JP2003112977A - Method for producing high purity silicon nitride powder - Google Patents

Method for producing high purity silicon nitride powder

Info

Publication number
JP2003112977A
JP2003112977A JP2001307169A JP2001307169A JP2003112977A JP 2003112977 A JP2003112977 A JP 2003112977A JP 2001307169 A JP2001307169 A JP 2001307169A JP 2001307169 A JP2001307169 A JP 2001307169A JP 2003112977 A JP2003112977 A JP 2003112977A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitrogen
powder
nitride powder
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001307169A
Other languages
Japanese (ja)
Other versions
JP3698664B2 (en
Inventor
Tetsumi Otsuka
哲美 大塚
Yuji Hiroshima
雄二 廣島
Taku Kawasaki
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001307169A priority Critical patent/JP3698664B2/en
Publication of JP2003112977A publication Critical patent/JP2003112977A/en
Application granted granted Critical
Publication of JP3698664B2 publication Critical patent/JP3698664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce high purity silicon nitride powder which is suitable for electronic parts such as an implement for a semiconductor, a circuit board by a direct nitriding method with excellent mass-productivity. SOLUTION: A metallic silicon powder raw material in which the total of the group 3B and 5B (exclusive of nitrogen) elements is <=100 μg/g, and the total of the group 7B elements is <=50 μg/g, and having a mean particle diameter of 10 to 20 μm is nitrided so that temperature is gradually raised in an atmosphere containing nitrogen or nitrogen and ammonia under the partial pressure of nitrogen of 30 KPa or more, and the mean reaction rate is controlled to <=2.0%/hr, and also, the cumulative reaction ratio until a temperature reaches 1,300 deg.C is controlled to >=85%, and the obtained silicon nitride ingot is pulverized to produce the silicon nitride powder.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、金属シリコン粉末
原料の直接窒化法による高純度窒化ケイ素粉末の製造方
法に関する。 【0002】 【従来の技術】窒化ケイ素は、高強度、高クリープ性等
の優れた特性を有し、切削工具、自動車部品、産業用部
品等の用途に使用されている。近年、半導体用冶具、回
路基板等の電子部品の用途が拡大しつつあり、それに伴
い更なる高純度化が要求されるようになってきた。 【0003】窒化ケイ素粉末の製造方法の1つに、金属
シリコン粉末原料を窒素やアンモニア等の窒化ガスで窒
化させて窒化ケイ素インゴット製造しそれを粉砕する直
接窒化法がある。この方法は量産化プロセスとして最も
普及している。 【0004】窒化ケイ素インゴットは、金属シリコン粉
末原料から合成された窒化ケイ素粒子の集合体であり、
その特性ひいては窒化ケイ素粉末の特性は、金属シリコ
ン粉末原料の特性と窒化条件に大きく左右される。金属
シリコン粉末原料の窒化反応は大きな発熱反応であるの
で、インゴットは比較的強固な凝集体となり、窒化ケイ
素粉末とするには粉砕が必要となる。粉砕条件が過酷と
なるほど、不純物が混入する機会が多くなるので、粉砕
性の善し悪しが窒化ケイ素粉末特性に影響を与える。 【0005】窒化ケイ素インゴットの粉砕には、湿式法
と乾式法がある。湿式法では、微粉砕が可能である反
面、粉砕メディアの磨耗による不純物混入や酸素量増加
が起こり、酸洗浄等による純化処理が必要となる。これ
に対して、乾式法では湿式法の問題はないが、比表面積
はあまり増加せず、微粉末の歩留まりが湿式法よりも悪
くなる。 【0006】以上のように、直接窒化法窒化ケイ素にお
いては、金属シリコン粉末原料の窒化条件を適正化して
粉砕の容易な窒化ケイ素インゴットを製造することが、
窒化ケイ素を高純度化するうえで重要なことであるが、
その他にも金属シリコン粉末原料を高純度なものを用い
ることの配慮が必要である。 【0007】直接窒化法窒化ケイ素の高純度化技術とし
て、特開2000−335907号公報には、金属不純
物の合計含有量が1.3重量%以下、Fe含有量が0.
3重量%以下、平均粒子径100μm以下の金属ケイ素
粉末を用いることが記載されている。また、特開平5−
32405公報には、純度99.999質量%以上の高
純度金属シリコン粉末を窒化することが記載されてい
る。しかしながら、このような高純度金属シリコン粉末
原料を慣用手段で窒化したのでは、理由は不明である
が、恐らくは、例えば鉄、アルミニウム、マンガン、チ
タン等の金属シリコン粉末原料の不純物成分が、低温で
窒化を促進する触媒となるが、それがなくなることによ
ると考えているが、反応が進み難くなり、未反応シリコ
ンが残留し易くなるので、それを回避するのに長時間の
窒化が必要となり、高純度窒化ケイ素の生産性が悪化す
るという新たな問題に直面した。また、7B族元素が多
い窒化ケイ素粉末であると、半導体用冶具や回路基板等
の電子部品用途への適用は困難である。 【0008】 【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、その目的は、半導体用冶具や回
路基板等の電子部品用途に適用できる高純度窒化ケイ素
粉末を量産性に優れる直接窒化法によって製造すること
である。 【0009】 【課題を解決するための手段】すなわち、本発明は、3
B、5B(窒素を含まず)族元素の合計が100μg/
g以下、7B族元素の合計が50μg/g以下、平均粒
子径が10〜20μmである金属シリコン粉末原料を、
窒素又は窒素とアンモニアを含む窒素分圧30KPa以
上の雰囲気下、温度を漸次高め、平均反応速度2.0%
/hr以下で、しかも温度1300℃迄における累積反
応率を85%以上にして窒化させ、得られた窒化ケイ素
インゴットを粉砕することを特徴とする窒化ケイ素粉末
の製造方法である。 【0010】 【発明の実施の形態】以下、本発明を更に詳細に説明す
る。 【0011】本発明に用いられる金属シリコン粉末原料
は、3B、5B(窒素を除く)族元素の合計が100μ
g/g以下、7B族元素の合計が50μg/g以下、平
均粒子径が10〜20μmであることが必要である。こ
のような高純度金属シリコン粉末としては、半導体用単
結晶シリコン又は多結晶シリコンの粉砕品がある。 【0012】金属シリコン粉末原料の3B、5B(窒素
を含まず)族元素の合計が100μg/g超であった
り、7B族元素の合計が50μg/g超であると、窒化
ケイ素粉末中にそれらの元素の殆どが残留してしまうの
で電子部品用途には適さなくなる。さらには、平均粒子
径が10μm未満であると、微粉が多く反応性が高いの
