WO2018110565A1 - Method for producing high-purity silicon nitride powder - Google Patents

Method for producing high-purity silicon nitride powder Download PDF

Info

Publication number
WO2018110565A1
WO2018110565A1 PCT/JP2017/044614 JP2017044614W WO2018110565A1 WO 2018110565 A1 WO2018110565 A1 WO 2018110565A1 JP 2017044614 W JP2017044614 W JP 2017044614W WO 2018110565 A1 WO2018110565 A1 WO 2018110565A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
powder
less
silicon
ppm
Prior art date
Application number
PCT/JP2017/044614
Other languages
French (fr)
Japanese (ja)
Inventor
卓司 王丸
耕司 柴田
猛 山尾
山田 哲夫
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2018110565A1 publication Critical patent/WO2018110565A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics

Definitions

  • the present invention is a raw material for various jigs for semiconductor manufacturing that requires particularly high purity by converting metal silicon powder into silicon nitride powder by a combustion synthesis method using a combustion reaction that self-propagates in an atmosphere containing nitrogen.
  • the present invention relates to a method for efficiently and inexpensively producing a silicon nitride powder that can be used as a raw material for a high thermal conductivity silicon nitride substrate, a mold release agent used in the production of a silicon ingot for solar cells, and the like.
  • a direct nitridation method is known in which metal silicon powder is fired in a non-oxidizing atmosphere containing nitrogen gas or ammonia gas and then nitrided.
  • This method is simple in process, but because it is a reaction between gas (nitrogen gas or ammonia gas) and solid (metal silicon), it is necessary to finely pulverize the metal silicon used as a raw material. There is a problem that impurities such as aluminum are easily mixed. Further, in order to promote the nitriding reaction, it is necessary to add a catalyst such as calcium fluoride or an iron-based compound, so that these catalysts remain and the purity is lowered. It is said that it is not suitable for manufacturing.
  • the nitriding reaction will not proceed unless the heating temperature is raised higher than usual, but the nitridation of metallic silicon is an exothermic reaction. It may happen that the raw material silicon powder is melted. Once partially melted, the nitriding reaction of that part does not proceed, so a large amount of unreacted silicon remains. In order to avoid this, a technology for reducing the amount of unreacted silicon by slowly controlling the raw material particle size and nitriding reaction conditions and proceeding the nitriding reaction slowly has been disclosed. Therefore, it takes a long time to grind the product, and there is a problem that a large amount of impurities are mixed from the grinding medium.
  • the combustion synthesis method is a synthesis method that actively uses an exothermic reaction in which a chemical reaction between elements constituting a compound is strong. For example, a high heat of formation is released when an intermetallic compound having a high melting point is synthesized.
  • This is a method for synthesizing a target compound by causing an exothermic reaction to proceed from a raw material powder in a chain reaction in a short time in seconds. Accordingly, the energy supply from the outside is unnecessary, and the cost of the production apparatus can be reduced, so that the target compound can be produced at low cost.
  • a chemical reaction is usually excited at a specific part (for example, one end or the center) of the raw material powder layer, and this chemical reaction is propagated as a combustion wave in the raw material powder layer, thereby proceeding with the synthesis reaction.
  • this chemical reaction is propagated as a combustion wave in the raw material powder layer, thereby proceeding with the synthesis reaction.
  • silicon powder having a particle size of about several ⁇ m can be used as a raw material powder, and conditions can be set so that the nitriding reaction can be completed in a short time. It attracts attention as a method for producing silicon nitride powder.
  • silicon powder contains about several hundred ppm of metal impurities such as iron, chromium and aluminum
  • metal impurities such as iron, chromium and aluminum
  • metal impurities such as iron, chromium and aluminum
  • the silicon nitride powder used as the diluent also contains metal impurities such as iron, chromium and aluminum of about several hundred ppm, and no attempt has been made to produce high-purity silicon nitride powder. .
  • Patent Document 1 and Patent Document 2 relate to the production of silicon nitride powder by combustion synthesis.
  • impurities contained in the raw material silicon and impurities accompanying the pulverization of the generated silicon nitride lump and deterioration of crystallinity crystal No consideration is given to the refinement of the diameter and the increase in crystal strain. Therefore, there is no description of what the properties of the obtained silicon nitride powder are.
  • Patent documents 3 and 4 relate to sialon powder synthesis.
  • Sialon is, for example, a substance represented by the general formula Si 6-z Al z O z N 8-z and is premised on the presence of aluminum, and has a high aluminum content of 200 ppm or less in the present invention.
  • the synthesis of pure silicon nitride powder has a different purpose.
  • Non-Patent Document 1 and Non-Patent Document 2 also relate to sialon powder synthesis, and have different purposes from the synthesis of high-purity silicon nitride powder having an aluminum content of 200 ppm or less in the present invention. Is.
  • Patent Document 5 aims to provide a silicon nitride filler which is a condensed particle having a particle diameter of 5 ⁇ m or more and 200 ⁇ m or less, and which contains 50% by volume or more of condensed particles including columnar silicon nitride particles. is there.
  • the approach to solving the problem is different from the generation of strong agglomerated particles disclosed in Patent Document 5 and the obtaining of a soft silicon nitride agglomerate that is easily pulverized after nitriding in the present invention.
  • Patent Document 5 it is particularly preferable that the ratio of particles having a particle diameter of less than 5 ⁇ m is reduced, and the ratio of condensed particles having a particle diameter of 5 ⁇ m or more and 200 ⁇ m or less is 80% by volume or more, more preferably 90% by volume or more.
  • coarse aggregated particles having an average particle diameter (D 50 ) of 26 to 77 ⁇ m are obtained.
  • Patent Document 5 proposes to reduce the presence of defects inside the crystal. However, Patent Document 5 aims to obtain coarse agglomerated particles in which silicon nitride particles are strongly aggregated. The generation of defects is not considered at all.
  • the silicon nitride filler describes that it can contain unavoidable impurities in addition to silicon nitride, additives added as necessary, auxiliaries, etc., and unavoidable such as iron and aluminum.
  • the present invention of reducing the mixing of impurities is different from the means for solving the problems.
  • alumina balls are used as a grinding medium, and an alumina mortar and pestle are used as grinding tools.
  • the present invention has been made in view of the problems of the conventional methods as described above, and the object of the present invention is high purity with good crystallinity and low content of impurities such as iron, chromium and aluminum. It is an object to provide a technique for efficiently and inexpensively synthesizing silicon nitride fine powder by combustion synthesis.
  • the object of the present invention can be used as a raw material for various jigs for semiconductor manufacturing, a raw material for a high thermal conductivity silicon nitride substrate, a mold release agent used when manufacturing a silicon ingot for solar cells, etc.
  • a method for producing high-purity silicon nitride powder at low cost by a combustion synthesis method using a combustion reaction that self-propagates in an atmosphere containing nitrogen.
  • providing a method for producing a high-purity silicon nitride powder suitable as a raw material for sintered silicon nitride having both high thermal conductivity and mechanical strength at low cost by a combustion synthesis method, and adhesion to a mold Provides a method for producing high-purity silicon nitride powder suitable as a mold release agent for polycrystalline silicon ingots at low cost by combustion synthesis, which can form a mold release layer that has good properties and mold release properties and is stable up to high temperatures It is to be.
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems, and in a method for producing high-purity silicon nitride powder at low cost by a combustion synthesis method using a combustion reaction that self-propagates in an atmosphere containing nitrogen.
  • a silicon nitride powder having a specific surface area, a specific ⁇ -type silicon nitride ratio and a specific metal impurity content less than a specific ratio and a crystallite diameter larger than a specific value can be obtained.
  • the mold release layer of the casting mold for polycrystalline silicon ingot is formed using the obtained silicon nitride powder, the mold release property and release characteristics of the polycrystalline silicon ingot can be increased even if the melting temperature of silicon during unidirectional solidification is increased. It has been found that the adhesion of the mold layer to the mold is good up to a high temperature, and the present invention has been completed.
  • the present inventors set the specific manufacturing conditions in the inexpensive manufacturing method of high-purity silicon nitride powder by the combustion synthesis method using the combustion reaction that self-propagates in an atmosphere containing nitrogen, It has been found that silicon nitride powder having excellent characteristics can be produced, and that when silicon nitride powder is used as a raw material for producing a sintered body, a silicon nitride sintered body having both high thermal conductivity and mechanical strength can be produced. The present invention has been completed.
  • the present invention relates to the following matters.
  • silicon powder and silicon nitride powder as a diluent are mixed, and the obtained mixed powder is filled in a crucible, and the silicon powder is mixed by a combustion synthesis method using self-heating and propagation phenomena associated with a combustion reaction.
  • a method for producing a high-purity silicon nitride powder comprising producing a coagulated mass composed of silicon nitride by burning, and crushing the coagulated mass,
  • the silicon powder has an iron and aluminum content of 100 ppm or less, and a total content of metal impurities other than iron and aluminum is 100 ppm or less
  • the diluent is a silicon nitride powder having an iron and aluminum content of 100 ppm or less and a total content of metal impurities other than iron and aluminum of 100 ppm or less
  • the compounding ratio of the silicon powder and the diluent in the mixed powder is 9: 1 to 5: 5 by mass ratio
  • the bulk density of the powder layer composed of the mixed powder filled in the crucible is 0.3 to 0.65 g / cm 3
  • a method for producing a high-purity silicon nitride powder characterized in that the agglomerated mass is pulverized using a pulverizer loaded or loaded with a pulver
  • the silicon powder preferably has a bulk density of 0.2 to 0.7 g / cm 3 .
  • the bulk density of the silicon nitride powder as the diluent is preferably 0.2 to 0.7 g / cm 3 .
  • the bulk density of the packed bed composed of the mixture is preferably 0.36 to 0.48 g / cm 3 .
  • the 50% by volume particle diameter D 50 of the silicon powder is preferably 1.0 to 15 ⁇ m, and the 90% by volume particle diameter D 90 is preferably 10 to 44 ⁇ m.
  • the thickness of the powder layer is 20 to 70 mm, and the silicon powder is burned by being ignited from the top of the powder layer.
  • the silicon powder has an iron, chromium and aluminum content of 50 ppm or less, and the total content of metal impurities other than iron, chromium and aluminum is 50 ppm or less. It is preferable that the silicon nitride powder has a chromium and aluminum content of 50 ppm or less and a total content of metal impurities other than iron, chromium and aluminum is 50 ppm or less.
  • the agglomerated lump is subjected to a first crushing (coarse crushing) using a roll crusher equipped with a roll made of a silicon nitride sintered body.
  • the silicon nitride powder obtained by the coarse pulverization is accommodated in a container loaded with a pulverization medium composed of a silicon nitride sintered body, and the second pulverization (fine pulverization) is performed by a vibration mill or a bead mill. ) Is preferably used.
  • the grinding medium preferably has a porosity of 2% or less and a Vickers hardness of 14 GPa or more.
  • the high-purity silicon nitride powder has a ⁇ phase ratio of 70% by mass or more, a BET specific surface area of 3.0 to 13.0 m 2 / g, and a content of iron, chromium and aluminum.
  • a content of iron, chromium and aluminum are each 200 ppm or less, and the total content of metal impurities other than iron, chromium and aluminum is preferably 200 ppm or less.
  • the high-purity silicon nitride powder, crystallite diameter D C that is calculated from the powder X-ray diffraction pattern is 0.15 ⁇ 1 [mu] m, the crystal effective strain be 1.5 ⁇ 10 -4 or less
  • the ratio D BET / D C between the sphere equivalent diameter D BET and the crystallite diameter D C calculated from the BET specific surface area is preferably 1 to 3.
  • a high-purity silicon powder is obtained by pulverizing a high-purity silicon material to have an iron and aluminum content of 100 ppm or less and a total content of metal impurities other than iron and aluminum of 100 ppm or less.
  • the chromium content is also preferably 50 ppm or less.
  • the 10% by volume particle diameter (D 10 ) of the high-purity silicon powder after pulverization is preferably 0.2 to 1.0 ⁇ m, and the 50% by volume particle diameter (D 50 ) is preferably 0.5 to 15 ⁇ m and 90 volume.
  • The% particle diameter (D 90 ) is preferably 3 to 44 ⁇ m.
  • D 10 , D 50, and D 90 are particle sizes that serve as indices of the particle size distribution (volume distribution) of the powder, and the smaller side and the larger side are equal on the basis of D 50 (so-called median diameter).
  • D 90 is the boundary, and the cumulative distribution on the smaller particle size side is 90%, and the cumulative distribution on the larger particle side is 10%. Further, the cumulative distribution of the particle reduced diameter again side boundary D 10 of 10%, the larger side cumulative distribution is 90%.
  • This high-purity silicon powder is mixed with silicon nitride powder having a content of iron and aluminum of 100 ppm or less as a diluent and a total content of metal impurities other than iron and aluminum of 100 ppm or less, and contains nitrogen.
  • the high-purity silicon powder is converted into silicon nitride powder by a combustion synthesis method using a combustion reaction that self-propagates in the atmosphere.
  • the chromium content in the silicon nitride powder is also preferably 50 ppm or less. Silicon nitride powder having such a purity is commercially available, for example, as silicon nitride powder produced by an imide decomposition method.
  • the temperature of the reaction field in the combustion reaction can be controlled to a desired temperature of 1900 ° C. or lower.
  • a high-purity silicon powder having an appropriate bulk density and a diluent having an appropriate bulk density are mixed at a mixing ratio of 9: 1 to 5: 5 between the high-purity silicon powder and the diluent.
  • the bulk density of the packed bed (powder layer) made of a mixture of high-purity silicon powder and silicon nitride powder as a diluent is controlled to be 0.3 to 0.65 g / cm 3 .
  • the bulk density of the packed bed made of a mixture of high-purity silicon powder and silicon nitride powder as a diluent varies depending on the packing characteristics of the high-purity silicon powder used.
  • a high-purity silicon powder having a bulk density of preferably 0.2 to 0.7 g / cm 3 is used, and this high-purity silicon powder and preferably a bulk density of 0.2 to 0.7 g / cm 3 are used.
  • the bulk density of the packed bed made of the mixture of the high purity silicon powder and the silicon nitride powder as the diluent is 0.3 to 0.65 g / cm 3. Control.
  • the mixing ratio of the high-purity silicon powder and the silicon nitride powder as the diluent and the bulk density of the packed bed made of the mixture of the high-purity silicon powder and the silicon nitride powder as the diluent are controlled to a predetermined value.
  • high-purity silicon nitride powder with a low content of unreacted free silicon can be produced at low cost.
  • the rate of progress of the combustion synthesis reaction also depends on the thickness of the powder layer made of a mixture of high-purity silicon powder and diluent. For this reason, in the present invention, a mixture of high-purity silicon powder and a diluent is formed into a powder layer having a thickness of 20 to 70 mm, and is ignited from a specific portion of the powder layer to advance the combustion synthesis reaction.
  • the specific part means, for example, one end or the center of the raw material powder layer, and can be appropriately selected according to the shape and size of the container filled with the raw material powder.
  • a high-purity silicon nitride powder is produced by pulverizing a silicon nitride agglomerate produced by a combustion synthesis method using a pulverizer loaded and loaded with a pulverization medium containing at least silicon nitride.
  • the silicon nitride agglomerates are coarsely pulverized using a roll crusher equipped with a silicon nitride roll to prevent metal impurities from being mixed to obtain a coarsely pulverized silicon nitride product.
  • the coarsely pulverized product is pulverized using a dry jet mill, a vibration mill or a bead mill.
  • vibration mill pulverization a powder contact portion such as a mill container is covered with a resin such as polyurethane, and a pulverizing medium made of a silicon nitride sintered body having a porosity of 2% or less and a Vickers hardness of 14 GPa or more is used.
  • the fine pulverization is performed by controlling so that the mixing of metal impurities by the pulverization becomes a minimum value.
  • the high-purity silicon nitride powder obtained by the production method as described above has a ⁇ -phase ratio of 70% or more, a specific surface area of 3.0 to 13.0 m 2 / g, and an iron and aluminum content, respectively. 200 ppm or less, and the total content of metal impurities other than iron and aluminum is 200 ppm or less.
  • the chromium content is also preferably 100 ppm or less.
  • the resulting high-purity silicon nitride powder has a free silicon content of 0.5% by weight or less.
  • the crystallite diameter obtained by powder X-ray diffraction is 0.15 to 2.0 ⁇ m, and the effective crystal strain is 1.5 ⁇ 10 ⁇ 4 or less.
  • the high-purity silicon nitride powder obtained by the production method as described above is useful as a release agent for polycrystalline silicon ingots,
  • D 50 is 1.7 ⁇ m or more and 20 ⁇ m or less
  • D 90 is 10 ⁇ m or more and 40 ⁇ m.
  • the high-purity silicon nitride powder obtained by the production method as described above is useful as a powder for producing a silicon nitride sintered body
  • the specific surface area measured by the BET method is 5 m 2 / g or more and 20 m 2 / g or less
  • D 50 is 0.5 ⁇ m or more and 3 ⁇ m or less
  • D 90 is 3 ⁇ m or more and 7 ⁇ m.
  • the crystallite size of ⁇ -type silicon nitride which is calculated using the Williamson-Hall type from powder X-ray diffraction pattern of ⁇ -type silicon nitride is taken as D C, and a D C is 120nm or more,
  • D BET specific surface area equivalent diameter calculated from the specific surface area
  • D BET / D C (nm / nm) is 3 or less
  • the crystal strain of ⁇ -type silicon nitride calculated by using the Williamson-Hall formula from the powder X-ray diffraction pattern of ⁇ -type silicon nitride is 1.5 ⁇ 10 ⁇ 4 or less.
  • high-purity silicon nitride that can be used as a raw material for various jigs for semiconductor manufacturing, a raw material for a high thermal conductivity silicon nitride substrate, a mold release agent used when manufacturing a silicon ingot for solar cells, etc.
  • the powder can be produced efficiently and inexpensively by a combustion synthesis method using a combustion reaction that self-propagates in an atmosphere containing nitrogen.
  • silicon source used in the present invention various silicon scraps and silicon debris derived from semiconductor production lines and the like, polycrystalline workpieces, and other high-purity silicon materials are used.
  • Various silicon scraps, broken silicon, polycrystalline materials, and other high-purity silicon materials are crushed to have an iron and aluminum content of 100 ppm or less and a total content of metal impurities other than iron and aluminum of 100 ppm.
  • the following high purity silicon powder is obtained.
  • the chromium content is also preferably 50 ppm or less.
  • the content of iron, chromium, and aluminum, or the total content of metal impurities other than iron, chromium, and aluminum can be 50 ppm or less, further 20 ppm or less, and 10 ppm or less, respectively.
  • a vibration ball mill, a jet mill, a bead mill or the like can be used.
  • an object to be pulverized is placed in a resin pot, and an appropriate amount of pulverizing silicon nitride balls is added to vibrate and rotate. Since the balls for grinding are worn and mixed into the raw material, the material must be selected in consideration of the amount of mixing.
  • a silicon source material is pulverized using a pulverizing medium made of a silicon nitride sintered body having a porosity of 2% or less, preferably 1% or less and a Vickers hardness of 14 GPa or more.
  • a grinding medium made of a silicon nitride sintered body having a porosity of 2% or less, preferably 1% or less and a Vickers hardness of 14 GPa or more is used.
  • the dry jet mill is a pulverization method in which particles collide with each other at a high speed. Generally, particles are accelerated by air pressure.
  • the particle size distribution of the pulverized silicon powder was measured using a laser diffraction / scattering particle size distribution measuring device, the 10 volume% particle diameter (D 10 ) was 0.2 to 1.0 ⁇ m, and the 50 volume% particle diameter (D 50 ). Is 1.0 to 15 ⁇ m, and 90% by volume particle diameter (D 90 ) is 10 to 44 ⁇ m. D 50 is preferably 3.0 to 10 ⁇ m and D 90 is preferably 10 to 20 ⁇ m.
  • the particle size is out of the above particle size range, the nitriding reaction does not proceed sufficiently under the same diluent addition conditions, and a large amount of unreacted silicon remains, or the obtained silicon nitride powder has a particle size of It may become large and difficult to grind.
  • D 10 , D 50, and D 90 are particle diameters that serve as indices of the particle size distribution (volume distribution) of the powder, and the smaller and larger sides of D 50 (so-called median diameter) are equal amounts.
  • D 90 as a boundary, the cumulative distribution on the smaller particle size side is 90%, and the cumulative distribution on the larger particle side is 10%.
  • the cumulative distribution of the particle reduced diameter again side boundary D 10 of 10%, the larger side cumulative distribution is 90%.
  • the content of iron and aluminum contained in the high-purity silicon powder after pulverization is 100 ppm or less, and the total content of metal impurities other than iron and aluminum is 100 ppm or less.
  • the chromium content is preferably 50 ppm or less.
  • the content of iron, chromium and aluminum is preferably 20 ppm or less, and the total content of metal impurities other than iron, chromium and aluminum is preferably 20 ppm or less.
  • it is particularly preferable that the content of iron, chromium and aluminum is 10 ppm or less, and the total content of metal impurities other than iron, chromium and aluminum is 10 ppm or less. If the silicon powder contains a large amount of impurities, it cannot be used for semiconductor applications that require high purity.
  • the obtained silicon powder is nitrided by a combustion synthesis reaction described later.
  • the reaction heat generated during the nitridation reaction of silicon is very large, and the temperature of the reaction system rises to about 1900 ° C., which is higher than the melting point of silicon, 1410 ° C.
  • the nitriding reaction is controlled by using a mixed powder of high-purity silicon powder and silicon nitride powder as a diluent as a raw material.
  • the compounding ratio of the high purity silicon powder and the silicon nitride powder as a diluent is 9: 1 to 5: 5. If the blending ratio of the diluent in the mixed raw material is less than 10% by mass, the combustion synthesis reaction cannot be controlled, the temperature of the reaction system becomes too high, and the silicon powder in the raw material may be fused.
  • the compounding ratio of the high-purity silicon powder and the silicon nitride powder as the diluent may be 8: 2 or less, 7: 3 or less, 6: 4 or less, or 6: 4 or more, 7: 3 or more, 8: Two or more may be sufficient.
  • the silicon powder used as a raw material has a particle size of about several ⁇ m so that the nitriding proceeds completely and rapidly. If silicon powder with such a particle size is fused, not only the surface area per unit mass (specific surface area) is reduced, but also the gaps between the powders that serve as nitrogen gas introduction holes into the raw material are fused. It will be blocked by the silicon. In such a situation, a situation occurs in which part of the charged raw material remains as unreacted silicon at the end of the synthesis reaction. Further, there arises a problem that the obtained silicon nitride powder has a large particle size and is difficult to grind.
  • the blending ratio of the silicon nitride powder as the diluent exceeds 50% by mass, the ratio of the reaction product obtained by nitriding silicon decreases.
  • the silicon nitride powder as a diluent does not directly participate in the combustion synthesis reaction. Therefore, for example, when the blending ratio of the high-purity silicon powder and the diluent is 5: 5, even if the silicon raw material is completely converted into silicon nitride by the combustion synthesis reaction, it is newly obtained by the synthesis reaction. Silicon nitride is only 50% of the total charged amount (starting material).
  • the production efficiency of silicon nitride when silicon nitride is added as a diluent and charged, the production efficiency of silicon nitride must be reduced by the amount of addition of the diluent.
  • the content of the diluent is 50%, it can be said that half of the energy consumed in the combustion synthesis reaction is consumed without contributing to the production of new silicon nitride. For this reason, from the viewpoint of energy efficiency and from the viewpoint of an inexpensive manufacturing method, the ratio of the silicon nitride powder in the mixed raw material needs to be 50% by mass or less.
  • the nitriding reaction can be easily controlled, and silicon nitride powder having desired characteristics can be easily obtained.
  • sodium chloride (NaCl), ammonium chloride (NH 4 Cl), or the like may be added to adjust the ratio of ⁇ -type silicon nitride in the combustion product.
  • These additives have the effect of lowering the temperature of the reaction field due to latent heat or endotherm accompanying decomposition or sublimation.
  • Additives such as sodium chloride (NaCl) and ammonium chloride (NH 4 Cl) for adjusting the proportion of ⁇ -type silicon nitride are high-purity silicon powder, silicon nitride powder as a diluent, and the additives May be 40% by mass or less and 20% by mass or less, and preferably 1% by mass or more and 5% by mass or more.
  • the progress rate of the combustion synthesis reaction also varies depending on the bulk density of the silicon nitride powder as the raw material silicon and the diluent.
  • the bulk density of silicon nitride powder as raw material silicon or diluent is smaller than 0.2 g / cm 3 , the packing density of the packed bed made of a mixture of high-purity silicon powder and diluent is lowered, and the reaction vessel is filled with Since the raw material mixture that can be filled into the reactor becomes smaller, the weight of the produced silicon nitride powder per reaction batch decreases, and the production efficiency decreases.
  • the bulk density of the silicon nitride powder as the raw material silicon or the diluent is larger than 0.7 g / cm 3 , the packing density of the packed layer made of the mixture of the high-purity silicon powder and the diluent is increased. Therefore, the silicon nitride powder produced by the combustion reaction is agglomerated tightly and becomes difficult to pulverize, and the amount of metal impurities mixed in the pulverizing process increases, which is not preferable. In addition, the crystallinity of the pulverized silicon nitride powder is deteriorated, the crystallite diameter is small, and the lattice strain is large.
  • the bulk density of silicon nitride powder as raw material silicon or diluent may be 0.3 g / cm 3 or more, 0.4 g / cm 3 or more, 0.5 g / cm 3 or more, 0.6 g / cm 3 or more. Further, it may be 0.6 g / cm 3 or less, 0.5 g / cm 3 or less, 0.4 g / cm 3 or less, or 0.3 g / cm 3 or less.
  • the bulk density means the initial bulk density.
  • the bulk density of the packed bed made of a mixture of the high-purity silicon powder and the diluent is preferably 0.3 to 0.65 g / cm 3 , preferably is 0.34 ⁇ 0.55g / cm 3, more preferably controlled to be 0.36 ⁇ 0.48g / cm 3.
  • What is important in the combustion synthesis method of the present invention is the bulk density of a packed bed (powder layer) made of a mixture of high-purity silicon powder and a diluent.
  • the bulk density of the packed bed comprising a mixture of high-purity silicon powder and diluent, 0.4 g / cm 3 or more, 0.45 g / cm 3 or more, 0.5 g / cm 3 or more, 0.55 g / cm 3 or more it may also be, also 0.55 g / cm 3 or less, 0.5 g / cm 3 or less, 0.45 g / cm 3 or less, may be 0.4 g / cm 3 or less.
  • the crushing strength of the massive silicon nitride obtained by the combustion synthesis reaction can be reduced to 6.5 MPa or less. Is controlled to be 0.55 g / cm 3 or less, the crushing strength of the massive silicon nitride obtained by the combustion synthesis reaction can be reduced to 5.5 MPa or less, and the packing density of the packed bed is 0.48 g. If controlled to be not more than / cm 3, the crushing strength of the massive silicon nitride obtained by the combustion synthesis reaction can be reduced to 3.5 MPa or less.
  • the pulverization energy increases so that the amount of mixed metal impurities increases and the crystallinity of the silicon nitride deteriorates. Even without large pulverization, it becomes easy to obtain a silicon nitride powder having a specific surface area or crystallinity (crystallite diameter and crystal effective strain) specified in the present invention. If the crushing strength of the obtained bulk silicon nitride is 5.5 MPa or less, pulverization is further facilitated, and if the crushing strength of the obtained bulk silicon nitride is 3.5 MPa or less, crushing is particularly facilitated.
  • the rate of progress of the combustion synthesis reaction also depends on the thickness of the powder layer (filled layer) made of a mixture of high-purity silicon powder and diluent.
  • a mixture of high-purity silicon powder and a diluent is formed into a powder layer having a thickness of 20 to 70 mm, and is ignited from a specific portion of the powder layer to advance a combustion synthesis reaction.
  • the thickness of the powder layer is less than 20 mm, the calorific value due to the combustion reaction is reduced, and the heat synthesis to the firing container etc. is hindered and the self-propagation of the combustion heat is hindered, and the combustion synthesis reaction stops halfway. A large amount of unreacted silicon remains.
  • the thickness of the mixture of the high purity silicon powder and the diluent may be 30 mm or more, 40 mm or more, 50 mm or more, 60 mm or more, or 60 mm or less, 50 mm or less, 40 mm or less, 30 mm or less.
  • the nitrogen gas pressure in the combustion synthesis reaction of the invention is 0.3 to 1.5 MPa.
  • the nitrogen gas pressure may be 0.5 MPa or more, 0.7 MPa or more, 1.0 MPa or more, or 1.2 MPa or less, 1.0 MPa or less, or 0.8 MPa or less.
  • Crush silicon nitride particles obtained by combustion synthesis reaction When pulverizing silicon nitride particles obtained by the combustion synthesis reaction, the combustion products obtained by the combustion synthesis reaction are agglomerated, so first, coarsely pulverize using a roll crusher equipped with a silicon nitride roll. Is efficient. Since the roll made of silicon nitride is excellent in wear resistance and contains almost no metal impurities, it is possible to obtain a high-purity coarsely pulverized product of silicon nitride that does not contain metal impurities such as iron, chromium and aluminum. The desired coarsely pulverized silicon nitride can be obtained by sieving the obtained coarsely pulverized product to remove particularly coarse particles.
  • the silicon nitride particles are preferably finally pulverized.
  • Two-stage pulverization is not essential, but it is preferable to first coarsely pulverize as described above, and then further finely pulverize the coarsely pulverized product.
  • a means for pulverization there is no particular restriction other than pulverization using a pulverization apparatus loaded with or equipped with a pulverization medium containing at least silicon nitride.
  • a vibration ball mill, a bead mill, An attritor, a jet mill, or the like can be used.
  • the coarsely pulverized silicon nitride is pulverized using a pulverizing medium made of a silicon nitride sintered body having a porosity of 2% or less, preferably 1% or less and a Vickers hardness of 14 GPa or more.
  • a silicon nitride powder having a desired specific surface area or particle size distribution can be obtained by appropriately adjusting the conditions (amplitude, frequency, grinding time, etc.) of the vibrating ball mill.
  • the most important feature of the method for producing silicon nitride powder of the present invention is that the crushing strength of the bulk silicon nitride which is a combustion product obtained by the combustion synthesis reaction is below a predetermined value. Due to the low crushing strength, the pulverization process in the subsequent pulverization process is significantly facilitated.
  • the silicon nitride powder obtained by the production method of the present invention has a ⁇ -phase ratio of 70% or more, a specific surface area of 3.0 to 13.0 m 2 / g, and an iron and aluminum content, respectively. 200 ppm or less, and the total content of metal impurities other than iron and aluminum is 200 ppm or less.
  • the chromium content is also 100 ppm or less.
  • the free silicon content is 1.0% by mass or less, preferably 0.5% by mass or less.
  • the crystallite diameter obtained by powder X-ray diffraction is 0.15 to 2.0 ⁇ m, and the effective crystal strain is 1.5 ⁇ 10 ⁇ 4 or less.
  • the ratio of ⁇ phase is 70% or more.
  • ⁇ phase is said to be a low temperature phase and ⁇ phase is said to be a high temperature phase.
  • ⁇ phase is said to be a low temperature phase
  • ⁇ phase is said to be a high temperature phase.
  • ⁇ phase is said to be a low temperature phase
  • ⁇ phase is said to be a high temperature phase.
  • ⁇ phase is said to be a low temperature phase
  • ⁇ phase is said to be a high temperature phase.
  • ⁇ phase ratio of 70% or more is suitable for applications such as a release agent.
  • the ratio of ⁇ phase is less than 70%, decomposition of the release material layer is likely to proceed during the casting of the silicon ingot, causing the molten silicon to stick to the crucible wall and causing cracks in the silicon ingot. Further, in addition to the ratio of the ⁇ phase, the search for the characteristics of the silicon nitride powder that has a good effect on the releasability of the polycrystalline silicon ingot is in progress.
  • the silicon nitride powder produced by the combustion synthesis reaction is basically a ⁇ -phase powder, and if the conditions are set such that the ⁇ -phase ratio is less than 70%, the combustion reaction itself becomes unstable. This causes problems such as residual reactive silicon.
  • the specific surface area is 3.0-13.0 m 2 / g.
  • the specific surface area is less than 3.0 m 2 / g, since the particle size is too coarse, the sinterability is lowered, and it cannot be used as a raw material for various jigs for semiconductor manufacturing, a raw material for a high thermal conductivity silicon nitride substrate, or the like. .
  • the adhesive force to a crucible wall may fall and it may become difficult to use for the mold release agent etc. which are used at the time of manufacture of the silicon ingot for solar cells.
  • the specific surface area exceeds 13.0 m 2 / g, the amount of metal impurities inevitably mixed by pulverization increases, the crystallinity of silicon nitride particles decreases, and the crystallite diameter is less than 0.15 ⁇ m. Or the effective crystal strain exceeds 1.5 ⁇ 10 ⁇ 4 . Thus, since the quality of the silicon nitride powder obtained deteriorates, it is not preferable.
  • the iron and aluminum contents are each 200 ppm or less, preferably 100 ppm or less, more preferably 50 ppm or less, and particularly preferably 10 ppm or less.
  • the chromium content is also preferably 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less, and particularly preferably 5 ppm or less.
  • the total content of metal impurities other than iron, chromium and aluminum is also 200 ppm or less, preferably 100 ppm or less, more preferably 50 ppm or less, and particularly preferably 10 ppm or less.
  • the contents of iron, chromium and aluminum each exceed 200 ppm, they cannot be used as raw materials for various jigs for manufacturing semiconductors, high-heat-conducting silicon nitride substrates, etc. that require high purity.
  • the contents of iron, chromium and aluminum need to be 50 ppm or less, particularly preferably 10 ppm or less, respectively.
  • the total content of metal impurities other than iron, chromium and aluminum exceeds 200 ppm, it cannot be used as a raw material for various jigs for semiconductor manufacturing, a raw material for a high thermal conductivity silicon nitride substrate, etc. that require high purity. .
  • the total content of metal impurities other than iron, chromium and aluminum needs to be 50 ppm or less, particularly preferably 10 ppm or less.
  • the free silicon content is preferably 1.0% by mass or less, more preferably 0.5% by mass or less.
  • the free silicon content exceeds 1.0% by mass, the properties of the obtained sintered body deteriorate, so that it may be difficult to use as a raw material for various jigs for semiconductor manufacturing and a raw material for a high thermal conductive silicon nitride substrate. is there.
  • the use of a release agent or the like used in the production of a silicon ingot for solar cells is not preferable because molten silicon is likely to enter the release material layer and stick to the crucible wall.
  • the crystallite size and crystal effective strain of the silicon nitride powder were determined as follows. That is, in the powder X-ray diffraction method, the width of the diffraction line increases as the particle diameter of the sample decreases. Between the diffraction peak width ⁇ (radian) and the particle diameter D, the relationship of equation (2) is obtained.
  • is the wavelength of the X-ray source.
  • is a difference representing the spread of the diffraction peak
  • ⁇ d is a difference representing the expansion / contraction width of the interplanar spacing
  • the silicon nitride powder of the present invention has a crystallite diameter obtained by powder X-ray diffraction of 0.15 to 2.0 ⁇ m and a crystal effective strain of 1.5 ⁇ 10 ⁇ 4 or less.
  • the crystallite diameter is less than 0.15 ⁇ m, a large number of crystallites exist in one primary particle, and the high temperature stability of the silicon nitride particles deteriorates due to a decrease in crystallinity.
  • a raw material for a high thermal conductivity silicon nitride substrate dissolution of silicon nitride particles in the molten phase generated by reaction with an auxiliary agent added in the sintering process, When the ⁇ -type silicon nitride particles grow by precipitation, non-uniform grain growth occurs from the crystal growth nuclei of the ⁇ particles whose crystallinity is lowered, which is not preferable because the characteristics of the obtained sintered body may be deteriorated.
  • a raw material for a high thermal conductivity silicon nitride substrate dissolution of silicon nitride particles in the molten phase generated by reaction with an auxiliary agent added in the sintering process,
  • an auxiliary agent added in the sintering process dissolution of silicon nitride particles in the molten phase generated by reaction with an auxiliary agent added in the sintering process.
  • the ⁇ -type silicon nitride particles grow by precipitation, uneven grain growth occurs from the crystal growth nuclei of the ⁇ particles whose crystallinity is lowered, which is not preferable because the characteristics of the obtained sintered body may be deteriorated.
  • the crystallite diameter D C becomes smaller as comminuting silicon nitride particles.
  • the ratio D BET / D C of the sphere equivalent diameter D BET and the crystallite diameter D C calculated from the BET specific surface area is 1.0 to 3.0.
  • the semiconductor manufacturing for various jigs raw material, raw material for silicon high thermal conductivity nitride substrate When ⁇ -type silicon nitride particles grow due to dissolution and precipitation of silicon nitride particles in the molten phase produced by reaction with the auxiliary added during the sintering process, the crystallinity decreases. This is not preferable because non-uniform grain growth occurs from the crystal growth nuclei of the ⁇ grains, and the characteristics of the obtained sintered body may deteriorate.
  • the high-purity silicon nitride powder produced according to the present invention is useful as a release agent for polycrystalline silicon ingots in one preferred embodiment, and has a volume-based 50% particle size measured by laser diffraction scattering method of D 50.
  • D 50 is preferably 1.7 ⁇ m or more and 20 ⁇ m or less. If D 50 is within this range, the adhesion between the silicon nitride particles are also adhesion between the silicon nitride particles and the mold is good tends, also because easily form a dense release layer, a polycrystalline silicon ingot away A release layer having good moldability and good adhesion to the mold can be formed.
  • D 50 is preferably 2 ⁇ m or more. D 50 may be 5 ⁇ m or less.
  • the 90% particle diameter is taken as D 90, D 90 is preferably at 10 ⁇ m or 40 ⁇ m or less. If D90 is within this range, the surface of the release layer is likely to be smooth, and a release layer having good release properties of the polycrystalline silicon ingot can be formed. D 90 is more preferably 30 ⁇ m or less. D 90 may also be 15 ⁇ m or more, and may be 20 ⁇ m or less. Adjustment of the particle size distribution of the silicon nitride powder can be performed by a grinding process.
  • the high-purity silicon nitride powder produced according to the present invention is useful as a raw material for a silicon nitride sintered body, and has a volume-based 50% particle diameter measured by a laser diffraction scattering method of D 50.
  • D 50 is preferably 0.5 ⁇ m or more and 3 ⁇ m or less. If D 50 is within this range, since sufficient compact density is obtained, a dense sintered body tissue is obtained, it is possible to obtain a silicon nitride sintered body having both high thermal conductivity and high mechanical strength . In this respect, D 50 is more preferably 2 ⁇ m or less. Further, the 90% particle diameter is taken as D 90, D 90 is 3 ⁇ m or more 7 ⁇ m or less.
  • D90 is within this range, a homogeneous sintered body structure can be obtained, and a silicon nitride sintered body having both high thermal conductivity and high mechanical strength can be obtained.
  • D 90 is more preferably 6 ⁇ m or less. Adjustment of the particle size distribution of the silicon nitride powder can be performed by a grinding process.
  • FIG. 1 is a schematic diagram for explaining a configuration example of an apparatus for performing a combustion synthesis reaction, which is used when carrying out the present invention.
  • a flow passage through which cooling water flows is formed between the outer wall 30 and the side wall of the inner vessel 20.
  • One end face of the reactor 10 is provided with a lid that can be opened and closed, and the inner container 20 is sealed by closing the lid.
  • a graphite crucible 23 is provided on the bottom surface of the inner container 20.
  • the graphite crucible 23 is a rectangle having an outer diameter of 770 ⁇ 320 mm and a height of 90 mm.
  • the reactor 10 is configured to be evacuated, and the inside of the inner container 20 can be made high vacuum by operating the vacuum pump with the on-off valve 17 provided in the middle of the exhaust pipe opened. .
  • the reactor 10 is connected to a nitrogen gas cylinder by a nitrogen gas introduction pipe 15, and a nitrogen gas opening / closing valve 16 is provided in the middle of the nitrogen gas introduction pipe 15.
  • a nitrogen gas opening / closing valve 16 is provided in the middle of the nitrogen gas introduction pipe 15.
  • Two rod-shaped electrodes 11 are provided on the inner upper surface of the inner container 20 so as to extend in the vertical direction.
  • the upper ends of these two electrodes 11 are connected by a carbon heater 12 arranged above the graphite crucible 23.
  • a voltage is applied to the lower end portions of these two electrodes 11 by an external power source provided outside the reactor 10, whereby the carbon heater 12 generates heat.
  • a mixture of silicon powder and diluent (silicon nitride powder) in a weight ratio of 9: 1 to 5: 5 is used as starting material 25 (feeding material).
  • the ignition material 13 is added to the surface of a specific part of the starting material.
  • a voltage is applied from the external power source to the lower ends of the two electrodes 11 while the ignition material 13 is in contact with the carbon heater 12, the ignition material 13 is ignited by being induced by the heated carbon heater 12, and the starting material 25. Can generate heat.
  • FIG. 2 is a flowchart showing a procedure for combustion synthesis of high-purity silicon nitride powder according to the present invention.
  • silicon, silicon nitride, and if necessary, sodium chloride, which is the starting material 25 are charged into a planetary ball mill or the like containing a silicon nitride ball, and mixed by pulverization for a few dozen minutes (step S1).
  • the mixed starting material 25 is charged into a raw material charging unit (not shown), and an ignition material (for example, an aluminum molded product) 13 is added to the upper surface of the specific part (step S2).
  • the ignition material 13 is disposed on the upper surface of the specific portion of the starting material 25 so as to come into contact with the carbon heater 12.
  • step S3 After starting material 25 is charged into the raw material charging section, the lid (not shown) is closed and the inner container 20 is sealed (step S3). After sealing, the air on-off valve 17 is opened, and the vacuum pump is operated to make the inner container 20 high vacuum (step S4).
  • the nitrogen open / close valve 16 is opened to allow nitrogen to flow into the inner vessel 20 from the nitrogen cylinder outside the reactor 10, and the inside of the inner vessel 20 is brought to a nitrogen atmosphere (step S5).
  • the pressure in the inner container 20 is maintained at about 1 MPa.
  • the carbon heater 12 After the inside of the inner container 20 is in a pressurized nitrogen gas atmosphere, the carbon heater 12 is heated by applying a voltage from an external power source, the ignition material 13 is ignited, and the starting material 25 is combusted (step S6).
  • the energization time at the time of ignition is about 10 seconds.
  • the combustion of the starting material 25 causes the nitriding reaction of the above reaction formula (1).
  • Reaction heat generated by the nitriding reaction of reaction formula (1) causes a combustion synthesis reaction shown in reaction formula (1) to synthesize silicon nitride.
  • the reaction heat generated during the nitridation reaction of silicon is very large, and the temperature of the reaction system rises to about 1900 ° C., which is higher than the melting point of silicon, 1410 ° C.
  • the nitriding reaction is controlled by using a mixed powder of high-purity silicon powder and silicon nitride powder as a diluent as a raw material.
  • sodium chloride or ammonium chloride can be added as a reaction aid in order to control the ⁇ ratio of silicon nitride as a combustion product.
  • the temperature of the reaction system rises due to the combustion synthesis reaction, since the sublimation reaction of sodium chloride and ammonium chloride is an endothermic reaction, the temperature of the combustion synthesis reaction system decreases due to the endothermic reaction. As a result, the melting of silicon is delayed and the fusion of silicon particles is suppressed. It should be noted that by adjusting the addition amount of sodium chloride and ammonium chloride, the temperature of the reaction system, which decreases with the sublimation of sodium chloride, may hinder the progress of the combustion synthesis reaction shown in the reaction formula (1). It can be set to the temperature without.
  • Combustion reaction time depends on the amount of starting material, but is generally several minutes to several tens of minutes.
  • the running water on-off valve 24 is opened, cooling water flows into the flow passage portion, and the inner container 20 is cooled through the side wall (step S7).
  • the synthesized silicon nitride is taken out from the raw material charging part (step S8). Since the silicon nitride after the combustion reaction is agglomerated, it is pulverized by a roll crusher, a ball mill, a vibration mill or the like as necessary (step S9).
  • High-purity silicon material mainly composed of polycrystalline silicon milling material containing iron, chromium, and aluminum using a grinding device (vibrating ball mill, jet mill, etc.) loaded and loaded with grinding media containing silicon nitride
  • a high-purity silicon powder having an amount of 50 ppm or less and a total content of metal impurities other than iron, chromium and aluminum is 50 ppm or less is obtained.
  • the high-purity silicon powder after pulverization has a 10% by volume particle size (D 10 ) of 0.2 to 1.0 ⁇ m, a 50% by volume particle size (D 50 ) of 0.5 to 15 ⁇ m, and a 90% by volume particle size (D 90). ) Is 3 to 44 ⁇ m.
  • Example 1 The average particle diameter of 1.9 .mu.m, a bulk density of 0.48 g / cm 3 average particle size 0.5 ⁇ m to silicon powder, bulk density by adding silicon nitride powder of 0.30 g / cm 3, silicon with a diluent ( A synthetic raw material was prepared so that the mixing ratio with silicon nitride was 8.0: 2.0 in terms of silicon nitride.
  • the value converted into silicon nitride is, for example, that when 3 mol (84.3 g) of silicon and 1 mol (140.3 g) of silicon nitride are included, all the silicon is converted into silicon nitride. , Meaning that the weight ratio is 1: 1.
  • the average particle size means a particle size at an integrated value of 50% of the particle size distribution measured by a laser diffraction / scattering method.
  • the bulk density of the synthetic raw material was controlled by combining those in which the bulk density of the silicon powder of the blending source and the bulk density of the diluent (silicon nitride) each have a predetermined value.
  • the above charged raw materials (total weight: 4.0 kg) were filled into a graphite crucible having a bottom surface of 770 mm ⁇ 320 mm.
  • the height of the powder layer was 36 mm.
  • the coarsely pulverized product was removed under the conditions of air usage of 2.5 m 3 / min and throughput of 40 g / min. Jet mill pulverized.
  • the obtained finely pulverized silicon nitride was analyzed as follows.
  • the amount of free silicon was also measured by powder X-ray diffraction.
  • the calibration curve was prepared using a standard sample of silicon and a standard sample of silicon nitride, and obtained from a peak intensity ratio in a powder X-ray diffraction pattern of a mixed powder having a known silicon amount.
  • Crystallite size of ⁇ -type silicon nitride D C and measuring methods of crystal strains were obtained.
  • the specific surface area of the high-purity silicon nitride powder of the present invention was measured by a BET one-point method by nitrogen gas adsorption using a BET specific surface area measuring device (Macsorb) manufactured by Mountaintech.
  • the equivalent spherical diameter D BET was obtained from the following formula (6) on the assumption that all particles constituting the powder are spheres having the same diameter.
  • ⁇ SN is the true density of silicon nitride (true density of ⁇ -Si 3 N 4 is 3.186 g / cm 3 , true density of ⁇ -Si 3 N 4 is 3.192 g / cm 3 , ⁇ phase and ⁇ phase The average true density was calculated based on the ratio to the true density).
  • S is a specific surface area (m 2 / g).
  • the particle size distribution of the silicon nitride powder of the present invention and the silicon powder used as a raw material was measured as follows. 60 mg of a measurement sample was put into 200 ml of pure water mixed with 2 ml of a 20% aqueous solution of sodium hexametaphosphate, and the powder was used for 6 minutes at an output of 300 W using an ultrasonic homogenizer equipped with a stainless steel center cone having a diameter of 26 mm. A dilute solution was prepared by dispersion treatment and used as a measurement sample.
  • the particle size distribution of the measurement sample was measured using a laser diffraction / scattering particle size distribution measuring apparatus (Microtrack MT3000 manufactured by Nikkiso Co., Ltd.) to obtain volume-based particle size distribution data. From the obtained particle size distribution curve, 10 volume% particle diameter (D 10 ), 50 volume% particle diameter (D 50 ) and 90 volume% particle diameter (D 90 ) were determined.
  • the silicon nitride powder of the present invention is measured as follows. did.
  • the sample was weighed in a resin pressure decomposition vessel, mixed acid (nitric acid and hydrofluoric acid solution) was added, microwave heating was performed, pressure acid decomposition was performed, and the sample was completely dissolved.
  • the content of iron, chromium, aluminum and other metal impurities was determined by measuring the volume of the decomposition solution with ultrapure water and using an ICP-AES (SPS5100 type) analyzer manufactured by SII Nanotechnology. Quantify the content of iron, chromium and aluminum in the test solution and the content of metal impurities other than iron, chromium and aluminum from the detected wavelength and the emission intensity, and the content of iron, chromium and aluminum in the sample. The amount and content of metal impurities other than iron, chromium and aluminum were calculated.
  • the bulk density means the initial bulk density.
  • the initial bulk density of high-purity silicon powder and silicon nitride powder as a diluent was determined by a method in accordance with JIS R1628 “Method for measuring bulk density of fine ceramic powder”. Further, the bulk density of the packed bed made of a mixture of high-purity silicon powder and a diluent was determined by the same method.
  • the crushing strength of the combustion product obtained in the present invention was measured as follows. From the combustion product, 5 cubes each having a side of 10 mm were cut out and used as measurement samples. The crushing strength of the measurement sample was measured using a manual crushing strength measuring device (model 1 model manufactured by Aiko Engineering Co., Ltd.). A compression test was performed by applying a load to the measurement sample placed on the pedestal, and the crushing strength was calculated from the measured maximum load. The crushing strength of the combustion product obtained in the present invention was an average value of the crushing strength of the five measurement samples.
  • Tables 1 and 2 show characteristic values such as bulk density and metal impurity content of the silicon powder, silicon nitride powder and mixed raw material powder used in the combustion synthesis.
  • Tables 3 and 4 show the crushing strength of the combustion products obtained by the combustion synthesis reaction and the physical properties of the high-purity silicon nitride powder obtained by pulverizing the combustion products.
  • Example 2 In the same manner as in Example 1, except that silicon powder having a 50% volume particle diameter (D 50 ) of 4.0 ⁇ m and a 90% volume particle diameter (D 90 ) of 12 ⁇ m was used as the silicon powder used as a raw material, A mixed powder of silicon, which is a synthetic raw material, and a diluent (silicon nitride) was charged into a conductive container, and a lump of silicon nitride powder was obtained from the synthetic raw material by a self-combustion reaction. In the same manner as in Example 1, coarse pulverization was performed using a roll crusher equipped with a silicon nitride roll.
  • a silicon nitride coarsely pulverized product is put in a resin pot in which a powder contact portion of a mill container or the like is covered with a resin such as polyurethane, and an appropriate amount of silicon nitride balls for pulverization is added to obtain a predetermined frequency of 1780 cpm and amplitude of 5 mm
  • the vibration mill was pulverized by vibrating and rotating only for the time. Since the grinding balls were worn out and mixed into the raw material, the coarsely pulverized silicon nitride was pulverized using a pulverizing medium made of a silicon nitride sintered body having a porosity of 1% or less and a Vickers hardness of 18 GPa. Since the pulverized product of silicon nitride may adhere to the wall surface of the mill container and the pulverization efficiency may decrease, the crushed object adhered to the inner wall of the container was scraped off every hour.
  • Example 3 and Example 4 The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1, and silicon nitride powder having the average particle diameter, bulk density and metal impurity content described in the table are listed in the table
  • a pressure-resistant container was charged with a mixed powder of silicon powder as a synthetic raw material and a diluent (silicon nitride powder).
  • silicon nitride powder Under the described conditions, a lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction.
  • the pulverization process was performed in the same manner as in Example 2, and the obtained finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
  • the value in which silicon is converted into silicon nitride is, for example, that when 3 mol (84.3 g) of silicon and 1 mol (140.3 g) of silicon nitride are included, the weight ratio is 1: 1. I mean.
  • Example 2 In the same manner as in Example 1, a lump of silicon nitride powder was synthesized from the above synthetic raw material by a self-combustion reaction under the conditions described in Tables 1 and 2. In the same manner as in Example 2, coarse pulverization using a silicon nitride roll crusher and vibration mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4. [Example 6] The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table.
  • a lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction in the same manner as in Example 1 except that the raw material powder mixed at the mixing ratio was used under the conditions described in Tables 1 and 2.
  • the pulverization process was performed in the same manner as in Example 1, and the obtained finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
  • Example 7 to 10 The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table.
  • a lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction in the same manner as in Example 1 except that the raw material powder mixed at the mixing ratio was used under the conditions described in Tables 1 and 2.
  • Example 2 coarse pulverization using a silicon nitride roll crusher and vibration mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
  • Example 11 A raw material powder composed of a silicon powder having a particle size distribution, a bulk density and a metal impurity content described in Table 1, and a silicon nitride powder having an average particle diameter, a bulk density and a metal impurity content described in the table, Sodium chloride was added as a reaction aid.
  • a lump of silicon nitride powder was synthesized from the above synthetic raw material by a self-combustion reaction under the conditions described in Tables 1 and 2.
  • Example 2 In the same manner as in Example 2, coarse pulverization using a silicon nitride roll crusher and vibration mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
  • Example 12 to 16 The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table.
  • a lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction in the same manner as in Example 1 except that the raw material powder mixed at the mixing ratio was used under the conditions described in Tables 1 and 2.
  • Example 2 coarse pulverization using a silicon nitride roll crusher and vibration mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
  • the content of iron, chromium and aluminum as the silicon powder is 200 ppm, 140 ppm and 200 ppm, respectively, the total content of other metal impurities is 180 ppm, and the average particle size is 5.
  • a synthetic raw material was prepared so that the mixing ratio of silicon and diluent (silicon nitride) was 8.5: 1.5 in terms of silicon nitride.
  • the bulk density of the synthetic raw material is 0.49 g / cm 3 by combining the bulk density of the silicon powder of the compounding source and the bulk density of the diluent (silicon nitride), each having a predetermined value. did.
  • the charged raw materials total weight: 5.4 kg
  • the height of the powder layer was 45 mm.
  • a lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction.
  • the pulverization process was performed in the same manner as in Example 1, and the obtained finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
  • Comparative Example 1 is an example in which silicon powder containing many Fe, Al, Cr, and other metal impurities is used as a raw material.
  • Comparative Example 2 is an example in which both the silicon powder as a raw material and the silicon nitride powder as a diluent contain a large amount of Fe, Al, Cr, and other metal impurities.
  • Comparative Example 3 is an example in which the silicon nitride powder that is a diluent contains a large amount of Fe, Al, Cr, and other metal impurities.
  • Example 4 A raw material powder composed of a silicon powder having a particle size distribution, a bulk density and a metal impurity content described in Table 1, and a silicon nitride powder having an average particle diameter, a bulk density and a metal impurity content described in the table, Sodium chloride was added as a reaction aid.
  • a lump of silicon nitride powder was synthesized from the above synthetic raw material by a self-combustion reaction under the conditions described in Tables 1 and 2.
  • the obtained mass of silicon nitride powder was coarsely pulverized using a roll crusher equipped with an alumina roll.
  • a coarsely pulverized product of silicon nitride was put in an alumina pot, an appropriate amount of pulverized alumina balls were added, and the mixture was vibrated and rotated for a predetermined time at a frequency of 1780 cpm and an amplitude of 5 mm, thereby performing vibration mill pulverization. Since the pulverized product of silicon nitride may adhere to the wall surface of the mill container and the pulverization efficiency may decrease, the crushed object adhered to the inner wall of the container was scraped off every hour.
  • Comparative Example 4 is an example in which alumina is used in a coarse pulverization and fine pulverization apparatus.
  • the results of analyzing the finely pulverized silicon nitride obtained are shown in Tables 1 to 4.
  • Comparative Example 5 is an example in which the bulk density of the mixed powder of silicon powder and silicon nitride powder as a diluent is large, and the crushing strength of the combustion product is large.
  • Comparative Example 6 is an example where the bulk density of the mixed powder is small. Comparative Example 6 is an example with a small proportion of diluent, and Comparative Example 7 is an example with a large proportion of diluent.
  • the obtained mass of silicon nitride powder was coarsely pulverized using a roll crusher equipped with an alumina roll. Furthermore, the coarsely pulverized product of silicon nitride was put in an alumina pot, an appropriate amount of alumina balls for pulverization was added, the pulverization treatment was performed in the same manner as in Comparative Example 4, and the finely pulverized product of silicon nitride was analyzed. . Comparative Example 9 is an example in which alumina is used in a coarse pulverization and fine pulverization apparatus. The results are shown in Tables 1 to 4.
  • Weight reduction rate of silicon nitride powder and free silicon production As a simulation evaluation for confirming the stability as a release agent for casting a polycrystalline silicon ingot, the weight reduction rate at 1570 ° C. was measured under an argon atmosphere.
  • the weight reduction rate of the silicon nitride of the present invention was measured by the following method. First, 5.5 g of silicon nitride powder was weighed, filled in an alumina crucible having a square bottom of 200 mm, a depth of 200 mm, and a thickness of 10 mm, and housed in a batch-type firing furnace, and the inside of the furnace was filled with an argon atmosphere. Then, the temperature was raised to 1570 ° C. under an argon atmosphere and held for 5 hours. After cooling to room temperature, the weight of the argon heat treated powder is measured. The weight reduction rate of the silicon nitride powder was calculated from the following formula (7).
  • Weight reduction rate of silicon nitride powder (weight of silicon nitride powder (g) ⁇ weight of argon heat-treated powder (g)) / (weight of silicon nitride powder (g)) ⁇ 100. 7)
  • the amount of free silicon produced in the silicon nitride powder after heat treatment of holding at 1570 ° C. for 5 hours under an argon atmosphere was measured.
  • an X-ray diffractometer RINT-TTRIII, manufactured by Rigaku Corporation
  • powder X-ray diffraction measurement XRD
  • the existing crystal phase was ⁇ -type silicon nitride, ⁇ -type nitride It was a three phase silicon and metallic silicon.
  • the obtained powder X-ray diffraction pattern was subjected to Rietveld analysis using an analysis program JADE manufactured by Rigaku Corporation to determine the amount of free silicon produced.
  • Table 5 shows the results of evaluation of compatibility as a mold release agent for silicon ingot casting.
  • the weight reduction rate of the silicon nitride powders of Examples 1 to 7 after firing in an argon atmosphere was 0.20 to 0.80% by weight and the amount of free silicon produced was 0.10 to 0.28% by weight.
  • the weight reduction rates of the silicon nitride powders of Comparative Examples 1 to 4 were 2.11 to 5.4% by weight, and the amount of free silicon produced was 0.49 to 1.03% by weight.
  • a mold release agent having a large weight reduction rate and a large amount of free silicon is peeled off from the crucible wall for casting at the time of silicon ingot casting.
  • the silicon nitride powder of Examples 1 to 7 were superior in high-temperature stability in a polycrystalline silicon ingot casting atmosphere and could exhibit stable characteristics as a release agent. That is, the high-purity silicon nitride powder of the present invention is suitable as a release agent used for casting polycrystalline silicon.
  • the obtained molded body was placed in a boron nitride crucible, heated to 1850 ° C. under a nitrogen atmosphere of 0.8 MPa, and held at 1850 ° C. for 22 hours for sintering.
  • the obtained silicon nitride sintered body was cut and ground, and a 3 mm ⁇ 4 mm ⁇ 40 mm bending strength test piece according to JIS R1601 and a 10 mm ⁇ ⁇ 2 mm test piece for measuring thermal conductivity according to JIS R1611 were obtained.
  • the relative density of the sintered body was measured by Archimedes method.
  • the room temperature 4-point bending strength at room temperature was measured by a method based on JIS R1601 using an Instron universal material testing machine, and the thermal conductivity at room temperature was measured by a flash method based on JIS R1611.
  • Table 6 shows the evaluation results of compatibility as a raw material for producing a sintered body such as a high thermal conductivity silicon nitride substrate.
  • the relative reach density of the sintered bodies was 95.6 to 97.7% for the silicon nitride powders of Examples 8 to 16, and 97.3 to 99.3% for the silicon nitride powders of Comparative Examples 5 to 9. there were.
  • the four-point bending strength of the sintered body at room temperature was 756 to 812 MPa for the silicon nitride powders of Examples 8 to 16, and 717 to 768 MPa for the silicon nitride powders of Comparative Examples 5 to 9.
  • the thermal conductivity of the sintered body at room temperature was 89 to 101 W / mK for the silicon nitride powders of Examples 8 to 16, and 53 to 75 W / m for the silicon nitride powders of Comparative Examples 5 to 9. It was found that the silicon nitride powders of Examples 8 to 16 had a higher thermal conductivity and a high-quality silicon nitride sintered body was obtained. That is, the high-purity silicon nitride powder of the present invention is suitable as a raw material for manufacturing sintered bodies such as various jigs for manufacturing semiconductors and high-heat-conducting silicon nitride substrates that require high thermal conductivity.
  • Example 17 Using the silicon nitride powder obtained in Example 2, the properties as a release agent were evaluated by the following method. That is, a unidirectional solidification experiment of a polycrystalline silicon ingot was performed using a mold prepared by applying the obtained silicon nitride powder as a release agent, and the polycrystalline silicon ingot was released from the mold. An ingot was produced by melting at 1500 ° C. and 1550 ° C., but no release agent adhered to the ingot. Next, Fe, Cr, Al, and metal impurities other than these (Fe, Cr, and Al) contained in the polycrystalline silicon ingot obtained by the unidirectional solidification experiment at 1550 ° C. were measured as follows. did.
  • the obtained polycrystalline silicon ingot was divided into two so that the cut surface was parallel to the solidification direction, and the flight time was measured with the position 1 cm above the bottom on the central axis of the cut surface.
  • Surface analysis was performed using a type secondary ion mass spectrometry method (manufactured by ULVAC-PHI (TRIFT V nano TOF type)).
  • the normalized secondary ion intensity of secondary mass spectra of Fe, Cr, Al, and metal impurities other than these (Fe, Cr, and Al) was less than 1 ⁇ 10 ⁇ 4 , so that metal impurities were detected Judged not to have been.
  • the normalized secondary ion intensity is obtained by dividing the secondary ion intensity of each spectrum by the secondary ion intensity of all detected spectra.
  • Example 18 The D 50 of the silicon powder is 4.0 ⁇ m, the bulk density is 0.4 g / cm 3 , the bulk density of the mixed powder is 0.42 g / cm 3 , and a bead mill (grinding medium and inner wall liner is used as a grinding method)
  • a silicon nitride sintered body a combustion synthesis reaction and pulverization (coarse pulverization and fine pulverization) of a mixed raw material powder of silicon powder and silicon nitride powder were performed, and nitridation was performed. Silicon powder was produced.
  • the obtained silicon nitride powder has a specific surface area of 8.0 m 2 / g, a ⁇ -type silicon nitride ratio of 100% by mass, D 10 of 0.85 ⁇ m, D 50 of 2.4 ⁇ m, D 90 of 5.1 ⁇ m, Fe ⁇ -type silicon nitride calculated by applying a Williamson-Hall plot with a content ratio of 7 ppm, a Cr content ratio of 3 ppm, an Al content ratio of 20 ppm, a content ratio of metal impurities other than Fe, Cr and Al
  • the crystallite diameter D c of the powder was 180 nm, the crystal strain was 0.98 ⁇ 10 ⁇ 4 , and D BET / D c was 1.3.
  • Example 8 a silicon nitride sintered body was produced using the obtained silicon nitride powder, and the obtained silicon nitride sintered body was evaluated for properties.
  • the bulk density was 97.7%
  • the bending strength was 813 MPa
  • the thermal conductivity was 103 W / mK.
  • Example 19 The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table.
  • a lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction under the conditions described in Tables 1 and 2 in the same manner as in Example 18 except that the raw material powder mixed at the mixing ratio was used.
  • coarse pulverization using a silicon nitride roll crusher and bead mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed.
  • Example 20 A raw material powder composed of a silicon powder having a particle size distribution, a bulk density and a metal impurity content described in Table 1, and a silicon nitride powder having an average particle diameter, a bulk density and a metal impurity content described in the table, Sodium chloride was added as a reaction aid.
  • a lump of silicon nitride powder was synthesized from the above synthetic raw material by a self-combustion reaction under the conditions described in Tables 1 and 2.
  • Example 18 In the same manner as in Example 18, coarse pulverization using a silicon nitride roll crusher and bead mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4. In the same manner as in Example 18, a silicon nitride sintered body was produced using the obtained silicon nitride powder, and the characteristics of the obtained silicon nitride sintered body were evaluated. The results are shown in Table 6.
  • the method for producing high-purity silicon nitride powder according to the present invention is suitable as a raw material for silicon nitride sintered bodies having both high thermal conductivity and mechanical strength, such as raw materials for various jigs for manufacturing semiconductors and raw materials for high thermal conductive silicon nitride substrates. It is useful as a method for producing inexpensive high-purity silicon nitride powder at low cost by a combustion synthesis method.
  • the method for producing high-purity silicon nitride powder according to the present invention can be used as a mold release agent for polycrystalline silicon ingots, particularly as a method for producing high-purity silicon nitride powder suitable for use at high temperatures at low cost by a combustion synthesis method. Useful.

Abstract

Provided is a technique for producing silicon nitride powder having excellent crystallinity and low contained amounts of impurities such as iron and aluminum efficiently and inexpensively by a combustion synthesis method. A method for producing silicon nitride powder, the method comprising mixing silicon powder and diluent silicon nitride, packing the mixed powder into a crucible, producing an agglomerate configured from silicon nitride by a combustion synthesis method, and pulverizing the agglomerate, wherein the contained amounts of iron and aluminum in the silicon powder and diluent are each 100 ppm or less, the total contained amount of metal impurities other than iron and aluminum is 100 ppm or less, the mixture ratio of the silicon powder and the diluent is 9:1 to 5:5 by mass ratio, the bulk density of a powder layer of the mixed powder is 0.3-0.65 g/cm3, and the method for producing high-purity silicon nitride powder comprises pulverizing the agglomerate using a pulverizer loaded or equipped with a grinding medium that includes silicon nitride.

Description

高純度窒化ケイ素粉末の製造方法Method for producing high purity silicon nitride powder
 本発明は、窒素を含む雰囲気中で自己伝播する燃焼反応を用いた燃焼合成法により金属シリコン粉末を窒化ケイ素粉末に転換することにより、特に高純度が要求される半導体製造用各種治具用原料、高熱伝導窒化ケイ素基板用原料、太陽電池用シリコンインゴット製造時に用いる離型剤等に使用可能な窒化ケイ素粉末を効率的かつ安価に製造する方法に関する。 The present invention is a raw material for various jigs for semiconductor manufacturing that requires particularly high purity by converting metal silicon powder into silicon nitride powder by a combustion synthesis method using a combustion reaction that self-propagates in an atmosphere containing nitrogen. The present invention relates to a method for efficiently and inexpensively producing a silicon nitride powder that can be used as a raw material for a high thermal conductivity silicon nitride substrate, a mold release agent used in the production of a silicon ingot for solar cells, and the like.
 窒化ケイ素粉末の製造法の一つとして、金属シリコン粉末を窒素ガス又はアンモニアガスを含む非酸化性雰囲気で焼成して、窒化する、直接窒化法が知られている。この方法はプロセスが単純であるが、気体(窒素ガス又はアンモニアガス)と固体(金属シリコン)との反応であるため、原料となる金属シリコンを微粉砕する必要が有り、原料中に鉄、クロム、アルミニウムなどの不純物が混入し易いという難点がある。また、窒化反応を促進するためには、フッ化カルシウムや鉄系化合物等の触媒を添加する必要が有るため、これらの触媒が残存して純度が低下することから、高純度の窒化ケイ素粉末の製造には不向きであると言われている。 As one method for producing silicon nitride powder, a direct nitridation method is known in which metal silicon powder is fired in a non-oxidizing atmosphere containing nitrogen gas or ammonia gas and then nitrided. This method is simple in process, but because it is a reaction between gas (nitrogen gas or ammonia gas) and solid (metal silicon), it is necessary to finely pulverize the metal silicon used as a raw material. There is a problem that impurities such as aluminum are easily mixed. Further, in order to promote the nitriding reaction, it is necessary to add a catalyst such as calcium fluoride or an iron-based compound, so that these catalysts remain and the purity is lowered. It is said that it is not suitable for manufacturing.
 原料に窒化促進触媒を含まない場合には、加熱温度を通常より高くしなければ窒化反応が進み難いが、金属シリコンの窒化は発熱反応なので、温度を高くすると反応が始まると共に急激な温度上昇が起きて、原料シリコン粉末が溶融してしまう場合がある。一旦部分的にでも溶融するとその部分の窒化反応が進まなくなるので、未反応のシリコンが多く残ることになる。これを回避するために原料粒径や窒化反応条件を厳密に制御して窒化反応をゆっくり進行させることにより未反応シリコン量を減らす技術が開示されているが、窒化促進触媒が無いと粗大な柱状のβ粒子が生成するために、生成物の粉砕に長時間を要し、粉砕媒体から多量の不純物が混入してしまうという難点がある。 If the raw material does not contain a nitriding promotion catalyst, the nitriding reaction will not proceed unless the heating temperature is raised higher than usual, but the nitridation of metallic silicon is an exothermic reaction. It may happen that the raw material silicon powder is melted. Once partially melted, the nitriding reaction of that part does not proceed, so a large amount of unreacted silicon remains. In order to avoid this, a technology for reducing the amount of unreacted silicon by slowly controlling the raw material particle size and nitriding reaction conditions and proceeding the nitriding reaction slowly has been disclosed. Therefore, it takes a long time to grind the product, and there is a problem that a large amount of impurities are mixed from the grinding medium.
 窒化反応の生産性を著しく向上させるために、窒素を含む雰囲気中で自己伝播する燃焼反応を用いた燃焼合成法による窒化ケイ素粉末の製造方法が開発された。 In order to significantly improve the productivity of the nitriding reaction, a method for producing silicon nitride powder by a combustion synthesis method using a combustion reaction that self-propagates in an atmosphere containing nitrogen has been developed.
 燃焼合成法とは、化合物を構成する元素間の化学反応が強い発熱反応を積極的に利用した合成方法であり、例えば、融点の高い金属間化合物が合成される場合に高い生成熱を放出することを利用して、原料粉末から発熱反応を秒単位の短時間で連鎖反応的に進行させ、目的化合物を合成する方法である。従って外部からのエネルギー供給が不要であり、製造装置などのコストを低減することができる等の特長を有するので、目的とする化合物を安価に製造することができる。
燃焼合成法では、通常は原料粉体層の特定部位(例えば一端、または中央)に化学反応を励起させ、この化学反応を燃焼波として原料粉体層中に伝播させ、これによって合成反応を進行させる。窒化ケイ素を合成する場合では次の反応が起こる。
The combustion synthesis method is a synthesis method that actively uses an exothermic reaction in which a chemical reaction between elements constituting a compound is strong. For example, a high heat of formation is released when an intermetallic compound having a high melting point is synthesized. This is a method for synthesizing a target compound by causing an exothermic reaction to proceed from a raw material powder in a chain reaction in a short time in seconds. Accordingly, the energy supply from the outside is unnecessary, and the cost of the production apparatus can be reduced, so that the target compound can be produced at low cost.
In the combustion synthesis method, a chemical reaction is usually excited at a specific part (for example, one end or the center) of the raw material powder layer, and this chemical reaction is propagated as a combustion wave in the raw material powder layer, thereby proceeding with the synthesis reaction. Let In the case of synthesizing silicon nitride, the following reaction occurs.
  3Si+2N → Si-ΔH ・・・(1)
 反応式中〔-ΔH〕=735.7KJ/mol(T=1500K)であり、この発熱が燃焼反応の駆動力となって燃焼波を伝播させる。
3Si + 2N 2 → Si 3 N 4 −ΔH (1)
In the reaction formula, [−ΔH] = 735.7 KJ / mol (T = 1500 K), and this heat generation serves as a driving force for the combustion reaction to propagate the combustion wave.
 この方法を窒化ケイ素粉末の合成に適用すると、原料粉として、数μm程度の粒度を有するシリコン粉末を使用し、短時間で窒化反応が完結するような条件設定を行うことができるため、安価な窒化ケイ素粉末の製造方法として注目されている。 When this method is applied to the synthesis of silicon nitride powder, silicon powder having a particle size of about several μm can be used as a raw material powder, and conditions can be set so that the nitriding reaction can be completed in a short time. It attracts attention as a method for producing silicon nitride powder.
 しかしながら、通常入手可能なシリコン粉末は鉄、クロムおよびアルミニウムなどの金属不純物を数百ppm程度含んでいるため、高純度な窒化ケイ素粉末が製造された例は無い。また、燃焼合成法による窒化ケイ素粉末の製造においては、反応制御のために、希釈剤を添加することが一般的である。この希釈剤として使用される窒化ケイ素粉末にも、数百ppm程度の鉄、クロムおよびアルミニウムなどの金属不純物が含まれており、高純度な窒化ケイ素粉末を製造しようという試みは行われていなかった。 However, since normally available silicon powder contains about several hundred ppm of metal impurities such as iron, chromium and aluminum, there is no example of producing high-purity silicon nitride powder. Further, in the production of silicon nitride powder by the combustion synthesis method, it is common to add a diluent for reaction control. The silicon nitride powder used as the diluent also contains metal impurities such as iron, chromium and aluminum of about several hundred ppm, and no attempt has been made to produce high-purity silicon nitride powder. .
 燃焼合成に関しては、以下の先行技術文献が開示されている。 Regarding combustion synthesis, the following prior art documents are disclosed.
特表平03-500640号公報Japanese National Patent Publication No. 03-500640 特開2000-264608号公報JP 2000-264608 A 特開2005-194154号公報JP 2005-194154 A 特開2013-63894号公報JP 2013-63894 A 特開2015-081205号公報Japanese Patent Laying-Open No. 2015-081205
 特許文献1および特許文献2は、燃焼合成による窒化ケイ素粉末の製造に関するものであるが、原料シリコン中に含まれる不純物および生成する窒化ケイ素塊の粉砕に伴う不純物の混入と結晶性の悪化(結晶子径の微細化と結晶歪の増大)について全く配慮されていない。したがって、得られた窒化ケイ素粉末の性状が如何なるものであるのかという記載は無い。 Patent Document 1 and Patent Document 2 relate to the production of silicon nitride powder by combustion synthesis. However, impurities contained in the raw material silicon and impurities accompanying the pulverization of the generated silicon nitride lump and deterioration of crystallinity (crystal No consideration is given to the refinement of the diameter and the increase in crystal strain. Therefore, there is no description of what the properties of the obtained silicon nitride powder are.
 特許文献3および特許文献4はサイアロン粉末合成に関するものである。サイアロンとは、例えば、一般式Si6-zAlzz8-zで表記される物質であり、アルミニウムの存在を前提としており、本発明におけるアルミニウム含有量が200ppm以下であるような高純度な窒化ケイ素粉末の合成とは、目的を異にするものである。 Patent documents 3 and 4 relate to sialon powder synthesis. Sialon is, for example, a substance represented by the general formula Si 6-z Al z O z N 8-z and is premised on the presence of aluminum, and has a high aluminum content of 200 ppm or less in the present invention. The synthesis of pure silicon nitride powder has a different purpose.
 同様に、非特許文献1及び非特許文献2もサイアロン粉末合成に関するものであり、本発明におけるアルミニウム含有量が200ppm以下であるような高純度な窒化ケイ素粉末の合成とは、目的を異にするものである。 Similarly, Non-Patent Document 1 and Non-Patent Document 2 also relate to sialon powder synthesis, and have different purposes from the synthesis of high-purity silicon nitride powder having an aluminum content of 200 ppm or less in the present invention. Is.
 また、特許文献5は、粒子径が5μm以上200μm以下の凝結粒子であって、柱状形状の窒化ケイ素粒子を含む凝結粒子を50体積%以上含む窒化ケイ素フィラーを提供することを目的とするものである。特許文献5に開示された強固な凝結粒子を生成させることと、本発明における、窒化後も粉砕し易い、軟らかな窒化ケイ素の凝結塊を得ることとは、課題解決に対するアプローチが異なる。 Patent Document 5 aims to provide a silicon nitride filler which is a condensed particle having a particle diameter of 5 μm or more and 200 μm or less, and which contains 50% by volume or more of condensed particles including columnar silicon nitride particles. is there. The approach to solving the problem is different from the generation of strong agglomerated particles disclosed in Patent Document 5 and the obtaining of a soft silicon nitride agglomerate that is easily pulverized after nitriding in the present invention.
 特許文献5においては、粒子径が5μm未満の粒子の割合を低減して、粒子径が5μm以上200μm以下の凝結粒子の比率が80体積%以上、さらには90体積%以上であることが特に好ましい態様であるとして、平均粒径(D50)が26~77μmという粗大な凝結粒子を得ている。特許文献5においても結晶内部の欠陥の存在を低減することが提案されているが、特許文献5では窒化ケイ素粒子が強固に凝集した粗大な凝結粒子を得ることを目的としており、粉砕による結晶内部の欠陥生成についてはまったく配慮されていない。 In Patent Document 5, it is particularly preferable that the ratio of particles having a particle diameter of less than 5 μm is reduced, and the ratio of condensed particles having a particle diameter of 5 μm or more and 200 μm or less is 80% by volume or more, more preferably 90% by volume or more. As an embodiment, coarse aggregated particles having an average particle diameter (D 50 ) of 26 to 77 μm are obtained. Patent Document 5 proposes to reduce the presence of defects inside the crystal. However, Patent Document 5 aims to obtain coarse agglomerated particles in which silicon nitride particles are strongly aggregated. The generation of defects is not considered at all.
 さらに、窒化ケイ素フィラーには、窒化ケイ素以外に不可避的な不純物や、必要に応じて添加した添加剤、助剤等を含むことができる旨が記載されており、鉄、アルミニウムなどの不可避的な不純物の混入を減らすという本発明とは、課題を解決する手段が異なるものである。例えば、特許文献5では、粉砕媒体としてアルミナボールを、粉砕用具としてアルミナ製の乳鉢と乳棒を使用しており、アルミナの混入が全く気にならない用途への展開が志向されている。 Furthermore, the silicon nitride filler describes that it can contain unavoidable impurities in addition to silicon nitride, additives added as necessary, auxiliaries, etc., and unavoidable such as iron and aluminum. The present invention of reducing the mixing of impurities is different from the means for solving the problems. For example, in Patent Document 5, alumina balls are used as a grinding medium, and an alumina mortar and pestle are used as grinding tools.
 本発明は、上述したような従来の手法が抱える問題に鑑みてなされたもので、その目的とするところは、結晶性が良好で、かつ鉄、クロム、アルミニウムなどの不純物含有量の少ない高純度の窒化ケイ素微粉末を燃焼合成法によって効率的かつ安価に合成するための技術を提供することにある。 The present invention has been made in view of the problems of the conventional methods as described above, and the object of the present invention is high purity with good crystallinity and low content of impurities such as iron, chromium and aluminum. It is an object to provide a technique for efficiently and inexpensively synthesizing silicon nitride fine powder by combustion synthesis.
 本発明の目的は、上記に鑑み、特に高純度が要求される半導体製造用各種治具用原料、高熱伝導窒化ケイ素基板用原料、太陽電池用シリコンインゴット製造時に用いる離型剤等に使用可能な高純度窒化ケイ素粉末を、窒素を含む雰囲気中で自己伝播する燃焼反応を用いた燃焼合成法によって安価に製造する方法を提供することである。具体的には、高い熱伝導度と機械的強度を併せ持つ窒化ケイ素質焼結体原料として好適な高純度窒化ケイ素粉末を燃焼合成法によって安価に製造する方法を提供すること、および鋳型への密着性と離型性が良好で高温まで安定な離型層を鋳型に形成し得る、多結晶シリコンインゴットの離型剤として好適な高純度窒化ケイ素粉末を燃焼合成法によって安価に製造する方法を提供することである。 In view of the above, the object of the present invention can be used as a raw material for various jigs for semiconductor manufacturing, a raw material for a high thermal conductivity silicon nitride substrate, a mold release agent used when manufacturing a silicon ingot for solar cells, etc. To provide a method for producing high-purity silicon nitride powder at low cost by a combustion synthesis method using a combustion reaction that self-propagates in an atmosphere containing nitrogen. Specifically, providing a method for producing a high-purity silicon nitride powder suitable as a raw material for sintered silicon nitride having both high thermal conductivity and mechanical strength at low cost by a combustion synthesis method, and adhesion to a mold Provides a method for producing high-purity silicon nitride powder suitable as a mold release agent for polycrystalline silicon ingots at low cost by combustion synthesis, which can form a mold release layer that has good properties and mold release properties and is stable up to high temperatures It is to be.
 本発明者らは、前記課題を解決するために鋭意研究を重ね、窒素を含む雰囲気中で自己伝播する燃焼反応を用いた燃焼合成法によって高純度窒化ケイ素粉末を安価に製造する方法において、特定の製造条件を設定することにより、特定の比表面積、特定のβ型窒化ケイ素比率および特定の金属不純物の含有量が特定の割合より少なく、結晶子径が特定の値より大きい窒化ケイ素粉末が得られることを見出した。得られた窒化ケイ素粉末を用いて多結晶シリコンインゴット鋳造用鋳型の離型層を形成すると、一方向凝固時のシリコンの溶融温度を高くしても、多結晶シリコンインゴットの離型性、および離型層の鋳型への密着性が高温まで良好であることを見出し、本発明を完成するに至った。 The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and in a method for producing high-purity silicon nitride powder at low cost by a combustion synthesis method using a combustion reaction that self-propagates in an atmosphere containing nitrogen. By setting the production conditions, a silicon nitride powder having a specific surface area, a specific β-type silicon nitride ratio and a specific metal impurity content less than a specific ratio and a crystallite diameter larger than a specific value can be obtained. I found out that When the mold release layer of the casting mold for polycrystalline silicon ingot is formed using the obtained silicon nitride powder, the mold release property and release characteristics of the polycrystalline silicon ingot can be increased even if the melting temperature of silicon during unidirectional solidification is increased. It has been found that the adhesion of the mold layer to the mold is good up to a high temperature, and the present invention has been completed.
 また、本発明者らは、窒素を含む雰囲気中で自己伝播する燃焼反応を用いた燃焼合成法による高純度窒化ケイ素粉末の安価な製造方法において、特定の製造条件を設定することにより、前記の優れた特性を有する窒化ケイ素粉末を製造でき、この窒化ケイ素粉末を焼結体製造用の原料に用いると、高い熱伝導率と機械的強度を併せ持つ窒化ケイ素焼結体を製造し得ることを見出し、本発明を完成するに至った。 Further, the present inventors set the specific manufacturing conditions in the inexpensive manufacturing method of high-purity silicon nitride powder by the combustion synthesis method using the combustion reaction that self-propagates in an atmosphere containing nitrogen, It has been found that silicon nitride powder having excellent characteristics can be produced, and that when silicon nitride powder is used as a raw material for producing a sintered body, a silicon nitride sintered body having both high thermal conductivity and mechanical strength can be produced. The present invention has been completed.
 すなわち本発明は以下の事項に関する。 That is, the present invention relates to the following matters.
 本発明は、シリコン粉末と希釈剤の窒化ケイ素粉末とを混合し、得られた混合粉末をルツボに充填して、燃焼反応に伴う自己発熱および伝播現象を利用した燃焼合成法により前記シリコン粉末を燃焼させることによって窒化ケイ素から構成される凝結塊を製造し、前記凝結塊を粉砕する高純度窒化ケイ素粉末の製造方法であって、
 前記シリコン粉末は、鉄およびアルミニウムの含有量がそれぞれ100ppm以下であり、鉄およびアルミニウム以外の金属不純物の合計含有量が100ppm以下であり、
 前記希釈剤は、鉄およびアルミニウムの含有量がそれぞれ100ppm以下であり、鉄およびアルミニウム以外の金属不純物の合計含有量が100ppm以下である窒化ケイ素粉末であり、
 前記混合粉末における前記シリコン粉末と前記希釈剤との配合比は、質量比で9:1~5:5であり、
 前記坩堝に充填された前記混合粉末より構成される粉体層の嵩密度は、0.3~0.65g/cmであり、
 前記凝結塊を、少なくとも窒化ケイ素を含む粉砕媒体を装填または装着した粉砕装置を使用して粉砕することを特徴とする高純度窒化ケイ素粉末の製造方法である。
In the present invention, silicon powder and silicon nitride powder as a diluent are mixed, and the obtained mixed powder is filled in a crucible, and the silicon powder is mixed by a combustion synthesis method using self-heating and propagation phenomena associated with a combustion reaction. A method for producing a high-purity silicon nitride powder comprising producing a coagulated mass composed of silicon nitride by burning, and crushing the coagulated mass,
The silicon powder has an iron and aluminum content of 100 ppm or less, and a total content of metal impurities other than iron and aluminum is 100 ppm or less,
The diluent is a silicon nitride powder having an iron and aluminum content of 100 ppm or less and a total content of metal impurities other than iron and aluminum of 100 ppm or less,
The compounding ratio of the silicon powder and the diluent in the mixed powder is 9: 1 to 5: 5 by mass ratio,
The bulk density of the powder layer composed of the mixed powder filled in the crucible is 0.3 to 0.65 g / cm 3 ,
A method for producing a high-purity silicon nitride powder, characterized in that the agglomerated mass is pulverized using a pulverizer loaded or loaded with a pulverization medium containing at least silicon nitride.
 本発明においては、前記シリコン粉末の嵩密度が0.2~0.7g/cmであることが好ましい。 In the present invention, the silicon powder preferably has a bulk density of 0.2 to 0.7 g / cm 3 .
 本発明においては、前記希釈剤の窒化ケイ素粉末の嵩密度が0.2~0.7g/cmであることが好ましい。 In the present invention, the bulk density of the silicon nitride powder as the diluent is preferably 0.2 to 0.7 g / cm 3 .
 本発明においては、前記混合物より構成される前記充填層の嵩密度が0.36~0.48g/cmであることが好ましい。 In the present invention, the bulk density of the packed bed composed of the mixture is preferably 0.36 to 0.48 g / cm 3 .
 本発明においては、前記シリコン粉末の50体積%粒子径D50が1.0~15μmであり、90体積%粒子径D90が10~44μmであることが好ましい。 In the present invention, the 50% by volume particle diameter D 50 of the silicon powder is preferably 1.0 to 15 μm, and the 90% by volume particle diameter D 90 is preferably 10 to 44 μm.
 本発明においては、前記粉体層の厚さが20~70mmであり、前記粉体層の最上部より着火させて前記シリコン粉末を燃焼させることが好ましい。 In the present invention, it is preferable that the thickness of the powder layer is 20 to 70 mm, and the silicon powder is burned by being ignited from the top of the powder layer.
 本発明においては、前記シリコン粉末は、鉄、クロムおよびアルミニウムの含有量がそれぞれ50ppm以下であり、鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量が50ppm以下であり、前記希釈剤は、鉄、クロムおよびアルミニウムの含有量がそれぞれ50ppm以下であり、鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量が50ppm以下である窒化ケイ素粉末であることが好ましい。 In the present invention, the silicon powder has an iron, chromium and aluminum content of 50 ppm or less, and the total content of metal impurities other than iron, chromium and aluminum is 50 ppm or less. It is preferable that the silicon nitride powder has a chromium and aluminum content of 50 ppm or less and a total content of metal impurities other than iron, chromium and aluminum is 50 ppm or less.
 本発明においては、前記凝結塊を、窒化ケイ素質焼結体製ロールを装着したロールクラッシャを使用して第一の粉砕(粗粉砕)に供することが好ましい。 In the present invention, it is preferable that the agglomerated lump is subjected to a first crushing (coarse crushing) using a roll crusher equipped with a roll made of a silicon nitride sintered body.
 本発明においては、前記粗粉砕により得られた窒化ケイ素粉末を、窒化ケイ素質焼結体より構成される粉砕媒体を装填した容器に収容して、振動ミルまたはビーズミルにより第二の粉砕(微粉砕)に供することが好ましい。 In the present invention, the silicon nitride powder obtained by the coarse pulverization is accommodated in a container loaded with a pulverization medium composed of a silicon nitride sintered body, and the second pulverization (fine pulverization) is performed by a vibration mill or a bead mill. ) Is preferably used.
 本発明においては、前記粉砕媒体は、気孔率が2%以下で、ビッカース硬度が14GPa以上であることが好ましい。 In the present invention, the grinding medium preferably has a porosity of 2% or less and a Vickers hardness of 14 GPa or more.
 本発明においては、前記高純度窒化ケイ素粉末は、β相の比率が70質量%以上であり、BET比表面積が3.0~13.0m/gであり、鉄、クロムおよびアルミニウムの含有量がそれぞれ200ppm以下であり、鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量が200ppm以下であることが好ましい。 In the present invention, the high-purity silicon nitride powder has a β phase ratio of 70% by mass or more, a BET specific surface area of 3.0 to 13.0 m 2 / g, and a content of iron, chromium and aluminum. Are each 200 ppm or less, and the total content of metal impurities other than iron, chromium and aluminum is preferably 200 ppm or less.
 本発明においては、前記高純度窒化ケイ素粉末は、粉末X線回折パターンから算出される結晶子径Dが0.15~1μmであり、結晶有効歪が1.5×10-4以下であり、BET比表面積から算出される球相当径DBETと結晶子径Dとの比率DBET/Dが1~3であることが好ましい。 In the present invention, the high-purity silicon nitride powder, crystallite diameter D C that is calculated from the powder X-ray diffraction pattern is 0.15 ~ 1 [mu] m, the crystal effective strain be 1.5 × 10 -4 or less The ratio D BET / D C between the sphere equivalent diameter D BET and the crystallite diameter D C calculated from the BET specific surface area is preferably 1 to 3.
 本発明では、高純度シリコン材料を粉砕して、鉄およびアルミニウムの含有量がそれぞれ100ppm以下、そして鉄およびアルミニウム以外の金属不純物の合計含有量が100ppm以下である高純度シリコン粉末を得る。クロムの含有量も50ppm以下であることが好ましい。粉砕後の高純度シリコン粉末の10体積%粒子径(D10)は、好ましくは0.2~1.0μm、50体積%粒子径(D50)は、好ましくは0.5~15μm、90体積%粒子径(D90)は、好ましくは3~44μmである。 In the present invention, a high-purity silicon powder is obtained by pulverizing a high-purity silicon material to have an iron and aluminum content of 100 ppm or less and a total content of metal impurities other than iron and aluminum of 100 ppm or less. The chromium content is also preferably 50 ppm or less. The 10% by volume particle diameter (D 10 ) of the high-purity silicon powder after pulverization is preferably 0.2 to 1.0 μm, and the 50% by volume particle diameter (D 50 ) is preferably 0.5 to 15 μm and 90 volume. The% particle diameter (D 90 ) is preferably 3 to 44 μm.
 なお、D10、D50およびD90は粉体の粒度分布(体積分布)の指標となる粒径であり、D50(いわゆるメジアン径)を境に粒径の小さい側と大きい側が等量になり、D90を境に粒径小さい側の累積分布が90%、大きい側の累積分布が10%になる。また、D10を境に粒径小さい側の累積分布が10%、大きい側の累積分布が90%になる。 D 10 , D 50, and D 90 are particle sizes that serve as indices of the particle size distribution (volume distribution) of the powder, and the smaller side and the larger side are equal on the basis of D 50 (so-called median diameter). , D 90 is the boundary, and the cumulative distribution on the smaller particle size side is 90%, and the cumulative distribution on the larger particle side is 10%. Further, the cumulative distribution of the particle reduced diameter again side boundary D 10 of 10%, the larger side cumulative distribution is 90%.
 この高純度シリコン粉末に,希釈剤として、鉄およびアルミニウムの含有量がそれぞれ100ppm以下、そして鉄およびアルミニウム以外の金属不純物の合計含有量が100ppm以下である窒化ケイ素粉末を混合して、窒素を含む雰囲気中で自己伝播する燃焼反応を用いた燃焼合成法により、前記の高純度シリコン粉末を窒化ケイ素粉末に転換する。窒化ケイ素粉末のクロムの含有量も50ppm以下であることが好ましい。このような純度を有する窒化ケイ素粉末は、例えば、イミド分解法により製造された窒化ケイ素粉末として、市販されている。 This high-purity silicon powder is mixed with silicon nitride powder having a content of iron and aluminum of 100 ppm or less as a diluent and a total content of metal impurities other than iron and aluminum of 100 ppm or less, and contains nitrogen. The high-purity silicon powder is converted into silicon nitride powder by a combustion synthesis method using a combustion reaction that self-propagates in the atmosphere. The chromium content in the silicon nitride powder is also preferably 50 ppm or less. Silicon nitride powder having such a purity is commercially available, for example, as silicon nitride powder produced by an imide decomposition method.
 また、希釈剤である窒化ケイ素粉末の添加量を選択することにより、燃焼反応における反応場の温度を1900℃以下の所望の温度に制御することができる。 Also, by selecting the amount of silicon nitride powder added as a diluent, the temperature of the reaction field in the combustion reaction can be controlled to a desired temperature of 1900 ° C. or lower.
 本発明においては、適度な嵩密度を有する高純度シリコン粉末と適度な嵩密度を有する希釈剤とを、高純度シリコン粉末と希釈剤との配合割合を9:1~5:5として混合する。高純度シリコン粉末と希釈剤である窒化ケイ素粉末との混合物より成る充填層(粉体層)の嵩密度は0.3~0.65g/cmとなるように制御する。 In the present invention, a high-purity silicon powder having an appropriate bulk density and a diluent having an appropriate bulk density are mixed at a mixing ratio of 9: 1 to 5: 5 between the high-purity silicon powder and the diluent. The bulk density of the packed bed (powder layer) made of a mixture of high-purity silicon powder and silicon nitride powder as a diluent is controlled to be 0.3 to 0.65 g / cm 3 .
 高純度シリコン粉末と希釈剤である窒化ケイ素粉末との混合物より成る充填層の嵩密度は、用いる高純度シリコン粉末の充填特性によって変化する。本発明においては、好ましくは嵩密度が0.2~0.7g/cmである高純度シリコン粉末を使用し、この高純度シリコン粉末と、好ましくは嵩密度が0.2~0.7g/cmである窒化ケイ素粉末を混合することにより、高純度シリコン粉末と希釈剤である窒化ケイ素粉末との混合物より成る充填層の嵩密度が0.3~0.65g/cmとなるように制御する。 The bulk density of the packed bed made of a mixture of high-purity silicon powder and silicon nitride powder as a diluent varies depending on the packing characteristics of the high-purity silicon powder used. In the present invention, a high-purity silicon powder having a bulk density of preferably 0.2 to 0.7 g / cm 3 is used, and this high-purity silicon powder and preferably a bulk density of 0.2 to 0.7 g / cm 3 are used. By mixing the silicon nitride powder of cm 3 , the bulk density of the packed bed made of the mixture of the high purity silicon powder and the silicon nitride powder as the diluent is 0.3 to 0.65 g / cm 3. Control.
 このように、高純度シリコン粉末と希釈剤である窒化ケイ素粉末との配合割合と、高純度シリコン粉末と希釈剤である窒化ケイ素粉末との混合物より成る充填層の嵩密度を所定の値に制御することにより、未反応の遊離シリコンの含有量の少ない高純度窒化ケイ素粉末を安価に製造することができる。 In this way, the mixing ratio of the high-purity silicon powder and the silicon nitride powder as the diluent and the bulk density of the packed bed made of the mixture of the high-purity silicon powder and the silicon nitride powder as the diluent are controlled to a predetermined value. By doing so, high-purity silicon nitride powder with a low content of unreacted free silicon can be produced at low cost.
 燃焼合成反応の進行速度は、高純度シリコン粉末と希釈剤との混合物より成る粉体層の厚さにも依存する。このため、本発明においては、高純度シリコン粉末と希釈剤との混合物を厚さ20~70mmの粉体層とし、当該粉体層の特定部位より着火させて燃焼合成反応を進行させる。特定の部位とは、例えば原料粉体層の一端または中央を意味するが、原料粉体を充填する容器の形状、寸法に応じて、適宜選択し得るものである。 The rate of progress of the combustion synthesis reaction also depends on the thickness of the powder layer made of a mixture of high-purity silicon powder and diluent. For this reason, in the present invention, a mixture of high-purity silicon powder and a diluent is formed into a powder layer having a thickness of 20 to 70 mm, and is ignited from a specific portion of the powder layer to advance the combustion synthesis reaction. The specific part means, for example, one end or the center of the raw material powder layer, and can be appropriately selected according to the shape and size of the container filled with the raw material powder.
 窒素ガス圧力が高いほど燃焼合成反応の進行速度は速くなるが、本発明では、0.3~1.5MPaの窒素ガス圧力下で、窒化反応を進行させる。 The higher the nitrogen gas pressure, the faster the combustion synthesis reaction proceeds. In the present invention, however, the nitriding reaction proceeds under a nitrogen gas pressure of 0.3 to 1.5 MPa.
 本発明では、燃焼合成法により生成した窒化ケイ素の凝結塊を、少なくとも窒化ケイ素を含む粉砕メディアを装填・装着した粉砕装置を使用して粉砕することにより高純度窒化ケイ素粉末を製造する。 In the present invention, a high-purity silicon nitride powder is produced by pulverizing a silicon nitride agglomerate produced by a combustion synthesis method using a pulverizer loaded and loaded with a pulverization medium containing at least silicon nitride.
 窒化ケイ素の凝結塊を、窒化ケイ素製ロールを装着したロールクラッシャを使用して粗粉砕することにより、金属不純物の混入を防止して、窒化ケイ素の粗粉砕物を得る。この粗粉砕物を乾式ジェットミルまたは振動ミルあるいはビーズミルを使用して粉砕する。振動ミル粉砕においては、ミル容器等の接粉部をポリウレタン等の樹脂で被覆すると共に、気孔率が2%以下、ビッカース硬度が14GPa以上の窒化ケイ素質焼結体より成る粉砕媒体を使用して、粉砕による金属不純物の混入が最小限値となるように制御して、微粉砕を行う。 The silicon nitride agglomerates are coarsely pulverized using a roll crusher equipped with a silicon nitride roll to prevent metal impurities from being mixed to obtain a coarsely pulverized silicon nitride product. The coarsely pulverized product is pulverized using a dry jet mill, a vibration mill or a bead mill. In vibration mill pulverization, a powder contact portion such as a mill container is covered with a resin such as polyurethane, and a pulverizing medium made of a silicon nitride sintered body having a porosity of 2% or less and a Vickers hardness of 14 GPa or more is used. The fine pulverization is performed by controlling so that the mixing of metal impurities by the pulverization becomes a minimum value.
 上記のような製造方法により得られる高純度窒化ケイ素粉末は、β相の比率が70%以上、比表面積が3.0~13.0m/gであって、鉄およびアルミニウムの含有量がそれぞれ200ppm以下、そして鉄およびアルミニウム以外の金属不純物の合計含有量が200ppm以下である。クロムの含有量も100ppm以下であることが好ましい。 The high-purity silicon nitride powder obtained by the production method as described above has a β-phase ratio of 70% or more, a specific surface area of 3.0 to 13.0 m 2 / g, and an iron and aluminum content, respectively. 200 ppm or less, and the total content of metal impurities other than iron and aluminum is 200 ppm or less. The chromium content is also preferably 100 ppm or less.
 得られる高純度窒化ケイ素粉末の遊離シリコン含有量は0.5重量%以下である。また、粉末X線回折より得られる結晶子径が0.15~2.0μm、結晶有効歪が1.5×10-4以下である。 The resulting high-purity silicon nitride powder has a free silicon content of 0.5% by weight or less. The crystallite diameter obtained by powder X-ray diffraction is 0.15 to 2.0 μm, and the effective crystal strain is 1.5 × 10 −4 or less.
 上記のような製造方法により得られる高純度窒化ケイ素粉末は、1つの好ましい実施態様において、多結晶シリコンインゴット用離型剤として有用であり、
 レーザ回折散乱法により測定される体積基準の50%粒子径をD50とし、90%粒子径をD90としたときに、D50が1.7μm以上20μm以下であり、D90が10μm以上40μm以下であり、
 Feの含有割合が100ppm以下であり、
 Crの含有割合が100ppm以下であり、
 Alの含有割合が100ppm以下であり、
 Fe、CrおよびAl以外の金属不純物の含有割合の合計が100ppm以下であり、
 β型窒化ケイ素の粉末X線回折パターンよりWilliamson-Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたときに、Dが200nm以上である。
In one preferred embodiment, the high-purity silicon nitride powder obtained by the production method as described above is useful as a release agent for polycrystalline silicon ingots,
When the volume-based 50% particle diameter measured by the laser diffraction scattering method is D 50 and the 90% particle diameter is D 90 , D 50 is 1.7 μm or more and 20 μm or less, and D 90 is 10 μm or more and 40 μm. And
Fe content is 100 ppm or less,
Cr content is 100 ppm or less,
Al content is 100 ppm or less,
The total content of metal impurities other than Fe, Cr and Al is 100 ppm or less,
The crystallite size of β-type silicon nitride which is calculated using the Williamson-Hall type from powder X-ray diffraction pattern of β-type silicon nitride is taken as D C, it is D C is 200nm or more.
 上記のような製造方法により得られる高純度窒化ケイ素粉末は、1つの好ましい実施態様において、窒化ケイ素焼結体製造用粉末として有用であり、
 BET法により測定される比表面積が5m/g以上20m/g以下であり、
 レーザ回折散乱法により測定される体積基準の50%粒子径をD50とし、90%粒子径をD90としたときに、D50が0.5μm以上3μm以下であり、D90が3μm以上7μm以下であり、
 β型窒化ケイ素の粉末X線回折パターンよりWilliamson-Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたときに、Dが120nm以上であり、
 前記比表面積より算出される比表面積相当径をDBETとしたときに、DBET/D(nm/nm)が3以下であり、
 β型窒化ケイ素の粉末X線回折パターンよりWilliamson-Hall式を用いて算出されるβ型窒化ケイ素の結晶歪が1.5×10-4以下であることが好ましい。
In one preferred embodiment, the high-purity silicon nitride powder obtained by the production method as described above is useful as a powder for producing a silicon nitride sintered body,
The specific surface area measured by the BET method is 5 m 2 / g or more and 20 m 2 / g or less,
When the volume-based 50% particle diameter measured by the laser diffraction scattering method is D 50 and the 90% particle diameter is D 90 , D 50 is 0.5 μm or more and 3 μm or less, and D 90 is 3 μm or more and 7 μm. And
The crystallite size of β-type silicon nitride which is calculated using the Williamson-Hall type from powder X-ray diffraction pattern of β-type silicon nitride is taken as D C, and a D C is 120nm or more,
When the specific surface area equivalent diameter calculated from the specific surface area is D BET , D BET / D C (nm / nm) is 3 or less,
It is preferable that the crystal strain of β-type silicon nitride calculated by using the Williamson-Hall formula from the powder X-ray diffraction pattern of β-type silicon nitride is 1.5 × 10 −4 or less.
 本発明によれば、特に高純度が要求される半導体製造用各種治具用原料、高熱伝導窒化ケイ素基板用原料、太陽電池用シリコンインゴット製造時に用いる離型剤等に使用可能な高純度窒化ケイ素粉末を、窒素を含む雰囲気中で自己伝播する燃焼反応を用いた燃焼合成法によって、効率的かつ安価に製造することができる。 According to the present invention, high-purity silicon nitride that can be used as a raw material for various jigs for semiconductor manufacturing, a raw material for a high thermal conductivity silicon nitride substrate, a mold release agent used when manufacturing a silicon ingot for solar cells, etc. The powder can be produced efficiently and inexpensively by a combustion synthesis method using a combustion reaction that self-propagates in an atmosphere containing nitrogen.
燃焼合成反応を行うための装置の構成例を説明するための模式図である。It is a schematic diagram for demonstrating the structural example of the apparatus for performing a combustion synthesis reaction. 本発明に係る高純度窒化ケイ素粉末の合成方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the synthesis | combining method of the high purity silicon nitride powder which concerns on this invention.
 以下、更に詳しく本発明を説明する。 Hereinafter, the present invention will be described in more detail.
 本発明に用いるシリコン源として、半導体生産ライン等から派生する様々なシリコン端材やシリコン破材、さらに多結晶材の加工片、その他の高純度シリコン材料を使用する。 As the silicon source used in the present invention, various silicon scraps and silicon debris derived from semiconductor production lines and the like, polycrystalline workpieces, and other high-purity silicon materials are used.
 様々なシリコン端材やシリコン破材、多結晶材、その他の高純度シリコン材料を粉砕して、鉄およびアルミニウムの含有量がそれぞれ100ppm以下、そして鉄およびアルミニウム以外の金属不純物の合計含有量が100ppm以下である高純度シリコン粉末を得る。クロムの含有量も50ppm以下であることが好ましい。鉄、クロムおよびアルミニウムの含有量、あるいは鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量は、それぞれ、50ppm以下、さらには20ppm以下、10ppm以下であることができる。 Various silicon scraps, broken silicon, polycrystalline materials, and other high-purity silicon materials are crushed to have an iron and aluminum content of 100 ppm or less and a total content of metal impurities other than iron and aluminum of 100 ppm. The following high purity silicon powder is obtained. The chromium content is also preferably 50 ppm or less. The content of iron, chromium, and aluminum, or the total content of metal impurities other than iron, chromium, and aluminum can be 50 ppm or less, further 20 ppm or less, and 10 ppm or less, respectively.
 シリコン源となる材料を粉砕するには、振動ボールミル、ジェットミル、ビーズミル等を用いることができる。振動ボールミルで粉砕するには、樹脂製ポットに被粉砕物を入れ、粉砕用窒化ケイ素ボールを適当量加えて、振動・回転させる。粉砕用ボールは摩耗して原料に混入するため、混入量を勘案して材質を選択しなければならない。本発明においては、気孔率が2%以下、好ましくは1%以下で、ビッカース硬度が14GPa以上の窒化ケイ素質焼結体より成る粉砕媒体を使用して、シリコン源となる材料を粉砕する。ビーズミルを用いた粉砕についても、同様に気孔率が2%以下、好ましくは1%以下で、ビッカース硬度が14GPa以上の窒化ケイ素質焼結体より成る粉砕媒体を使用する。 In order to pulverize the material serving as the silicon source, a vibration ball mill, a jet mill, a bead mill or the like can be used. In order to pulverize with a vibration ball mill, an object to be pulverized is placed in a resin pot, and an appropriate amount of pulverizing silicon nitride balls is added to vibrate and rotate. Since the balls for grinding are worn and mixed into the raw material, the material must be selected in consideration of the amount of mixing. In the present invention, a silicon source material is pulverized using a pulverizing medium made of a silicon nitride sintered body having a porosity of 2% or less, preferably 1% or less and a Vickers hardness of 14 GPa or more. Similarly for grinding using a bead mill, a grinding medium made of a silicon nitride sintered body having a porosity of 2% or less, preferably 1% or less and a Vickers hardness of 14 GPa or more is used.
 乾式ジェットミルは、粒子同士を高速で衝突させる粉砕方法であり、一般に、空気圧により粒子を加速させる。 The dry jet mill is a pulverization method in which particles collide with each other at a high speed. Generally, particles are accelerated by air pressure.
 乾式ジェットミルで粉砕するには、接粉部に窒化ケイ素製のライナーを装着したジェットミルを使用する必要がある。接粉部に窒化ケイ素製のライナーを装着することにより、装置内壁等の摩耗による不純物の購入を防止することができる。窒化ケイ素製ライナーを装着することが難しい部位はポリウレタン等の樹脂で被覆して、摩耗による不純物の混入を防止する。ボールなどの粉砕媒体を使わないので、高純度の微粉を得るには好適である。また、乾式ジェットミルを用いると、振動ボールミルよりも短時間で容易に二次粒子径を小さくすることができるという特徴がある。 In order to pulverize with a dry jet mill, it is necessary to use a jet mill equipped with a silicon nitride liner at the contact portion. By attaching a silicon nitride liner to the powder contact portion, it is possible to prevent the purchase of impurities due to wear on the inner wall of the apparatus. The part where it is difficult to wear the silicon nitride liner is covered with a resin such as polyurethane to prevent contamination by impurities. Since a pulverizing medium such as a ball is not used, it is suitable for obtaining a high-purity fine powder. In addition, when a dry jet mill is used, the secondary particle diameter can be easily reduced in a shorter time than a vibrating ball mill.
 粉砕後のシリコン粉末の粒度分布を、レーザー回折散乱粒度分布測定装置を用いて測定し、10体積%粒子径(D10)が0.2~1.0μm、50体積%粒子径(D50)が1.0~15μm、90体積%粒子径(D90)が10~44μmになるように粉砕する。D50が3.0~10μm、D90が10~20μmが好ましい。それぞれ、前記の粒径範囲を外れた粒径となった場合には、同じ希釈剤添加条件で窒化反応が十分に進まず未反応シリコンが多く残ったり、得られた窒化ケイ素粉末の粒径が大きくなって粉砕しづらくなることがある。 The particle size distribution of the pulverized silicon powder was measured using a laser diffraction / scattering particle size distribution measuring device, the 10 volume% particle diameter (D 10 ) was 0.2 to 1.0 μm, and the 50 volume% particle diameter (D 50 ). Is 1.0 to 15 μm, and 90% by volume particle diameter (D 90 ) is 10 to 44 μm. D 50 is preferably 3.0 to 10 μm and D 90 is preferably 10 to 20 μm. When the particle size is out of the above particle size range, the nitriding reaction does not proceed sufficiently under the same diluent addition conditions, and a large amount of unreacted silicon remains, or the obtained silicon nitride powder has a particle size of It may become large and difficult to grind.
 なお、D10、D50およびD90は粉体の粒度分布(体積分布)の指標となる粒径であり、D50(いわゆるメジアン径)を境に粒径の小さい側と大きい側が等量になり、D90を境に粒径小さい側の累積分布が90%、大きい側の累積分布が10%になる。また、D10を境に粒径小さい側の累積分布が10%、大きい側の累積分布が90%になる。 D 10 , D 50, and D 90 are particle diameters that serve as indices of the particle size distribution (volume distribution) of the powder, and the smaller and larger sides of D 50 (so-called median diameter) are equal amounts. Thus, with D 90 as a boundary, the cumulative distribution on the smaller particle size side is 90%, and the cumulative distribution on the larger particle side is 10%. Further, the cumulative distribution of the particle reduced diameter again side boundary D 10 of 10%, the larger side cumulative distribution is 90%.
 粉砕後の高純度シリコン粉末に含まれる鉄およびアルミニウムの含有量はそれぞれ100ppm以下、そして鉄およびアルミニウム以外の金属不純物の合計含有量が100ppm以下である。クロムの含有量が50ppm以下であることが好ましい。特に、鉄、クロムおよびアルミニウムの含有量はそれぞれ20ppm以下、そして鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量は20ppm以下であることが好ましい。さらに、鉄、クロムおよびアルミニウムの含有量がそれぞれ10ppm以下、そして鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量が10ppm以下であることが特に好ましい。シリコン粉末に含まれる不純物が多いと、高純度が要求される半導体用途等には使用できない。 The content of iron and aluminum contained in the high-purity silicon powder after pulverization is 100 ppm or less, and the total content of metal impurities other than iron and aluminum is 100 ppm or less. The chromium content is preferably 50 ppm or less. In particular, the content of iron, chromium and aluminum is preferably 20 ppm or less, and the total content of metal impurities other than iron, chromium and aluminum is preferably 20 ppm or less. Furthermore, it is particularly preferable that the content of iron, chromium and aluminum is 10 ppm or less, and the total content of metal impurities other than iron, chromium and aluminum is 10 ppm or less. If the silicon powder contains a large amount of impurities, it cannot be used for semiconductor applications that require high purity.
 得られたシリコン粉末を後述する燃焼合成反応により窒化する。シリコンの窒化反応の際に発生する反応熱は非常に大きく、反応系の温度は、シリコンの融点である1410℃よりも高い約1900℃程度にまで上昇する。このため、燃焼合成反応においては、高純度シリコン粉末と希釈剤である窒化ケイ素粉末との混合粉末を原料とすることによって窒化反応を制御する。 The obtained silicon powder is nitrided by a combustion synthesis reaction described later. The reaction heat generated during the nitridation reaction of silicon is very large, and the temperature of the reaction system rises to about 1900 ° C., which is higher than the melting point of silicon, 1410 ° C. For this reason, in the combustion synthesis reaction, the nitriding reaction is controlled by using a mixed powder of high-purity silicon powder and silicon nitride powder as a diluent as a raw material.
 高純度シリコン粉末と希釈剤である窒化ケイ素粉末との配合比は9:1~5:5である。混合原料中の希釈剤の配合割合が10%質量未満となると燃焼合成反応を制御できなくなり、反応系の温度が高くなり過ぎて、原料中のシリコン粉末同士の融着が生じる場合がある。高純度シリコン粉末と希釈剤である窒化ケイ素粉末との配合比は8:2以下、7:3以下、6:4以下であってもよく、また6:4以上、7:3以上、8:2以上であってもよい。 The compounding ratio of the high purity silicon powder and the silicon nitride powder as a diluent is 9: 1 to 5: 5. If the blending ratio of the diluent in the mixed raw material is less than 10% by mass, the combustion synthesis reaction cannot be controlled, the temperature of the reaction system becomes too high, and the silicon powder in the raw material may be fused. The compounding ratio of the high-purity silicon powder and the silicon nitride powder as the diluent may be 8: 2 or less, 7: 3 or less, 6: 4 or less, or 6: 4 or more, 7: 3 or more, 8: Two or more may be sufficient.
 原料として用いられるシリコン粉末は、その窒化が完全に且つ迅速に進行すべく、粒径が数μm程度のものが用いられる。このような粒径のシリコン粉末同士が融着してしまうと、質量あたりの表面積(比表面積)が小さくなるばかりでなく、原料内部への窒素ガスの導入孔として働く粉末間の隙間が融着したシリコンにより塞がれてしまう。このような状況では、合成反応終了時に仕込み原料の一部が未反応シリコンとして残存するという事態が生じる。また、得られた窒化ケイ素粉末の粒径が大きくなって粉砕しづらくなるなどの問題が発生する。 The silicon powder used as a raw material has a particle size of about several μm so that the nitriding proceeds completely and rapidly. If silicon powder with such a particle size is fused, not only the surface area per unit mass (specific surface area) is reduced, but also the gaps between the powders that serve as nitrogen gas introduction holes into the raw material are fused. It will be blocked by the silicon. In such a situation, a situation occurs in which part of the charged raw material remains as unreacted silicon at the end of the synthesis reaction. Further, there arises a problem that the obtained silicon nitride powder has a large particle size and is difficult to grind.
 一方、希釈剤である窒化ケイ素粉末の配合割合が50質量%を超えると、シリコンの窒化により得られた反応生成物の割合が低下する。希釈剤である窒化ケイ素粉末は燃焼合成反応には直接関与しない。したがって、例えば、高純度シリコン粉末と希釈剤との配合比を5:5とした場合、仮に燃焼合成反応によりシリコン原料が完全に窒化ケイ素となったとしても、当該合成反応により新たに得られた窒化ケイ素は、仕込み量(出発原料)全体の50%でしかない。つまり、窒化ケイ素を希釈剤として加えて仕込みを行うと、希釈剤を加えた分だけ窒化ケイ素の製造効率は低下せざるを得ない。また、希釈剤の含有量が50%であれば、燃焼合成反応で消費されるエネルギーの半分は新たな窒化ケイ素の生産には寄与せずに消費されているという見方もできる。このため、エネルギー効率という観点からも、安価な製造方法という観点からも、混合原料中の窒化ケイ素粉末の割合は50質量%以下とする必要がある。 On the other hand, when the blending ratio of the silicon nitride powder as the diluent exceeds 50% by mass, the ratio of the reaction product obtained by nitriding silicon decreases. The silicon nitride powder as a diluent does not directly participate in the combustion synthesis reaction. Therefore, for example, when the blending ratio of the high-purity silicon powder and the diluent is 5: 5, even if the silicon raw material is completely converted into silicon nitride by the combustion synthesis reaction, it is newly obtained by the synthesis reaction. Silicon nitride is only 50% of the total charged amount (starting material). In other words, when silicon nitride is added as a diluent and charged, the production efficiency of silicon nitride must be reduced by the amount of addition of the diluent. In addition, if the content of the diluent is 50%, it can be said that half of the energy consumed in the combustion synthesis reaction is consumed without contributing to the production of new silicon nitride. For this reason, from the viewpoint of energy efficiency and from the viewpoint of an inexpensive manufacturing method, the ratio of the silicon nitride powder in the mixed raw material needs to be 50% by mass or less.
 このように、燃焼合成反応においては、高純度シリコン粉末と窒化ケイ素粉末との混合粉末を原料とすることによって窒化反応の制御が容易となり、所望の特性の窒化ケイ素粉末が得やすくなる。 Thus, in the combustion synthesis reaction, by using a mixed powder of high-purity silicon powder and silicon nitride powder as a raw material, the nitriding reaction can be easily controlled, and silicon nitride powder having desired characteristics can be easily obtained.
 また、燃焼生成物中のβ型窒化ケイ素の割合を調整するために、塩化ナトリウム(NaCl)、塩化アンモニウム(NHCl)などを添加しても良い。これらの添加物は分解また昇華に伴う潜熱や吸熱により反応場の温度を下げる効果がある。β型窒化ケイ素の割合を調整するための塩化ナトリウム(NaCl)、塩化アンモニウム(NHCl)などの添加剤の添加量は、高純度シリコン粉末、希釈剤である窒化ケイ素粉末および前記の添加剤の合計量に対して、40質量%以下、20質量%以下であってよく、また1質量%以上、5質量%以上であることが好ましい。 Further, sodium chloride (NaCl), ammonium chloride (NH 4 Cl), or the like may be added to adjust the ratio of β-type silicon nitride in the combustion product. These additives have the effect of lowering the temperature of the reaction field due to latent heat or endotherm accompanying decomposition or sublimation. Additives such as sodium chloride (NaCl) and ammonium chloride (NH 4 Cl) for adjusting the proportion of β-type silicon nitride are high-purity silicon powder, silicon nitride powder as a diluent, and the additives May be 40% by mass or less and 20% by mass or less, and preferably 1% by mass or more and 5% by mass or more.
 燃焼合成反応の進行速度は、原料シリコンや希釈剤である窒化ケイ素粉末の嵩密度によっても変化する。原料シリコンや希釈剤である窒化ケイ素粉末の嵩密度が0.2g/cmよりも小さいと、高純度シリコン粉末と希釈剤との混合物より成る充填層の充填密度が低くなって、反応容器内に充填できる原料混合物が少なくなるので、反応バッチ当たりの生成窒化ケイ素粉末の重量が少なくなり、生産効率が低下する。これに対して、原料シリコンや希釈剤である窒化ケイ素粉末の嵩密度が0.7g/cmよりも大きいと、高純度シリコン粉末と希釈剤との混合物より成る充填層の充填密度が高くなり過ぎるので、燃焼反応により生成する窒化ケイ素粉末が堅く凝集して粉砕しづらくなり、粉砕工程での金属不純物混入量が増加するので好ましくない。また、粉砕後の窒化ケイ素粉末の結晶性が悪化し、結晶子径は小さく、格子歪は大きくなる。原料シリコンや希釈剤である窒化ケイ素粉末の嵩密度は0.3g/cm以上、0.4g/cm以上、0.5g/cm以上、0.6g/cm以上であってもよく、また0.6g/cm以下、0.5g/cm以下、0.4g/cm以下、0.3g/cm以下であってもよい。 The progress rate of the combustion synthesis reaction also varies depending on the bulk density of the silicon nitride powder as the raw material silicon and the diluent. When the bulk density of silicon nitride powder as raw material silicon or diluent is smaller than 0.2 g / cm 3 , the packing density of the packed bed made of a mixture of high-purity silicon powder and diluent is lowered, and the reaction vessel is filled with Since the raw material mixture that can be filled into the reactor becomes smaller, the weight of the produced silicon nitride powder per reaction batch decreases, and the production efficiency decreases. On the other hand, when the bulk density of the silicon nitride powder as the raw material silicon or the diluent is larger than 0.7 g / cm 3 , the packing density of the packed layer made of the mixture of the high-purity silicon powder and the diluent is increased. Therefore, the silicon nitride powder produced by the combustion reaction is agglomerated tightly and becomes difficult to pulverize, and the amount of metal impurities mixed in the pulverizing process increases, which is not preferable. In addition, the crystallinity of the pulverized silicon nitride powder is deteriorated, the crystallite diameter is small, and the lattice strain is large. The bulk density of silicon nitride powder as raw material silicon or diluent may be 0.3 g / cm 3 or more, 0.4 g / cm 3 or more, 0.5 g / cm 3 or more, 0.6 g / cm 3 or more. Further, it may be 0.6 g / cm 3 or less, 0.5 g / cm 3 or less, 0.4 g / cm 3 or less, or 0.3 g / cm 3 or less.
 本発明において、嵩密度とは初期嵩密度のことを意味する。 In the present invention, the bulk density means the initial bulk density.
 原料シリコンや希釈剤である窒化ケイ素粉末の嵩密度を適宜選択することにより、高純度シリコン粉末と希釈剤との混合物より成る充填層の嵩密度が0.3~0.65g/cm、好ましくは0.34~0.55g/cm、さらに好ましくは0.36~0.48g/cmとなるように制御する。本発明の燃焼合成法において重要なのは高純度シリコン粉末と希釈剤との混合物より成る充填層(粉体層)の嵩密度である。高純度シリコン粉末と希釈剤との混合物より成る充填層の嵩密度は、0.4g/cm以上、0.45g/cm以上、0.5g/cm以上、0.55g/cm以上であってもよく、また0.55g/cm以下、0.5g/cm以下、0.45g/cm以下、0.4g/cm以下であってもよい。 By appropriately selecting the bulk density of the silicon nitride powder as the raw material silicon and the diluent, the bulk density of the packed bed made of a mixture of the high-purity silicon powder and the diluent is preferably 0.3 to 0.65 g / cm 3 , preferably is 0.34 ~ 0.55g / cm 3, more preferably controlled to be 0.36 ~ 0.48g / cm 3. What is important in the combustion synthesis method of the present invention is the bulk density of a packed bed (powder layer) made of a mixture of high-purity silicon powder and a diluent. The bulk density of the packed bed comprising a mixture of high-purity silicon powder and diluent, 0.4 g / cm 3 or more, 0.45 g / cm 3 or more, 0.5 g / cm 3 or more, 0.55 g / cm 3 or more it may also be, also 0.55 g / cm 3 or less, 0.5 g / cm 3 or less, 0.45 g / cm 3 or less, may be 0.4 g / cm 3 or less.
 充填層の嵩密度が0.65g/cm以下となるように制御すれば、燃焼合成反応によって得られる塊状の窒化ケイ素の圧壊強度を6.5MPa以下にすることができ、充填層の充填密度が0.55g/cm以下となるように制御すれば、燃焼合成反応によって得られる塊状の窒化ケイ素の圧壊強度を5.5MPa以下にすることができ、さらに充填層の充填密度が0.48g/cm以下となるように制御すれば、燃焼合成反応によって得られる塊状の窒化ケイ素の圧壊強度を3.5MPa以下にすることができる。得られる塊状の窒化ケイ素の圧壊強度を6.5MPa以下にすることにより、後述の粉砕工程において、金属不純物の混入量が増えるような粉砕も、窒化ケイ素の結晶性が悪化するような粉砕エネルギーの大きな粉砕を行わなくても、本発明にて特定する比表面積または結晶性(結晶子径と結晶有効歪)を有する窒化ケイ素粉末を得ることが容易となる。得られる塊状の窒化ケイ素の圧壊強度を5.5MPa以下にすれば、さらに粉砕が容易となり、得られる塊状の窒化ケイ素の圧壊強度を3.5MPa以下にすれば、特に粉砕が容易となる。 If the bulk density of the packed bed is controlled to be 0.65 g / cm 3 or less, the crushing strength of the massive silicon nitride obtained by the combustion synthesis reaction can be reduced to 6.5 MPa or less. Is controlled to be 0.55 g / cm 3 or less, the crushing strength of the massive silicon nitride obtained by the combustion synthesis reaction can be reduced to 5.5 MPa or less, and the packing density of the packed bed is 0.48 g. If controlled to be not more than / cm 3, the crushing strength of the massive silicon nitride obtained by the combustion synthesis reaction can be reduced to 3.5 MPa or less. By reducing the crushing strength of the obtained bulk silicon nitride to 6.5 MPa or less, in the pulverization process described later, the pulverization energy increases so that the amount of mixed metal impurities increases and the crystallinity of the silicon nitride deteriorates. Even without large pulverization, it becomes easy to obtain a silicon nitride powder having a specific surface area or crystallinity (crystallite diameter and crystal effective strain) specified in the present invention. If the crushing strength of the obtained bulk silicon nitride is 5.5 MPa or less, pulverization is further facilitated, and if the crushing strength of the obtained bulk silicon nitride is 3.5 MPa or less, crushing is particularly facilitated.
 燃焼合成反応の進行速度は、高純度シリコン粉末と希釈剤との混合物より成る粉体層(充填層)の厚さにも依存する。本発明においては、高純度シリコン粉末と希釈剤との混合物を厚さ20~70mmの粉体層とし、当該粉体層の特定部位より着火させて燃焼合成反応を進行させる。粉体層の厚さが20mm未満になると、燃焼反応による発熱量が少なくなり、焼成容器等への熱の放散により、燃焼熱の自己伝播が妨げられて、燃焼合成反応が途中で停止して、未反応シリコンが大量に残存してしまう。粉体層の厚さが70mmを超えると、粉体層内の蓄熱により、燃焼反応が激しくなり過ぎ、原料中のシリコン粉末同士の融着が生じる、粉末間の隙間が融着したシリコンにより塞がれてしまい、仕込み原料の一部が未反応シリコンとして残存する、さらに得られた窒化ケイ素粉末の粒径が大きくなって粉砕しづらくなるなどの問題が発生する。高純度シリコン粉末と希釈剤との混合物の厚さは、30mm以上、40mm以上、50mm以上、60mm以上であってもよく、また60mm以下、50mm以下、40mm以下、30mm以下であってもよい。 The rate of progress of the combustion synthesis reaction also depends on the thickness of the powder layer (filled layer) made of a mixture of high-purity silicon powder and diluent. In the present invention, a mixture of high-purity silicon powder and a diluent is formed into a powder layer having a thickness of 20 to 70 mm, and is ignited from a specific portion of the powder layer to advance a combustion synthesis reaction. When the thickness of the powder layer is less than 20 mm, the calorific value due to the combustion reaction is reduced, and the heat synthesis to the firing container etc. is hindered and the self-propagation of the combustion heat is hindered, and the combustion synthesis reaction stops halfway. A large amount of unreacted silicon remains. When the thickness of the powder layer exceeds 70 mm, the combustion reaction becomes too intense due to heat accumulation in the powder layer, and silicon powder in the raw material is fused with each other. Such a problem arises that a part of the charged raw material remains as unreacted silicon, and the obtained silicon nitride powder has a large particle size and is difficult to grind. The thickness of the mixture of the high purity silicon powder and the diluent may be 30 mm or more, 40 mm or more, 50 mm or more, 60 mm or more, or 60 mm or less, 50 mm or less, 40 mm or less, 30 mm or less.
 発明の燃焼合成反応における窒素ガス圧力は0.3~1.5MPaである。窒素ガス圧力が0.3MPa未満になると、窒化反応の速度が遅くなり、燃焼熱の自己伝播が妨げられて、燃焼合成反応が途中で停止して、未反応シリコンが大量に残存してしまう。窒素ガス圧力が高いほど燃焼合成反応の進行速度は速くなるが、窒素ガス圧力が1.5MPaを越えると、燃焼反応が激しくなり過ぎ、原料中のシリコン粉末同士の融着が生じる、原料内部への窒素ガスの導入孔として働く粉末間の隙間が融着したシリコンにより塞がれてしまい、仕込み原料の一部が未反応シリコンとして残存する、さらに得られた窒化ケイ素粉末の粒径が大きくなって粉砕しづらくなるなどの問題が発生する。窒素ガス圧力は、0.5MPa以上、0.7MPa以上、1.0MPa以上であってもよく、また1.2MPa以下、1.0MPa以下、0.8MPa以下であってもよい。 The nitrogen gas pressure in the combustion synthesis reaction of the invention is 0.3 to 1.5 MPa. When the nitrogen gas pressure is less than 0.3 MPa, the speed of the nitriding reaction is slowed, the self-propagation of combustion heat is hindered, the combustion synthesis reaction stops halfway, and a large amount of unreacted silicon remains. The higher the nitrogen gas pressure, the faster the combustion synthesis reaction proceeds. However, when the nitrogen gas pressure exceeds 1.5 MPa, the combustion reaction becomes too intense and the silicon powder in the raw material is fused to the inside of the raw material. The gaps between the powders acting as nitrogen gas introduction holes are blocked by the fused silicon, and a part of the charged raw material remains as unreacted silicon, and the resulting silicon nitride powder has a larger particle size. Problems such as difficulty in crushing. The nitrogen gas pressure may be 0.5 MPa or more, 0.7 MPa or more, 1.0 MPa or more, or 1.2 MPa or less, 1.0 MPa or less, or 0.8 MPa or less.
 燃焼合成反応により得られる窒化ケイ素粒子を粉砕する。燃焼合成反応により得られる窒化ケイ素粒子を粉砕するに当たっては、燃焼合成反応により得られる燃焼生成物が塊状であることから、最初に、窒化ケイ素製ロールを装着したロールクラッシャを使用して粗粉砕することが効率的である。窒化ケイ素製ロールは耐磨耗性に優れ、金属不純物の混入はほとんど無いので、鉄、クロムおよびアルミニウムなどの金属不純物を含まない、高純度な窒化ケイ素の粗粉砕物を得ることができる。得られた粗粉砕物を篩通しして、特に粗大な粒子を除去することで、所望の窒化ケイ素粗粉砕物を得ることができる。 Crush silicon nitride particles obtained by combustion synthesis reaction. When pulverizing silicon nitride particles obtained by the combustion synthesis reaction, the combustion products obtained by the combustion synthesis reaction are agglomerated, so first, coarsely pulverize using a roll crusher equipped with a silicon nitride roll. Is efficient. Since the roll made of silicon nitride is excellent in wear resistance and contains almost no metal impurities, it is possible to obtain a high-purity coarsely pulverized product of silicon nitride that does not contain metal impurities such as iron, chromium and aluminum. The desired coarsely pulverized silicon nitride can be obtained by sieving the obtained coarsely pulverized product to remove particularly coarse particles.
 窒化ケイ素粒子は最終的に微粉砕することが好ましい。二段階の粉砕は必須ではないが、上記のように最初に粗粉砕してから、粗粉砕物をさらに微粉砕することが好ましい。微粉砕の手段としては、少なくとも窒化ケイ素を含む粉砕メディアを装填または装着した粉砕装置を使用して粉砕すること以外に特段の制約はないが、窒化ケイ素の微粉砕には、振動ボールミル、ビーズミル、アトライター、ジェットミル等を用いることができる。 The silicon nitride particles are preferably finally pulverized. Two-stage pulverization is not essential, but it is preferable to first coarsely pulverize as described above, and then further finely pulverize the coarsely pulverized product. As a means for pulverization, there is no particular restriction other than pulverization using a pulverization apparatus loaded with or equipped with a pulverization medium containing at least silicon nitride.For fine pulverization of silicon nitride, a vibration ball mill, a bead mill, An attritor, a jet mill, or the like can be used.
 振動ボールミルで粉砕するには、ミル容器等の接粉部をポリウレタン等の樹脂で被覆した樹脂製ポットに被粉砕物を入れ、粉砕用窒化ケイ素ボールを適当量加えて、振動・回転させる。粉砕用ボールは摩耗して原料に混入するため、混入量を勘案して材質を選択しなければならない。本発明においては、気孔率が2%以下、好ましくは1%以下で、ビッカース硬度が14GPa以上の窒化ケイ素質焼結体より成る粉砕媒体を使用して、窒化ケイ素の粗粉砕物を粉砕する。振動ボールミルの条件(振幅、振動数、粉砕時間など)を適宜調節して、所望の比表面積または粒度分布を有する窒化ケイ素粉末を得ることができる。ビーズミルを用いた粉砕についても、同様に気孔率が2%以下、好ましくは1%以下で、ビッカース硬度が14GPa以上の窒化ケイ素質焼結体より成る粉砕媒体を使用して、窒化ケイ素の粗粉砕物を粉砕する。 To pulverize with a vibrating ball mill, put the material to be crushed into a resin pot in which the contact part of a mill container or the like is covered with a resin such as polyurethane, add an appropriate amount of silicon nitride balls for pulverization, and vibrate and rotate. Since the balls for grinding are worn and mixed into the raw material, the material must be selected in consideration of the amount of mixing. In the present invention, the coarsely pulverized silicon nitride is pulverized using a pulverizing medium made of a silicon nitride sintered body having a porosity of 2% or less, preferably 1% or less and a Vickers hardness of 14 GPa or more. A silicon nitride powder having a desired specific surface area or particle size distribution can be obtained by appropriately adjusting the conditions (amplitude, frequency, grinding time, etc.) of the vibrating ball mill. Similarly for grinding using a bead mill, coarsely grinding silicon nitride using a grinding medium made of a silicon nitride sintered body having a porosity of 2% or less, preferably 1% or less and a Vickers hardness of 14 GPa or more. Grind things.
 ジェットミルで粉砕するには、接粉部に窒化ケイ素製のライナーを装着したジェットミルを使用する必要がある。窒化ケイ素製ライナーを装着することが難しい部位はポリウレタン等の樹脂で被覆する。接粉部に窒化ケイ素製のライナーを装着することにより、装置内壁等の摩耗による不純物の購入を防止することができる。ボールなどの粉砕媒体を使わないので、高純度の微粉末を得るには好適である。 In order to pulverize with a jet mill, it is necessary to use a jet mill with a silicon nitride liner attached to the contact part. The part where it is difficult to attach the silicon nitride liner is covered with a resin such as polyurethane. By attaching a silicon nitride liner to the powder contact portion, it is possible to prevent the purchase of impurities due to wear on the inner wall of the apparatus. Since a grinding medium such as a ball is not used, it is suitable for obtaining a high-purity fine powder.
 本発明の窒化ケイ素粉末の製造方法の最も大きな特徴は、燃焼合成反応で得られる燃焼生成物である塊状の窒化ケイ素の圧壊強度が所定の値以下になっていることである。圧壊強度が低いことのよって、その後の粉砕工程における粉砕処理が著しく容易となる。これにより、本発明の製造方法により得られる窒化ケイ素粉末は、β相の比率が70%以上、比表面積が3.0~13.0m/gであって、鉄およびアルミニウムの含有量がそれぞれ200ppm以下、そして鉄およびアルミニウム以外の金属不純物の合計含有量が200ppm以下である。クロムの含有量も100ppm以下である。遊離シリコン含有量は1.0質量%以下、好ましくは0.5質量%以下である。また、粉末X線回折より得られる結晶子径が0.15~2.0μm、結晶有効歪が1.5×10-4以下である。 The most important feature of the method for producing silicon nitride powder of the present invention is that the crushing strength of the bulk silicon nitride which is a combustion product obtained by the combustion synthesis reaction is below a predetermined value. Due to the low crushing strength, the pulverization process in the subsequent pulverization process is significantly facilitated. Thus, the silicon nitride powder obtained by the production method of the present invention has a β-phase ratio of 70% or more, a specific surface area of 3.0 to 13.0 m 2 / g, and an iron and aluminum content, respectively. 200 ppm or less, and the total content of metal impurities other than iron and aluminum is 200 ppm or less. The chromium content is also 100 ppm or less. The free silicon content is 1.0% by mass or less, preferably 0.5% by mass or less. The crystallite diameter obtained by powder X-ray diffraction is 0.15 to 2.0 μm, and the effective crystal strain is 1.5 × 10 −4 or less.
 β相の比率は70%以上である。窒化ケイ素粉末にはα相とβ相の2種類の多形が存在し、α相は低温相、β相は高温相と言われている。近年、シリコンインゴットの鋳造温度を高くすることや溶融状態での保持時間を長くすることによって、多結晶シリコンの純度を高めて品質を改善することが試みられており、離型剤等の用途向けには高温で安定なβ相の窒化ケイ素粉末が好まれる傾向にある。このため、β相の比率が70%以上の窒化ケイ素粉末が離型剤等の用途に好適である。β相の比率が70%未満になると、シリコンインゴット鋳造中における離型材層の分解が進み易く、溶融したシリコンのルツボ壁への貼りつきが発生して、シリコンインゴットにクラックが入る原因となる。さらに、β相の比率以外についても、多結晶シリコンインゴットの離型性に良好な影響を及ぼす窒化ケイ素粉末の特性の探求が進められている。 The ratio of β phase is 70% or more. There are two types of polymorphs of silicon nitride powder, α phase and β phase, where α phase is said to be a low temperature phase and β phase is said to be a high temperature phase. In recent years, attempts have been made to improve the quality by increasing the purity of polycrystalline silicon by increasing the casting temperature of silicon ingots and increasing the holding time in the molten state. Tends to prefer β-phase silicon nitride powder which is stable at high temperatures. For this reason, silicon nitride powder having a β phase ratio of 70% or more is suitable for applications such as a release agent. If the ratio of β phase is less than 70%, decomposition of the release material layer is likely to proceed during the casting of the silicon ingot, causing the molten silicon to stick to the crucible wall and causing cracks in the silicon ingot. Further, in addition to the ratio of the β phase, the search for the characteristics of the silicon nitride powder that has a good effect on the releasability of the polycrystalline silicon ingot is in progress.
 また、燃焼合成反応により生成する窒化ケイ素粉末は、基本的にはβ相の粉末であり、β相の比率が70%未満になるような条件を設定すると、燃焼反応自体が不安定となり、未反応シリコンが残留するなどの問題を生ずる。 In addition, the silicon nitride powder produced by the combustion synthesis reaction is basically a β-phase powder, and if the conditions are set such that the β-phase ratio is less than 70%, the combustion reaction itself becomes unstable. This causes problems such as residual reactive silicon.
 比表面積は3.0~13.0m/gである。比表面積が3.0m/g未満になると、粒径が粗大過ぎるため、焼結性が低下し、半導体製造用各種治具用原料、高熱伝導窒化ケイ素基板用原料などに供することが出来なくなる。また、ルツボ壁への密着力が低下して太陽電池用シリコンインゴット製造時に用いる離型剤等に使用することが難しくなる場合がある。比表面積が13.0m/gを超えると、粉砕処理によって不可避的に混入する金属不純物の混入量が増大すると共に、窒化ケイ素粒子の結晶性が低下して、結晶子径が0.15μm未満となる、または結晶有効歪が1.5×10-4を超えてしまう。このように、得られる窒化ケイ素粉末の品質が悪化するので好ましくない。 The specific surface area is 3.0-13.0 m 2 / g. When the specific surface area is less than 3.0 m 2 / g, since the particle size is too coarse, the sinterability is lowered, and it cannot be used as a raw material for various jigs for semiconductor manufacturing, a raw material for a high thermal conductivity silicon nitride substrate, or the like. . Moreover, the adhesive force to a crucible wall may fall and it may become difficult to use for the mold release agent etc. which are used at the time of manufacture of the silicon ingot for solar cells. When the specific surface area exceeds 13.0 m 2 / g, the amount of metal impurities inevitably mixed by pulverization increases, the crystallinity of silicon nitride particles decreases, and the crystallite diameter is less than 0.15 μm. Or the effective crystal strain exceeds 1.5 × 10 −4 . Thus, since the quality of the silicon nitride powder obtained deteriorates, it is not preferable.
 鉄およびアルミニウムの含有量はそれぞれ200ppm以下、好ましくは100ppm以下、さらに好ましくは50ppm以下、特に好ましくは10ppm以下である。クロムの含有量も100ppm以下、好ましくは50ppm以下、さらに好ましくは10ppm以下、特に好ましくは5ppm以下であることが好適である。同時に、鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量も200ppm以下、好ましくは100ppm以下、さらに好ましくは50ppm以下、特に好ましくは10ppm以下である。 The iron and aluminum contents are each 200 ppm or less, preferably 100 ppm or less, more preferably 50 ppm or less, and particularly preferably 10 ppm or less. The chromium content is also preferably 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less, and particularly preferably 5 ppm or less. At the same time, the total content of metal impurities other than iron, chromium and aluminum is also 200 ppm or less, preferably 100 ppm or less, more preferably 50 ppm or less, and particularly preferably 10 ppm or less.
 鉄、クロムおよびアルミニウムの含有量がそれぞれ200ppmを越えると、高純度が要求される半導体製造用各種治具用原料、高熱伝導窒化ケイ素基板用原料などに供することが出来なくなる。特に、太陽電池用シリコンインゴット製造時に用いる離型剤等の用途には、鉄、クロムおよびアルミニウムの含有量がそれぞれ50ppm以下、特に好ましくはそれぞれ10ppm以下である必要がある。鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量についても、200ppmを越えると、高純度が要求される半導体製造用各種治具用原料、高熱伝導窒化ケイ素基板用原料などに供することが出来なくなる。特に、太陽電池用シリコンインゴット製造時に用いる離型剤等の用途には、鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量が50ppm以下、特に好ましくは10ppm以下である必要がある。 If the contents of iron, chromium and aluminum each exceed 200 ppm, they cannot be used as raw materials for various jigs for manufacturing semiconductors, high-heat-conducting silicon nitride substrates, etc. that require high purity. In particular, for applications such as mold release agents used in the production of silicon ingots for solar cells, the contents of iron, chromium and aluminum need to be 50 ppm or less, particularly preferably 10 ppm or less, respectively. If the total content of metal impurities other than iron, chromium and aluminum exceeds 200 ppm, it cannot be used as a raw material for various jigs for semiconductor manufacturing, a raw material for a high thermal conductivity silicon nitride substrate, etc. that require high purity. . In particular, for applications such as mold release agents used in the production of silicon ingots for solar cells, the total content of metal impurities other than iron, chromium and aluminum needs to be 50 ppm or less, particularly preferably 10 ppm or less.
 遊離シリコン含有量は1.0質量%以下、より好ましくは0.5質量%以下であることが好ましい。遊離シリコン含有量が1.0質量%を越えると、得られる焼結体の特性が悪化するので、半導体製造用各種治具用原料、高熱伝導窒化ケイ素基板用原料としての使用が難しくなることがある。また、太陽電池用シリコンインゴット製造時に用いる離型剤等の用途についても、溶融したシリコンが離型材層に浸み込み易くなり、ルツボ壁に貼り付いてしまうので、好ましくない。 The free silicon content is preferably 1.0% by mass or less, more preferably 0.5% by mass or less. When the free silicon content exceeds 1.0% by mass, the properties of the obtained sintered body deteriorate, so that it may be difficult to use as a raw material for various jigs for semiconductor manufacturing and a raw material for a high thermal conductive silicon nitride substrate. is there. In addition, the use of a release agent or the like used in the production of a silicon ingot for solar cells is not preferable because molten silicon is likely to enter the release material layer and stick to the crucible wall.
 本発明において、窒化ケイ素粉末の結晶子径および結晶有効歪は、以下のようにして求めた。すなわち、粉末X線回折法では、試料の粒子径が小さくなると回折線の幅が広がる。回折ピークの幅β(ラジアン)と粒子径Dとの間には(2)式の関係が得られる。ここで、λはX線源の波長である。 In the present invention, the crystallite size and crystal effective strain of the silicon nitride powder were determined as follows. That is, in the powder X-ray diffraction method, the width of the diffraction line increases as the particle diameter of the sample decreases. Between the diffraction peak width β (radian) and the particle diameter D, the relationship of equation (2) is obtained. Here, λ is the wavelength of the X-ray source.
  β= Kλ/(Dcosθ)・・・(2)
 (2)式において、βを半値幅と定義するとK=0.9となり、積分幅と定義するとK=1となる。結晶歪があると、面間距離が粒子中で一様でないため、回折線の広がりが生じる。ここで、最大歪をεとすると面間距離dは、d(1+ε)とd(1-ε)の間の値をとり、回折線の広がりは、次の(3)式又は(4)式となる。ここで、ηは有効歪であり、βは積分幅である。Δθは回折ピークの広がりを表わす差分、Δdは面間隔の伸縮幅を表わす差分、δθ/δdはブラッグの条件式(2dsinθ=nλ)における偏微分係数である。
β = Kλ / (Dcos θ) (2)
In equation (2), if β is defined as the half width, K = 0.9, and if defined as the integral width, K = 1. If there is crystal distortion, the distance between the planes is not uniform in the particles, so that the diffraction lines spread. Here, when the maximum strain is ε, the inter-plane distance d takes a value between d (1 + ε) and d (1−ε), and the spread of the diffraction line is expressed by the following equation (3) or (4): It becomes. Here, η is an effective strain, and β is an integration width. Δθ is a difference representing the spread of the diffraction peak, Δd is a difference representing the expansion / contraction width of the interplanar spacing, and δθ / δd is a partial differential coefficient in Bragg's conditional expression (2d sin θ = nλ).
  Δθ=Δd(δθ/δd)=2εtanθ・・・(3)
  β=2ηtanθ ・・・(4)
 結晶子の大きさと歪の両方による積分幅の広がりがある場合は、(2)式と(4)式の和として以下の(5)式として表すことができる。本発明では、β型窒化ケイ素の(101)、(110)、(200)、(201)及び(210)面についての回折線の積分幅の広がりに対して(5)式で表わされるWilliamson-Hallプロットを適用し、最小二乗法によりその直線の切片、傾きを求め、結晶有効歪を算出した。
Δθ = Δd (δθ / δd) = 2εtanθ (3)
β = 2η tan θ (4)
When there is a broadening of the integral width due to both the crystallite size and strain, it can be expressed as the following equation (5) as the sum of equations (2) and (4). In the present invention, the Williamson − expressed by the equation (5) with respect to the broadening of the integral width of the diffraction line with respect to the (101), (110), (200), (201) and (210) planes of β-type silicon nitride. The Hall plot was applied, the intercept and slope of the straight line were determined by the least square method, and the crystal effective strain was calculated.
  β=Kλ/(Dcosθ)+2ηtanθ ・・・(5)
 本発明の窒化ケイ素粉末は、粉末X線回折より得られる結晶子径が0.15~2.0μm、結晶有効歪が1.5×10-4以下である。結晶子径が0.15μm未満になると、一つの一次粒子の中に多数の結晶子が存在することになり、結晶性が低下することによって、窒化ケイ素粒子の高温安定性が悪化する。このため、シリコンインゴット鋳造用の離型剤等に用いた場合には、高温保持時における離型層の分解が速くなり、溶融したシリコンとルツボ壁との貼り付きが起こることが有るので好ましくない。また、半導体製造用各種治具用原料、高熱伝導窒化ケイ素基板用原料としての使用した場合には、焼結過程において添加した助剤との反応により生成した溶融相への窒化ケイ素粒子の溶解、析出によってβ型窒化ケイ素粒子が成長する際に、結晶性が低下したβ粒子の結晶成長核から不均一な粒成長が起こり、得られる焼結体の特性が悪化することがあるので好ましくない。
β = Kλ / (Dcos θ) + 2η tan θ (5)
The silicon nitride powder of the present invention has a crystallite diameter obtained by powder X-ray diffraction of 0.15 to 2.0 μm and a crystal effective strain of 1.5 × 10 −4 or less. When the crystallite diameter is less than 0.15 μm, a large number of crystallites exist in one primary particle, and the high temperature stability of the silicon nitride particles deteriorates due to a decrease in crystallinity. For this reason, when it is used as a mold release agent for casting a silicon ingot, the decomposition of the mold release layer at the time of holding at a high temperature is accelerated, and there is a possibility that adhesion between the molten silicon and the crucible wall may occur. . In addition, when used as a raw material for various jigs for semiconductor production, a raw material for a high thermal conductivity silicon nitride substrate, dissolution of silicon nitride particles in the molten phase generated by reaction with an auxiliary agent added in the sintering process, When the β-type silicon nitride particles grow by precipitation, non-uniform grain growth occurs from the crystal growth nuclei of the β particles whose crystallinity is lowered, which is not preferable because the characteristics of the obtained sintered body may be deteriorated.
 一方、結晶有効歪が1.5×10-4を超えた場合にも結晶性が低下することによって、窒化ケイ素粒子の高温安定性が悪化する。このため、シリコンインゴット鋳造用の離型剤等に用いた場合には、高温保持時における離型層の分解が速くなり、溶融したシリコンとルツボ壁との貼り付きが起こることが有るので好ましくない。また、半導体製造用各種治具用原料、高熱伝導窒化ケイ素基板用原料としての使用した場合には、焼結過程において添加した助剤との反応により生成した溶融相への窒化ケイ素粒子の溶解、析出によってβ型窒化ケイ素粒子が成長する際に、結晶性が低下したβ粒子の結晶成長核から不均一な粒成長が起こり、得られる焼結体の特性が悪化することが有るので好ましくない。 On the other hand, even when the effective crystal strain exceeds 1.5 × 10 −4 , the high temperature stability of the silicon nitride particles deteriorates due to the decrease in crystallinity. For this reason, when it is used as a mold release agent for casting a silicon ingot, the decomposition of the mold release layer at the time of holding at a high temperature is accelerated, and there is a possibility that adhesion between the molten silicon and the crucible wall may occur. . In addition, when used as a raw material for various jigs for semiconductor production, a raw material for a high thermal conductivity silicon nitride substrate, dissolution of silicon nitride particles in the molten phase generated by reaction with an auxiliary agent added in the sintering process, When the β-type silicon nitride particles grow by precipitation, uneven grain growth occurs from the crystal growth nuclei of the β particles whose crystallinity is lowered, which is not preferable because the characteristics of the obtained sintered body may be deteriorated.
 なお、結晶子径Dは窒化ケイ素粒子を微粉砕するほど小さくなる。本発明の窒化ケイ素粉末においては、BET比表面積から算出される球相当径DBETと結晶子径Dとの比率DBET/Dが1.0~3.0である。BET比表面積から算出される球相当径DBETと結晶子径Dとの比率DBET/Dが3.0を超えると、半導体製造用各種治具用原料、高熱伝導窒化ケイ素基板用原料としての使用した場合には、焼結過程において添加した助剤との反応により生成した溶融相への窒化ケイ素粒子の溶解、析出によってβ型の窒化ケイ素粒子が成長する際に、結晶性が低下したβ粒子の結晶成長核から不均一な粒成長が起こり、得られる焼結体の特性が悪化すことが有るので好ましくない。 Incidentally, the crystallite diameter D C becomes smaller as comminuting silicon nitride particles. In the silicon nitride powder of the present invention, the ratio D BET / D C of the sphere equivalent diameter D BET and the crystallite diameter D C calculated from the BET specific surface area is 1.0 to 3.0. If the ratio D BET / D C of the sphere equivalent diameter D BET calculated from the BET specific surface area and the crystallite diameter D C is more than 3.0, the semiconductor manufacturing for various jigs raw material, raw material for silicon high thermal conductivity nitride substrate When β-type silicon nitride particles grow due to dissolution and precipitation of silicon nitride particles in the molten phase produced by reaction with the auxiliary added during the sintering process, the crystallinity decreases. This is not preferable because non-uniform grain growth occurs from the crystal growth nuclei of the β grains, and the characteristics of the obtained sintered body may deteriorate.
 本発明により製造される高純度窒化ケイ素粉末は、1つの好ましい態様において、多結晶シリコンインゴット用離型剤として有用であり、レーザ回折散乱法により測定される体積基準の50%粒子径をD50としたときに、D50が1.7μm以上20μm以下であることが好ましい。D50がこの範囲であれば、窒化ケイ素粒子同士の密着性も、窒化ケイ素粒子と鋳型との密着性も良くなりやすく、また緻密な離型層を形成しやすいので、多結晶シリコンインゴットの離型性も、鋳型への密着性も良好な離型層を形成することができる。D50は2μm以上であることが好ましい。D50は5μm以下であってもよい。また、90%粒子径をD90としたときに、D90は10μm以上40μm以下であることが好ましい。D90がこの範囲であれば、離型層の表面が平滑になりやすく、多結晶シリコンインゴットの離型性が良好な離型層を形成することができる。D90は30μm以下であることがさらに好ましい。D90は、15μm以上であってもよく、また20μm以下であってもよい。窒化ケイ素粉末の粒度分布の調整は粉砕工程によって行うことができる。 The high-purity silicon nitride powder produced according to the present invention is useful as a release agent for polycrystalline silicon ingots in one preferred embodiment, and has a volume-based 50% particle size measured by laser diffraction scattering method of D 50. D 50 is preferably 1.7 μm or more and 20 μm or less. If D 50 is within this range, the adhesion between the silicon nitride particles are also adhesion between the silicon nitride particles and the mold is good tends, also because easily form a dense release layer, a polycrystalline silicon ingot away A release layer having good moldability and good adhesion to the mold can be formed. D 50 is preferably 2 μm or more. D 50 may be 5 μm or less. Further, the 90% particle diameter is taken as D 90, D 90 is preferably at 10μm or 40μm or less. If D90 is within this range, the surface of the release layer is likely to be smooth, and a release layer having good release properties of the polycrystalline silicon ingot can be formed. D 90 is more preferably 30 μm or less. D 90 may also be 15μm or more, and may be 20μm or less. Adjustment of the particle size distribution of the silicon nitride powder can be performed by a grinding process.
 本発明により製造される高純度窒化ケイ素粉末は、もう1つの好ましい態様において、窒化ケイ素焼結体の原料として有用であり、レーザ回折散乱法により測定される体積基準の50%粒子径をD50としたときに、D50が0.5μm以上3μm以下であることが好ましい。D50がこの範囲であれば、充分な成型体密度が得られるので、緻密な焼結体組織が得られ、高い熱伝導率と高い機械的強度を併せ持つ窒化ケイ素焼結体を得ることができる。この観点から、D50が2μm以下であることがさらに好ましい。また、90%粒子径をD90としたときに、D90が3μm以上7μm以下である。D90がこの範囲であれば、均質な焼結体組織が得られ、高い熱伝導率と高い機械的強度を併せ持つ窒化ケイ素焼結体を得ることができる。この観点から、D90が6μm以下であることがさらに好ましい。窒化ケイ素粉末の粒度分布の調整は粉砕工程によって行うことができる。 In another preferred embodiment, the high-purity silicon nitride powder produced according to the present invention is useful as a raw material for a silicon nitride sintered body, and has a volume-based 50% particle diameter measured by a laser diffraction scattering method of D 50. D 50 is preferably 0.5 μm or more and 3 μm or less. If D 50 is within this range, since sufficient compact density is obtained, a dense sintered body tissue is obtained, it is possible to obtain a silicon nitride sintered body having both high thermal conductivity and high mechanical strength . In this respect, D 50 is more preferably 2 μm or less. Further, the 90% particle diameter is taken as D 90, D 90 is 3μm or more 7μm or less. If D90 is within this range, a homogeneous sintered body structure can be obtained, and a silicon nitride sintered body having both high thermal conductivity and high mechanical strength can be obtained. In this respect, D 90 is more preferably 6 μm or less. Adjustment of the particle size distribution of the silicon nitride powder can be performed by a grinding process.
 図1は、本発明を実施する際に用いられる、燃焼合成反応を行うための装置の構成例を説明するための模式図である。 FIG. 1 is a schematic diagram for explaining a configuration example of an apparatus for performing a combustion synthesis reaction, which is used when carrying out the present invention.
 以下に、図面を参照して、本発明の窒化ケイ素粉末の合成方法について説明する。ステンレス鋼製の反応器10には、外側壁30と内容器20の側壁との間に、冷却水が流入する通流部が形成されている。反応器10の一方の端面には開閉可能な蓋が設けられており、この蓋を閉じることにより、内容器20は密閉される。 Hereinafter, the method for synthesizing the silicon nitride powder of the present invention will be described with reference to the drawings. In the stainless steel reactor 10, a flow passage through which cooling water flows is formed between the outer wall 30 and the side wall of the inner vessel 20. One end face of the reactor 10 is provided with a lid that can be opened and closed, and the inner container 20 is sealed by closing the lid.
 内容器20の底面上には黒鉛るつぼ23が設けられている。黒鉛るつぼ23は、外径770x320mmの矩形で、高さ90mmである。 A graphite crucible 23 is provided on the bottom surface of the inner container 20. The graphite crucible 23 is a rectangle having an outer diameter of 770 × 320 mm and a height of 90 mm.
 反応器10は真空排気できるように構成されており、排気管の途中に設けられた開閉弁17を開けた状態で真空ポンプを作動させることにより、内容器20内部を高真空にすることができる。 The reactor 10 is configured to be evacuated, and the inside of the inner container 20 can be made high vacuum by operating the vacuum pump with the on-off valve 17 provided in the middle of the exhaust pipe opened. .
 また、反応器10は、窒素ガス導入管15で窒素ガスボンベと連結され、窒素ガス導入管15の途中には窒素ガス開閉弁16が設けられている。窒素ガス開閉弁16を開けた状態で窒素ガスボンベから窒素ガスを流入させることにより、内容器20内部が窒素ガス雰囲気になる。なお、内容器20内部の側壁には窒素ガス開閉弁16と接続された圧力センサー14が設置されており、窒素ガス開閉弁16に接続された調圧弁が、内容器20内部の圧力を一定に維持するように窒素ガス開閉弁16の制御を行う。 Further, the reactor 10 is connected to a nitrogen gas cylinder by a nitrogen gas introduction pipe 15, and a nitrogen gas opening / closing valve 16 is provided in the middle of the nitrogen gas introduction pipe 15. By flowing nitrogen gas from the nitrogen gas cylinder with the nitrogen gas on-off valve 16 opened, the inside of the inner container 20 becomes a nitrogen gas atmosphere. A pressure sensor 14 connected to the nitrogen gas on / off valve 16 is installed on the side wall inside the inner container 20, and the pressure regulating valve connected to the nitrogen gas on / off valve 16 keeps the pressure inside the inner container 20 constant. The nitrogen gas on / off valve 16 is controlled so as to be maintained.
 内容器20の内上面には、2本の棒状の電極11が鉛直方向に延びるように設けられている。これら2本の電極11の上端部は黒鉛るつぼ23の上側に配置されたカーボンヒーター12により接続されている。これら2本の電極11の下端部には、反応器10外部に設けられた外部電源によって電圧が印加され、これによりカーボンヒーター12が発熱する。 Two rod-shaped electrodes 11 are provided on the inner upper surface of the inner container 20 so as to extend in the vertical direction. The upper ends of these two electrodes 11 are connected by a carbon heater 12 arranged above the graphite crucible 23. A voltage is applied to the lower end portions of these two electrodes 11 by an external power source provided outside the reactor 10, whereby the carbon heater 12 generates heat.
 シリコン粉末と希釈剤(窒化ケイ素粉末)とを重量比で9:1~5:5となるように混合したものを出発原料25(仕込原料)とする。このような出発原料25を原料投入部(記載省略)に投入した後、着火材13を出発原料の特定部位の表面に添加する。そして、着火材13がカーボンヒーター12と接触した状態で外部電源から2本の電極11の下端部に電圧を印加すると、発熱したカーボンヒーター12に誘発されて着火材13が着火し、出発原料25を発熱させることができる。 A mixture of silicon powder and diluent (silicon nitride powder) in a weight ratio of 9: 1 to 5: 5 is used as starting material 25 (feeding material). After such a starting material 25 is charged into a material charging part (not shown), the ignition material 13 is added to the surface of a specific part of the starting material. When a voltage is applied from the external power source to the lower ends of the two electrodes 11 while the ignition material 13 is in contact with the carbon heater 12, the ignition material 13 is ignited by being induced by the heated carbon heater 12, and the starting material 25. Can generate heat.
 図2は、本発明に係る高純度窒化ケイ素粉末の燃焼合成の手順を示すフローチャートである。まず、出発原料25であるシリコン、窒化ケイ素、および、必要に応じて塩化ナトリウムを、窒化ケイ素製のボールを内蔵した遊星ボールミル等に投入し、十数分間の粉砕により混合する(ステップS1)。混合された出発原料25は原料投入部(記載省略)に投入され、特定部位の表面上部に着火材(例えば、アルミニウム成形物)13が添加される(ステップS2)。この際、着火材13はカーボンヒーター12とも接触するように出発原料25の特定部位の上面に配置される。 FIG. 2 is a flowchart showing a procedure for combustion synthesis of high-purity silicon nitride powder according to the present invention. First, silicon, silicon nitride, and if necessary, sodium chloride, which is the starting material 25, are charged into a planetary ball mill or the like containing a silicon nitride ball, and mixed by pulverization for a few dozen minutes (step S1). The mixed starting material 25 is charged into a raw material charging unit (not shown), and an ignition material (for example, an aluminum molded product) 13 is added to the upper surface of the specific part (step S2). At this time, the ignition material 13 is disposed on the upper surface of the specific portion of the starting material 25 so as to come into contact with the carbon heater 12.
 原料投入部に出発原料25を投入後、蓋(記載省略)を閉じ、内容器20を密閉する(ステップS3)。密閉後に空気開閉弁17を開け、真空ポンプを作動させて内容器20内部を高真空とする(ステップS4)。 After starting material 25 is charged into the raw material charging section, the lid (not shown) is closed and the inner container 20 is sealed (step S3). After sealing, the air on-off valve 17 is opened, and the vacuum pump is operated to make the inner container 20 high vacuum (step S4).
 所望の真空度に到達した後、窒素開閉弁16を開けて反応器10外部の窒素ボンベから窒素を内容器20の内部に流入させ、内容器20の内部を窒素雰囲気とする(ステップS5)。なお、内容器20内の圧力は1MPa程度に維持される。 After reaching the desired degree of vacuum, the nitrogen open / close valve 16 is opened to allow nitrogen to flow into the inner vessel 20 from the nitrogen cylinder outside the reactor 10, and the inside of the inner vessel 20 is brought to a nitrogen atmosphere (step S5). In addition, the pressure in the inner container 20 is maintained at about 1 MPa.
 内容器20の内部が加圧窒素ガス雰囲気になった後、外部電源からの電圧印加によりカーボンヒーター12を発熱させ、着火材13を着火させて出発原料25を燃焼させる(ステップS6)。この着火時の通電時間は約10秒である。出発原料25の燃焼により、上述の反応式(1)の窒化反応が生じる。 After the inside of the inner container 20 is in a pressurized nitrogen gas atmosphere, the carbon heater 12 is heated by applying a voltage from an external power source, the ignition material 13 is ignited, and the starting material 25 is combusted (step S6). The energization time at the time of ignition is about 10 seconds. The combustion of the starting material 25 causes the nitriding reaction of the above reaction formula (1).
 反応式(1)の窒化反応で生じた反応熱により、反応式(1)に示す燃焼合成反応が生じて窒化ケイ素が合成される。シリコンの窒化反応の際に発生する反応熱は非常に大きく、反応系の温度は、シリコンの融点である1410℃よりも高い約1900℃程度にまで上昇する。このため、燃焼合成反応においては、高純度シリコン粉末と希釈剤である窒化ケイ素粉末との混合粉末を原料とすることによって窒化反応を制御する。 Reaction heat generated by the nitriding reaction of reaction formula (1) causes a combustion synthesis reaction shown in reaction formula (1) to synthesize silicon nitride. The reaction heat generated during the nitridation reaction of silicon is very large, and the temperature of the reaction system rises to about 1900 ° C., which is higher than the melting point of silicon, 1410 ° C. For this reason, in the combustion synthesis reaction, the nitriding reaction is controlled by using a mixed powder of high-purity silicon powder and silicon nitride powder as a diluent as a raw material.
 また、燃焼生成物である窒化ケイ素のβ比率を制御するために、反応補助剤として塩化ナトリウムや塩化アンモニウムを添加することができる。反応補助剤として添加した塩化ナトリウムや塩化アンモニウムは反応熱により昇華するが、反応式(1)に示した燃焼合成反応には関与しない。 Also, sodium chloride or ammonium chloride can be added as a reaction aid in order to control the β ratio of silicon nitride as a combustion product. Sodium chloride and ammonium chloride added as reaction aids sublimate due to reaction heat, but do not participate in the combustion synthesis reaction shown in the reaction formula (1).
 燃焼合成反応により反応系の温度は上昇するが、塩化ナトリウムや塩化アンモニウムの昇華反応が吸熱反応であるため、当該吸熱反応により燃焼合成反応系の温度が低下する。その結果、シリコンの融解が遅延し、シリコン粒子同士の融着が抑制される。なお、塩化ナトリウムや塩化アンモニウムの添加量を適当なものとすることにより、塩化ナトリウムの昇華に伴って低下する反応系の温度を、反応式(1)に示した燃焼合成反応の進行には支障のない温度とすることができる。 Although the temperature of the reaction system rises due to the combustion synthesis reaction, since the sublimation reaction of sodium chloride and ammonium chloride is an endothermic reaction, the temperature of the combustion synthesis reaction system decreases due to the endothermic reaction. As a result, the melting of silicon is delayed and the fusion of silicon particles is suppressed. It should be noted that by adjusting the addition amount of sodium chloride and ammonium chloride, the temperature of the reaction system, which decreases with the sublimation of sodium chloride, may hinder the progress of the combustion synthesis reaction shown in the reaction formula (1). It can be set to the temperature without.
 燃焼反応時間は、出発原料の投入量に依存するが、一般的には数分~数十分である。燃焼反応が終了すると流水開閉弁24が開けられて通流部に冷却水が流入し、側壁を介して内容器20が冷却される(ステップS7)。 Combustion reaction time depends on the amount of starting material, but is generally several minutes to several tens of minutes. When the combustion reaction is completed, the running water on-off valve 24 is opened, cooling water flows into the flow passage portion, and the inner container 20 is cooled through the side wall (step S7).
 内容器20が冷却された後、合成された窒化ケイ素が原料投入部から取り出される(ステップS8)。燃焼反応後の窒化ケイ素は塊状になっているので、必要に応じてロールクラッシャー、ボールミル、振動ミル等で粉砕される(ステップS9)。 After the inner container 20 is cooled, the synthesized silicon nitride is taken out from the raw material charging part (step S8). Since the silicon nitride after the combustion reaction is agglomerated, it is pulverized by a roll crusher, a ball mill, a vibration mill or the like as necessary (step S9).
 以下に、実施例により本発明の窒化ケイ素の合成方法を具体的に説明するが、本発明はこれらの実施例に限定されるものではなく、種々の態様があり得る。 Hereinafter, the method for synthesizing silicon nitride of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples, and may have various aspects.
 多結晶シリコンの端材を主成分とする高純度シリコン材料を、窒化ケイ素を含む粉砕メディアを装填・装着した粉砕装置(振動ボールミル、ジェットミル等)を使用して、鉄、クロムおよびアルミニウムの含有量がそれぞれ50ppm以下、そして鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量が50ppm以下である高純度シリコン粉末を得る。粉砕後の高純度シリコン粉末の10体積%粒子径(D10)は0.2~1.0μm、50体積%粒子径(D50)は0.5~15μm、90体積%粒子径(D90)は3~44μmである。 High-purity silicon material mainly composed of polycrystalline silicon milling material containing iron, chromium, and aluminum using a grinding device (vibrating ball mill, jet mill, etc.) loaded and loaded with grinding media containing silicon nitride A high-purity silicon powder having an amount of 50 ppm or less and a total content of metal impurities other than iron, chromium and aluminum is 50 ppm or less is obtained. The high-purity silicon powder after pulverization has a 10% by volume particle size (D 10 ) of 0.2 to 1.0 μm, a 50% by volume particle size (D 50 ) of 0.5 to 15 μm, and a 90% by volume particle size (D 90). ) Is 3 to 44 μm.
 [実施例1]
 平均粒径1.9μm、嵩密度が0.48g/cmのシリコン粉末に平均粒径0.5μm,嵩密度が0.30g/cmの窒化ケイ素粉末を添加して、シリコンと希釈剤(窒化ケイ素)との混合比が窒化ケイ素に換算した値で8.0:2.0となるように、合成原料を準備した。なお、シリコンを窒化ケイ素として換算した値とは、例えば、シリコンを3モル(84.3g)、窒化ケイ素を1モル(140.3g)含む場合に、シリコンが総て窒化ケイ素に変換されたとして、その重量比が1:1であることを意味している。また、平均粒径とは、レーザ回折・散乱法により測定した粒度分布の積算値50%での粒径を意味している。合成原料の嵩密度は、配合元のシリコン粉末の嵩密度と希釈剤(窒化ケイ素)の嵩密度とが、それぞれ所定の値を有するものを組合せることにより制御した。
[Example 1]
The average particle diameter of 1.9 .mu.m, a bulk density of 0.48 g / cm 3 average particle size 0.5μm to silicon powder, bulk density by adding silicon nitride powder of 0.30 g / cm 3, silicon with a diluent ( A synthetic raw material was prepared so that the mixing ratio with silicon nitride was 8.0: 2.0 in terms of silicon nitride. In addition, the value converted into silicon nitride is, for example, that when 3 mol (84.3 g) of silicon and 1 mol (140.3 g) of silicon nitride are included, all the silicon is converted into silicon nitride. , Meaning that the weight ratio is 1: 1. The average particle size means a particle size at an integrated value of 50% of the particle size distribution measured by a laser diffraction / scattering method. The bulk density of the synthetic raw material was controlled by combining those in which the bulk density of the silicon powder of the blending source and the bulk density of the diluent (silicon nitride) each have a predetermined value.
 次に、図1に示した装置を用いて、以下の手順で、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を合成した。 Next, using the apparatus shown in FIG. 1, a lump of silicon nitride powder was synthesized from the synthesis raw material by a self-combustion reaction according to the following procedure.
 上記の仕込み原料(総重量4.0kg)を底面が770mm×320mmの黒鉛ルツボに充填した。粉体層の高さは36mmであった。 The above charged raw materials (total weight: 4.0 kg) were filled into a graphite crucible having a bottom surface of 770 mm × 320 mm. The height of the powder layer was 36 mm.
 充填した粉体層の上端の所定の部位に、着火剤として微量のアルミニウム成形物を配置し、耐圧性の内容器20の内部に格納して、窒素雰囲気下で、カーボンヒーターを経由して必要な電圧-電流を10秒間印加して燃焼させ、アルミニウムの燃焼に伴う発熱を利用して、シリコン粉末の自己燃焼反応を起こさせた。仕込み原料であるシリコンと希釈剤(窒化ケイ素)との混合粉末は安定した状態で燃焼が進行した。耐圧性内容器20の内部の窒素ガス圧力は0.9MPa、反応時間は約25分間であった。冷却後に、耐圧性の内容器から生成した窒化ケイ素粉末の塊状物を取り出した。なお、着火剤(微量のアルミニウム成形物)を配置した部位の周辺10cm程度は生成物から取り除いた。それ以外の部位への着火剤の拡散は検出されなかった。 Place a small amount of aluminum molding as an igniting agent in a predetermined part at the upper end of the filled powder layer, store it inside the pressure-resistant inner container 20, and need it via a carbon heater in a nitrogen atmosphere A simple voltage-current was applied for 10 seconds to burn, and the heat generated by the burning of aluminum was used to cause a self-burning reaction of silicon powder. Combustion proceeded in a stable state with the mixed powder of silicon and the diluent (silicon nitride) as the raw material. The nitrogen gas pressure inside the pressure-resistant inner container 20 was 0.9 MPa, and the reaction time was about 25 minutes. After cooling, the lump of silicon nitride powder produced from the pressure-resistant inner container was taken out. The peripheral 10cm about 3 parts arranged an ignition agent (aluminum moldings traces) were removed from the product. Diffusion of the igniting agent to other parts was not detected.
 窒化ケイ素粉末の塊状物をプラスチックハンマーで破砕した後、窒化ケイ素製ロールを備えたロールクラッシャーに通して、粗粉砕を行い、目開き80μmの篩を用いて、篩通しを行い、窒化ケイ素の粗粉砕物を得た。後述の分析方法によれば、粗粉砕物の比表面積は0.45m/g、結晶子径は1.9μm、結晶有効歪は0.18×10-4であった。 After crushing the lump of silicon nitride powder with a plastic hammer, it is passed through a roll crusher equipped with a roll made of silicon nitride, coarsely pulverized, and sieved using a sieve having an opening of 80 μm. A pulverized product was obtained. According to the analysis method described later, the specific surface area of the coarsely pulverized product was 0.45 m 2 / g, the crystallite diameter was 1.9 μm, and the effective crystal strain was 0.18 × 10 −4 .
 さらに、接粉部に窒化ケイ素製のライナーを装着したスーパージェットミルSJ―1500型を使用して、使用空気量2.5m/分、処理量40g/分程度の条件で、粗粉砕物をジェットミル粉砕した。 Furthermore, using a super jet mill SJ-1500 with a silicon nitride liner attached to the powder contact part, the coarsely pulverized product was removed under the conditions of air usage of 2.5 m 3 / min and throughput of 40 g / min. Jet mill pulverized.
 得られた窒化ケイ素の微粉砕物について、以下のように分析を行った。 The obtained finely pulverized silicon nitride was analyzed as follows.
 (粉末X線回折測定による結晶相の同定および定量)
 CuKα線を用いた粉末X線回折測定を行い、非特許文献3に記載されたGazzara & Messierの方法により、生成窒化ケイ素粉末の結晶相の同定(β相の割合の算出)を行った。
(Identification and quantification of crystal phase by powder X-ray diffraction measurement)
Powder X-ray diffraction measurement using CuKα rays was performed, and the crystalline phase of the generated silicon nitride powder was calculated (calculation of the β phase ratio) by the method of Gazzara & Messier described in Non-Patent Document 3.
 遊離シリコン量も粉末X線回折により測定した。検量線の作成には、シリコンの標準試料と窒化ケイ素の標準試料を用い、既知のシリコン量を有する混合粉末の粉末X線回折パターンにおけるピーク強度比から求めた。 The amount of free silicon was also measured by powder X-ray diffraction. The calibration curve was prepared using a standard sample of silicon and a standard sample of silicon nitride, and obtained from a peak intensity ratio in a powder X-ray diffraction pattern of a mixed powder having a known silicon amount.
 (β型窒化ケイ素の結晶子径Dおよび結晶歪の測定方法)
 また、前記のWilliamson-Hallプロットを適用して、生成窒化ケイ素粉末の結晶子径と結晶有効歪を求めた。
(Crystallite size of β-type silicon nitride D C and measuring methods of crystal strains)
In addition, by applying the Williamson-Hall plot, the crystallite diameter and crystal effective strain of the generated silicon nitride powder were obtained.
 (比表面積の測定方法および球相当径DBETの算出方法)
 本発明の高純度窒化ケイ素粉末の比表面積は、Mountech社製のBET法比表面積測定装置(Macsorb)を用いて、窒素ガス吸着によるBET1点法により比表面積を測定した。
(Measurement method of specific surface area and calculation method of equivalent spherical diameter D BET )
The specific surface area of the high-purity silicon nitride powder of the present invention was measured by a BET one-point method by nitrogen gas adsorption using a BET specific surface area measuring device (Macsorb) manufactured by Mountaintech.
 また、球相当径DBETは、粉末を構成する全ての粒子が同一径の球と仮定して、下記の式(6)より求めた。 Further, the equivalent spherical diameter D BET was obtained from the following formula (6) on the assumption that all particles constituting the powder are spheres having the same diameter.
  DBET=6/(ρSN×S) ・・・・・(6)
 ここで、ρSNは窒化ケイ素の真密度(α-Siの真密度3.186g/cm、β-Siの真密度3.192g/cmと、α相とβ相との比率により平均真密度を算出し、真密度とした。)。Sは比表面積(m/g)である。
D BET = 6 / (ρ SN × S) (6)
Here, ρ SN is the true density of silicon nitride (true density of α-Si 3 N 4 is 3.186 g / cm 3 , true density of β-Si 3 N 4 is 3.192 g / cm 3 , α phase and β phase The average true density was calculated based on the ratio to the true density). S is a specific surface area (m 2 / g).
 (粒度分布の測定方法)
 本発明の窒化ケイ素粉末、および原料として使用したシリコン粉末の粒度分布は、以下のようにして測定した。前記の粉末を、ヘキサメタリン酸ナトリウム20%水溶液2mlを混ぜた純水200ml中に、測定サンプル60mgを投入し、直径26mmのステンレス製センターコーンを取り付けた超音波ホモジナイザーを用いて300Wの出力で6分間分散処理して希薄溶液を調製し、測定試料とした。レーザ回折/散乱式粒子径分布測定装置(日機装株式会社製マイクロトラックMT3000)を用いて測定試料の粒度分布を測定し、体積基準の粒度分布データを得た。得られた粒度分布曲線より、10体積%粒子径(D10)、50体積%粒子径(D50)および90体積%粒子径(D90)を求めた。
(Measuring method of particle size distribution)
The particle size distribution of the silicon nitride powder of the present invention and the silicon powder used as a raw material was measured as follows. 60 mg of a measurement sample was put into 200 ml of pure water mixed with 2 ml of a 20% aqueous solution of sodium hexametaphosphate, and the powder was used for 6 minutes at an output of 300 W using an ultrasonic homogenizer equipped with a stainless steel center cone having a diameter of 26 mm. A dilute solution was prepared by dispersion treatment and used as a measurement sample. The particle size distribution of the measurement sample was measured using a laser diffraction / scattering particle size distribution measuring apparatus (Microtrack MT3000 manufactured by Nikkiso Co., Ltd.) to obtain volume-based particle size distribution data. From the obtained particle size distribution curve, 10 volume% particle diameter (D 10 ), 50 volume% particle diameter (D 50 ) and 90 volume% particle diameter (D 90 ) were determined.
 (鉄、クロム,アルミニウムの含有量、および鉄、クロム,アルミニウム以外の金属不純物の含有量の測定方法)
 本発明の窒化ケイ素粉末、および原料として使用したシリコン粉末、ならびに原料混合粉末の鉄、クロムおよびアルミニウムの含有量、ならびに鉄、クロム,アルミニウム以外の金属不純物の含有量は、以下のようにして測定した。
(Method of measuring the content of iron, chromium and aluminum and the content of metal impurities other than iron, chromium and aluminum)
The silicon nitride powder of the present invention, the silicon powder used as a raw material, and the content of iron, chromium and aluminum in the raw material mixed powder, and the content of metal impurities other than iron, chromium and aluminum are measured as follows. did.
 樹脂製加圧分解容器中に試料を秤り取り、混酸(硝酸とフッ化水素酸溶液)を加えて、マイクロ波加熱し、加圧酸分解をして、完全に溶解した。鉄、クロム、アルミニウムおよびその他の金属不純物含有量は、分解液を超純水で定容して検液とした後、エスアイアイ・ナノテクノロジー社製ICP-AES(SPS5100型)分析装置を用いて、検出された波長とその発光強度から検液中の鉄、クロム,アルミニウムの含有量、および鉄、クロム,アルミニウム以外の金属不純物の含有量を定量し、試料中の鉄、クロム,アルミニウムの含有量、および鉄、クロム,アルミニウム以外の金属不純物の含有量を算出した。 The sample was weighed in a resin pressure decomposition vessel, mixed acid (nitric acid and hydrofluoric acid solution) was added, microwave heating was performed, pressure acid decomposition was performed, and the sample was completely dissolved. The content of iron, chromium, aluminum and other metal impurities was determined by measuring the volume of the decomposition solution with ultrapure water and using an ICP-AES (SPS5100 type) analyzer manufactured by SII Nanotechnology. Quantify the content of iron, chromium and aluminum in the test solution and the content of metal impurities other than iron, chromium and aluminum from the detected wavelength and the emission intensity, and the content of iron, chromium and aluminum in the sample. The amount and content of metal impurities other than iron, chromium and aluminum were calculated.
 本発明において、嵩密度は初期嵩密度を意味する。
(嵩密度の測定方法)
 JIS R1628「ファインセラミックス粉末のかさ密度測定方法」に準拠した方法により高純度シリコン粉末および希釈剤である窒化ケイ素粉末の初期嵩密度を求めた。また、これと同様の方法により、高純度シリコン粉末と希釈剤との混合物より成る充填層の嵩密度を求めた。
In the present invention, the bulk density means the initial bulk density.
(Measurement method of bulk density)
The initial bulk density of high-purity silicon powder and silicon nitride powder as a diluent was determined by a method in accordance with JIS R1628 “Method for measuring bulk density of fine ceramic powder”. Further, the bulk density of the packed bed made of a mixture of high-purity silicon powder and a diluent was determined by the same method.
 (燃焼生成物の圧壊強度の測定方法)
 本発明で得られる燃焼生成物の圧壊強度は、以下のようにして測定した。燃焼生成物より、一辺が10mmの立方体を5個切り出して測定試料とした。手動式圧壊強度測定装置(アイコーエンジニアリング株式会社製、MODEL-1334型)を用いて前記測定試料の圧壊強度を測定した。台座に載置した測定試料に荷重を印加して圧縮試験を行い、測定された最大荷重より圧壊強度を算出した。本発明で得られる燃焼生成物の圧壊強度は、5個の測定試料の圧壊強度の平均値とした。
(Measurement method of crushing strength of combustion products)
The crushing strength of the combustion product obtained in the present invention was measured as follows. From the combustion product, 5 cubes each having a side of 10 mm were cut out and used as measurement samples. The crushing strength of the measurement sample was measured using a manual crushing strength measuring device (model 1 model manufactured by Aiko Engineering Co., Ltd.). A compression test was performed by applying a load to the measurement sample placed on the pedestal, and the crushing strength was calculated from the measured maximum load. The crushing strength of the combustion product obtained in the present invention was an average value of the crushing strength of the five measurement samples.
 燃焼合成に用いたシリコン粉末、窒化ケイ素粉末およびこれらの混合原料粉末の嵩密度、金属不純物含有量などの特性値を表1および表2に示す。また、燃焼合成反応により得られた燃焼生成物の圧壊強度とこれを粉砕処理して得られた高純度窒化ケイ素粉末の物性値を表3および表4に示す。 Tables 1 and 2 show characteristic values such as bulk density and metal impurity content of the silicon powder, silicon nitride powder and mixed raw material powder used in the combustion synthesis. Tables 3 and 4 show the crushing strength of the combustion products obtained by the combustion synthesis reaction and the physical properties of the high-purity silicon nitride powder obtained by pulverizing the combustion products.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[実施例2]
 原料として用いるシリコン粉末として、50%体積粒子径(D50)が4.0μm、90%体積粒子径(D90)が12μmのシリコン粉末を使用した以外は、実施例1と同様にして、耐圧性容器に合成原料であるシリコンと希釈剤(窒化ケイ素)との混合粉末を仕込み、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を得た。実施例1と同様に、窒化ケイ素製ロールを装着したロールクラッシャーを用いて粗粉砕を行った。
[Example 2]
In the same manner as in Example 1, except that silicon powder having a 50% volume particle diameter (D 50 ) of 4.0 μm and a 90% volume particle diameter (D 90 ) of 12 μm was used as the silicon powder used as a raw material, A mixed powder of silicon, which is a synthetic raw material, and a diluent (silicon nitride) was charged into a conductive container, and a lump of silicon nitride powder was obtained from the synthetic raw material by a self-combustion reaction. In the same manner as in Example 1, coarse pulverization was performed using a roll crusher equipped with a silicon nitride roll.
 さらに、ミル容器等の接粉部をポリウレタン等の樹脂で被覆した樹脂製ポットに窒化ケイ素の粗粉砕物を入れ、粉砕用窒化ケイ素ボールを適当量加えて、振動数1780cpm、振幅5mmで所定の時間だけ振動・回転させることにより、振動ミル粉砕を行った。粉砕用ボールは摩耗して原料に混入するため、気孔率が1%以下、ビッカース硬度が18GPaの窒化ケイ素質焼結体より成る粉砕媒体を使用して、窒化ケイ素の粗粉砕物を粉砕した。窒化ケイ素の粉砕物がミル容器壁面に付着して粉砕効率が低下することがあるので、1時間毎に容器内壁に付着した被粉砕物を掻き落とした。 Furthermore, a silicon nitride coarsely pulverized product is put in a resin pot in which a powder contact portion of a mill container or the like is covered with a resin such as polyurethane, and an appropriate amount of silicon nitride balls for pulverization is added to obtain a predetermined frequency of 1780 cpm and amplitude of 5 mm The vibration mill was pulverized by vibrating and rotating only for the time. Since the grinding balls were worn out and mixed into the raw material, the coarsely pulverized silicon nitride was pulverized using a pulverizing medium made of a silicon nitride sintered body having a porosity of 1% or less and a Vickers hardness of 18 GPa. Since the pulverized product of silicon nitride may adhere to the wall surface of the mill container and the pulverization efficiency may decrease, the crushed object adhered to the inner wall of the container was scraped off every hour.
 得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。 The obtained finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
 [実施例3および実施例4]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末に、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末を同表に記載した配合割合で混合した原料粉末を用いた以外は実施例1と同様にして、耐圧性容器に合成原料であるシリコン粉末と希釈剤(窒化ケイ素粉末)との混合粉末を仕込み、表1および表2に記載した条件にて、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を合成した。実施例2と同様に粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。
[Example 3 and Example 4]
The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1, and silicon nitride powder having the average particle diameter, bulk density and metal impurity content described in the table are listed in the table In the same manner as in Example 1 except that the raw material powder mixed at a ratio was used, a pressure-resistant container was charged with a mixed powder of silicon powder as a synthetic raw material and a diluent (silicon nitride powder). Under the described conditions, a lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction. The pulverization process was performed in the same manner as in Example 2, and the obtained finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
 [実施例5]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末と、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末より成る原料粉末に、さらに反応補助剤として塩化ナトリウムを添加した。即ち、シリコンを窒化ケイ素に換算した値で、配合割合がシリコン:窒化ケイ素:塩化ナトリウム=63:27:10となるように、合成原料を準備した。なお、シリコンを窒化ケイ素として換算した値とは、例えば、シリコンを3モル(84.3g)、窒化ケイ素を1モル(140.3g)含む場合に、その重量比が1:1であることを意味している。
[Example 5]
A raw material powder composed of a silicon powder having a particle size distribution, a bulk density and a metal impurity content described in Table 1, and a silicon nitride powder having an average particle diameter, a bulk density and a metal impurity content described in the table, Sodium chloride was added as a reaction aid. That is, a synthetic raw material was prepared so that the blending ratio was silicon: silicon nitride: sodium chloride = 63: 27: 10 with a value obtained by converting silicon into silicon nitride. In addition, the value in which silicon is converted into silicon nitride is, for example, that when 3 mol (84.3 g) of silicon and 1 mol (140.3 g) of silicon nitride are included, the weight ratio is 1: 1. I mean.
 実施例1と同様にして、表1および表2に記載した条件にて、自己燃焼反応により上記の合成原料から窒化ケイ素粉末の塊状物を合成した。実施例2と同様に窒化ケイ素製のロールクラッシャーによる粗粉砕、窒化ケイ素ボールを粉砕媒体とする振動ミル粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。
[実施例6]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末に、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末を、同表に記載した配合割合で混合した原料粉末を用いた以外は実施例1と同様にして、表1および表2に記載した条件にて、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を合成した。実施例1と同様に粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。
In the same manner as in Example 1, a lump of silicon nitride powder was synthesized from the above synthetic raw material by a self-combustion reaction under the conditions described in Tables 1 and 2. In the same manner as in Example 2, coarse pulverization using a silicon nitride roll crusher and vibration mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
[Example 6]
The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table. A lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction in the same manner as in Example 1 except that the raw material powder mixed at the mixing ratio was used under the conditions described in Tables 1 and 2. The pulverization process was performed in the same manner as in Example 1, and the obtained finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
 [実施例7~実施例10]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末に、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末を、同表に記載した配合割合で混合した原料粉末を用いた以外は実施例1と同様にして、表1および表2に記載した条件にて、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を合成した。実施例2と同様に窒化ケイ素製のロールクラッシャーによる粗粉砕、窒化ケイ素ボールを粉砕媒体とする振動ミル粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。
[Examples 7 to 10]
The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table. A lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction in the same manner as in Example 1 except that the raw material powder mixed at the mixing ratio was used under the conditions described in Tables 1 and 2. In the same manner as in Example 2, coarse pulverization using a silicon nitride roll crusher and vibration mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
 [実施例11]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末と、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末より成る原料粉末に、さらに反応補助剤として塩化ナトリウムを添加した。実施例5と同様にして、表1および表2に記載した条件にて、自己燃焼反応により上記の合成原料から窒化ケイ素粉末の塊状物を合成した。実施例2と同様に窒化ケイ素製のロールクラッシャーによる粗粉砕、窒化ケイ素ボールを粉砕媒体とする振動ミル粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。
[Example 11]
A raw material powder composed of a silicon powder having a particle size distribution, a bulk density and a metal impurity content described in Table 1, and a silicon nitride powder having an average particle diameter, a bulk density and a metal impurity content described in the table, Sodium chloride was added as a reaction aid. In the same manner as in Example 5, a lump of silicon nitride powder was synthesized from the above synthetic raw material by a self-combustion reaction under the conditions described in Tables 1 and 2. In the same manner as in Example 2, coarse pulverization using a silicon nitride roll crusher and vibration mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
 [実施例12~実施例16]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末に、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末を、同表に記載した配合割合で混合した原料粉末を用いた以外は実施例1と同様にして、表1および表2に記載した条件にて、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を合成した。実施例2と同様に窒化ケイ素製のロールクラッシャーによる粗粉砕、窒化ケイ素ボールを粉砕媒体とする振動ミル粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。
[Examples 12 to 16]
The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table. A lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction in the same manner as in Example 1 except that the raw material powder mixed at the mixing ratio was used under the conditions described in Tables 1 and 2. In the same manner as in Example 2, coarse pulverization using a silicon nitride roll crusher and vibration mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4.
 [比較例1]
 表1に記載のごとく、シリコン粉末として、鉄、クロムおよびアルミニウムの含有量がそれぞれ200ppm、140ppm、200ppmであり、それ以外の金属不純物の合計含有量が180ppmであって、平均粒径が5.2μmのシリコン粉末に、鉄、クロムおよびアルミニウムの含有量がそれぞれ20ppm、8ppm、30ppmであり、それ以外の金属不純物の合計含有量が20ppmであって、平均粒径2.0μmの窒化ケイ素粉末を添加して、シリコンと希釈剤(窒化ケイ素)との混合比が窒化ケイ素に換算した値で8.5:1.5となるように、合成原料を準備した。合成原料の嵩密度は、配合元のシリコン粉末の嵩密度と希釈剤(窒化ケイ素)の嵩密度とが、それぞれ所定の値を有するものを組合せることにより0.49g/cmとなるようにした。
 上記の仕込み原料(総重量5.4kg)を770mm×320mmの黒鉛ルツボに充填した所、粉体層の高さは45mmであった。
 表1および表2に記載した条件にて、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を合成した。実施例1と同様に粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。比較例1は、Fe,Al,Cr,それ以外の金属不純物のいずれも多いシリコン粉末を原料として用いた例である。
[Comparative Example 1]
As shown in Table 1, the content of iron, chromium and aluminum as the silicon powder is 200 ppm, 140 ppm and 200 ppm, respectively, the total content of other metal impurities is 180 ppm, and the average particle size is 5. A silicon nitride powder having a content of 20 ppm, 8 ppm, and 30 ppm of iron, chromium, and aluminum, and a total content of other metal impurities of 20 ppm, and having an average particle size of 2.0 μm, in a silicon powder of 2 μm. A synthetic raw material was prepared so that the mixing ratio of silicon and diluent (silicon nitride) was 8.5: 1.5 in terms of silicon nitride. The bulk density of the synthetic raw material is 0.49 g / cm 3 by combining the bulk density of the silicon powder of the compounding source and the bulk density of the diluent (silicon nitride), each having a predetermined value. did.
When the charged raw materials (total weight: 5.4 kg) were filled into a graphite crucible of 770 mm × 320 mm, the height of the powder layer was 45 mm.
Under the conditions described in Table 1 and Table 2, a lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction. The pulverization process was performed in the same manner as in Example 1, and the obtained finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4. Comparative Example 1 is an example in which silicon powder containing many Fe, Al, Cr, and other metal impurities is used as a raw material.
 [比較例2および比較例3]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末に、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末を、同表に記載した配合割合で混合した原料粉末を耐圧性容器に仕込み、実施例2と同様にして、表1および表2に記載した条件にて、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を合成した。実施例2と同様に窒化ケイ素製のロールクラッシャーによる粗粉砕、窒化ケイ素ボールを粉砕媒体とする振動ミル粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。比較例2は、原料であるシリコン粉末及び希釈剤である窒化ケイ素粉末の両方が、Fe,Al,Cr,それ以外の金属不純物のいずれも多く含む例である。比較例3は、希釈剤である窒化ケイ素粉末がFe,Al,Cr,それ以外の金属不純物のいずれも多く含む例である。
[Comparative Example 2 and Comparative Example 3]
The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table. The raw material powder mixed in the blending ratio is charged into a pressure-resistant container, and a lump of silicon nitride powder is synthesized from the synthetic raw material by a self-combustion reaction in the same manner as in Example 2 under the conditions described in Tables 1 and 2. did. In the same manner as in Example 2, coarse pulverization using a silicon nitride roll crusher and vibration mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4. Comparative Example 2 is an example in which both the silicon powder as a raw material and the silicon nitride powder as a diluent contain a large amount of Fe, Al, Cr, and other metal impurities. Comparative Example 3 is an example in which the silicon nitride powder that is a diluent contains a large amount of Fe, Al, Cr, and other metal impurities.
 [比較例4]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末と、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末より成る原料粉末に、さらに反応補助剤として塩化ナトリウムを添加した。実施例5と同様にして、表1および表2に記載した条件にて、自己燃焼反応により上記の合成原料から窒化ケイ素粉末の塊状物を合成した。
[Comparative Example 4]
A raw material powder composed of a silicon powder having a particle size distribution, a bulk density and a metal impurity content described in Table 1, and a silicon nitride powder having an average particle diameter, a bulk density and a metal impurity content described in the table, Sodium chloride was added as a reaction aid. In the same manner as in Example 5, a lump of silicon nitride powder was synthesized from the above synthetic raw material by a self-combustion reaction under the conditions described in Tables 1 and 2.
 得られた窒化ケイ素粉末の塊状物を、アルミナ製ロールを装着したロールクラッシャーを用いて粗粉砕を行った。 The obtained mass of silicon nitride powder was coarsely pulverized using a roll crusher equipped with an alumina roll.
 さらに、窒化ケイ素の粗粉砕物をアルミナ製ポットに入れ、粉砕用アルミナボールを適当量加えて、振動数1780cpm、振幅5mmで所定の時間だけ振動・回転させることにより、振動ミル粉砕を行った。窒化ケイ素の粉砕物がミル容器壁面に付着して粉砕効率が低下することがあるので、1時間毎に容器内壁に付着した被粉砕物を掻き落とした。 Further, a coarsely pulverized product of silicon nitride was put in an alumina pot, an appropriate amount of pulverized alumina balls were added, and the mixture was vibrated and rotated for a predetermined time at a frequency of 1780 cpm and an amplitude of 5 mm, thereby performing vibration mill pulverization. Since the pulverized product of silicon nitride may adhere to the wall surface of the mill container and the pulverization efficiency may decrease, the crushed object adhered to the inner wall of the container was scraped off every hour.
 比較例4は粗粉砕及び微粉砕の粉砕装置にアルミナを用いた例である。得られた窒化ケイ素の微粉砕物の分析を行った結果を、表1~表4に示す。 Comparative Example 4 is an example in which alumina is used in a coarse pulverization and fine pulverization apparatus. The results of analyzing the finely pulverized silicon nitride obtained are shown in Tables 1 to 4.
 [比較例5~比較例8]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末に、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末を、同表に記載した配合割合で混合した原料粉末を用いた以外は実施例2と同様にして、表1および表2に記載した条件にて、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を合成した。実施例2と同様に窒化ケイ素製のロールクラッシャーによる粗粉砕、窒化ケイ素ボールを粉砕媒体とする振動ミル粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。比較例5は、シリコン粉末と希釈剤である窒化ケイ素粉末の混合粉末の嵩密度が大きい例であり、燃焼生成物の圧壊強度が大きい。比較例6は、混合粉末の嵩密度が小さい例である。比較例6は希釈剤の配合割合が少ない例であり、比較例7は希釈剤の配合割合が多い例である。
[Comparative Examples 5 to 8]
The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table. A lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction in the same manner as in Example 2 except that the raw material powder mixed at the mixing ratio was used under the conditions described in Tables 1 and 2. In the same manner as in Example 2, coarse pulverization using a silicon nitride roll crusher and vibration mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4. Comparative Example 5 is an example in which the bulk density of the mixed powder of silicon powder and silicon nitride powder as a diluent is large, and the crushing strength of the combustion product is large. Comparative Example 6 is an example where the bulk density of the mixed powder is small. Comparative Example 6 is an example with a small proportion of diluent, and Comparative Example 7 is an example with a large proportion of diluent.
 なお、比較例8については、特性的に特段低い評価結果が得られたわけではないが、シリコンと希釈剤(窒化ケイ素)との混合比が窒化ケイ素に換算した値で4.0:6.0であることから、前述した理由により、窒化ケイ素粉末を安価に製造するという本発明の趣旨から反するものである。 In Comparative Example 8, although the evaluation result was not particularly low in terms of characteristics, the mixing ratio of silicon and diluent (silicon nitride) was 4.0: 6.0 in terms of silicon nitride. Therefore, for the reasons described above, it is contrary to the gist of the present invention that silicon nitride powder is produced at low cost.
 [比較例9]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末に、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末を、同表に記載した配合割合で混合した原料粉末を用いた以外は実施例2と同様にして、表1および表2に記載した条件にて、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を合成した。
[Comparative Example 9]
The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table. A lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction in the same manner as in Example 2 except that the raw material powder mixed at the mixing ratio was used under the conditions described in Tables 1 and 2.
 得られた窒化ケイ素粉末の塊状物を、アルミナ製ロールを装着したロールクラッシャーを用いて粗粉砕を行った。
 さらに、窒化ケイ素の粗粉砕物をアルミナ製ポットに入れ、粉砕用アルミナボールを適当量加えて、比較例4と同様に粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。比較例9は粗粉砕及び微粉砕の粉砕装置にアルミナを用いた例である。結果を、表1~表4に示す。
The obtained mass of silicon nitride powder was coarsely pulverized using a roll crusher equipped with an alumina roll.
Furthermore, the coarsely pulverized product of silicon nitride was put in an alumina pot, an appropriate amount of alumina balls for pulverization was added, the pulverization treatment was performed in the same manner as in Comparative Example 4, and the finely pulverized product of silicon nitride was analyzed. . Comparative Example 9 is an example in which alumina is used in a coarse pulverization and fine pulverization apparatus. The results are shown in Tables 1 to 4.
 (シリコンインゴット鋳造用離型剤としての適合性の評価)
 実施例1~実施例7および比較例1~比較例4で得られた窒化ケイ素粉末について、多結晶シリコンインゴット製造に用いる離型剤としての適合性を評価した。
(Evaluation of compatibility as a mold release agent for silicon ingot casting)
The silicon nitride powders obtained in Examples 1 to 7 and Comparative Examples 1 to 4 were evaluated for suitability as a release agent for use in producing a polycrystalline silicon ingot.
 実施例および比較例の窒化ケイ素粉末の多結晶シリコンインゴット鋳造用鋳型の離型剤としての評価は、以下のように実施した。 Evaluation of the silicon nitride powders of Examples and Comparative Examples as mold release agents for casting molds of polycrystalline silicon ingots was performed as follows.
 (窒化ケイ素粉末の重量減少率と遊離シリコンの生成量)
 多結晶シリコンインゴット鋳造用の離型剤としての安定性を確認するための模擬評価として、アルゴン雰囲気下、1570℃における重量減少率を測定した。
(Weight reduction rate of silicon nitride powder and free silicon production)
As a simulation evaluation for confirming the stability as a release agent for casting a polycrystalline silicon ingot, the weight reduction rate at 1570 ° C. was measured under an argon atmosphere.
 即ち、本発明の窒化ケイ素の重量減少率は、以下の方法により測定した。まず、窒化ケイ素粉末を5.5g秤量し、底面が200mmの正方形で、深さが200mm、厚みが10mmのアルミナ製坩堝に充填し、バッチ式の焼成炉に収容して、炉内をアルゴン雰囲気に置換した後、アルゴン雰囲気下で、1570℃まで昇温し、5時間保持させた。室温まで冷却させた後に、アルゴン熱処理粉末の重量を測定する。窒化ケイ素粉末の重量減少率は、下記の式(7)から算出した。 That is, the weight reduction rate of the silicon nitride of the present invention was measured by the following method. First, 5.5 g of silicon nitride powder was weighed, filled in an alumina crucible having a square bottom of 200 mm, a depth of 200 mm, and a thickness of 10 mm, and housed in a batch-type firing furnace, and the inside of the furnace was filled with an argon atmosphere. Then, the temperature was raised to 1570 ° C. under an argon atmosphere and held for 5 hours. After cooling to room temperature, the weight of the argon heat treated powder is measured. The weight reduction rate of the silicon nitride powder was calculated from the following formula (7).
  窒化ケイ素粉末の重量減少率(質量%)=(窒化ケイ素粉末の重量(g)―アルゴン熱処理粉末の重量(g))/(窒化ケイ素粉末の重量(g))×100・・・・・(7) Weight reduction rate of silicon nitride powder (mass%) = (weight of silicon nitride powder (g) −weight of argon heat-treated powder (g)) / (weight of silicon nitride powder (g)) × 100. 7)
 また、アルゴン雰囲気下、1570℃で5時間保持という熱処理後の窒化ケイ素粉末の遊離シリコン生成量を測定した。X線回折装置(株式会社リガク製RINT-TTRIII)を用い、熱処理後の窒化ケイ素粉末の粉末X線回折測定(XRD)を行った所、存在する結晶相は、β型窒化ケイ素、α型窒化ケイ素及び金属シリコンの三相であった。得られた粉末X線回折パターンを、株式会社リガク製解析プログラムJADEを用いてリートベルト解析を行うことにより、遊離シリコンの生成量を求めた。 Further, the amount of free silicon produced in the silicon nitride powder after heat treatment of holding at 1570 ° C. for 5 hours under an argon atmosphere was measured. Using an X-ray diffractometer (RINT-TTRIII, manufactured by Rigaku Corporation), powder X-ray diffraction measurement (XRD) of the silicon nitride powder after heat treatment was performed. The existing crystal phase was β-type silicon nitride, α-type nitride It was a three phase silicon and metallic silicon. The obtained powder X-ray diffraction pattern was subjected to Rietveld analysis using an analysis program JADE manufactured by Rigaku Corporation to determine the amount of free silicon produced.
 シリコンインゴット鋳造用離型剤としての適合性の評価結果を、表5に示す。アルゴン雰囲気中焼成後の実施例1~7の窒化ケイ素粉末の重量減少率は0.20~0.80重量%、遊離シリコン生成量は0.10~0.28重量%であったのに対して、比較例1~4の窒化ケイ素粉末の重量減少率は2.11~5.4重量%、遊離シリコン生成量は0.49~1.03重量%であった。重量減少率が大きく、遊離シリコン生成量の多い離型剤はシリコンインゴット鋳造時に鋳造用ルツボ壁から剥離してしまうという問題がある。このため、離型剤として高温まで安定した特性を発現し得る離型剤用窒化ケイ素粉末が要望されている。本評価により、実施例1~7の窒化ケイ素粉末の方が多結晶シリコンインゴット鋳造雰囲気における高温安定性に優れ、離型剤として安定した特性を発現し得ることが分かった。即ち、本発明の高純度窒化ケイ素粉末は、多結晶シリコン鋳造時に使用される離型剤として好適である。 Table 5 shows the results of evaluation of compatibility as a mold release agent for silicon ingot casting. The weight reduction rate of the silicon nitride powders of Examples 1 to 7 after firing in an argon atmosphere was 0.20 to 0.80% by weight and the amount of free silicon produced was 0.10 to 0.28% by weight. The weight reduction rates of the silicon nitride powders of Comparative Examples 1 to 4 were 2.11 to 5.4% by weight, and the amount of free silicon produced was 0.49 to 1.03% by weight. There is a problem that a mold release agent having a large weight reduction rate and a large amount of free silicon is peeled off from the crucible wall for casting at the time of silicon ingot casting. For this reason, there is a demand for a silicon nitride powder for a release agent that can exhibit stable characteristics up to a high temperature as a release agent. From this evaluation, it was found that the silicon nitride powders of Examples 1 to 7 were superior in high-temperature stability in a polycrystalline silicon ingot casting atmosphere and could exhibit stable characteristics as a release agent. That is, the high-purity silicon nitride powder of the present invention is suitable as a release agent used for casting polycrystalline silicon.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (高熱伝導窒化ケイ素基板などの焼結体製造用原料としての適合性の評価)
 実施例8~実施例16および比較例5~比較例9で得られた窒化ケイ素粉末について、高熱伝導窒化ケイ素基板などの焼結体製造用原料としての適合性を評価した。
(Evaluation of compatibility as a raw material for manufacturing sintered bodies such as high thermal conductivity silicon nitride substrates)
The silicon nitride powders obtained in Examples 8 to 16 and Comparative Examples 5 to 9 were evaluated for suitability as raw materials for producing a sintered body such as a high thermal conductivity silicon nitride substrate.
 実施例および比較例の窒化ケイ素粉末の焼結特性の評価は、以下のように実施した。 The evaluation of the sintering characteristics of the silicon nitride powders of Examples and Comparative Examples was performed as follows.
 (窒化ケイ素焼結体の作製および特性評価)
 窒化ケイ素粉末94.5質重量部に、焼結助剤として酸化イットリウム3.5重量部および酸化マグネシウム2重量部を添加した配合粉末を、媒体としてエタノールを用い、ボールミルにて48時間湿式混合した後、スラリーを減圧乾燥した。得られた混合物を30MPaの成形圧で62mm×62mm×厚さ7.3mmの形状および、12.3mmφ×厚さ3.2mmの形状に金型成形した後、150MPaの成形圧でCIP(Cold Isostatic Pressing)成形した。得られた成形体を窒化ホウ素製ルツボに装入し、0.8MPaの窒素雰囲気下で1850℃まで加熱し、1850℃で22時間保持して焼結した。得られた窒化ケイ素焼結体を切断・研削加工し、JIS R1601に準拠した3mm×4mm×40mmの曲げ強度試験片、及びJIS R1611に準拠した熱伝導率測定用の10mmφ×2mmの試験片を作製した。焼結体の相対密度はアルキメデス法で測定した。室温における室温4点曲げ強度を、インストロン社製万能材料試験機を用いてJIS R1601に準拠した方法により測定し、室温における熱伝導率をJISR1611に準拠したフラッシュ法により測定した。
(Production and characteristic evaluation of sintered silicon nitride)
A blended powder obtained by adding 3.5 parts by weight of yttrium oxide as a sintering aid and 2 parts by weight of magnesium oxide to 94.5 parts by weight of silicon nitride powder was wet mixed in a ball mill for 48 hours using ethanol as a medium. Thereafter, the slurry was dried under reduced pressure. The obtained mixture was molded into a shape of 62 mm × 62 mm × thickness 7.3 mm and a shape of 12.3 mmφ × thickness 3.2 mm at a molding pressure of 30 MPa, and then CIP (Cold Isostatic) at a molding pressure of 150 MPa. Pressing). The obtained molded body was placed in a boron nitride crucible, heated to 1850 ° C. under a nitrogen atmosphere of 0.8 MPa, and held at 1850 ° C. for 22 hours for sintering. The obtained silicon nitride sintered body was cut and ground, and a 3 mm × 4 mm × 40 mm bending strength test piece according to JIS R1601 and a 10 mmφ × 2 mm test piece for measuring thermal conductivity according to JIS R1611 were obtained. Produced. The relative density of the sintered body was measured by Archimedes method. The room temperature 4-point bending strength at room temperature was measured by a method based on JIS R1601 using an Instron universal material testing machine, and the thermal conductivity at room temperature was measured by a flash method based on JIS R1611.
 高熱伝導窒化ケイ素基板などの焼結体製造用原料としての適合性の評価結果を、表6に示す。
 焼結体の相対到達密度は実施例8~実施例16の窒化ケイ素粉末では95.6~97.7%、比較例5~比較例9の窒化ケイ素粉末では97.3~99.3%であった。焼結体の室温における四点曲げ強度は、実施例8~実施例16の窒化ケイ素粉末では756~812MPa、比較例5~比較例9の窒化ケイ素粉末では717~768MPaであった。
これに対して、焼結体の室温における熱伝導度は、実施例8~実施例16の窒化ケイ素粉末では89~101W/mK、比較例5~比較例9の窒化ケイ素粉末では53~75W/mKであり、実施例8~実施例16の窒化ケイ素粉末の方が、熱伝導度が高くて、高特性の窒化ケイ素質焼結体の得られることが分かった。即ち、本発明の高純度窒化ケイ素粉末は、高熱伝導性が要求される半導体製造用各種治具、高熱伝導窒化ケイ素基板などの焼結体製造用原料として好適である。
Table 6 shows the evaluation results of compatibility as a raw material for producing a sintered body such as a high thermal conductivity silicon nitride substrate.
The relative reach density of the sintered bodies was 95.6 to 97.7% for the silicon nitride powders of Examples 8 to 16, and 97.3 to 99.3% for the silicon nitride powders of Comparative Examples 5 to 9. there were. The four-point bending strength of the sintered body at room temperature was 756 to 812 MPa for the silicon nitride powders of Examples 8 to 16, and 717 to 768 MPa for the silicon nitride powders of Comparative Examples 5 to 9.
In contrast, the thermal conductivity of the sintered body at room temperature was 89 to 101 W / mK for the silicon nitride powders of Examples 8 to 16, and 53 to 75 W / m for the silicon nitride powders of Comparative Examples 5 to 9. It was found that the silicon nitride powders of Examples 8 to 16 had a higher thermal conductivity and a high-quality silicon nitride sintered body was obtained. That is, the high-purity silicon nitride powder of the present invention is suitable as a raw material for manufacturing sintered bodies such as various jigs for manufacturing semiconductors and high-heat-conducting silicon nitride substrates that require high thermal conductivity.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [実施例17]
 実施例2で得られた窒化ケイ素粉末を用いて、以下の方法により、離型剤としての特性を評価した。
 即ち、得られた窒化ケイ素粉末を離型剤として塗布して作製した鋳型を用いて多結晶シリコンインゴットの一方向凝固実験を行い、多結晶シリコンインゴットを鋳型から離型した。1500℃及び1550℃で溶融してインゴットを製造したが、インゴットに離型剤が全く付着していなかった。
 次に、1550℃での一方向凝固実験にて得られた多結晶シリコンインゴットに含まれるFe、Cr,Al、およびこれら(FeとCrとAl)以外の金属不純物を、以下のようにして測定した。
 即ち、得られた多結晶シリコンインゴットを、切断面が凝固方向に対して平行になるように二分割し、その切断面の中心軸上で、底から1cm上の位置を測定位置として、飛行時間型二次イオン質量分析法(アルバック・ファイ社製(TRIFT V nano TOF型))にて表面分析を行った。その結果、Fe、Cr,Al、およびこれら(FeとCrとAl)以外の金属不純物の二次質量スペクトルの規格化二次イオン強度は1×10-4未満であったので、金属不純物は検出されなかったと判定した。ここで、規格化二次イオン強度とは、各スペクトルの二次イオン強度を、検出された全スペクトルの二次イオン強度で除したものである。
[Example 17]
Using the silicon nitride powder obtained in Example 2, the properties as a release agent were evaluated by the following method.
That is, a unidirectional solidification experiment of a polycrystalline silicon ingot was performed using a mold prepared by applying the obtained silicon nitride powder as a release agent, and the polycrystalline silicon ingot was released from the mold. An ingot was produced by melting at 1500 ° C. and 1550 ° C., but no release agent adhered to the ingot.
Next, Fe, Cr, Al, and metal impurities other than these (Fe, Cr, and Al) contained in the polycrystalline silicon ingot obtained by the unidirectional solidification experiment at 1550 ° C. were measured as follows. did.
That is, the obtained polycrystalline silicon ingot was divided into two so that the cut surface was parallel to the solidification direction, and the flight time was measured with the position 1 cm above the bottom on the central axis of the cut surface. Surface analysis was performed using a type secondary ion mass spectrometry method (manufactured by ULVAC-PHI (TRIFT V nano TOF type)). As a result, the normalized secondary ion intensity of secondary mass spectra of Fe, Cr, Al, and metal impurities other than these (Fe, Cr, and Al) was less than 1 × 10 −4 , so that metal impurities were detected Judged not to have been. Here, the normalized secondary ion intensity is obtained by dividing the secondary ion intensity of each spectrum by the secondary ion intensity of all detected spectra.
 [実施例18]
 シリコン粉末のD50が4.0μm、嵩密度が0.4g/cmであること、混合粉末の嵩密度が0.42g/cmであること、粉砕方法としてビーズミル(粉砕媒体および内壁ライナーは窒化ケイ素質焼結体)を使用したことを除いて実施例8と同様にして、シリコン粉末と窒化ケイ素粉末の混合原料粉末の燃焼合成反応及び粉砕(粗粉砕及び微粉砕)を行って、窒化ケイ素粉末を製造した。
 得られた窒化ケイ素粉末は、比表面積8.0m/g、β型窒化ケイ素の割合が100質量%、D10が0.85μm、D50が2.4μm、D90が5.1μm、Feの含有割合が7ppm、Crの含有割合が3ppm、Alの含有割合が20ppm、Fe、Cr、Al以外の金属不純物の含有割合が21ppm、Williamson-Hallプロットを適用して算出されるβ型窒化ケイ素粉末の結晶子径Dが180nm、結晶歪が0.98×10-4、DBET/Dが1.3であった。
 実施例8と同様に、得られた窒化ケイ素粉末を用いて窒化ケイ素焼結体を作製し、得られた窒化ケイ素焼結体特性を評価したところ、嵩密度97.7%、曲げ強度813MPa、熱伝導度103W/mKであった。
[Example 18]
The D 50 of the silicon powder is 4.0 μm, the bulk density is 0.4 g / cm 3 , the bulk density of the mixed powder is 0.42 g / cm 3 , and a bead mill (grinding medium and inner wall liner is used as a grinding method) In the same manner as in Example 8 except that a silicon nitride sintered body) was used, a combustion synthesis reaction and pulverization (coarse pulverization and fine pulverization) of a mixed raw material powder of silicon powder and silicon nitride powder were performed, and nitridation was performed. Silicon powder was produced.
The obtained silicon nitride powder has a specific surface area of 8.0 m 2 / g, a β-type silicon nitride ratio of 100% by mass, D 10 of 0.85 μm, D 50 of 2.4 μm, D 90 of 5.1 μm, Fe Β-type silicon nitride calculated by applying a Williamson-Hall plot with a content ratio of 7 ppm, a Cr content ratio of 3 ppm, an Al content ratio of 20 ppm, a content ratio of metal impurities other than Fe, Cr and Al The crystallite diameter D c of the powder was 180 nm, the crystal strain was 0.98 × 10 −4 , and D BET / D c was 1.3.
In the same manner as in Example 8, a silicon nitride sintered body was produced using the obtained silicon nitride powder, and the obtained silicon nitride sintered body was evaluated for properties. The bulk density was 97.7%, the bending strength was 813 MPa, The thermal conductivity was 103 W / mK.
 [実施例19]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末に、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末を、同表に記載した配合割合で混合した原料粉末を用いた以外は実施例18と同様にして、表1および表2に記載した条件にて、自己燃焼反応により該合成原料から窒化ケイ素粉末の塊状物を合成した。実施例18と同様に窒化ケイ素製のロールクラッシャーによる粗粉砕、窒化ケイ素ボールを粉砕媒体とするビーズミル粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。実施例18と同様に、得られた窒化ケイ素粉末を用いて窒化ケイ素焼結体を作製し、得られた窒化ケイ素焼結体特性を評価した。その結果を表6に示す。
[Example 19]
The silicon powder having particle size distribution, bulk density and metal impurity content described in Table 1 and silicon nitride powder having the average particle size, bulk density and metal impurity content described in the table are listed in the same table. A lump of silicon nitride powder was synthesized from the synthetic raw material by a self-combustion reaction under the conditions described in Tables 1 and 2 in the same manner as in Example 18 except that the raw material powder mixed at the mixing ratio was used. In the same manner as in Example 18, coarse pulverization using a silicon nitride roll crusher and bead mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4. In the same manner as in Example 18, a silicon nitride sintered body was produced using the obtained silicon nitride powder, and the characteristics of the obtained silicon nitride sintered body were evaluated. The results are shown in Table 6.
 [実施例20]
 表1に記載した、粒度分布、嵩密度および金属不純物含有量を有するシリコン粉末と、同表に記載した平均粒径、嵩密度および金属不純物含有量を有する窒化ケイ素粉末より成る原料粉末に、さらに反応補助剤として塩化ナトリウムを添加した。実施例18と同様にして、表1および表2に記載した条件にて、自己燃焼反応により上記の合成原料から窒化ケイ素粉末の塊状物を合成した。実施例18と同様に窒化ケイ素製のロールクラッシャーによる粗粉砕、窒化ケイ素ボールを粉砕媒体とするビーズミル粉砕処理を行い、得られた窒化ケイ素の微粉砕物の分析を行った。結果を、表1~表4に示す。実施例18と同様に、得られた窒化ケイ素粉末を用いて窒化ケイ素焼結体を作製し、得られた窒化ケイ素焼結体特性を評価した。その結果を表6に示す。
[Example 20]
A raw material powder composed of a silicon powder having a particle size distribution, a bulk density and a metal impurity content described in Table 1, and a silicon nitride powder having an average particle diameter, a bulk density and a metal impurity content described in the table, Sodium chloride was added as a reaction aid. In the same manner as in Example 18, a lump of silicon nitride powder was synthesized from the above synthetic raw material by a self-combustion reaction under the conditions described in Tables 1 and 2. In the same manner as in Example 18, coarse pulverization using a silicon nitride roll crusher and bead mill pulverization using silicon nitride balls as a pulverization medium were performed, and the resulting finely pulverized silicon nitride was analyzed. The results are shown in Tables 1 to 4. In the same manner as in Example 18, a silicon nitride sintered body was produced using the obtained silicon nitride powder, and the characteristics of the obtained silicon nitride sintered body were evaluated. The results are shown in Table 6.
 本発明による高純度窒化ケイ素粉末の製造方法は、半導体製造用各種治具用原料や高熱伝導窒化ケイ素基板用原料など、高い熱伝導度と機械的強度を併せ持つ窒化ケイ素質焼結体原料として好適な高純度窒化ケイ素粉末を燃焼合成法によって安価に製造する方法として有用である。また、本発明による高純度窒化ケイ素粉末の製造方法は、多結晶シリコンインゴットの離型剤として、特に高温での使用に好適な高純度窒化ケイ素粉末を燃焼合成法によって安価に製造する方法としても有用である。 The method for producing high-purity silicon nitride powder according to the present invention is suitable as a raw material for silicon nitride sintered bodies having both high thermal conductivity and mechanical strength, such as raw materials for various jigs for manufacturing semiconductors and raw materials for high thermal conductive silicon nitride substrates. It is useful as a method for producing inexpensive high-purity silicon nitride powder at low cost by a combustion synthesis method. In addition, the method for producing high-purity silicon nitride powder according to the present invention can be used as a mold release agent for polycrystalline silicon ingots, particularly as a method for producing high-purity silicon nitride powder suitable for use at high temperatures at low cost by a combustion synthesis method. Useful.
 10  反応器
 11  電極
 12  カーボンヒーター
 13  着火材
 14  圧力センサー
 15  窒素ガス導入管
 16  窒素ガス圧力制御弁
 17  空気開閉弁
 20  内容器
 21  流水管
 22  温度センサーを装着した支持台
 23  黒鉛るつぼ
 24  流水開閉弁
 25  出発原料
 30  外側壁
DESCRIPTION OF SYMBOLS 10 Reactor 11 Electrode 12 Carbon heater 13 Ignition material 14 Pressure sensor 15 Nitrogen gas introduction pipe 16 Nitrogen gas pressure control valve 17 Air on-off valve 20 Inner container 21 Flowing water pipe 22 Support stand equipped with a temperature sensor 23 Graphite crucible 24 Flowing water on-off valve 25 Starting material 30 Outer wall

Claims (14)

  1.  シリコン粉末と希釈剤の窒化ケイ素粉末とを混合し、得られた混合粉末をルツボに充填して、燃焼反応に伴う自己発熱および伝播現象を利用した燃焼合成法により前記シリコン粉末を燃焼させることによって窒化ケイ素から構成される凝結塊を製造し、前記凝結塊を粉砕する高純度窒化ケイ素粉末の製造方法であって、
     前記シリコン粉末は、鉄およびアルミニウムの含有量がそれぞれ100ppm以下であり、鉄およびアルミニウム以外の金属不純物の合計含有量が100ppm以下であり、
     前記希釈剤は、鉄およびアルミニウムの含有量がそれぞれ100ppm以下であり、鉄およびアルミニウム以外の金属不純物の合計含有量が100ppm以下である窒化ケイ素粉末であり、
     前記混合粉末における前記シリコン粉末と前記希釈剤との配合比は、質量比で9:1~5:5であり、
     前記ルツボに充填された前記混合粉末より構成される粉体層の嵩密度は、0.3~0.65g/cmであり、
     前記凝結塊を、少なくとも窒化ケイ素を含む粉砕媒体を装填または装着した粉砕装置を使用して粉砕することを特徴とする高純度窒化ケイ素粉末の製造方法。
    By mixing silicon powder and silicon nitride powder as a diluent, filling the obtained mixed powder into a crucible, and burning the silicon powder by a combustion synthesis method utilizing self-heating and propagation phenomena associated with combustion reaction A method for producing a high-purity silicon nitride powder comprising producing a coagulated mass composed of silicon nitride and pulverizing the coagulated mass,
    The silicon powder has an iron and aluminum content of 100 ppm or less, and a total content of metal impurities other than iron and aluminum is 100 ppm or less,
    The diluent is a silicon nitride powder having an iron and aluminum content of 100 ppm or less and a total content of metal impurities other than iron and aluminum of 100 ppm or less,
    The compounding ratio of the silicon powder and the diluent in the mixed powder is 9: 1 to 5: 5 by mass ratio,
    The bulk density of the powder layer composed of the mixed powder filled in the crucible is 0.3 to 0.65 g / cm 3 ,
    A method for producing a high-purity silicon nitride powder, characterized in that the agglomerated mass is pulverized using a pulverization apparatus loaded or loaded with a pulverization medium containing at least silicon nitride.
  2.  前記シリコン粉末の嵩密度が0.2~0.7g/cmであることを特徴とする請求項1記載の高純度窒化ケイ素粉末の製造方法。 The method for producing high-purity silicon nitride powder according to claim 1, wherein the bulk density of the silicon powder is 0.2 to 0.7 g / cm 3 .
  3.  前記希釈剤の窒化ケイ素粉末の嵩密度が0.2~0.7g/cmであること特徴とする請求項1または請求項2に記載の高純度窒化ケイ素粉末の製造方法。 3. The method for producing high-purity silicon nitride powder according to claim 1, wherein a bulk density of the silicon nitride powder as the diluent is 0.2 to 0.7 g / cm 3 .
  4.  前記混合粉末より構成される前記粉体層の嵩密度が0.36~0.48g/cmでああること特徴とする請求項1~3のいずれか一項に記載の高純度窒化ケイ素粉末の製造方法。 The high-purity silicon nitride powder according to any one of claims 1 to 3, wherein the powder layer composed of the mixed powder has a bulk density of 0.36 to 0.48 g / cm 3. Manufacturing method.
  5.  前記シリコン粉末の50体積%粒子径D50が1.0~15μmであり、90体積%粒子径D90が10~44μmであることを特徴とする請求項1~4のいずれか一項に記載の高純度窒化ケイ素粉末の製造方法。 The 50% by volume particle size D 50 of the silicon powder is 1.0 to 15 μm, and the 90% by volume particle size D 90 is 10 to 44 μm. Of high purity silicon nitride powder.
  6.  前記粉体層の厚さが20~70mmであり、前記粉体層の最上部より着火させて前記シリコン粉末を燃焼させることを特徴とする請求項1~5のいずれか一項に記載の高純度窒化ケイ素粉末の製造方法。 The high powder according to any one of claims 1 to 5, wherein the powder layer has a thickness of 20 to 70 mm and is ignited from an uppermost portion of the powder layer to burn the silicon powder. A method for producing a pure silicon nitride powder.
  7.  前記シリコン粉末は、鉄、クロムおよびアルミニウムの含有量がそれぞれ50ppm以下であり、鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量が50ppm以下であり、前記希釈剤は、鉄、クロムおよびアルミニウムの含有量がそれぞれ50ppm以下であり、鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量が50ppm以下である窒化ケイ素粉末であることを特徴とする請求項1~6のいずれか一項に記載の高純度窒化ケイ素粉末の製造方法。 The silicon powder has an iron, chromium and aluminum content of 50 ppm or less, and the total content of metal impurities other than iron, chromium and aluminum is 50 ppm or less. The diluent is composed of iron, chromium and aluminum. The silicon nitride powder according to any one of claims 1 to 6, wherein the silicon nitride powder has a content of 50 ppm or less and a total content of metal impurities other than iron, chromium, and aluminum is 50 ppm or less. A method for producing high-purity silicon nitride powder.
  8.  前記凝結塊を、窒化ケイ素質焼結体製ロールを装着したロールクラッシャを使用して第一の粉砕に供することを特徴とする請求項1~7のいずれか一項に記載の高純度窒化ケイ素粉末の製造方法。 The high-purity silicon nitride according to any one of claims 1 to 7, wherein the aggregate is subjected to a first pulverization using a roll crusher equipped with a roll made of a silicon nitride sintered body. Powder manufacturing method.
  9.  前記第一の粉砕により得られた窒化ケイ素粉末を、窒化ケイ素質焼結体より構成される粉砕媒体を装填した容器に収容して、振動ミルまたはビーズミルによりさらに第二の粉砕に供することを特徴とする請求項8に記載の高純度窒化ケイ素粉末の製造方法。 The silicon nitride powder obtained by the first pulverization is accommodated in a container loaded with a pulverization medium composed of a silicon nitride sintered body, and is further subjected to second pulverization by a vibration mill or a bead mill. The manufacturing method of the high purity silicon nitride powder of Claim 8.
  10.  前記粉砕媒体は、気孔率が2%以下で、ビッカース硬度が14GPa以上であることを特徴とする請求項9に記載の高純度窒化ケイ素粉末の製造方法。 The method for producing high-purity silicon nitride powder according to claim 9, wherein the grinding medium has a porosity of 2% or less and a Vickers hardness of 14 GPa or more.
  11.  前記高純度窒化ケイ素粉末は、β相の比率が70質量%以上であり、BET比表面積が3.0~13.0m/gであり、鉄、クロムおよびアルミニウムの含有量がそれぞれ200ppm以下であり、鉄、クロムおよびアルミニウム以外の金属不純物の合計含有量が200ppm以下であることを特徴とする請求項1~10のいずれか一項に記載の高純度窒化ケイ素粉末の製造方法。 The high-purity silicon nitride powder has a β-phase ratio of 70% by mass or more, a BET specific surface area of 3.0 to 13.0 m 2 / g, and an iron, chromium, and aluminum content of 200 ppm or less, respectively. The method for producing high-purity silicon nitride powder according to any one of claims 1 to 10, wherein the total content of metal impurities other than iron, chromium and aluminum is 200 ppm or less.
  12.  前記高純度窒化ケイ素粉末は、粉末X線回折パターンから算出される結晶子径Dが0.15~1μmであり、結晶有効歪が1.5×10-4以下であり、BET比表面積から算出される球相当径DBETと結晶子径Dとの比率DBET/Dが1~3であることを特徴とする請求項11記載の高純度窒化ケイ素粉末の製造方法。 The high-purity silicon nitride powder, crystallite diameter D C that is calculated from the powder X-ray diffraction pattern is 0.15 ~ 1 [mu] m, the crystal effective strain is at 1.5 × 10 -4 or less, the BET specific surface area the method according to claim 11 high purity silicon nitride powder, wherein the ratio D BET / D C of the sphere equivalent diameter D BET calculated and crystallite diameter D C is 1-3.
  13.  前記高純度窒化ケイ素粉末が、
     レーザ回折散乱法により測定される体積基準の50%粒子径をD50とし、90%粒子径をD90としたときに、D50が1.7μm以上20μm以下であり、D90が10μm以上40μm以下であり、
     Feの含有割合が100ppm以下であり、
     Crの含有割合が100ppm以下であり、
     Alの含有割合が100ppm以下であり、
     Fe、CrおよびAl以外の金属不純物の含有割合の合計が100ppm以下であり、
     β型窒化ケイ素の粉末X線回折パターンよりWilliamson-Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたときに、Dが200nm以上であることを特徴とする請求項11記載の高純度窒化ケイ素粉末の製造方法。
    The high purity silicon nitride powder is
    When the volume-based 50% particle diameter measured by the laser diffraction scattering method is D 50 and the 90% particle diameter is D 90 , D 50 is 1.7 μm or more and 20 μm or less, and D 90 is 10 μm or more and 40 μm. And
    Fe content is 100 ppm or less,
    Cr content is 100 ppm or less,
    Al content is 100 ppm or less,
    The total content of metal impurities other than Fe, Cr and Al is 100 ppm or less,
    The crystallite size of β-type silicon nitride which is calculated using the Williamson-Hall type from powder X-ray diffraction pattern of β-type silicon nitride is taken as D C, wherein, wherein D C is 200nm or more Item 12. A method for producing a high purity silicon nitride powder according to Item 11.
  14.  前記高純度窒化ケイ素粉末が、
     BET法により測定される比表面積が5m/g以上20m/g以下であり、
     レーザ回折散乱法により測定される体積基準の50%粒子径をD50とし、90%粒子径をD90としたときに、D50が0.5μm以上3μm以下であり、D90が3μm以上7μm以下であり、
     β型窒化ケイ素の粉末X線回折パターンよりWilliamson-Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたときに、Dが120nm以上であり、
     前記比表面積より算出される比表面積相当径をDBETとしたときに、DBET/D(nm/nm)が3以下であり、
     β型窒化ケイ素の粉末X線回折パターンよりWilliamson-Hall式を用いて算出されるβ型窒化ケイ素の結晶歪が1.5×10-4以下である特徴とする請求項11記載の高純度窒化ケイ素粉末の製造方法。
    The high purity silicon nitride powder is
    The specific surface area measured by the BET method is 5 m 2 / g or more and 20 m 2 / g or less,
    When the volume-based 50% particle diameter measured by the laser diffraction scattering method is D 50 and the 90% particle diameter is D 90 , D 50 is 0.5 μm or more and 3 μm or less, and D 90 is 3 μm or more and 7 μm. And
    The crystallite size of β-type silicon nitride which is calculated using the Williamson-Hall type from powder X-ray diffraction pattern of β-type silicon nitride is taken as D C, and a D C is 120nm or more,
    When the specific surface area equivalent diameter calculated from the specific surface area is D BET , D BET / D C (nm / nm) is 3 or less,
    The high-purity nitriding according to claim 11, wherein the crystal strain of β-type silicon nitride calculated from the powder X-ray diffraction pattern of β-type silicon nitride using the Williamson-Hall equation is 1.5 × 10 -4 or less. A method for producing silicon powder.
PCT/JP2017/044614 2016-12-12 2017-12-12 Method for producing high-purity silicon nitride powder WO2018110565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-240761 2016-12-12
JP2016240761A JP2020023406A (en) 2016-12-12 2016-12-12 Method of producing high purity silicon nitride powder

Publications (1)

Publication Number Publication Date
WO2018110565A1 true WO2018110565A1 (en) 2018-06-21

Family

ID=62559385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044614 WO2018110565A1 (en) 2016-12-12 2017-12-12 Method for producing high-purity silicon nitride powder

Country Status (3)

Country Link
JP (1) JP2020023406A (en)
TW (1) TW201829299A (en)
WO (1) WO2018110565A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167879A1 (en) 2018-02-28 2019-09-06 株式会社トクヤマ Method for manufacturing silicon nitride powder
EP3915934A4 (en) * 2019-03-18 2022-04-20 Qingdao Cup New Materials Co., Ltd. High-purity low-aluminium spherical beta silicon nitride powder, manufacturing method therefor and use thereof
KR20220110742A (en) 2019-12-05 2022-08-09 가부시끼가이샤 도꾸야마 Method for manufacturing metal nitride
KR20220110741A (en) 2019-12-05 2022-08-09 가부시끼가이샤 도꾸야마 Method for manufacturing metal nitride
JP7353994B2 (en) 2020-01-17 2023-10-02 株式会社トクヤマ Silicon nitride manufacturing method
WO2023210649A1 (en) * 2022-04-27 2023-11-02 株式会社燃焼合成 COLUMNAR PARTICLES OF β-SILICON NITRIDE, COMPOSITE PARTICLES, SINTERED SUBSTRATE FOR HEAT RADIATION, RESIN COMPOSITE, INORGANIC COMPOSITE, METHOD FOR PRODUCING COLUMNAR PARTICLES OF β-SILICON NITRIDE, AND METHOD FOR PRODUCING COMPOSITE PARTICLES

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7337304B1 (en) 2021-12-22 2023-09-01 株式会社トクヤマ silicon nitride powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264608A (en) * 1999-03-23 2000-09-26 Osamu Yamada Production of boron nitride, aluminum nitride or silicon nitride through combustion synthesis
JP2001354500A (en) * 2000-06-08 2001-12-25 Nissan Motor Co Ltd METHOD FOR SYNTHESIZING alpha-SILICON NITRIDE SINGLE CRYSTAL
JP2003112977A (en) * 2001-10-03 2003-04-18 Denki Kagaku Kogyo Kk Method for producing high purity silicon nitride powder
JP2004002122A (en) * 2002-06-03 2004-01-08 Denki Kagaku Kogyo Kk Method for manufacturing silicon nitride powder
JP2013071864A (en) * 2011-09-28 2013-04-22 Denki Kagaku Kogyo Kk Silicon nitride powder for mold releasing agent, and method for producing the same
JP2015081205A (en) * 2013-10-21 2015-04-27 独立行政法人産業技術総合研究所 Silicon nitride filler, resin composite, insulating substrate, and semiconductor sealant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264608A (en) * 1999-03-23 2000-09-26 Osamu Yamada Production of boron nitride, aluminum nitride or silicon nitride through combustion synthesis
JP2001354500A (en) * 2000-06-08 2001-12-25 Nissan Motor Co Ltd METHOD FOR SYNTHESIZING alpha-SILICON NITRIDE SINGLE CRYSTAL
JP2003112977A (en) * 2001-10-03 2003-04-18 Denki Kagaku Kogyo Kk Method for producing high purity silicon nitride powder
JP2004002122A (en) * 2002-06-03 2004-01-08 Denki Kagaku Kogyo Kk Method for manufacturing silicon nitride powder
JP2013071864A (en) * 2011-09-28 2013-04-22 Denki Kagaku Kogyo Kk Silicon nitride powder for mold releasing agent, and method for producing the same
JP2015081205A (en) * 2013-10-21 2015-04-27 独立行政法人産業技術総合研究所 Silicon nitride filler, resin composite, insulating substrate, and semiconductor sealant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167879A1 (en) 2018-02-28 2019-09-06 株式会社トクヤマ Method for manufacturing silicon nitride powder
CN111727168A (en) * 2018-02-28 2020-09-29 株式会社德山 Method for producing silicon nitride powder
JPWO2019167879A1 (en) * 2018-02-28 2021-02-12 株式会社トクヤマ Method for manufacturing silicon nitride powder
JP7358331B2 (en) 2018-02-28 2023-10-10 株式会社トクヤマ Method for manufacturing silicon nitride powder
EP3915934A4 (en) * 2019-03-18 2022-04-20 Qingdao Cup New Materials Co., Ltd. High-purity low-aluminium spherical beta silicon nitride powder, manufacturing method therefor and use thereof
KR20220110742A (en) 2019-12-05 2022-08-09 가부시끼가이샤 도꾸야마 Method for manufacturing metal nitride
KR20220110741A (en) 2019-12-05 2022-08-09 가부시끼가이샤 도꾸야마 Method for manufacturing metal nitride
JP7353994B2 (en) 2020-01-17 2023-10-02 株式会社トクヤマ Silicon nitride manufacturing method
WO2023210649A1 (en) * 2022-04-27 2023-11-02 株式会社燃焼合成 COLUMNAR PARTICLES OF β-SILICON NITRIDE, COMPOSITE PARTICLES, SINTERED SUBSTRATE FOR HEAT RADIATION, RESIN COMPOSITE, INORGANIC COMPOSITE, METHOD FOR PRODUCING COLUMNAR PARTICLES OF β-SILICON NITRIDE, AND METHOD FOR PRODUCING COMPOSITE PARTICLES

Also Published As

Publication number Publication date
JP2020023406A (en) 2020-02-13
TW201829299A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
KR102643831B1 (en) Method for producing silicon nitride powder
JP6690734B2 (en) Method for producing silicon nitride powder and silicon nitride sintered body
Bonache et al. Synthesis and processing of nanocrystalline tungsten carbide: Towards cemented carbides with optimal mechanical properties
WO2015194552A1 (en) Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
JP2008162851A (en) Silicon alloy, silicon alloy powder, apparatus and method for manufacturing silicon alloy, and silicon alloy sintered compact
CN107663092B (en) Preparation method of AlN powder
Gao et al. A low cost, low energy, environmentally friendly process for producing high-purity boron carbide
JP6693575B2 (en) Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP3827459B2 (en) Silicon nitride powder and method for producing the same
JP6690735B2 (en) Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP3698664B2 (en) Method for producing high purity silicon nitride powder
Titova et al. Development of SHS azide technology of silicon carbide nanopowder
JP2009107909A (en) Method for producing fine crystal particle titanium silicon carbide ceramic
KR20030085746A (en) FABRICATION METHOD OF NANOCRYSTALLINE TiN/Ti-M COMPOSITE POWDER VIA REACTION MILLING
JP4444362B2 (en) Combustion synthesis method and combustion synthesis apparatus for silicon alloy
JP4082803B2 (en) Method for producing silicon nitride powder
Liu et al. Study on the anisotropic growth of rod-like Yb α-SiAlON crystals prepared by combustion synthesis
WO2021112145A1 (en) Metal nitride prodcution method
JP5768270B2 (en) Sialon and synthesis method thereof
JP5033948B2 (en) Method for producing aluminum nitride powder and method for producing aluminum nitride sintered body
JP3827360B2 (en) Manufacturing method of silicon nitride
JPH0748106A (en) Powdery aluminium nitride and its production
JPH02311366A (en) Silicon nitride powder composition
JPH0251406A (en) Production of alpha-silicon nitride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP