, the total amount) is molded, and the molded body is heated to i, ioo in an inert gas atmosphere. ℃ or higher but lower than the melting point of Sl. The method for producing a high-strength silicon nitride reaction sintered body is characterized in that the surface layer portion of the pre-II sintered viscous body is removed and then subjected to nitriding treatment.

周知のとおり、S f 3 N 4はきわめて硬い物質
であるから、反応焼結製品からその表層部を除去するこ
とは困難であっ゛C1ダイヤモンド加工を必要とする。
As is well known, S f 3 N 4 is a very hard material, so it is difficult to remove the surface layer from the reactive sintered product and requires C1 diamond machining.

 しかし、S1粉末の予備焼結体は、その表面を削り切
ることがきわめて容易であって、旋盤で切削することが
できるし、簡易にはエメリーペーパーでこ1つても足り
る。
However, the surface of the pre-sintered body of S1 powder is extremely easy to shave off, and can be cut with a lathe, or simply with emery paper.

3i粉末の配合と成形、および予備焼結の条件は、本発
明者がこれまでに開示した技術に従って実施例 すなわち、St粉末には焼結促進または窒化促進の効果
をもつ前記諸物質のいずれか、好ましくは両方を配合す
る。 含右爾の限Wど(の理由は、さきに開示したとお
りである。 ホウ素の効果を期待するためには、少なく
とも0.15重量%の含有を必要とする。 しかしホウ
素は窒化工程において窒化硼素BNを生成し、これが多
量になると反応焼結を阻害する。 そのため、5.0f
fim%以内に止めなければならない。
The blending and molding of the 3i powder, as well as the conditions for pre-sintering, were carried out in accordance with the techniques previously disclosed by the present inventors. , preferably both are blended. The reason for the limit on the amount of boron contained is as previously disclosed. In order to expect the effect of boron, it is necessary to contain at least 0.15% by weight. However, boron is nitrided in the nitriding process. Boron BN is generated, and when it becomes large, it inhibits reaction sintering. Therefore, 5.0 f
It must be stopped within fim%.

Feその他の物質の含有岱は、S1粉末に対し0.05
重量%以上ないと効果が得られない。
The content of Fe and other substances is 0.05 for S1 powder.
If the amount is less than % by weight, no effect will be obtained.

この下限未満では予備焼結体の密度が高くなることもあ
って、SiをB度に窒化づるのに要りる時間が、実用的
といえないはど良くなる。 一方、2.0%を超える含
有は、茗しい粒成長を招き、予備焼結における高密度化
を妨げるので、避けなLJればならない。 好ましい範
囲は使用元素にJ:り異なるが、ふつう0.1〜0.6
重給%である。
Below this lower limit, the density of the preliminary sintered body may become high, and the time required to nitride Si to B degree becomes too long to be practical. On the other hand, if the content exceeds 2.0%, it will cause coarse grain growth and prevent high density during preliminary sintering, so LJ must be avoided. The preferred range varies depending on the element used, but is usually 0.1 to 0.6.
Weight pay%.

存在形態は、ホウ素の場合、金属ホウ素、非晶質物、ま
たは金属ホウ化物などのいずれであってもよく、f−e
その他は、元素状態であつCも、また酸化物などの化合
物であってもよく、それら同士の化合物は、もちろん好
ましいしのである。
In the case of boron, the existing form may be metal boron, amorphous material, metal boride, etc.
Other C, which is in an elemental state, may also be a compound such as an oxide, and compounds of these are, of course, preferable.

両者を併用する場合は、ホウ素とこれら元素との化合物
をえらべば、両者を−・−挙に存在させることができて
好ましい。
When both are used together, it is preferable to select a compound of boron and these elements because both can be present together.

原料の3i粉末は、予備焼結におりる高密度化を容易に
するために、平均粒径が15μ以下のものを使用゛リベ
きであって、望ましいのは1μ以下の微粉末である。
The raw material 3i powder should preferably have an average particle size of 15 μm or less, and preferably a fine powder of 1 μm or less in order to facilitate densification in preliminary sintering.

焼結促進剤a3よび窒化促進剤の諸物質も、3i粉末の
粒度ど同等またはそれ以下の微粒子であることが望まし
い。
It is desirable that the sintering accelerator a3 and the nitriding accelerator be fine particles having a particle size equal to or smaller than that of the 3i powder.

原料粉末または粉末混合物の成形は、常用のダイス成形
をはじめとして、等方圧成形、スリップキt7スト、射
出成形など任意の手段によることができるのはもちろん
である。
Of course, the raw material powder or powder mixture can be formed by any means such as conventional die forming, isostatic pressing, slip molding, and injection molding.

予備焼結する成形体の密度は、その取り扱いや加工を容
易にづるとともに、予備焼結におりる焼結性を確保する
ために、0.82g/cm3 (理論密度の35%)以
上にずべきである。 これJ:り低い密度では、予備焼
結により高密度化できても、均一な組織を有する焼結体
を得ることが困難どなる。
The density of the compact to be pre-sintered should be at least 0.82 g/cm3 (35% of the theoretical density) in order to facilitate its handling and processing and to ensure sinterability during pre-sintering. Should. If the density is too low, it is difficult to obtain a sintered body with a uniform structure even if the density can be increased by preliminary sintering.

予備焼結の方法は、自由焼結のほか、−軸力1目T焼結
(いわゆるポットプレス)、熱間等方圧焼結などの通常
の方法をどろことができる。
As the pre-sintering method, in addition to free sintering, normal methods such as -axial force 1 T sintering (so-called pot press) and hot isostatic pressure sintering can be used.

予備焼結は、1.100℃以上の温度にL13いて行な
う。 これより低い温度ひは、微細な粉末を使用しても
高密度化が期待できない。 」二限の温度は、もちろ/
vsfの融点である。 雰囲気はアルゴンのような不活
性ガスが好適であるが、真空であってもよい。
Preliminary sintering is performed at a temperature of 1.100° C. or higher. At temperatures lower than this, high density cannot be expected even if fine powder is used. "Of course, the temperature of the second limit is /
It is the melting point of vsf. The atmosphere is preferably an inert gas such as argon, but may also be a vacuum.

予備焼結の段階での高密度化の程度は、焼結に伴う収縮
量であられされる。 これは焼結づる成形体の密度によ
っても同じではないが、本発明で実現しにうとする高密
度反応焼結製品を与えるには、体積収縮率にして、少な
くとも10%必要であり、20%以上あることが好まし
い。
The degree of densification at the preliminary sintering stage is determined by the amount of shrinkage caused by sintering. This is not the same depending on the density of the sintered compact, but in order to provide the high-density reaction sintered product that the present invention aims to achieve, the volumetric shrinkage rate must be at least 10%, and 20%. It is preferable that there be more than one.

予備焼結体の多孔質で低密度の表層部の厚さは、前記し
たように多くの因子に影響されるが、最も薄い場合で0
.05nu++、厚い場合に番よ3.Qmmに達する。
The thickness of the porous, low-density surface layer of the pre-sintered body is influenced by many factors as described above, but at its thinnest it is 0.
.. 05nu++, number 3 if thick. It reaches Qmm.

 従って、この範囲内で、それぞれの場合に適した厚さ
を削り取ればJ:いことになる。
Therefore, within this range, if a thickness suitable for each case is removed, J: 0.

後に示す実例にみるとおり、低密劇の表層部と高密度の
内部との境弄は比較的明瞭にわかるから、削り取るべき
表層部の厚さの決定は容易である。
As shown in the example shown later, the boundary between the low-density surface layer and the high-density interior can be seen relatively clearly, so it is easy to determine the thickness of the surface layer to be removed.

3i予備焼結体の窒化は、従来の窒化珪素反応焼結体の
製造に際して行なわれていたところと同じようにして実
施できる。 “4なわら、一般的には大気圧の窒素ガス
雰囲気下で、1.100〜1゜500℃の温度に加熱す
る。温度は、1,100〜1.350℃の低温側から段
階的に昇温してゆくこともできる。 反応速度を調節づ
るためには、窒素の圧力を減圧(最大100分の1気圧
程度まで)から加圧(最高2,000気圧)までの範囲
で選択1ればよい。 なお、純窒素ガスのほかにも、水
素混合窒素ガスやアンモニアも使用できる。
The nitriding of the 3i pre-sintered body can be carried out in the same manner as is done in the production of conventional silicon nitride reaction sintered bodies. 4. Generally, heating is performed to a temperature of 1.100 to 1.500°C under a nitrogen gas atmosphere at atmospheric pressure.The temperature is gradually increased from the low temperature side of 1,100 to 1.350°C It is also possible to increase the temperature. In order to adjust the reaction rate, the nitrogen pressure can be selected from a range of reduced pressure (up to about 1/100 atm) to increased pressure (up to 2,000 atm). In addition to pure nitrogen gas, hydrogen-mixed nitrogen gas and ammonia can also be used.

窒化に要する時間は、予備焼結体の密度、平均粒径、窒
化温度および雰囲気系f′1により、また許容できる残
留Si量にJ:り人きく異なるが、vi時間から200
時間程度である。
The time required for nitriding varies depending on the density of the preliminary sintered body, the average grain size, the nitriding temperature, and the atmosphere system f'1, and on the allowable amount of residual Si, but it varies from vi time to 200
It takes about an hour.

本発明に従って低密度の表層部を除去した予備焼結体を
窒化づれば、得られる反応焼結体は全体にわたって高密
度であり、表面に弱い部分がないから、強度がづぐれた
ものとなる。
When the preliminary sintered body from which the low-density surface layer portion has been removed is nitrided according to the present invention, the resulting reaction sintered body has high density throughout and has no weak spots on the surface, resulting in improved strength.

実施例 平均粒t¥0.15μの81粉末に、非晶力B0.4%
およびZrO21,2%を配合し、ポリエチレン製ボー
ルミル中、n−へキシン媒体で湿式混合して、l)−ベ
キ1ノ“ンを揮発させたのち、ラバープレス成形(圧力
2 ton 7cm2 ) L/て、直径10mmx高
さ10IIII11のタブレットにした。
Example: 81 powder with average grain size t¥0.15μ, amorphous power B0.4%
and ZrO21.2%, wet-mixed in a polyethylene ball mill with n-hexane medium to volatilize the l)-benzene, and then rubber press molded (pressure 2 ton 7cm2) L/ A tablet with a diameter of 10 mm and a height of 10III11 was made.

この成形体を、Δr気流中で1360℃×2時間の加熱
により予備焼結した。 得られた予備焼結体の表層部付
近の断面を図に示す°。 表面からおおよそ0.8Il
1mの厚さに、多孔質の低密石層が存在していることが
認められる。
This molded body was preliminarily sintered by heating at 1360° C. for 2 hours in a Δr air flow. The figure shows a cross section near the surface layer of the obtained pre-sintered body. Approximately 0.8 Il from the surface
It is recognized that a porous low-density stone layer exists with a thickness of 1 m.

そこで、予備焼結体の表層部を厚さ0.8mmはど、エ
メリーペーパーで削り切って、N2気流中の、1370
℃X4B時間→1385℃×96時間→1420℃×2
4時間の加熱により窒化した。
Therefore, the surface layer of the preliminary sintered body was scraped off to a thickness of 0.8 mm with emery paper, and
℃ x 4B hours → 1385℃ x 96 hours → 1420℃ x 2
It was nitrided by heating for 4 hours.

反応焼結体の密度は2.83(1/cm3 、曲げ強度
ルよ42 、7 kl’1lll12であった。 比較
のため、予備焼結体の表層部を除去しないまま窒化して
得た反応焼結体は、密度2.440 /cm3 、曲げ
強度28.3ka/輸II2であった。
The density of the reaction sintered body was 2.83 (1/cm3), the bending strength was 42, and the reaction sintered body was nitrided without removing the surface layer of the preliminary sintered body for comparison. The sintered body had a density of 2.440 cm3 and a bending strength of 28.3 ka/cm2.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例に5いて調製した、Si粉末の
予備焼結体の表層部イ1近の断面の状況を示す、倍率5
0倍の顕微鏡写真である。 特許出願人  大同特殊鋼株式会社 代理人 弁理士  須 賀 総 夫
The drawing shows a cross section near the surface layer A1 of a pre-sintered body of Si powder prepared in Example 5 of the present invention, at a magnification of 5.
This is a 0x micrograph. Patent applicant Daido Steel Co., Ltd. Agent Patent attorney Souo Suga

Claims (2)

【特許請求の範囲】[Claims] (1) ホウ素またはイの化合物を8として0゜15〜
5.0重量%、ならびに(または) Fe 。 Go、Ni、Or、Mo、Mn5W、Ti、Zr、  
丁a 、Nb 1 V、MO、ca 、cu 、7nお
よび3nの1種または2種以上の元素またはその化合物
を上記元素として(2種以上の場合は合削吊で)0.0
5〜2.0型苗%含有する珪素粉末を成形し、成形体−
を不活性ガス雰囲気中で1.100℃以上であるが3i
の融点よりは低い温度に加熱して予備焼結し、得られた
予備焼結体を1100〜1500℃の温1食に加熱して
N2を作用させ窒化することからなる高強度窒化珪素反
応焼結体の製法におい゛C1予備焼結体の表層部を除去
したのち、窒化処理づることを特徴とする方法。
(1) 0°15~ with boron or the compound of A as 8
5.0% by weight and/or Fe. Go, Ni, Or, Mo, Mn5W, Ti, Zr,
One or more of the following elements, Nb 1 V, MO, ca , cu , 7n, and 3n, or their compounds are used as the above elements (in the case of two or more, by cutting) 0.0
Silicon powder containing 5% to 2.0% seedlings is molded to form a molded body.
in an inert gas atmosphere at a temperature of 1.100℃ or higher but 3i
High-strength silicon nitride reaction sintering consists of pre-sintering by heating to a temperature lower than the melting point of A method for producing a compact comprising: removing the surface layer of the C1 preliminary sintered compact and then subjecting it to nitriding treatment.
(2) 表層部の除去を深さ0.05〜3.0m1nに
わたって行なう特許請求の範囲第1項の方法。
(2) The method according to claim 1, wherein the surface layer portion is removed over a depth of 0.05 to 3.0 m1n.
JP58095312A 1983-05-30 1983-05-30 Method of getting high strength silicon nitride reaction sintered body Granted JPS59223274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58095312A JPS59223274A (en) 1983-05-30 1983-05-30 Method of getting high strength silicon nitride reaction sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58095312A JPS59223274A (en) 1983-05-30 1983-05-30 Method of getting high strength silicon nitride reaction sintered body

Publications (2)

Publication Number Publication Date
JPS59223274A true JPS59223274A (en) 1984-12-15
JPH0513908B2 JPH0513908B2 (en) 1993-02-23

Family

ID=14134235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58095312A Granted JPS59223274A (en) 1983-05-30 1983-05-30 Method of getting high strength silicon nitride reaction sintered body

Country Status (1)

Country Link
JP (1) JPS59223274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168080A (en) * 1989-05-11 1992-12-01 Isuzu Ceramics Research Institute Co., Ltd. Method of manufacturing composite ceramics of silicon nitride and zirconia

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188465A (en) * 1981-05-15 1982-11-19 Daido Steel Co Ltd Manufacture of high density silicon nitride reaction sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188465A (en) * 1981-05-15 1982-11-19 Daido Steel Co Ltd Manufacture of high density silicon nitride reaction sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168080A (en) * 1989-05-11 1992-12-01 Isuzu Ceramics Research Institute Co., Ltd. Method of manufacturing composite ceramics of silicon nitride and zirconia

Also Published As

Publication number Publication date
JPH0513908B2 (en) 1993-02-23

Similar Documents

Publication Publication Date Title
EP1043410B1 (en) Method of making porous cubic boron nitride based material suitable for subsequent production of cutting tools
US4440707A (en) Process for producing silicon nitride sintered products having high toughness
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JPH0215139A (en) Ticn-base cermet and its manufacture
IE69760B1 (en) Method of forming diamond impregnated carbide via the in-situ conversion of dispersed graphite
JPS59223274A (en) Method of getting high strength silicon nitride reaction sintered body
JPH05310474A (en) High-toughness boron nitride sintered compact with high-pressure phase
JPS6041634B2 (en) Method for manufacturing high-density silicon nitride reaction sintered body
JP2745030B2 (en) Silicon nitride sintered body and method for producing the same
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
JPS59152271A (en) Manufacture of high density silicon nitride reaction sintered body
JPH0453829B2 (en)
JP2796011B2 (en) Whisker reinforced cemented carbide
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPH0513907B2 (en)
JPH0350808B2 (en)
JPH046671B2 (en)
JPH0530881B2 (en)
JPH044994B2 (en)
JPS647141B2 (en)
JPH044995B2 (en)
JPS59207875A (en) Manufacture of high density silicon nitride reaction sintered body
JP3366696B2 (en) Manufacturing method of high strength cermet
JP2000096161A (en) Production of titanium carbonitride sintered body
JPS644987B2 (en)