で反応速度が急減に上昇し、平均反応速度が2.0%/
hrを超える結果、溶解・残留するシリコンが多くな
る。一方、平均粒子径が20μm超であると、窒化反応
条件を後記のように高度に制御しても未反応シリコンが
残留してしまう。 【0013】金属シリコン粉末原料は、そのまま窒化に
供してもよいが、反応熱を緩和するために、本発明で製
造されたような純度・粒子径を有する高純度窒化ケイ素
粉末と混合することが好ましい。その割合は、金属シリ
コン粉末原料100部(質量部、以下同じ)に対し高純
度窒化ケイ素粉末50部以下である。 【0014】金属シリコン粉末原料、又は金属シリコン
粉末原料と高純度窒化ケイ素粉末との混合原料(以下、
両者を単に「原料」ともいう。)は、アルミナ、窒化ケ
イ素等のセラミックス製容器に充填するか、又は金型成
形、乾式CIP成形等によって成形してから窒化に供さ
れる。窒化炉としては、箱型反応炉、回転炉、プッシャ
ー式連続炉、流動層炉等の反応炉が用いられる。 【0015】本発明においては、窒素、又は窒素とアン
モニアを含む窒素分圧30KPa以上の雰囲気下、温度
を漸次高めながら原料を窒化させ、その平均反応速度
2.0%/hr以下で、しかも温度1300℃における
累積反応率を85%以上にして窒化することが肝要とな
る。 【0016】窒化雰囲気の窒素分圧が30KPa未満で
あると、反応速度を2.0%/hr以下に制御しても、
生成した窒化ケイ素はファイバー状の粒子形態が多くな
り、嵩密度が高くなって成形時の充填密度が上がらない
などの不都合が生じる。窒化雰囲気が窒素ガス100%
よりも窒素分圧30KPa以上の窒素及びアンモニアを
含む混合雰囲気とすることによって、窒素分圧を迅速に
変更することができ、これにより反応速度の制御をきめ
細やかに行うことができる利点がある。 【0017】平均反応速度が2.0%/hrを超える
と、反応熱が過剰となるので金属シリコンが融解・析出
し、窒化が不完全になる恐れがある。さらには、温度1
300℃迄における累積窒化率が80%未満では、高温
で反応するシリコン量が多くなり、反応時の発熱によっ
て融解・析出し、生成した窒化ケイ素粉末にシリコンが
残留してしまう。 【0018】本発明において、平均反応速度及び温度1
300℃迄における累積窒化率の調節は、窒化雰囲気下
の窒素分圧と、1300℃に至る迄の昇温速度の制御と
によって行われる。 【0019】平均反応速度及び温度1300℃における
累積窒化率は、窒化炉に供給された窒素及びアンモニア
量と、窒化炉から排出した窒素及びアンモニア量を測定
し、両者の差が金属シリコン粉末の窒化に消費された、
すなわち窒化ケイ素が生成したとみなして算出される。 【0020】得られた窒化ケイ素インゴットは、上記湿
式法又は乾式法によって所望粒度に粉砕されて高純度窒
化ケイ素粉末となる。粉砕機は、その内部が、粉砕メデ
ィアからの不純物混入を極力阻止できるように、窒化ケ
イ素を主体としたライニング材で内張りされていること
が好ましい。粉砕メディアとしては、本発明で製造され
たと同等以上の高純度窒化ケイ素粉末を用いて製造され
たものが好ましい。 【0021】本発明で製造される高純度窒化ケイ素粉末
の平均粒子径は3μm以下であることが好ましく、3μ
m超となると、粗大粒子の存在比率が高くなり、それを
用いて製造された窒化ケイ素焼結体はそれが破壊起点と
なって強度低下する。また、本発明の高純度窒化ケイ素
粉末の用途が離形材である場合には、被離形物を傷つけ
る恐れがある。 【0022】また、不純物については、3B、5B(窒
素を含まず)族元素の合計が100μg/g以下及び7
B族の合計が50μg/g以下であることが好ましい。
3B、5B(窒素を含まず)族の合計が100μg/g
超及び7B族元素の合計が50μg/g超であると、電
子部品用途には適さなくなる。 【0023】 【実施例】以下、実施例、比較例をあげて更に具体的に
本発明を説明する。 【0024】実施例1 単結晶シリコン塊をアルミナ製ジョークラッシャーで粗
砕して得られた1mm下の粉末3リットルと、窒化ケイ
素製ボール1.8リットルとをポリエチレン製ポットに
入れ、蓋をして80rpmで10時間粉砕した。得られ
た金属シリコン粉末原料の不純物量と平均粒子径を測定
した。その結果を表1に示す。 【0025】上記金属シリコン粉末原料5キログラムを
窒化ケイ素製容器に充填し、それをバッチ式窒化炉に入
れ、炉内酸素濃度が100μg/g以下になるまで窒素
ガスを流しながら置換した後、窒素雰囲気下、100℃
/hrで昇温した。1000℃に達した時点で、炉内の
窒化雰囲気ガスの一部をアルゴンで置換して窒素ガス分
圧を40kPaとし、更に昇温して反応速度を0.5%
/hrとした。その後、窒素流量と昇温速度を制御して
徐々に反応速度を高めて1.5%/hrとし、その状態
を保持しながら1300℃での累積窒化率が87%にな
るまで窒化を行った。続いて、反応速度を1.0%/h
rにして1450℃まで昇温し窒化を行った。 【0026】温度1450℃に保持し、炉内の窒化雰囲
気を全て窒素に置換しても、反応速度が0.1%/hr
以下になるまでこの状態を保持した。そして、反応速度
が0.1%/hr未満になってから窒素雰囲気下で冷却
を開始した。室温まで冷却してから、窒化ケイ素インゴ
ットを取り出し、窒化ケイ素ライニングの施こされたジ
ョークラッシャーで粗砕、振動ミルで微粉砕を行って高
純度窒化ケイ素粉末を製造した。 【0027】なお、反応速度及び累積反応率は、窒化炉
に供給された窒素量と、窒化炉から排出された窒素量を
測定し、両者の差が反応に使用されたみなして算出し
た。また、振動ミル粉砕は、窒化ケイ素ボールを充填し
た窒化ケイ素製容器中、5分間行った。 【0028】比較例1〜5 不純物量が表1である金属シリコン粉末原料を用いたこ
と(比較例1、2)、平均粒子径が32μmである金属
シリコン粉末原料を用いたこと(比較例3)、平均反応
速度を2.8%/hrとしたこと(比較例4)、温度1
300℃における累積反応率を80%にしたこと(比較
例5)、以外は実施例1と同様にして窒化ケイ素粉末を
製造した。 【0029】実施例2 実施例1で調製された金属シリコン粉末原料100部と
実施例1で製造された高純度窒化ケイ素粉末20部との
混合粉末からなる原料を用いたこと以外は、実施例1と
同様にして窒化ケイ素粉末を製造した。その結果、実施
例1よりも低温で反応が促進され、より微細な粒子が得
られた。この窒化ケイ素粉末は焼結体強度が高くなる長
所があった。 【0030】上記で得られた窒化ケイ素粉末について、
不純物量、酸素量、平均粒子径を測定した。また、窒化
ケイ素焼結体を製造して、4点曲げ抗折強度と体積抵抗
率を測定した。それらの結果を表1に示す。 【0031】(1)不純物量:化学発光分析を用いて3
B、5B(窒素を含まず)族元素の合計を測定した。ま
た、イオンクロマトグラム法により7B族の元素の合計
を測定した。 (2)酸素量:LECO社製酸素/窒素同時分析計によ
り、スズカプセルを用いて測定した。 (3)平均粒子径:日機装社製商品名「マイクロトラッ
ク」によるレーザー回折光散乱法により測定した。 (4)4点曲げ抗折強度:JIS R1601に準じて
常温で測定した。 (5)体積抵抗率:窒化ケイ素粉末92g、酸化アルミ
ニウム粉末4g、酸化イットリウム粉末4gをボールミ
ルにて10時間混合し、80×80×3mmに成形した
後、200MPaのCIP成形を行った。これを窒素雰
囲気中、1900℃で5時間保持して窒化ケイ素焼結体
を製造し、両面を研磨して平滑にしてから、体積抵抗率
をヒューレットパッカード社製商品名「ハイレジスタン
スメーター4339A」を用いて測定した。 【0032】 【表1】 【0033】表1から、実施例は、比較例に比べて得ら
れた窒化ケイ素粉末のシリコンが少なく、強度に優れた
窒化ケイ素焼結体が得られることがわかる。 【0034】 【発明の効果】本発明によれば、半導体用冶具や回路基
板等の電子部品用途として適用できる高純度窒化ケイ素
粉末を、量産性に優れる直接窒化法によって製造するこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity silicon nitride powder by direct nitriding of a raw material of metal silicon powder. [0002] Silicon nitride has excellent properties such as high strength and high creep properties and is used for applications such as cutting tools, automobile parts and industrial parts. In recent years, applications of electronic components such as jigs for semiconductors and circuit boards have been expanding, and accordingly, higher purity has been required. [0003] One of the methods for producing silicon nitride powder is a direct nitridation method in which a metal silicon powder raw material is nitrided with a nitriding gas such as nitrogen or ammonia to produce a silicon nitride ingot and pulverize it. This method is most widely used as a mass production process. A silicon nitride ingot is an aggregate of silicon nitride particles synthesized from a metal silicon powder raw material,
The characteristics, and thus the characteristics of the silicon nitride powder, largely depend on the characteristics of the metal silicon powder raw material and the nitriding conditions. Since the nitridation reaction of the metal silicon powder raw material is a large exothermic reaction, the ingot becomes a relatively strong agglomerate, and pulverization is required to obtain silicon nitride powder. As the grinding conditions become harsher, the chance of impurities being mixed in increases, and the quality of the grinding performance affects the properties of the silicon nitride powder. [0005] There are a wet method and a dry method for pulverizing a silicon nitride ingot. In the wet method, although fine pulverization is possible, contamination of impurities and an increase in the amount of oxygen occur due to wear of the pulverization media, and a purification treatment by acid cleaning or the like is required. On the other hand, in the dry method, there is no problem of the wet method, but the specific surface area does not increase so much, and the yield of the fine powder is lower than in the wet method. As described above, in the direct nitriding method silicon nitride, it is necessary to optimize the nitriding conditions of the metal silicon powder raw material to produce a silicon nitride ingot that can be easily pulverized.
It is important for purifying silicon nitride,
In addition, it is necessary to consider using a high-purity metal silicon powder material. [0007] As a technique for purifying silicon nitride by direct nitriding, Japanese Patent Application Laid-Open No. 2000-335907 discloses that the total content of metal impurities is 1.3% by weight or less and the Fe content is 0.3% by weight.
It is described that a metal silicon powder having a content of 3% by weight or less and an average particle size of 100 μm or less is used. In addition, Japanese Unexamined Patent Publication No.
Japanese Patent No. 32405 describes that high-purity metallic silicon powder having a purity of 99.999% by mass or more is nitrided. However, if such a high-purity metal silicon powder raw material is nitrided by conventional means, the reason is unknown, but probably, for example, the impurity components of the metal silicon powder raw material such as iron, aluminum, manganese, and titanium are reduced at a low temperature. Although it is a catalyst that promotes nitridation, it is thought to be due to its disappearance, but it becomes difficult for the reaction to proceed, and unreacted silicon tends to remain, so long-term nitridation is required to avoid it, A new problem was encountered in that the productivity of high-purity silicon nitride deteriorated. Further, if the silicon nitride powder contains a large amount of group 7B elements, it is difficult to apply it to electronic parts such as jigs for semiconductors and circuit boards. [0008] The present invention has been made in view of the above, and an object of the present invention is to provide a high-purity silicon nitride powder applicable to electronic parts such as jigs for semiconductors and circuit boards. It is to be manufactured by the direct nitriding method which is excellent in mass productivity. [0009] That is, the present invention provides a method of
B, 5B (not including nitrogen) group element is 100 μg /
g or less, a total of 7B group elements is 50 μg / g or less, and an average particle diameter is 10 to 20 μm.
Under an atmosphere of nitrogen or a partial pressure of nitrogen containing ammonia and nitrogen of 30 KPa or more, the temperature is gradually increased, and the average reaction rate is 2.0%.
A method for producing a silicon nitride powder, comprising nitriding at a rate of not more than / hr and a cumulative reaction rate of not less than 85% at a temperature of up to 1300 ° C., and pulverizing the obtained silicon nitride ingot. Hereinafter, the present invention will be described in more detail. [0011] The metal silicon powder raw material used in the present invention has a total of 100 µm of 3B, 5B (excluding nitrogen) group elements.
g / g or less, the total of group 7B elements must be 50 μg / g or less, and the average particle diameter must be 10 to 20 μm. Examples of such high-purity metallic silicon powder include pulverized single-crystal silicon or polycrystalline silicon for semiconductors. If the total of the 3B and 5B (excluding nitrogen) group elements of the metal silicon powder raw material is more than 100 μg / g or the total of the 7B group elements is more than 50 μg / g, they are contained in the silicon nitride powder. Most of these elements remain, making them unsuitable for use in electronic components. Furthermore, when the average particle size is less than 10 μm, the reaction rate sharply increases because the amount of fine powder is high and the reactivity is high, and the average reaction rate is 2.0% /
As a result of exceeding hr, the amount of dissolved / remaining silicon increases. On the other hand, if the average particle diameter is more than 20 μm, unreacted silicon remains even if the nitridation reaction conditions are highly controlled as described later. [0013] The metal silicon powder raw material may be subjected to nitriding as it is, but in order to reduce the heat of reaction, it may be mixed with a high-purity silicon nitride powder having the purity and particle diameter as produced in the present invention. preferable. The ratio is 50 parts or less of high-purity silicon nitride powder with respect to 100 parts (parts by mass, the same applies hereinafter) of the metal silicon powder raw material. Metal silicon powder raw material, or a mixed raw material of metal silicon powder raw material and high-purity silicon nitride powder (hereinafter, referred to as “metal silicon powder raw material”)
Both are simply referred to as “raw materials”. ) Is filled in a ceramic container such as alumina or silicon nitride, or molded by die molding, dry CIP molding or the like, and then subjected to nitriding. As the nitriding furnace, a reactor such as a box-type reactor, a rotary furnace, a pusher-type continuous furnace, and a fluidized-bed furnace is used. In the present invention, the raw material is nitrided while gradually increasing the temperature in an atmosphere of nitrogen or a partial pressure of nitrogen containing nitrogen and ammonia at a nitrogen partial pressure of 30 KPa or more. It is important to make the cumulative reaction rate at 1300 ° C. 85% or more for nitriding. If the nitrogen partial pressure of the nitriding atmosphere is less than 30 KPa, even if the reaction rate is controlled to 2.0% / hr or less,
The resulting silicon nitride has many fiber-like particle morphologies, and has a disadvantage such as an increase in bulk density and an increase in packing density during molding. Nitriding atmosphere is 100% nitrogen gas
By using a mixed atmosphere containing nitrogen and ammonia at a nitrogen partial pressure of 30 KPa or more, the nitrogen partial pressure can be changed quickly, and there is an advantage that the reaction rate can be finely controlled. If the average reaction rate exceeds 2.0% / hr, the heat of reaction becomes excessive, so that metallic silicon may be melted and deposited, resulting in incomplete nitriding. Furthermore, the temperature 1
If the cumulative nitridation rate up to 300 ° C. is less than 80%, the amount of silicon reacted at a high temperature increases, and the silicon is melted and precipitated by the heat generated during the reaction, leaving silicon in the generated silicon nitride powder. In the present invention, the average reaction rate and the temperature 1
Adjustment of the cumulative nitriding rate up to 300 ° C. is performed by controlling the partial pressure of nitrogen in a nitriding atmosphere and controlling the temperature rising rate up to 1300 ° C. The average reaction rate and the cumulative nitridation rate at a temperature of 1300 ° C. are determined by measuring the amounts of nitrogen and ammonia supplied to the nitriding furnace and the amounts of nitrogen and ammonia discharged from the nitriding furnace. Consumed in
That is, it is calculated assuming that silicon nitride has been generated. The obtained silicon nitride ingot is pulverized to a desired particle size by the above-mentioned wet method or dry method to obtain a high-purity silicon nitride powder. It is preferable that the inside of the crusher is lined with a lining material mainly composed of silicon nitride so as to minimize contamination of impurities from the crushing media. As the pulverizing media, those produced using high-purity silicon nitride powder equivalent to or more than that produced in the present invention are preferable. The average particle diameter of the high-purity silicon nitride powder produced in the present invention is preferably 3 μm or less, and preferably 3 μm or less.
If it exceeds m, the abundance ratio of the coarse particles becomes high, and the silicon nitride sintered body produced using the same becomes a fracture starting point, and the strength is reduced. Further, when the high-purity silicon nitride powder of the present invention is used as a release material, there is a possibility that the object to be released may be damaged. As for the impurities, the total of the 3B and 5B (not including nitrogen) group elements is 100 μg / g or less and 7
It is preferable that the total of the group B is 50 μg / g or less.
Total of 3B, 5B (without nitrogen) family is 100 μg / g
If the total of the super and 7B elements is more than 50 μg / g, it is not suitable for electronic parts. The present invention will be described more specifically below with reference to examples and comparative examples. Example 1 3 liters of 1 mm lower powder obtained by crushing a single crystal silicon lump with an alumina jaw crusher and 1.8 liters of silicon nitride balls were placed in a polyethylene pot, and the lid was closed. And crushed at 80 rpm for 10 hours. The amount of impurities and the average particle diameter of the obtained metal silicon powder raw material were measured. Table 1 shows the results. 5 kg of the above-mentioned metal silicon powder raw material is charged into a container made of silicon nitride, placed in a batch nitriding furnace, and purged while flowing nitrogen gas until the oxygen concentration in the furnace becomes 100 μg / g or less. 100 ° C under atmosphere
/ Hr. When the temperature reached 1000 ° C., a part of the nitriding atmosphere gas in the furnace was replaced with argon to adjust the partial pressure of nitrogen gas to 40 kPa, and the temperature was further increased to decrease the reaction rate by 0.5%.
/ Hr. Thereafter, the reaction rate was gradually increased to 1.5% / hr by controlling the flow rate of nitrogen and the rate of temperature rise, and nitriding was performed until the cumulative nitridation rate at 1300 ° C. reached 87% while maintaining this state. . Subsequently, the reaction rate was increased to 1.0% / h
The temperature was raised to 1450 ° C. and nitriding was performed. Even if the temperature is maintained at 1450 ° C. and the nitriding atmosphere in the furnace is entirely replaced with nitrogen, the reaction rate is 0.1% / hr.
This state was maintained until the following. Then, after the reaction rate became less than 0.1% / hr, cooling was started under a nitrogen atmosphere. After cooling to room temperature, the silicon nitride ingot was taken out, coarsely crushed by a jaw crusher provided with a silicon nitride lining, and finely ground by a vibration mill to produce a high-purity silicon nitride powder. The reaction rate and the cumulative reaction rate were calculated by measuring the amount of nitrogen supplied to the nitriding furnace and the amount of nitrogen discharged from the nitriding furnace, and assuming that the difference between the two was used in the reaction. The vibration mill pulverization was performed for 5 minutes in a silicon nitride container filled with silicon nitride balls. Comparative Examples 1 to 5 Metallic silicon powder raw materials having the amounts of impurities shown in Table 1 were used (Comparative Examples 1 and 2), and metallic silicon powder raw materials having an average particle diameter of 32 μm were used (Comparative Example 3). ), The average reaction rate was 2.8% / hr (Comparative Example 4), and the temperature was 1
A silicon nitride powder was produced in the same manner as in Example 1 except that the cumulative reaction rate at 300 ° C. was set to 80% (Comparative Example 5). Example 2 Example 2 was repeated except that a raw material consisting of a mixed powder of 100 parts of the metal silicon powder raw material prepared in Example 1 and 20 parts of the high-purity silicon nitride powder manufactured in Example 1 was used. In the same manner as in Example 1, a silicon nitride powder was produced. As a result, the reaction was promoted at a lower temperature than in Example 1, and finer particles were obtained. This silicon nitride powder had the advantage of increasing the strength of the sintered body. With respect to the silicon nitride powder obtained above,
The amount of impurities, the amount of oxygen, and the average particle size were measured. Further, a silicon nitride sintered body was manufactured, and the four-point bending strength and the volume resistivity were measured. Table 1 shows the results. (1) Impurity amount: 3 using chemiluminescence analysis
The total of B, 5B (excluding nitrogen) group elements was measured. Further, the total of the group 7B elements was measured by an ion chromatogram method. (2) Oxygen content: Measured using a tin capsule with an oxygen / nitrogen simultaneous analyzer manufactured by LECO. (3) Average particle diameter: Measured by a laser diffraction light scattering method using “Microtrack” (trade name, manufactured by Nikkiso Co., Ltd.). (4) Four-point flexural strength: measured at room temperature according to JIS R1601. (5) Volume resistivity: 92 g of silicon nitride powder, 4 g of aluminum oxide powder, and 4 g of yttrium oxide powder were mixed in a ball mill for 10 hours, molded into 80 × 80 × 3 mm, and then subjected to CIP molding at 200 MPa. This was held in a nitrogen atmosphere at 1900 ° C. for 5 hours to produce a silicon nitride sintered body, and both sides were polished and smoothed. Then, the volume resistivity was changed to “High Resistance Meter 4339A” manufactured by Hewlett-Packard Company. It measured using. [Table 1] From Table 1, it can be seen that the silicon nitride powder obtained in the examples has less silicon in the silicon nitride powder obtained as compared with the comparative example, and a silicon nitride sintered body excellent in strength can be obtained. According to the present invention, high-purity silicon nitride powder applicable to electronic parts such as jigs for semiconductors and circuit boards can be manufactured by a direct nitriding method which is excellent in mass productivity.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA62 BB32 BC01 4G030 AA52 BA01 BA19 GA01    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 4G001 BA62 BB32 BC01                 4G030 AA52 BA01 BA19 GA01

Claims (1)

【特許請求の範囲】 【請求項1】 3B、5B(窒素を含まず)族元素の合
計が100μg/g以下、7B族元素の合計が50μg
/g以下、平均粒子径が10〜20μmである金属シリ
コン粉末原料を、窒素又は窒素とアンモニアを含む窒素
分圧30KPa以上の雰囲気下、温度を漸次高め、平均
反応速度2.0%/hr以下で、しかも温度1300℃
迄における累積反応率を85%以上にして窒化させ、得
られた窒化ケイ素インゴットを粉砕することを特徴とす
る窒化ケイ素粉末の製造方法。
Claims: 1. The total of group 3B, 5B (not including nitrogen) group elements is 100 μg / g or less, and the total of group 7B elements is 50 μg.
/ G or less, the temperature of the metal silicon powder raw material having an average particle diameter of 10 to 20 μm is gradually increased under an atmosphere of nitrogen or a partial pressure of nitrogen containing ammonia and a nitrogen partial pressure of 30 KPa or more, and the average reaction rate is 2.0% / hr or less. And at a temperature of 1300 ° C
A method of producing a silicon nitride powder, characterized in that the silicon nitride ingot is pulverized by nitriding with a cumulative reaction rate up to 85% or more and pulverizing the obtained silicon nitride ingot.
JP2001307169A 2001-10-03 2001-10-03 Method for producing high purity silicon nitride powder Expired - Fee Related JP3698664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001307169A JP3698664B2 (en) 2001-10-03 2001-10-03 Method for producing high purity silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001307169A JP3698664B2 (en) 2001-10-03 2001-10-03 Method for producing high purity silicon nitride powder

Publications (2)

Publication Number Publication Date
JP2003112977A true JP2003112977A (en) 2003-04-18
JP3698664B2 JP3698664B2 (en) 2005-09-21

Family

ID=19126681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001307169A Expired - Fee Related JP3698664B2 (en) 2001-10-03 2001-10-03 Method for producing high purity silicon nitride powder

Country Status (1)

Country Link
JP (1) JP3698664B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160548A (en) * 2004-12-06 2006-06-22 Japan Atomic Energy Agency Single crystal silicon nitride nanosheet and its producing method
WO2012017949A1 (en) * 2010-08-04 2012-02-09 宇部興産株式会社 SILICON NITRIDE POWDER FOR SILICONITRIDE PHOSPHOR, CaAlSiN3 PHOSPHOR USING SAME, Sr2Si5N8 PHOSPHOR USING SAME, (Sr, Ca)AlSiN3 PHOSPHOR USING SAME, La3Si6N11 PHOSPHOR USING SAME, AND METHODS FOR PRODUCING THE PHOSPHORS
WO2012023414A1 (en) * 2010-08-19 2012-02-23 宇部興産株式会社 Silicon nitride powder for siliconitride fluorescent material, sr3al3si13o2n21 fluorescent material and β-sialon fluorescent material both obtained using same, and processes for producing these
WO2013054901A1 (en) * 2011-10-12 2013-04-18 宇部興産株式会社 Oxynitride fluorescent substance powder, silicon nitride powder for manufacturing same, and method for manufacturing same
CN104528672A (en) * 2014-12-17 2015-04-22 青岛桥海陶瓷新材料科技有限公司 Preparation method of alpha-silicon nitride
CN104876196A (en) * 2015-05-08 2015-09-02 青岛桥海陶瓷新材料科技有限公司 Preparation method for producing high purity beta-phase silicon nitride by combustion synthesis method
WO2018110565A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Method for producing high-purity silicon nitride powder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572382B2 (en) * 2004-12-06 2010-11-04 独立行政法人 日本原子力研究開発機構 Single crystal silicon nitride nanosheet and manufacturing method thereof
JP2006160548A (en) * 2004-12-06 2006-06-22 Japan Atomic Energy Agency Single crystal silicon nitride nanosheet and its producing method
JP5910498B2 (en) * 2010-08-04 2016-05-11 宇部興産株式会社 Silicon nitride powder for silicon nitride phosphor, CaAlSiN3 phosphor, Sr2Si5N8 phosphor, (Sr, Ca) AlSiN3 phosphor and La3Si6N11 phosphor using the same, and method for producing the same
WO2012017949A1 (en) * 2010-08-04 2012-02-09 宇部興産株式会社 SILICON NITRIDE POWDER FOR SILICONITRIDE PHOSPHOR, CaAlSiN3 PHOSPHOR USING SAME, Sr2Si5N8 PHOSPHOR USING SAME, (Sr, Ca)AlSiN3 PHOSPHOR USING SAME, La3Si6N11 PHOSPHOR USING SAME, AND METHODS FOR PRODUCING THE PHOSPHORS
US9023240B2 (en) 2010-08-04 2015-05-05 Ube Industries, Ltd. Silicon nitride powder for siliconnitride phosphor, CaAlSiN3 phosphor using same, Sr2Si5N8 phosphor using same, (Sr, Ca)AlSiN3 phosphor using same, La3Si6N11 Phosphor using same, and methods for producing the phosphors
WO2012023414A1 (en) * 2010-08-19 2012-02-23 宇部興産株式会社 Silicon nitride powder for siliconitride fluorescent material, sr3al3si13o2n21 fluorescent material and β-sialon fluorescent material both obtained using same, and processes for producing these
US9023241B2 (en) 2010-08-19 2015-05-05 Ube Industries, Ltd Silicon nitride powder for siliconnitride phosphor, Sr3Al3Si13O2N21 phosphor and β-sialon phosphor both obtained using same, and processes for producing these
JP5874635B2 (en) * 2010-08-19 2016-03-02 宇部興産株式会社 Silicon nitride powder for silicon nitride phosphor, Sr3Al3Si13O2N21 phosphor using the same, β-sialon phosphor and method for producing the same
WO2013054901A1 (en) * 2011-10-12 2013-04-18 宇部興産株式会社 Oxynitride fluorescent substance powder, silicon nitride powder for manufacturing same, and method for manufacturing same
JPWO2013054901A1 (en) * 2011-10-12 2015-03-30 宇部興産株式会社 Oxynitride phosphor powder, silicon nitride powder for producing oxynitride phosphor powder, and method for producing oxynitride phosphor powder
US9758720B2 (en) 2011-10-12 2017-09-12 Ube Industries, Ltd. Oxynitride phosphor powder, silicon nitride powder for production of oxynitride phosphor powder, and production method of oxynitride phosphor powder
CN104528672A (en) * 2014-12-17 2015-04-22 青岛桥海陶瓷新材料科技有限公司 Preparation method of alpha-silicon nitride
CN104876196A (en) * 2015-05-08 2015-09-02 青岛桥海陶瓷新材料科技有限公司 Preparation method for producing high purity beta-phase silicon nitride by combustion synthesis method
WO2018110565A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Method for producing high-purity silicon nitride powder

Also Published As

Publication number Publication date
JP3698664B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
JP5440977B2 (en) Method for producing high-purity silicon nitride fine powder
TW202225089A (en) Boron nitride powder, and method for producing boron nitride powder
JP3827459B2 (en) Silicon nitride powder and method for producing the same
JP3698664B2 (en) Method for producing high purity silicon nitride powder
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
JPH04223808A (en) Silicon nitride sintered body tool
JP2021508311A (en) Silicon granules for preparing trichlorosilane, and related manufacturing methods
JPS6117403A (en) Metallic boride, carbide, nitride, silicide and oxide group substance and manufacture thereof
JPH0829923B2 (en) Silicon nitride powder
JP4082803B2 (en) Method for producing silicon nitride powder
JP3827360B2 (en) Manufacturing method of silicon nitride
JP2014141359A (en) Sialon-base sintered compact
JP3375182B2 (en) Method for producing easily crushable low oxygen silicon nitride
WO2021200868A1 (en) Silicon nitride powder and method for producing silicon nitride sintered body
JP3348798B2 (en) Method for producing silicon nitride
JPH10316469A (en) Powdery magnesium silicide nitride and its production
JPH05279002A (en) Production of al nitride powder
JP3838691B2 (en) Silicon nitride grinding aid and its use
JP3496795B2 (en) Method for producing silicon nitride powder
JPH06279021A (en) Production of titanium diboride fine powder
WO2021200814A1 (en) Silicon nitride powder and method for producing silicon nitride sintered body
WO2021200830A1 (en) Silicon nitride powder, and method for producing silicon nitride sintered body
JP3342756B2 (en) Silicon nitride powder and method for producing the same
JP3375185B2 (en) Method for producing silicon nitride

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent or registration of utility model

Ref document number: 3698664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees