JP6690735B2 - Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot - Google Patents

Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot Download PDF

Info

Publication number
JP6690735B2
JP6690735B2 JP2018556701A JP2018556701A JP6690735B2 JP 6690735 B2 JP6690735 B2 JP 6690735B2 JP 2018556701 A JP2018556701 A JP 2018556701A JP 2018556701 A JP2018556701 A JP 2018556701A JP 6690735 B2 JP6690735 B2 JP 6690735B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
nitride powder
silicon
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018556701A
Other languages
Japanese (ja)
Other versions
JPWO2018110567A1 (en
Inventor
卓司 王丸
卓司 王丸
耕司 柴田
耕司 柴田
猛 山尾
猛 山尾
山田 哲夫
哲夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2018110567A1 publication Critical patent/JPWO2018110567A1/en
Application granted granted Critical
Publication of JP6690735B2 publication Critical patent/JP6690735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon

Description

本発明は、鋳型への密着性と離型性が良好な離型層を鋳型に形成し得る窒化ケイ素粉末に関し、特に多結晶シリコンインゴットの離型剤として好適な窒化ケイ素粉末に関する。   TECHNICAL FIELD The present invention relates to a silicon nitride powder capable of forming a mold release layer having excellent adhesion to a mold and mold releasability on the mold, and particularly to a silicon nitride powder suitable as a mold release agent for a polycrystalline silicon ingot.

太陽電池に用いられる多結晶シリコン基板は、通常、縦型ブリッジマン炉を用いて、溶融シリコンを一方向凝固させることにより製造される多結晶シリコンインゴットより採取される。多結晶シリコン基板においては高性能化と低コスト化が要求されており、その要求に応えるには、溶融シリコンの一方向凝固時の多結晶シリコンインゴットへの不純物混入の抑制と、多結晶シリコンインゴットの歩留まりの向上が重要である。縦型ブリッジマン法による溶融シリコンの一方向凝固においては、石英製などの鋳型が用いられるが、多結晶シリコンインゴットの歩留まりを高くするために、鋳型には多結晶シリコンインゴットの離型性が良いことが求められ、窒化ケイ素粉末を含む離型剤が内壁(溶融シリコンと接触する面)に塗布された鋳型が一般的に用いられている。   A polycrystalline silicon substrate used for a solar cell is usually obtained from a polycrystalline silicon ingot produced by unidirectionally solidifying molten silicon using a vertical Bridgman furnace. High performance and low cost are required for polycrystalline silicon substrates, and in order to meet these demands, suppression of impurity mixing into polycrystalline silicon ingot during directional solidification of molten silicon and polycrystalline silicon ingot are required. It is important to improve the yield of In the unidirectional solidification of molten silicon by the vertical Bridgman method, a mold such as quartz is used, but in order to increase the yield of the polycrystalline silicon ingot, the mold has good releasability of the polycrystalline silicon ingot. Therefore, a mold in which a mold release agent containing silicon nitride powder is applied to the inner wall (the surface in contact with molten silicon) is generally used.

縦型ブリッジマン炉は、その構造上、鋳型底面より下方に向かって熱が逃げるため、鋳型には上下方向に大きな温度勾配が生じ、鋳型上部の温度が相対的に高くなる。近年太陽電池基板向けの多結晶シリコンインゴットはますます大型化する傾向にあり、鋳型底部のシリコン(融点;1414℃)が十分溶融するまで温度を上げると、ブリッジマン炉の構造によっては鋳型上部の温度は1500℃以上のような高温になることもある。このような場合、温度が高い鋳型上部では、多結晶シリコンインゴットの離型性が悪くなる、また離型層が鋳型から剥がれて多結晶シリコンインゴットに付着する、などの問題が生じることがある。したがって、多結晶シリコンインゴットの離型層には、高い温度、例えば1500℃以上で一方向凝固を行っても、多結晶シリコンインゴットの離型性や、離型層の鋳型への密着性が良いことが求められる。   Due to the structure of the vertical Bridgman furnace, heat escapes downward from the bottom surface of the mold, so that a large temperature gradient occurs in the vertical direction in the mold, and the temperature at the upper part of the mold becomes relatively high. In recent years, polycrystalline silicon ingots for solar cell substrates have tended to become larger and larger. If the temperature is raised until the silicon (melting point; 1414 ° C) at the bottom of the mold is sufficiently melted, depending on the structure of the Bridgman furnace, The temperature may be as high as 1500 ° C. or higher. In such a case, in the upper part of the mold where the temperature is high, there may be a problem that the releasability of the polycrystalline silicon ingot deteriorates, and the release layer peels from the mold and adheres to the polycrystalline silicon ingot. Therefore, even if the release layer of the polycrystalline silicon ingot is unidirectionally solidified at a high temperature, for example, 1500 ° C. or higher, the release property of the polycrystalline silicon ingot and the adhesion of the release layer to the mold are good. Is required.

このような背景から、太陽電池の基板に適用可能な多結晶シリコンインゴットの歩留まりを向上させるために一方向凝固時のシリコンの溶融温度を高くしても、多結晶シリコンインゴットの離型性と、鋳型への密着性が良好な離型層を形成し得る窒化ケイ素粉末の開発が望まれている。また、長尺の多結晶シリコンインゴットを得るために、上下方向に寸法が大きい鋳型を用いると、鋳型上部は特に長時間高温に曝されることになるので、一方向凝固時のシリコンの溶融時間が長くても、多結晶シリコンインゴットの離型性と、鋳型への密着性が良好な離型層を形成し得る窒化ケイ素粉末の開発が望まれている。   From such a background, even if the melting temperature of silicon during unidirectional solidification is increased to improve the yield of the polycrystalline silicon ingot applicable to the substrate of the solar cell, the releasability of the polycrystalline silicon ingot, and Development of a silicon nitride powder capable of forming a release layer having good adhesion to a mold is desired. Further, in order to obtain a long polycrystalline silicon ingot, when a mold having a large size in the vertical direction is used, the upper part of the mold is exposed to a high temperature for a particularly long time, so the melting time of silicon during unidirectional solidification It is desired to develop a silicon nitride powder capable of forming a release layer having a good releasability of a polycrystalline silicon ingot and a good adhesion to a mold even if the length is long.

例えば特許文献1には、レーザ回折散乱法による90%粒子径が3.0〜10μm、α相の比率が20〜60%、鉄の含有量が100ppm以下である窒化ケイ素粉末であり、粒度分布が2つの極大値を有し、ひとつが0.2μm以上1.0μm未満(極大値1)、もうひとつが1.0μm以上8.0μm以下(極大値2)にあり、かつ極大値1と2の各頻度の比率{(極大値2の頻度)/(極大値1の頻度)}が1.0〜5.0、極大値1と2の間隔が0.8〜7.8μmである窒化ケイ素粉末が、多結晶シリコンインゴットの離型剤として用いられた場合に、塗布時の作業性が改善され、離型剤の剥がれが抑制されることで多結晶シリコンインゴットへの不純物混入が低減できることが記載されている。   For example, Patent Document 1 discloses a silicon nitride powder having a 90% particle diameter of 3.0 to 10 μm by a laser diffraction scattering method, an α phase ratio of 20 to 60%, and an iron content of 100 ppm or less, and a particle size distribution. Has two local maxima, one is 0.2 μm or more and less than 1.0 μm (maximum 1), the other is 1.0 μm or more and 8.0 μm or less (maximum 2), and maxima 1 and 2 Of each frequency of {(frequency of maximum value 2) / (frequency of maximum value 1)} is 1.0 to 5.0, and the interval between maximum values 1 and 2 is 0.8 to 7.8 μm. When the powder is used as a release agent for the polycrystalline silicon ingot, workability during application is improved, and peeling of the release agent is suppressed, so that it is possible to reduce contamination of impurities in the polycrystalline silicon ingot. Have been described.

また特許文献2には、多結晶シリコンインゴットの凝固に用いる坩堝に形成される離型層で、1μm以下の粒子と、2μm〜50μmの範囲、好ましくは2μm〜5μmの範囲の粒子とを含む窒化ケイ素系の離型層が、強度があり(はがれや薄片になって落ちるのを避けることができ)、機械的な耐磨耗性に優れることが記載されている。   Further, Patent Document 2 discloses a nitriding layer formed in a crucible used for solidifying a polycrystalline silicon ingot, which contains particles of 1 μm or less and particles of 2 μm to 50 μm, preferably 2 μm to 5 μm. It is described that the silicon-based release layer has high strength (can avoid peeling and flaking and falling) and excellent mechanical abrasion resistance.

特開2014−9111号公報JP, 2014-9111, A 特表2009−510387号公報Japanese Patent Publication No. 2009-510387

特許文献1には、α相の比率が特定の範囲にある場合に、粒度分布測定により得られる頻度分布曲線が二つのピークを有し、そのピークのピークトップが特定の範囲にある窒化ケイ素粉末が、離型剤の剥がれが抑制され、多結晶シリコンインゴットへの不純物混入が低減できる効果は記載されているものの、粒子径が大きい方のピークトップが8.0μmより大きくなるとその効果がないことも示されている。また、窒化ケイ素の結晶子径や、そのBET径との比などについては記載されておらず、シリコンの溶融温度を高くしたり、あるいはシリコンの溶融時間を長くしたりした場合の多結晶シリコンインゴットの離型性や離型層の鋳型への密着性についても記載されていない。   Patent Document 1 discloses a silicon nitride powder in which the frequency distribution curve obtained by particle size distribution measurement has two peaks and the peak top of the peak is in a specific range when the ratio of α phase is in a specific range. However, although it has been described that the release agent is prevented from peeling off and impurities are mixed into the polycrystalline silicon ingot, it is not effective when the peak top of the larger particle size is larger than 8.0 μm. Are also shown. Further, the crystallite diameter of silicon nitride and its ratio to the BET diameter are not described, and a polycrystalline silicon ingot obtained when the melting temperature of silicon is increased or the melting time of silicon is lengthened. Also, there is no description of the releasability of No. 1 and the adhesion of the release layer to the mold.

また特許文献2には、1μm以下の粒子と、それより大きい2μm〜50μmの粒子とを含む場合に、剥がれにくい離型層になることが記載されているものの、大きい粒子の範囲は、小さい粒子より大きい広い範囲を記載したに過ぎず、具体的に二種類の大きさの粒子を併用した場合の効果は示されていないし、大きい粒子の好ましい範囲としても2μm〜5μmとされているに過ぎない。また、窒化ケイ素の結晶子径や、そのBET径との比などについては記載されておらず、シリコンの溶融温度を高くしたり、あるいはシリコンの溶融時間を長くしたりした場合の多結晶シリコンインゴットの離型性や離型層の鋳型への密着性についても記載されていない。   Further, Patent Document 2 describes that when it contains particles of 1 μm or less and particles of 2 μm to 50 μm larger than that, the release layer is difficult to peel off, but the range of large particles is small. Only a wider range is described, the effect of using particles of two different sizes in combination is not shown, and the preferable range of large particles is only 2 μm to 5 μm. . Further, the crystallite diameter of silicon nitride and its ratio to the BET diameter are not described, and a polycrystalline silicon ingot obtained when the melting temperature of silicon is increased or the melting time of silicon is lengthened. Also, there is no description of the releasability of No. 1 and the adhesion of the release layer to the mold.

そこで本発明は、一方向凝固時のシリコンの溶融温度を高くした場合でも、あるいはシリコンの溶融時間を長くした場合でも、多結晶シリコンインゴットの離型性が良好な、多結晶シリコンインゴットの離型剤として好適に使用することができる窒化ケイ素粉末を提供することを目的とする。   Therefore, the present invention has a good releasability of a polycrystalline silicon ingot even when the melting temperature of silicon during unidirectional solidification is increased or when the melting time of silicon is lengthened. An object of the present invention is to provide a silicon nitride powder that can be suitably used as an agent.

本発明者らは、前記課題を解決するために鋭意研究を重ね、特定の比表面積、特定のβ型窒化ケイ素の割合、特定の結晶子径およびそれと比表面積相当径との比を有し、特定の粒度分布、特に、頻度分布曲線が二つのピークを有し、大きい方のピークのピークトップが大きい範囲にある窒化ケイ素粉末を用いて多結晶シリコンインゴット鋳造用鋳型の離型層を形成すると、一方向凝固時のシリコンの溶融温度を高くしても、多結晶シリコンインゴットの離型性、および離型層の鋳型への密着性が良好であることを見出し、本発明を完成するに至った。すなわち本発明は以下の事項に関する。   The present inventors have conducted extensive studies to solve the above problems, and have a specific specific surface area, a specific β-type silicon nitride ratio, a specific crystallite diameter and a ratio of the specific surface area equivalent diameter thereof, Specific particle size distribution, in particular, the frequency distribution curve has two peaks, when the release layer of the polycrystalline silicon ingot casting mold is formed using a silicon nitride powder in which the peak top of the larger peak is in a large range. The inventors found that even if the melting temperature of silicon during unidirectional solidification was increased, the releasability of the polycrystalline silicon ingot and the adhesion of the release layer to the mold were good, and the present invention was completed. It was That is, the present invention relates to the following matters.

(1) BET法により測定される比表面積が2m/g以上13m/g以下であり、β型窒化ケイ素の割合が50質量%以上であり、β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたときに、Dが150nm以上であり、前記比表面積より算出される比表面積相当径をDBETとしたときに、DBET/D(nm/nm)が3以下であり、レーザ回折散乱法による体積基準の粒度分布測定により得られる頻度分布曲線が、二つのピークを有し、該ピークのピークトップが、0.5〜2μmの範囲と、6〜30μmの範囲にあり、前記ピークトップの頻度の比(粒子径0.5〜2μmの範囲のピークトップの頻度/粒子径6〜30μmの範囲のピークトップの頻度)が0.1〜1であることを特徴とする窒化ケイ素粉末。(1) The specific surface area measured by the BET method is 2 m 2 / g or more and 13 m 2 / g or less, the proportion of β-type silicon nitride is 50% by mass or more, and the powder X-ray diffraction pattern of β-type silicon nitride the crystallite size of β-type silicon nitride which is calculated using the Williamson-Hall equation is taken as D C, D C is not less 150nm or more, a specific surface area equivalent diameter calculated from the specific surface area was D BET Sometimes D BET / D C (nm / nm) is 3 or less, and the frequency distribution curve obtained by the volume-based particle size distribution measurement by the laser diffraction scattering method has two peaks, and the peak top of the peak Is in the range of 0.5 to 2 μm and in the range of 6 to 30 μm, and the ratio of the frequency of the peak tops (frequency of peak tops in the range of particle size 0.5 to 2 μm / particle size in the range of 6 to 30 μm). Silicon nitride powder, wherein the frequency of Kutoppu) is 0.1 to 1.

(2) β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶歪が1.5×10−4以下であることを特徴とする上記(1)の窒化ケイ素粉末。(2) The crystal strain of β-type silicon nitride calculated from the powder X-ray diffraction pattern of β-type silicon nitride using the Williamson-Hall equation is 1.5 × 10 −4 or less, (1) ) Silicon nitride powder.

(3) 前記ピークトップが、0.5〜2μmの範囲と、9〜30μmの範囲にあることを特徴とする上記(1)または(2)の窒化ケイ素粉末。   (3) The silicon nitride powder according to the above (1) or (2), wherein the peak tops are in the range of 0.5 to 2 μm and in the range of 9 to 30 μm.

(4) β型窒化ケイ素の割合が70質量%以上であることを特徴とする上記(1)〜(3)いずれかの窒化ケイ素粉末。   (4) The silicon nitride powder according to any one of (1) to (3) above, wherein the proportion of β-type silicon nitride is 70% by mass or more.

(5) 前記比表面積が2m/g以上10m/g以下であることを特徴とする上記(1)〜(4)いずれかの窒化ケイ素粉末。(5) The silicon nitride powder according to any one of (1) to (4) above, wherein the specific surface area is 2 m 2 / g or more and 10 m 2 / g or less.

(6) Feの含有割合が100ppm以下であり、Alの含有割合が100ppm以下であり、FeおよびAl以外の金属不純物の含有割合の合計が100ppm以下であることを特徴とする上記(1)〜(5)いずれかの窒化ケイ素粉末。   (6) The Fe content is 100 ppm or less, the Al content is 100 ppm or less, and the total content of metal impurities other than Fe and Al is 100 ppm or less. (5) Any of the silicon nitride powders.

(7) 上記(1)〜(6)いずれかの窒化ケイ素粉末を含む多結晶シリコンインゴット用離型剤。   (7) A release agent for a polycrystalline silicon ingot, which contains the silicon nitride powder according to any one of (1) to (6) above.

(8) 鋳型内に収容された溶融シリコンを凝固させる多結晶シリコンインゴットの製造方法であって、前記鋳型として、前記溶融シリコンとの接触面に上記(1)〜(6)いずれか窒化ケイ素粉末が塗布された鋳型を用いることを特徴とするシリコンインゴットの製造方法。   (8) A method for producing a polycrystalline silicon ingot, in which molten silicon contained in a mold is solidified, wherein the mold has silicon nitride powder on a contact surface with the molten silicon. A method for manufacturing a silicon ingot, which comprises using a mold coated with.

本発明の窒化ケイ素粉末によれば、一方向凝固時のシリコンの溶融温度を高くしても、あるいはシリコンの溶融時間を長くしても、多結晶シリコンインゴットの離型性と、離型層の鋳型への密着性を向上させることができる、多結晶シリコンインゴットの離型剤として好適な窒化ケイ素粉末を提供することができる。   According to the silicon nitride powder of the present invention, even if the melting temperature of silicon during unidirectional solidification is increased or the melting time of silicon is lengthened, the releasability of the polycrystalline silicon ingot and the release layer It is possible to provide a silicon nitride powder which can improve adhesion to a mold and is suitable as a mold release agent for a polycrystalline silicon ingot.

実施例1〜11および比較例1〜3、及び比較例6〜13の窒化ケイ素粉末の製造に用いた燃焼合成反応装置の模式図である。It is a schematic diagram of the combustion synthesis reaction apparatus used for manufacture of the silicon nitride powder of Examples 1-11, Comparative Examples 1-3, and Comparative Examples 6-13.

本発明の窒化ケイ素粉末の実施形態について詳しく説明する。   An embodiment of the silicon nitride powder of the present invention will be described in detail.

(窒化ケイ素粉末)
本発明の窒化ケイ素粉末は、BET法により測定される比表面積が2m/g以上13m/g以下であり、β型窒化ケイ素の割合が50質量%以上であり、β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたときに、Dが150nm以上であり、前記比表面積より算出される比表面積相当径をDBETとしたときに、DBET/D(nm/nm)が3以下であり、レーザ回折散乱法による体積基準の粒度分布測定により得られる頻度分布曲線が、二つのピークを有し、該ピークのピークトップが、0.5〜2μmの範囲と、6〜30μmの範囲にあり、(粒子径0.5〜2μmの範囲のピークトップの頻度/粒子径6〜30μmの範囲のピークトップの頻度)が0.1〜1であることを特徴とする。前記ピークトップの頻度の比は、1.0未満、0.95以下、0.9以下、0.8以下、0.7以下、0.6以下であってもよい。
(Silicon nitride powder)
The silicon nitride powder of the present invention has a specific surface area measured by the BET method of 2 m 2 / g or more and 13 m 2 / g or less, a proportion of β-type silicon nitride of 50% by mass or more, and a β-type silicon nitride powder. the crystallite size of β-type silicon nitride which is calculated using the Williamson-Hall type from X-ray diffraction pattern when the D C, D C is not less 150nm or more, the specific surface area equivalent diameter calculated from the specific surface area the when the D BET, D BET / D C (nm / nm) is 3 or less, the frequency distribution curve obtained by particle size distribution measurement of the volume value determined by a laser diffraction scattering method, has two peaks, The peak top of the peak is in the range of 0.5 to 2 μm and the range of 6 to 30 μm, and the frequency of the peak top in the range of particle size 0.5 to 2 μm / the peak in the range of particle size 6 to 30 μm. Tsu frequency of-flops) is characterized in that it is a 0.1 to 1. The ratio of the peak top frequencies may be less than 1.0, 0.95 or less, 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less.

本発明の窒化ケイ素粉末は、BET法により測定される比表面積が2m/g以上13m/g以下である。比表面積がこの範囲であれば、鋳型への密着性が良好な離型層を形成することができる。この観点から、比表面積は2m/g以上10m/g以下であることがさらに好ましい。窒化ケイ素粉末のBET法により測定される比表面積は、8m/g以下、6m/g以下、4m/g以下であってもよい。The silicon nitride powder of the present invention has a specific surface area measured by the BET method of 2 m 2 / g or more and 13 m 2 / g or less. When the specific surface area is within this range, it is possible to form a release layer having good adhesion to the mold. From this viewpoint, the specific surface area is more preferably 2 m 2 / g or more and 10 m 2 / g or less. The specific surface area of the silicon nitride powder measured by the BET method may be 8 m 2 / g or less, 6 m 2 / g or less, and 4 m 2 / g or less.

本発明の窒化ケイ素粉末は、β型窒化ケイ素の割合が50質量%以上である。β型窒化ケイ素の割合がこの範囲であれば、多結晶シリコンインゴットの離型性も、鋳型への密着性も良好な離型層を形成することができる。この観点から、β型窒化ケイ素の割合は70質量%より大きいことがさらに好ましい。β型窒化ケイ素の割合は、60質量%以上、80質量%以上、90質量%以上、95質量%以上であってもよく、100質量%であることもできる。   In the silicon nitride powder of the present invention, the proportion of β-type silicon nitride is 50% by mass or more. When the proportion of β-type silicon nitride is within this range, it is possible to form a release layer having excellent release properties of the polycrystalline silicon ingot and good adhesion to the mold. From this viewpoint, the proportion of β-type silicon nitride is more preferably more than 70% by mass. The proportion of β-type silicon nitride may be 60% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, and may be 100% by mass.

窒化ケイ素以外の成分は3質量%未満、さらには1質量%未満、特に0.1質量%未満が好ましい。窒化ケイ素以外の成分が存在すると、本願発明のような一方向凝時のシリコンの溶融温度を高くした場合でも、あるいはシリコンの溶融時間を長くした場合でも、多結晶シリコンインゴットの良好な離型性が得られなくなる恐れがある。   Components other than silicon nitride are less than 3% by mass, more preferably less than 1% by mass, and particularly preferably less than 0.1% by mass. When a component other than silicon nitride is present, good releasability of the polycrystalline silicon ingot is obtained even when the melting temperature of silicon during unidirectional solidification as in the present invention is increased or when the melting time of silicon is lengthened. May not be obtained.

β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたとき、本発明の窒化ケイ素粉末は、Dが150nm以上である。Dがこの範囲であれば、シリコンの溶融温度を高くしたり、溶融時間を長くしたりしても、多結晶シリコンインゴットの離型性も、鋳型への密着性も良好な離型層を形成することができる。Dを150nm以上とすることで、例えば1500℃以上の高温で溶融シリコンと長時間接触しても、本発明の窒化ケイ素粉末は結晶の構造的安定性を維持できるものと推察される。この観点から、Dは300nm以上であることが好ましく、500nm以上であることがさらに好ましい。Dは、180nm以上、200nm以上、250nm以上、400nm以上であってもよい。When the crystallite diameter of the β-type silicon nitride which is calculated using the Williamson-Hall type from powder X-ray diffraction pattern of β-type silicon nitride was D C, silicon nitride powder of the present invention is a D C is 150nm or more is there. When D C is in this range, a release layer having good release properties of the polycrystalline silicon ingot and good adhesion to the mold can be obtained even if the melting temperature of silicon is increased or the melting time is lengthened. Can be formed. By the D C and above 150 nm, even if prolonged contact with the molten silicon, for example 1500 ° C. or more high temperature, silicon nitride powder of the present invention is presumed to maintain the structural stability of the crystal. From this viewpoint, it is preferable that D C is 300nm or more, and further preferably 500nm or more. D C is, 180 nm or higher, 200 nm or higher, 250 nm or more, may be 400nm or more.

本発明の窒化ケイ素粉末は、前記比表面積より算出される比表面積相当径をDBETとしたときに、DBET/D(nm/nm)が3以下であることが好ましい。DBET/D(nm/nm)がこの範囲であれば、シリコンの溶融温度をより高くしても、多結晶シリコンインゴットの離型性も、鋳型への密着性も良好な離型層を形成することができる。その理由は定かではないが、窒化ケイ素粉末を構成する窒化ケイ素の一粒子中の結晶子の界面の面積が小さい方が、高温で溶融シリコンと長時間接触した場合の、窒化ケイ素の結晶の構造的安定性をより高めるのではないかと推察される。DBET/D(nm/nm)は、2以下、1.8以下、1.5以下であることも可能である。The silicon nitride powder of the present invention preferably has D BET / D C (nm / nm) of 3 or less, where D BET is a specific surface area equivalent diameter calculated from the specific surface area. If D BET / D C (nm / nm) is in this range, a release layer having good release properties of the polycrystalline silicon ingot and good adhesion to the mold even if the melting temperature of silicon is increased is obtained. Can be formed. The reason is not clear, but the smaller the area of the interface of the crystallites in one particle of silicon nitride constituting the silicon nitride powder, the structure of the crystal of silicon nitride when it is in contact with molten silicon for a long time at high temperature. It is presumed that it will further improve the social stability. D BET / D C (nm / nm) can be 2 or less, 1.8 or less, and 1.5 or less.

本発明の窒化ケイ素粉末は、レーザ回折散乱法による体積基準の粒度分布測定により得られる頻度分布曲線が、二つのピークを有し、該ピークのピークトップが、0.5〜2μmの範囲と、6〜30μmの範囲にあり、前記ピークトップの頻度の比(粒子径0.5〜2μmの範囲のピークトップの頻度/粒子径6〜30μmの範囲のピークトップの頻度)が0.1〜1である。前記頻度分布曲線が二つのピークを有し、二つの前記ピークトップが各々前記範囲にあり、その頻度の比が前記範囲にあれば、離型層が緻密になり、多結晶シリコンインゴットの離型性も、離型層の鋳型への密着性も向上する。   In the silicon nitride powder of the present invention, the frequency distribution curve obtained by the volume-based particle size distribution measurement by the laser diffraction scattering method has two peaks, and the peak top of the peak is in the range of 0.5 to 2 μm. 6 to 30 μm, and the ratio of the peak top frequencies (frequency of peak tops in the range of particle diameter 0.5 to 2 μm / frequency of peak tops in the range of particle diameter 6 to 30 μm) is 0.1 to 1. Is. If the frequency distribution curve has two peaks, the two peak tops are in each of the ranges, and the ratio of the frequencies is in the range, the release layer becomes dense and the release of the polycrystalline silicon ingot is released. And the adhesion of the release layer to the mold are also improved.

二つのピークトップのうち、ピークトップが0.5〜2μmの範囲の粒子は、窒化ケイ素粒子同士の密着性と、窒化ケイ素粒子と鋳型の密着性を高める効果と、緻密な離型層を形成する効果を持つ。よって、ピークトップが0.5〜2μmの範囲であれば、離型性が良好な離型層を形成することができる。一方、ピークトップが6〜30μmの範囲の粒子は、離型層の耐熱性を高める効果を持つ。よって、ピークトップが6〜30μmの範囲であれば、1500℃以上の高温でシリコンを溶融させても、離型層の剥れがなく、良好な離型層を形成することができる。粒子径が小さい方のピークトップは1.5μm以下、1.0μm以下、0.9μm以下であってもよい。粒子径が大きい方のピークトップは、9μm以上、10μm以上、11μm以上、13μm以上、15μm以上であってもよく、あるいは25μm以下、20μm以下であってもよい。ここで、粒径が小さい方のピークトップの範囲と、粒径が大きい方のピークトップの範囲とは、それぞれについて上記した各種の範囲の任意の組合せであることができる。また、前記ピークトップの頻度の比(粒子径0.5〜2μmの範囲のピークトップの頻度/粒子径6〜30μmの範囲のピークトップの頻度)が0.1〜1であれば、それぞれの粒子の効果を最大限にすることが出来、窒化ケイ素粒子同士の密着性も、窒化ケイ素粒子と鋳型の密着性も良く、また緻密な離型層を形成できるので、多結晶シリコンインゴットの離型性が良好な離型層を形成することができる。前記ピークトップの頻度の比(粒子径0.5〜2μmの範囲のピークトップの頻度/粒子径6〜30μmの範囲のピークトップの頻度)は、1.0未満、0.95以下、0.9以下、0.8以下、0.7以下、0.6以下であってもよい。粒径が小さい方のピークトップは0.6μm〜1.5μmの範囲であることもでき、また粒径が大きい方のピークトップは11μm〜29μmの範囲であることもできる。   Of the two peak tops, the particles having a peak top in the range of 0.5 to 2 μm have the effect of enhancing the adhesion between silicon nitride particles and the adhesion between the silicon nitride particles and the mold, and form a dense release layer. Have the effect of Therefore, when the peak top is in the range of 0.5 to 2 μm, it is possible to form a release layer having good release properties. On the other hand, particles having a peak top in the range of 6 to 30 μm have the effect of increasing the heat resistance of the release layer. Therefore, if the peak top is in the range of 6 to 30 μm, even if the silicon is melted at a high temperature of 1500 ° C. or higher, the release layer does not peel off and a good release layer can be formed. The peak top of the smaller particle size may be 1.5 μm or less, 1.0 μm or less, or 0.9 μm or less. The peak top of the larger particle size may be 9 μm or more, 10 μm or more, 11 μm or more, 13 μm or more, 15 μm or more, or 25 μm or less, 20 μm or less. Here, the range of the peak top of the smaller particle size and the range of the peak top of the larger particle size can be any combination of the various ranges described above. Moreover, if the ratio of the frequency of the peak tops (frequency of peak tops in the range of particle size 0.5 to 2 μm / frequency of peak tops in the range of particle size 6 to 30 μm) is 0.1 to 1, The effect of particles can be maximized, the adhesion between silicon nitride particles is good, the adhesion between silicon nitride particles and the mold is good, and a dense release layer can be formed. A release layer having good properties can be formed. The ratio of the frequency of peak tops (frequency of peak tops in the range of particle size 0.5 to 2 μm / frequency of peak tops in the range of particle size 6 to 30 μm) is less than 1.0, 0.95 or less, 0. It may be 9 or less, 0.8 or less, 0.7 or less, 0.6 or less. The peak top with the smaller particle size may be in the range of 0.6 μm to 1.5 μm, and the peak top with the larger particle size may be in the range of 11 μm to 29 μm.

本発明の窒化ケイ素粉末は、β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶歪が1.5×10−4以下であることが好ましい。β型窒化ケイ素の結晶歪がこの範囲であれば、シリコンの溶融温度をより高くしても、多結晶シリコンインゴットの離型性も、鋳型への密着性も良好な離型層を形成することができる。前記結晶歪を1.5×10−4以下とすることで、より高温で溶融シリコンと長時間接触しても、本発明の窒化ケイ素粉末は結晶の構造的安定性を維持できるものと推察される。この観点から、前記結晶歪は1.2×10−4以下であることがさらに好ましく、1.0×10−4以下であることが特に好ましい。β型窒化ケイ素の結晶歪は1.5×10−4以下、1.4×10−4以下、1.2×10−4以下、1.0×10−4以下、0.8×10−4以下、0.7×10−4以下であることができる。In the silicon nitride powder of the present invention, the crystal strain of β-type silicon nitride calculated from the powder X-ray diffraction pattern of β-type silicon nitride using the Williamson-Hall equation is preferably 1.5 × 10 −4 or less. . If the crystal strain of β-type silicon nitride is within this range, it is necessary to form a release layer that has good mold release properties of the polycrystalline silicon ingot and good adhesion to the mold even if the melting temperature of silicon is raised. You can By setting the crystal strain to 1.5 × 10 −4 or less, it is presumed that the silicon nitride powder of the present invention can maintain the structural stability of crystals even when it is in contact with molten silicon at a higher temperature for a long time. It From this viewpoint, the crystal strain is more preferably 1.2 × 10 −4 or less, and particularly preferably 1.0 × 10 −4 or less. The crystal strain of β-type silicon nitride is 1.5 × 10 −4 or less, 1.4 × 10 −4 or less, 1.2 × 10 −4 or less, 1.0 × 10 −4 or less, 0.8 × 10 −. 4 or less, it can be 0.7 × 10 -4 or less.

本発明の窒化ケイ素粉末は、Feの含有割合が100ppm以下である。Feの含有割合がこの範囲であれば、多結晶シリコンインゴットへのFeの混入を抑制することができるので、太陽電池用途に適用可能な多結晶シリコンインゴットの歩留まりが高くなる。Feの含有割合は50ppm以下、20ppm以下であることが好ましく、10ppm以下であることが特に好ましい。また、本発明の窒化ケイ素粉末は、Alの含有割合が100ppm以下である。Alの含有割合がこの範囲であれば、多結晶シリコンインゴットへのAlの混入を抑制することができるので、太陽電池用途に適用可能な多結晶シリコンインゴットの歩留まりが高くなる。Alの含有割合は50ppm以下、20ppm以下であることが好ましく、10ppm以下であることが特に好ましい。また、FeおよびAl以外の金属不純物の含有割合の合計が100ppm以下である。FeおよびAl以外の金属不純物の含有割合がこの範囲であれば、多結晶シリコンインゴットへのFeおよびAl以外の金属不純物の混入を抑制することができるので、太陽電池用途に適用可能な多結晶シリコンインゴットの歩留まりが高くなる。FeおよびAl以外の金属不純物の含有割合は50ppm以下、20ppm以下であることが好ましく、10ppm以下であることが特に好ましい。   The silicon nitride powder of the present invention has a Fe content of 100 ppm or less. When the content ratio of Fe is in this range, the mixing of Fe into the polycrystalline silicon ingot can be suppressed, and the yield of the polycrystalline silicon ingot applicable to the solar cell application is increased. The content ratio of Fe is preferably 50 ppm or less, 20 ppm or less, and particularly preferably 10 ppm or less. The silicon nitride powder of the present invention has an Al content of 100 ppm or less. When the content ratio of Al is within this range, the mixing of Al into the polycrystalline silicon ingot can be suppressed, so that the yield of the polycrystalline silicon ingot applicable to the solar cell application is increased. The content ratio of Al is preferably 50 ppm or less, 20 ppm or less, and particularly preferably 10 ppm or less. Further, the total content ratio of metal impurities other than Fe and Al is 100 ppm or less. When the content ratio of the metal impurities other than Fe and Al is within this range, it is possible to suppress the mixing of the metal impurities other than Fe and Al into the polycrystalline silicon ingot, and therefore the polycrystalline silicon applicable to the solar cell application Higher ingot yield. The content ratio of metal impurities other than Fe and Al is preferably 50 ppm or less, 20 ppm or less, and particularly preferably 10 ppm or less.

(多結晶シリコンインゴット用離型剤)
本発明の多結晶シリコンインゴット用離型剤は、本発明の窒化ケイ素粉末を含む。本発明の多結晶シリコンインゴット用離型剤は、本発明の窒化ケイ素粉末が主成分であれば良く、窒化ケイ素以外の成分を含んでいても良いが、本発明の窒化ケイ素粉末のみからなっていても良い。
(Release agent for polycrystalline silicon ingot)
The release agent for a polycrystalline silicon ingot of the present invention contains the silicon nitride powder of the present invention. The release agent for a polycrystalline silicon ingot of the present invention may be the silicon nitride powder of the present invention as a main component, and may contain a component other than silicon nitride, but is composed only of the silicon nitride powder of the present invention. May be.

(多結晶シリコンインゴットの製造方法)
本発明の多結晶シリコンインゴットの製造方法を以下に説明する。本発明の多結晶シリコンインゴットの製造方法は、鋳型内に収容された溶融シリコンを凝固(特に一方向凝固)させる多結晶シリコンインゴットの製造方法であって、前記鋳型として、前記溶融シリコンとの接触面に本発明の窒化ケイ素粉末が塗布された鋳型を用いることを特徴とする。
(Method for manufacturing polycrystalline silicon ingot)
The method for producing the polycrystalline silicon ingot of the present invention will be described below. The method for producing a polycrystalline silicon ingot of the present invention is a method for producing a polycrystalline silicon ingot in which molten silicon contained in a mold is solidified (particularly unidirectionally solidified), and as the mold, contact with the molten silicon is performed. It is characterized by using a mold whose surface is coated with the silicon nitride powder of the present invention.

(窒化ケイ素粉末の製造方法)
本発明の窒化ケイ素粉末の製造方法の一例を以下に説明する。本発明の窒化ケイ素粉末は、例えば、シリコンの燃焼反応に伴う自己発熱および伝播現象を利用した燃焼合成法により窒化ケイ素を合成する窒化ケイ素の燃焼合成プロセスにおいて、特定の製造条件を用い、具体的には、原料のシリコン粉末に希釈剤として窒化ケイ素粉末を特定の割合で混合し、原料のシリコン粉末と希釈剤として窒化ケイ素粉末の金属不純物の含有割合が少なく、シリコン粉末と窒化ケイ素粉末との混合物の充填密度を小さくして燃焼反応を行って圧壊強度が小さい燃焼生成物を作製し、得られた圧壊強度が小さい燃焼生成物を、粉砕エネルギーが小さく金属不純物が混入し難い方法を用い且つ特定の粉砕条件に調整して粉砕することによって、金属不純物の含有割合が少なく、β型窒化ケイ素の含有割合が大きく、本発明で特定する比表面積及び粒径分布を有し、結晶子径が大きく結晶歪が小さい等の特徴を有する窒化ケイ素粉末を製造することができる。以下、その製造方法の一例を具体的に説明する。
(Method for producing silicon nitride powder)
An example of the method for producing the silicon nitride powder of the present invention will be described below. The silicon nitride powder of the present invention, for example, in a silicon nitride combustion synthesis process for synthesizing silicon nitride by a combustion synthesis method utilizing a self-heating and propagation phenomenon associated with a combustion reaction of silicon, using specific manufacturing conditions, Is mixed with silicon nitride powder as a diluent in a specific ratio to the raw material silicon powder, the content ratio of the metal impurities of the raw material silicon powder and the silicon nitride powder as the diluent is small, and the silicon powder and the silicon nitride powder Using a method of producing a combustion product with a small crushing strength by carrying out a combustion reaction with a small packing density of the mixture, and crushing the obtained combustion product with a small crushing strength with a small grinding energy and with which metal impurities are difficult to mix. By adjusting to specific grinding conditions and grinding, the content ratio of metal impurities is low and the content ratio of β-type silicon nitride is high. In a particular to the specific surface area and particle size distribution can be produced silicon nitride powder having a characteristic such as large crystal strains crystallite size is smaller. Hereinafter, an example of the manufacturing method will be specifically described.

<混合原料粉末の調製工程>
はじめに、シリコン粉末と、希釈剤の窒化ケイ素粉末とを混合して、混合原料粉末を調製する。燃焼合成反応は1800℃以上の高温となるため、燃焼反応する部分でシリコンの溶融・溶着が起こることがある。これを抑制する目的で、燃焼反応の自己伝播を妨げない範囲で、原料粉末に希釈剤として窒化ケイ素粉末を添加することが好ましい。希釈剤の添加率は、通常、10〜50質量%(シリコン:窒化ケイ素の質量比が90:10〜50:50)、さらには15〜40質量%である。また、燃焼合成反応で得られる燃焼生成物のβ型窒化ケイ素の割合を調整する上で、NHClやNaClなどを添加しても良い。これらの添加物は顕熱、潜熱および吸熱反応により反応温度を下げる効果がある。ここで、得られる混合原料粉末における、Feの含有割合、Alの含有割合、FeおよびAl以外の金属不純物の含有割合は、それぞれ100ppm以下、さらには50ppμm以下、10ppm以下とすることが好ましい。したがって、シリコン粉末にも、希釈剤の窒化ケイ素粉末にも、金属不純物の含有割合が少ない高純度な粉末を用いることが好ましい。また、原料粉末の混合に用いる混合容器の内面と混合メディアなどの、原料粉末と接触する箇所は、AlおよびFeなどの含有割合が少ない非金属製の素材であることが好ましい。原料粉末の混合方法は特に制限されないが、例えばボールミル混合を採用する場合は、混合容器の内面は樹脂製であることが好ましく、混合メディアの外面は窒化ケイ素製であることが好ましい。また、混合原料粉末のかさ密度を0.5g/cm未満とすることが好ましい。混合原料粉末のかさ密度を0.5g/cm未満にするには、かさ密度が0.45g/cm以下のシリコン粉末を原料粉末として用いることが好ましい。混合原料粉末のかさ密度が0.5g/cm未満ならば、後述する<燃焼合成反応工程>にて得られる塊状の燃焼生成物の圧壊強度を4MPa以下にすることが容易である。
<Preparation process of mixed raw material powder>
First, a silicon powder and a silicon nitride powder as a diluent are mixed to prepare a mixed raw material powder. Since the combustion synthesis reaction has a high temperature of 1800 ° C. or higher, silicon may be melted / welded in a portion where the combustion reaction occurs. For the purpose of suppressing this, it is preferable to add silicon nitride powder as a diluent to the raw material powder within a range that does not prevent self-propagation of the combustion reaction. The addition rate of the diluent is usually 10 to 50% by mass (the mass ratio of silicon: silicon nitride is 90:10 to 50:50), and further 15 to 40% by mass. Further, NH 4 Cl, NaCl or the like may be added to adjust the proportion of β-type silicon nitride in the combustion product obtained by the combustion synthesis reaction. These additives have the effect of lowering the reaction temperature by sensible heat, latent heat and endothermic reaction. Here, the content ratio of Fe, the content ratio of Al, and the content ratio of metal impurities other than Fe and Al in the obtained mixed raw material powder are preferably 100 ppm or less, further preferably 50 ppμm or less and 10 ppm or less, respectively. Therefore, it is preferable to use a high-purity powder having a small content ratio of metal impurities as both the silicon powder and the silicon nitride powder as a diluent. In addition, it is preferable that the inner surface of the mixing container used for mixing the raw material powders and the portion such as the mixing medium which come into contact with the raw material powders are made of a non-metallic material having a small content ratio of Al and Fe. The method of mixing the raw material powders is not particularly limited, but when ball mill mixing is adopted, for example, the inner surface of the mixing container is preferably made of resin, and the outer surface of the mixing medium is preferably made of silicon nitride. Further, the bulk density of the mixed raw material powder is preferably less than 0.5 g / cm 3 . The bulk density of the mixed raw material powder to be less than 0.5 g / cm 3, it is preferable that the bulk density is used 0.45 g / cm 3 or less of the silicon powder as the raw material powder. When the bulk density of the mixed raw material powder is less than 0.5 g / cm 3 , it is easy to set the crushing strength of the lumpy combustion product obtained in <Combustion synthesis reaction step> described below to 4 MPa or less.

<燃焼合成反応工程>
次いで、得られた混合原料粉末を窒素含有雰囲気にて燃焼させて、窒化ケイ素からなる塊状の燃焼生成物を作製する。例えば、混合原料粉末を黒鉛製などの容器に着火剤と一緒に収容し、燃焼合成反応装置内で、着火剤に着火し、着火剤の窒化燃焼熱によって混合原料粉末中のシリコンの窒化反応を開始させ、同反応をシリコン全体に自己伝播させて燃焼合成反応を完了させ、窒化ケイ素からなる塊状の燃焼生成物を得る。
<Combustion synthesis reaction process>
Next, the obtained mixed raw material powder is burned in a nitrogen-containing atmosphere to produce a lumpy combustion product made of silicon nitride. For example, the mixed raw material powder is housed together with an igniting agent in a container made of graphite, etc., the igniting agent is ignited in the combustion synthesis reaction device, and the nitriding reaction of silicon in the mixed raw material powder is performed by the nitriding combustion heat of the ignition agent When the reaction is started, the reaction is self-propagated through silicon to complete the combustion synthesis reaction, and a bulk combustion product made of silicon nitride is obtained.

ここで、得られる燃焼生成物は、その圧壊強度が4MPa以下であることが好ましい。燃焼生成物の圧壊強度が4MPa以下ならば、後述する<燃焼生成物の粉砕・分級工程>にて、金属不純物の混入が多くなるような、また窒化ケイ素粉末の結晶性が低下するような粉砕エネルギーの大きい粉砕を行わなくても、本発明にて特定する比表面積または二つのピークトップを有する粒度分布の窒化ケイ素粉末を得ることが容易になる。   Here, the crush strength of the obtained combustion product is preferably 4 MPa or less. If the crush strength of the combustion product is 4 MPa or less, crushing that will increase the amount of metal impurities mixed in and will reduce the crystallinity of the silicon nitride powder in the <crushing and classifying process of combustion product> described below. It becomes easy to obtain a silicon nitride powder having a specific surface area or a particle size distribution having two peak tops specified in the present invention without performing pulverization with a large amount of energy.

<燃焼生成物の粉砕・分級工程>
次いで、得られた塊状の燃焼生成物を粗粉砕する。粗粉砕の粉砕手段に特に制限はないが、粉砕メディアとして、AlおよびFeなどの含有割合が少ない硬質な非金属製の素材を用いることが好ましく、窒化ケイ素製の粉砕メディアを用いることがさらに好ましい。燃焼生成物が塊状であることから、ロールクラッシャーによる粉砕が効率的であり、ロールクラッシャーとしては、窒化ケイ素などのセラミックス製のロールを供えていることが好ましい。
<Crushing and classification process of combustion products>
The lumpy combustion product obtained is then coarsely crushed. The crushing means for coarse crushing is not particularly limited, but as the crushing medium, it is preferable to use a hard non-metallic material having a small content ratio of Al and Fe, and it is more preferable to use a crushing medium made of silicon nitride. . Since the combustion products are lumpy, the crushing by the roll crusher is efficient, and it is preferable that the roll crusher is provided with a roll made of ceramics such as silicon nitride.

以上のような粗粉砕によって得られた窒化ケイ素粉末を篩通して、特に粗大な粒子などを除去する。篩通しに用いる篩は、AlおよびFeなどの含有割合が少ない非金属製であることが好ましく、樹脂製であることが好ましい。   The silicon nitride powder obtained by the above coarse pulverization is sieved to remove particularly coarse particles. The sieve used for sieving is preferably made of a non-metal having a low content ratio of Al and Fe, and is preferably made of a resin.

次に、粗粉砕によって得られた窒化ケイ素粉末を微粉砕する。微粉砕の手段に特に制限はないが、振動ミルによる粉砕が好ましい。振動ミルによる粉砕を行う場合は、振動ミル用のポットの内面と混合メディアなどの、原料粉末と接触する箇所は、AlおよびFeなどの含有割合が少ない非金属製の素材であることが好ましい。ポットの内面は樹脂製であることが好ましく、混合メディアは窒化ケイ素製であることが好ましい。振動ミルの条件(振幅、振動数、粉砕時間)を適宜調節することで、比表面積、粒度分布測定により得られる頻度分布曲線における二つのピークのピークトップ、およびそれらの頻度の比を調節することができる。比較的破壊エネルギーが小さくなる条件、例えば振動数や粉砕時間が短い条件で微粉砕を行うことが好ましい。   Next, the silicon nitride powder obtained by coarse pulverization is finely pulverized. The means for fine pulverization is not particularly limited, but pulverization with a vibration mill is preferable. In the case of pulverizing with a vibration mill, it is preferable that the inner surface of the pot for the vibration mill and the portion of the mixed medium or the like that comes into contact with the raw material powder are made of a non-metallic material having a small content ratio of Al and Fe. The inner surface of the pot is preferably made of resin, and the mixed medium is preferably made of silicon nitride. By adjusting the conditions (amplitude, frequency, crushing time) of the vibration mill appropriately, the specific surface area, the peak top of two peaks in the frequency distribution curve obtained by particle size distribution measurement, and the ratio of their frequencies can be adjusted. You can It is preferable to carry out fine pulverization under the condition that the breaking energy is relatively small, for example, under the condition that the vibration frequency and the pulverization time are short.

以上のように、本発明の窒化ケイ素粉末は、シリコン粉末と、希釈剤の窒化ケイ素粉末とを混合し、得られた混合原料粉末を容器に充填して燃焼反応に伴う自己発熱および伝播現象を利用した燃焼合成法により前記シリコン粉末を燃焼させ、得られた燃焼生成物を粉砕する窒化ケイ素粉末の製造方法において、前記混合原料粉末は、Feの含有割合、Alの含有割合、およびFeとAl以外の金属不純物の含有割合が、それぞれ100ppm以下で、かさ密度が0.5g/cm未満である窒化ケイ素粉末の製造方法により製造されることが好ましく、さらに、前記燃焼生成物の圧壊強度が4MPa以下であることが好ましく、特に、前記燃焼生成物の粉砕に窒化ケイ素製の粉砕メディアを用いることが好ましい。As described above, the silicon nitride powder of the present invention is a mixture of a silicon powder and a silicon nitride powder of a diluent, and the resulting mixed raw material powder is filled in a container to prevent self-heating and propagation phenomena associated with combustion reaction. In the method for producing a silicon nitride powder in which the silicon powder is burned by the combustion synthesis method used and the obtained combustion product is crushed, the mixed raw material powder contains Fe content ratio, Al content ratio, and Fe and Al content. It is preferable that the content of metal impurities other than is 100 ppm or less, and that the bulk density is less than 0.5 g / cm 3 be produced by a method for producing a silicon nitride powder. The pressure is preferably 4 MPa or less, and it is particularly preferable to use a grinding media made of silicon nitride for grinding the combustion products.

<平均粒径が異なる粉末を混合する工程>
本発明の窒化ケイ素粉末は、燃焼生成物を粗粉砕し、比較的破壊エネルギーが小さい条件で微粉砕して得ることができるが、平均粒径が異なる窒化ケイ素粉末を混合するなどして得ることもできる。例えば、燃焼生成物を粗粉砕し分級して得られた窒化ケイ素粉末と、微粉砕まで行った窒化ケイ素粉末、あるいは微粉砕後に分級して粒度を調節した窒化ケイ素粉末とを混合するなどして得ることもできる。この場合、粗粉砕後の分級の条件、微粉砕の条件と微粉砕後の分級の条件、混合比率などを適宜調節することで、比表面積、粒度分布測定により得られる頻度分布曲線における二つのピークのピークトップ、およびそれらの頻度の比を調節することができる。また、燃焼生成物を粗粉砕し分級して得られた窒化ケイ素粉末、微粉砕後に分級して粒度を調節した窒化ケイ素粉末、あるいは微粉砕後に分級して粒度を調節した窒化ケイ素粉末と、公知の窒化ケイ素粉末とを混合することで、比表面積、ピークトップおよびそれらの頻度の比を調節することもできる。
<Step of mixing powders having different average particle sizes>
The silicon nitride powder of the present invention can be obtained by coarsely pulverizing combustion products and finely pulverizing under conditions where the breaking energy is relatively small. However, it can be obtained by mixing silicon nitride powders having different average particle sizes. You can also For example, a silicon nitride powder obtained by coarsely pulverizing and classifying combustion products, a silicon nitride powder finely pulverized, or a finely pulverized silicon nitride powder classified and classified in particle size is mixed. You can also get it. In this case, the conditions for classification after coarse pulverization, the conditions for fine pulverization and the conditions for classification after fine pulverization, by appropriately adjusting the mixing ratio, the specific surface area, two peaks in the frequency distribution curve obtained by particle size distribution measurement The peak tops of, and their frequency ratio can be adjusted. Further, a silicon nitride powder obtained by coarsely pulverizing and classifying combustion products, a silicon nitride powder having a finely pulverized and classified particle size adjusted, or a silicon nitride powder having a finely pulverized and classified particle size adjusted, known It is also possible to adjust the specific surface area, peak top and their frequency ratio by mixing with the silicon nitride powder of.

以下に具体例を挙げて、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples.

本発明の窒化ケイ素粉末、原料粉末として用いたシリコン粉末、原料混合粉末および燃焼生成物の物性測定と、本発明の窒化ケイ素粉末を鋳型の離型剤に適用した場合の多結晶シリコンインゴットの離型性の評価は、以下の方法により行った。   Silicon nitride powder of the present invention, silicon powder used as raw material powder, raw material mixed powder and measurement of physical properties of combustion products, and release of polycrystalline silicon ingot when the silicon nitride powder of the present invention is applied as a mold release agent The moldability was evaluated by the following method.

(窒化ケイ素粉末の比表面積の測定方法、および比表面積相当径DBETの算出方法)
本発明の窒化ケイ素粉末の比表面積は、Mountech社製Macsorbを用いて、窒素ガス吸着によるBET1点法にて測定して求めた。
また、比表面積相当径DBETは、粉末を構成する全ての粒子が同一径の球と仮定して、下記の式(1)より求めた。
BET=6/(ρ×S)・・・(1)
(Method for measuring specific surface area of silicon nitride powder and method for calculating specific surface area equivalent diameter D BET )
The specific surface area of the silicon nitride powder of the present invention was determined by measuring with a BET one-point method by nitrogen gas adsorption using Macsorb manufactured by Mountech.
Further, the specific surface area equivalent diameter D BET was calculated from the following formula (1), assuming that all particles constituting the powder are spheres having the same diameter.
D BET = 6 / (ρ S × S) (1)

ここで、ρは窒化ケイ素の真密度(α-Siの真密度3186kg/m、β-Siの真密度3192kg/mと、α相とβ相との比により平均真密度を算出し、真密度とした。)、Sは比表面積(m/g)である。Here, ρ S depends on the true density of silicon nitride (the true density of α-Si 3 N 4 is 3186 kg / m 3 , the true density of β-Si 3 N 4 is 3192 kg / m 3 and the ratio of α phase to β phase. The average true density was calculated and used as the true density.) And S is the specific surface area (m 2 / g).

(窒化ケイ素粉末のβ型窒化ケイ素の割合の測定方法)
本発明の窒化ケイ素粉末のβ型窒化ケイ素粉末の割合は以下のようにして算出した。本発明の窒化ケイ素粉末について、銅の管球からなるターゲットおよびグラファイトモノクロームメーターを使用して、回折角(2θ)15〜80°の範囲を0.02°刻みでX線検出器をステップスキャンする定時ステップ走査法にてX線回折測定を行った。窒化ケイ素粉末が窒化ケイ素以外の成分を含む場合には、それらの成分のピークをそれらの成分の標準試料の対応するピークと対比することでそれらの成分の割合を求めることができる。以下のすべての実施例及び比較例では、得られた粉末X線回折パターンより、本発明の窒化ケイ素粉末がα型窒化ケイ素とβ型窒化ケイ素のみから構成されていることを確認した。その上で、本発明の窒化ケイ素粉末のβ型窒化ケイ素の割合は、G.P.Gazzara and D.P.Messier,“Determination of Phase Content of Si3N4 by X−ray Diffraction Analysis”,Am. Ceram.Soc.Bull.,56[9]777−80(1977)に記載されたGazzara & Messierの方法により、算出した。
(Method for measuring the proportion of β-type silicon nitride in silicon nitride powder)
The proportion of β-type silicon nitride powder in the silicon nitride powder of the present invention was calculated as follows. With respect to the silicon nitride powder of the present invention, a target consisting of a copper tube and a graphite monochromator are used to step-scan an X-ray detector in a diffraction angle (2θ) range of 15 to 80 ° in 0.02 ° steps. X-ray diffraction measurement was performed by the regular step scanning method. When the silicon nitride powder contains components other than silicon nitride, the peaks of those components can be compared with the corresponding peaks of a standard sample of those components to determine the proportions of those components. In all of the following Examples and Comparative Examples, it was confirmed from the obtained powder X-ray diffraction patterns that the silicon nitride powder of the present invention was composed of only α-type silicon nitride and β-type silicon nitride. In addition, the proportion of β-type silicon nitride in the silicon nitride powder of the present invention is G. P. Gazzara and D.M. P. Messier, "Determination of Phase Content of Si3N4 by X-ray Diffraction Analysis", Am. Ceram. Soc. Bull. , 56 [9] 777-80 (1977) and by the method of Gazzara & Messier.

(β型窒化ケイ素の結晶子径Dおよび結晶歪の測定方法)
本発明の窒化ケイ素粉末のβ型窒化ケイ素の結晶子径Dおよび結晶歪は、次のようにして測定した。本発明の窒化ケイ素粉末について、銅の管球からなるターゲットおよびグラファイトモノクロームメーターを使用して、回折角(2θ)15〜80°の範囲を0.02°刻みでX線検出器をステップスキャンする定時ステップ走査法にてX線回折測定を行った。得られた本発明の窒化ケイ素粉末のX線回折パターンより、β型窒化ケイ素の(101)、(110)、(200)、(201)および(210)面のそれぞれの積分幅を算出し、前記積分幅を下記式(1)のWilliamson−Hall式に代入した。下記の式(2)における「2sinθ/λ」をx軸、「βcosθ/λ」をy軸としてプロットし、最小二乗法を用いて、このWilliamson−Hall式より得られる直線の切片および傾きを求めた。そして、前記切片よりβ型窒化ケイ素の結晶子径Dcを、また、前記傾きよりβ型窒化ケイ素の結晶歪を算出した。
βcosθ/λ=η×(2sinθ/λ)+(1/Dc)・・・(2)
(β;積分幅(rad)、θ;ブラッグ角(rad)、η;結晶歪、λ;X線源の波長(nm)、Dc;結晶子径(nm))
(Measurement method of crystallite diameter D C and crystal strain of β-type silicon nitride)
The crystallite diameter D C and crystal strain of β-type silicon nitride of the silicon nitride powder of the present invention were measured as follows. With respect to the silicon nitride powder of the present invention, a target consisting of a copper tube and a graphite monochromator are used to step-scan an X-ray detector in a diffraction angle (2θ) range of 15 to 80 ° in 0.02 ° steps. X-ray diffraction measurement was performed by the regular step scanning method. From the X-ray diffraction pattern of the obtained silicon nitride powder of the present invention, the respective integral widths of the (101), (110), (200), (201) and (210) planes of β-type silicon nitride were calculated, The integration width was substituted into the Williamson-Hall formula of the following formula (1). In the following equation (2), "2 sin θ / λ" is plotted as the x-axis and "β cos θ / λ" is plotted as the y-axis, and the least squares method is used to obtain the intercept and slope of the straight line obtained from the Williamson-Hall equation. It was Then, the crystallite diameter Dc of β-type silicon nitride was calculated from the intercept, and the crystal strain of β-type silicon nitride was calculated from the slope.
β cos θ / λ = η × (2 sin θ / λ) + (1 / Dc) (2)
(Β: integral width (rad), θ: Bragg angle (rad), η: crystal strain, λ: wavelength of X-ray source (nm), Dc: crystallite diameter (nm))

(窒化ケイ素粉末の粒度分布、およびピークトップの測定方法)
本発明の窒化ケイ素粉末、本発明で原料として使用したシリコン粉末の粒度分布は、以下のようにして測定した。前記粉末を、ヘキサメタリン酸ソーダ0.2質量%水溶液中に投入して、直径26mmのステンレス製センターコーンを取り付けた超音波ホモジナイザーを用いて300Wの出力で6分間分散処理して希薄溶液を調製し、測定試料とした。レーザ回折/散乱式粒子径分布測定装置(日機装株式会社製マイクロトラックMT3000)を用いて測定試料の粒度分布を測定し、体積基準の粒度分布曲線とそのデータを得た。得られた粒度分布曲線とそのデータより、本発明の窒化ケイ素粉末のピークトップの粒子径と、頻度(体積%)を求めた。
(Particle size distribution of silicon nitride powder and measuring method of peak top)
The particle size distributions of the silicon nitride powder of the present invention and the silicon powder used as a raw material in the present invention were measured as follows. The powder was put into a 0.2 mass% aqueous solution of sodium hexametaphosphate and dispersed for 6 minutes at an output of 300 W using an ultrasonic homogenizer equipped with a stainless steel center cone having a diameter of 26 mm to prepare a dilute solution. , And used as a measurement sample. The particle size distribution of the measurement sample was measured using a laser diffraction / scattering particle size distribution measuring device (Microtrac MT3000 manufactured by Nikkiso Co., Ltd.) to obtain a volume-based particle size distribution curve and its data. From the obtained particle size distribution curve and its data, the particle size at the peak top of the silicon nitride powder of the present invention and the frequency (volume%) were determined.

(窒化ケイ素粉末、シリコン粉末および原料混合粉末のFe、AlおよびFeとAl以外の金属不純物の含有割合の測定方法)
本発明の窒化ケイ素粉末、本発明で原料として使用したシリコン粉末、および原料混合粉末のFeおよびAl、FeおよびAl以外の金属不純物の含有割合は、以下のようにして測定した。フッ酸と硝酸とを混合した液を収容した容器に、上記粉末を投入し密栓して、同容器にマイクロ波を照射して加熱し、窒化ケイ素またはシリコンを完全に分解し、得られた分解液を超純水で定容して検液とした。エスアイアイ・ナノテクノロジー社製ICP−AES(SPS5100型)を用いて、検出された波長とその発光強度から検液中のFe、AlおよびFeとAl以外の金属不純物を定量し、Fe、AlおよびFeとAl以外の金属不純物の含有割合を算出した。
(Method for measuring the content ratio of Fe, Al and metallic impurities other than Fe and Al in silicon nitride powder, silicon powder and raw material mixed powder)
Content ratios of Fe and Al, and metal impurities other than Fe and Al in the silicon nitride powder of the present invention, the silicon powder used as a raw material in the present invention, and the raw material mixed powder were measured as follows. A container containing a liquid mixture of hydrofluoric acid and nitric acid was charged with the above powder, and the container was tightly sealed, and the container was irradiated with microwaves and heated to completely decompose silicon nitride or silicon, and the obtained decomposition was obtained. The solution was made up to volume with ultrapure water to obtain a test solution. Using ICP-AES (SPS5100 type) manufactured by SII NanoTechnology Inc., Fe, Al and Fe and metal impurities other than Al in the test solution were quantified from the detected wavelength and its emission intensity, and Fe, Al and The content ratio of metal impurities other than Fe and Al was calculated.

(混合原料粉末のかさ密度の測定方法)
本発明で得られる混合原料粉末のかさ密度は、JIS R1628「ファインセラミックス粉末のかさ密度測定方法」に準拠した方法により求めた。
(Measurement method of bulk density of mixed raw material powder)
The bulk density of the mixed raw material powder obtained in the present invention was determined by a method in accordance with JIS R1628 "Method for measuring bulk density of fine ceramic powder".

(燃焼生成物の圧壊強度の測定方法)
本発明で得られる燃焼生成物の圧壊強度は、以下のようにして測定した。燃焼生成物より、一辺が10mmの立方体を5個切り出して測定試料とした。手動式圧壊強度測定装置(アイコーエンジニアリング株式会社製、MODEL-1334型)を用いて前記測定試料の圧壊強度を測定した。台座に載置した測定試料に荷重を印加して圧縮試験を行い、測定された最大荷重より圧壊強度を算出した。本発明で得られる燃焼生成物の圧壊強度は、5個の測定試料の圧壊強度の平均値とした。
(Method of measuring the crush strength of combustion products)
The crush strength of the combustion product obtained by the present invention was measured as follows. Five cubes each having a side of 10 mm were cut out from the combustion products to obtain measurement samples. The crushing strength of the measurement sample was measured using a manual crushing strength measuring device (Model 1334, manufactured by Aiko Engineering Co., Ltd.). A compression test was carried out by applying a load to the measurement sample placed on the pedestal, and the crush strength was calculated from the measured maximum load. The crush strength of the combustion product obtained in the present invention was an average value of the crush strength of five measurement samples.

(多結晶シリコンインゴットの離型性の評価方法)
本発明においては、本発明の窒化ケイ素粉末を離型剤として塗布して作製した鋳型を用いて多結晶シリコンインゴットの一方向凝固実験を行い、多結晶シリコンインゴットを鋳型から離型して、以下のようにして本発明の窒化ケイ素粉末を評価した。多結晶シリコンインゴットが鋳型から離型でき、多結晶シリコンインゴットに離型層の付着が確認されない場合を○、多結晶シリコンインゴットが鋳型から離型できるものの、多結晶シリコンインゴットに離型層の付着が確認される場合を△、多結晶シリコンインゴットが鋳型から離型できないか、離型できても多結晶シリコンインゴットに割れまたは欠けが生じる場合を×とした。
(Evaluation method of releasability of polycrystalline silicon ingot)
In the present invention, a unidirectional solidification experiment of a polycrystalline silicon ingot is performed using a mold produced by applying the silicon nitride powder of the present invention as a release agent, and the polycrystalline silicon ingot is released from the mold. Thus, the silicon nitride powder of the present invention was evaluated. When the polycrystalline silicon ingot can be released from the mold and the release layer is not confirmed to be attached to the polycrystalline silicon ingot, ○, the polycrystalline silicon ingot can be released from the mold, but the release layer is attached to the polycrystalline silicon ingot. The case was confirmed as Δ, and the case where the polycrystalline silicon ingot could not be released from the mold, or the polycrystalline silicon ingot was cracked or chipped even if it could be released was taken as ×.

(多結晶シリコンインゴットに含まれる金属不純物の測定方法)
一方向凝固実験にて得られた多結晶シリコンインゴットに含まれるFe、AlおよびFeとAl以外の金属不純物を、以下のようにして測定した。得られた多結晶シリコンインゴットを、切断面が凝固方向に対して平行になるように二分割し、その切断面の中心軸上で、底から1cm上の位置を測定位置として、飛行時間型二次イオン質量分析法(アルバック・ファイ社製(TRIFT V nano TOF型))にて表面分析を行った。Fe、AlおよびFeとAl以外の金属不純物の二次質量スペクトルの規格化二次イオン強度が1×10−4以上の場合を検出、1×10−4未満の場合を未検出とした。ここで、規格化二次イオン強度とは、各スペクトルの二次イオン強度を、検出された全スペクトルの二次イオン強度で除したものである。
(Measuring method of metal impurities contained in polycrystalline silicon ingot)
Fe, Al and metallic impurities other than Fe and Al contained in the polycrystalline silicon ingot obtained by the directional solidification experiment were measured as follows. The obtained polycrystalline silicon ingot was divided into two parts such that the cut surface was parallel to the solidification direction, and the time of flight type two was set on the central axis of the cut surface as a measurement position 1 cm above the bottom. Surface analysis was performed by a secondary ion mass spectrometry method (manufactured by ULVAC-PHI, Inc. (TRIFT V nano TOF type)). Normalization of secondary mass spectra of Fe, Al, and metal impurities other than Fe and Al was detected when the secondary ion intensity was 1 × 10 −4 or more, and undetected when it was less than 1 × 10 −4 . Here, the normalized secondary ion intensity is the secondary ion intensity of each spectrum divided by the secondary ion intensity of all detected spectra.

(実施例1−1)
D50が4.0μm、かさ密度が0.40g/cmで、Feの含有割合が3ppm、Alの含有割合が4ppm、FeおよびAl以外の金属不純物の含有割合が3ppmのシリコン粉末に、希釈剤として、窒化ケイ素粉末(宇部興産株式会社製、製品名「SN−E10」(Feの含有割合;9ppm、Alの含有割合;2ppm、FeおよびAl以外の金属不純物の含有割合;4ppm))を、窒化ケイ素の添加率が20質量%(シリコン:窒化ケイ素の質量比が80:20)になるように添加して原料粉末とした。前記原料粉末を、窒化ケイ素製ボールが充填された、内壁面がウレタンでライニングされたナイロン製のポットに収容して、バッチ式振動ミルを用いて、振動数1200cpm、振幅8mmで0.5時間混合し、混合原料粉末を得た。
(Example 1-1)
D50 is 4.0 μm, bulk density is 0.40 g / cm 3 , Fe content is 3 ppm, Al content is 4 ppm, and content of metal impurities other than Fe and Al is 3 ppm. As the silicon nitride powder (manufactured by Ube Industries, Ltd., product name “SN-E10” (Fe content ratio: 9 ppm, Al content ratio: 2 ppm, content ratio of metal impurities other than Fe and Al; 4 ppm)), A raw material powder was obtained by adding silicon nitride so that the addition rate was 20 mass% (the mass ratio of silicon: silicon nitride was 80:20). The raw material powder was housed in a nylon pot filled with balls of silicon nitride and having an inner wall surface lined with urethane, and a batch type vibrating mill was used to obtain a frequency of 1200 cpm and an amplitude of 8 mm for 0.5 hours. The mixture was mixed to obtain a mixed raw material powder.

図1に、本実施例にてシリコンの燃焼合成反応に用いた燃焼合成反応装置1を示す。前記原料粉末を混合して得られた混合原料粉末2を、底面が200×400mmで、深さが30mmで、厚みが10mmの角サヤ状の黒鉛製容器3に収容した。このとき混合原料粉末のかさ密度は0.45g/cmであった。チタン粉末とカーボン粉末とをチタン:カーボンが4:1の質量比で混合し成形して、燃焼合成反応に用いる着火剤4を調製し、着火剤4を混合原料粉末2の上に載置した。次いで、混合原料粉末2および着火剤4が収容された黒鉛製容器3を、着火剤加熱用のカーボンヒータ5を備えた耐圧性容器6内に、着火剤4の直上にカーボンヒータ5が位置するように収容した。FIG. 1 shows a combustion synthesis reaction apparatus 1 used in the combustion synthesis reaction of silicon in this example. The mixed raw material powder 2 obtained by mixing the raw material powders was housed in a square sheath-shaped graphite container 3 having a bottom surface of 200 × 400 mm, a depth of 30 mm, and a thickness of 10 mm. At this time, the bulk density of the mixed raw material powder was 0.45 g / cm 3 . Titanium powder and carbon powder were mixed and molded at a mass ratio of titanium: carbon of 4: 1 to prepare an igniting agent 4 used in a combustion synthesis reaction, and the igniting agent 4 was placed on the mixed raw material powder 2. . Next, the graphite container 3 accommodating the mixed raw material powder 2 and the igniting agent 4 is placed in a pressure resistant container 6 equipped with a carbon heater 5 for heating the igniting agent, and the carbon heater 5 is positioned directly above the igniting agent 4. So housed.

耐圧性容器6内を、真空ポンプ7を用いて脱気した後、前記反応容器内に窒素ボンベ8より窒素ガスを導入して雰囲気圧力を0.6MPaとした。次に、カーボンヒータ5に通電して着火剤4を加熱し、前記混合原料粉末を着火させ、燃焼合成反応を開始させた。燃焼合成反応中、耐圧性容器6の窒素雰囲気圧力は0.6MPaでほぼ一定であった。覗き窓9から耐圧性容器6の内部を観察したところ、燃焼合成反応は、約20分継続した後、終了した。反応終了後、耐圧性容器6から黒鉛製容器3を取り出し、塊状の燃焼生成物を回収した。   After degassing the inside of the pressure-resistant container 6 using the vacuum pump 7, nitrogen gas was introduced from the nitrogen cylinder 8 into the reaction container to set the atmospheric pressure to 0.6 MPa. Next, the carbon heater 5 was energized to heat the igniter 4 to ignite the mixed raw material powder to start the combustion synthesis reaction. During the combustion synthesis reaction, the pressure of the nitrogen atmosphere in the pressure-resistant container 6 was 0.6 MPa, which was almost constant. When the inside of the pressure-resistant container 6 was observed through the viewing window 9, the combustion synthesis reaction was completed after continuing for about 20 minutes. After the reaction was completed, the graphite container 3 was taken out from the pressure resistant container 6 and the lumpy combustion product was collected.

得られた燃焼生成物から着火剤近傍部分を除去し、残りの部分を、内面がウレタンコーティングされ、窒化ケイ素製ロールを備えたロールクラッシャーで粗粉砕して、目開きが100μmのナイロン製篩で篩通しし、篩下の粉末を回収した。得られた粉末を、窒化ケイ素製ボールが充填された、内壁面がウレタンでライニングされたアルミナ製のポットに収容し、バッチ式振動ミルを用いて、振動数1200cpm、振幅8mmで、0.25時間微粉砕して、実施例1−1の窒化ケイ素粉末を得た。バッチ式振動ミルでの粉砕の際には、粉砕助剤として粉末に対して1質量%のエタノールを添加した。   A portion near the igniting agent was removed from the obtained combustion product, and the remaining portion was coarsely pulverized with a roll crusher having an inner surface coated with urethane and equipped with a roll made of silicon nitride, and then a nylon sieve having an opening of 100 μm was used. It passed through a sieve, and the powder under the sieve was recovered. The obtained powder was placed in an alumina pot filled with silicon nitride balls and whose inner wall surface was lined with urethane, and a batch type vibrating mill was used to obtain a vibration frequency of 1200 cpm, an amplitude of 8 mm, and a volume of 0.25. After fine pulverization for a time, the silicon nitride powder of Example 1-1 was obtained. At the time of crushing with a batch type vibration mill, 1% by mass of ethanol was added to the powder as a crushing aid.

実施例1−1における、原料粉末に用いたシリコン粉末および希釈剤の物性値と、混合原料粉末の物性値と、燃焼生成物の圧壊強度を表1に、また、窒化ケイ素粉末の物性値を表2に示す。   Table 1 shows the physical property values of the silicon powder and the diluent used as the raw material powder, the physical property values of the mixed raw material powder, and the crush strength of the combustion product in Example 1-1, and the physical property values of the silicon nitride powder. It shows in Table 2.

Figure 0006690735
Figure 0006690735

Figure 0006690735
Figure 0006690735

実施例1−1の窒化ケイ素粉末の多結晶シリコンインゴット鋳造用鋳型の離型剤としての評価は、以下のように実施した。   The evaluation of the silicon nitride powder of Example 1-1 as a mold releasing agent for the polycrystalline silicon ingot casting mold was performed as follows.

実施例1−1の窒化ケイ素粉末を、密栓できるポリエチレン製容器に収容し、水を添加することで窒化ケイ素粉末の混合比が20質量%となるように調製した。窒化ケイ素粉末と水を収納した容器に、窒化ケイ素製ボールを投入して密栓し、バッチ式振動ミルを用いて、振幅5mm、振動数1780cpmで5分間混合し、窒化ケイ素スラリーを得た。   The silicon nitride powder of Example 1-1 was housed in a polyethylene container capable of being hermetically sealed, and water was added to prepare a mixture ratio of the silicon nitride powder of 20 mass%. A silicon nitride ball was placed in a container containing silicon nitride powder and water, and the container was tightly stoppered and mixed with a batch type vibration mill at an amplitude of 5 mm and a frequency of 1780 cpm for 5 minutes to obtain a silicon nitride slurry.

得られた実施例1−1の窒化ケイ素スラリーを、予め90℃に加温した、気孔率16%で、底面が100mmの正方形で、深さ100mmの石英製坩堝の内面にスプレー塗布し、次いで90℃で15時間乾燥した。このときの離型層の厚みは約0.2mmであった。さらに、大気雰囲気炉を用いて、空気中1100℃で3時間保持して加熱処理し、実施例1−1の窒化ケイ素粉末を離型層に適用した多結晶シリコンインゴット鋳造用鋳型を得た。   The obtained silicon nitride slurry of Example 1-1 was spray-applied to the inner surface of a quartz crucible having a square shape having a porosity of 16%, a bottom surface of 100 mm, and a depth of 100 mm, which was preheated to 90 ° C. It was dried at 90 ° C. for 15 hours. The thickness of the release layer at this time was about 0.2 mm. Further, using an air atmosphere furnace, the mold was held in air at 1100 ° C. for 3 hours for heat treatment to obtain a polycrystalline silicon ingot casting mold in which the silicon nitride powder of Example 1-1 was applied to the release layer.

前記鋳型に、純度が7Nで、大きさが2〜5mmのシリコン顆粒を300g充填し、ブリッジマン炉に収容した。大気圧のアルゴン流通下で1500℃でまで5時間かけて炉内を昇温してシリコン顆粒を溶融させた。1500℃で24時間保持した後、50mm/hの引き下げ速度で前記鋳型を引き下げることで、溶融シリコンを一方向凝固させ、さらに室温まで冷却した。また、実施例1−1の多結晶シリコンインゴット鋳造用鋳型をもう一つ作製し、その鋳型を用いて、保持温度を1550℃に変更したこと以外は、前記一方向凝固実験と同様の方法で一方向凝固実験を行った。   The mold was filled with 300 g of silicon granules having a purity of 7 N and a size of 2 to 5 mm and housed in a Bridgman furnace. Under argon flow at atmospheric pressure, the temperature in the furnace was raised to 1500 ° C. over 5 hours to melt the silicon granules. After holding at 1500 ° C. for 24 hours, the mold was pulled down at a pulling rate of 50 mm / h to unidirectionally solidify the molten silicon, and further cooled to room temperature. In addition, another method for producing a polycrystalline silicon ingot of Example 1-1 was prepared, and the holding temperature was changed to 1550 ° C. using the mold, by the same method as in the unidirectional solidification experiment. Unidirectional solidification experiments were conducted.

取り出した前記鋳型から多結晶シリコンインゴットを離型し、「多結晶シリコンインゴット鋳造用鋳型の評価方法」で説明した方法で、実施例1−1の多結晶シリコンインゴット鋳造用鋳型および多結晶シリコンインゴットを評価した。その結果を表3に示す。   The polycrystalline silicon ingot is released from the taken-out mold, and the polycrystalline silicon ingot casting mold and the polycrystalline silicon ingot of Example 1-1 are manufactured by the method described in "Evaluation method of polycrystalline silicon ingot casting mold". Was evaluated. The results are shown in Table 3.

Figure 0006690735
Figure 0006690735

(実施例1−2〜1−6)
実施例1−2〜1−6の微粉砕の時間を、実施例1−2から順に、0.30時間、1.50時間、2.50時間、4.00時間、6.00時間にしたこと以外は実施例1−1と同様にして実施例1−2〜1−6の窒化ケイ素粉末を得た。そして、得られた各実施例の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を各々2個作製した。各実施例において、実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Examples 1-2 to 1-6)
The time of fine pulverization in Examples 1-2 to 1-6 was 0.30 hours, 1.50 hours, 2.50 hours, 4.00 hours, and 6.00 hours in order from Example 1-2. Except for the above, the silicon nitride powders of Examples 1-2 to 1-6 were obtained in the same manner as in Example 1-1. Then, using the obtained silicon nitride powder of each example as a mold release agent, two polycrystalline silicon ingot casting molds were produced in the same manner as in Example 1-1. In each example, unidirectional solidification experiments at two different furnace temperatures similar to those of Example 1-1 were performed in the same manner as in Example 1-1 using those molds. A polycrystalline silicon ingot casting mold was evaluated in the same manner as in.

(実施例1−7)
実施例1−4の窒化ケイ素粉末を、目開きが40μmのナイロン製篩で篩通しし、篩下の粉末を回収して実施例1−7の窒化ケイ素粉末を得た。そして、得られた実施例1−7の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を2個作製した。1500℃および1525℃の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-7)
The silicon nitride powder of Example 1-4 was passed through a nylon sieve having an opening of 40 μm, and the powder under the sieve was recovered to obtain a silicon nitride powder of Example 1-7. Then, using the obtained silicon nitride powder of Example 1-7 as a mold release agent, two polycrystalline silicon ingot casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two furnace temperatures of 1500 ° C. and 1525 ° C. were carried out in the same manner as in Example 1-1 using those molds, and polycrystals were performed in the same manner as in Example 1-1. A silicon ingot casting mold was evaluated.

(実施例1−8)
原料粉末に、添加剤として、塩化アンモニウム(和光純薬製、純度99.9%)を、12.4質量%(シリコンと窒化ケイ素の混合粉末と塩化アンモニウムの質量比が87.6:12.4になるように)さらに添加したこと以外は実施例1−3と同様にして、実施例1−8の窒化ケイ素粉末を作製した。そして、得られた実施例1−8の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-8)
Ammonium chloride (manufactured by Wako Pure Chemical Industries, purity 99.9%) was added to the raw material powder as an additive at 12.4 mass% (the mass ratio of the mixed powder of silicon and silicon nitride and ammonium chloride was 87.6: 12. The silicon nitride powder of Example 1-8 was prepared in the same manner as in Example 1-3, except that it was further added. Then, using the obtained silicon nitride powder of Example 1-8 as a release agent, two polycrystalline silicon ingot casting molds were produced in the same manner as in Example 1-1. A directional solidification experiment at two different furnace temperatures similar to that of Example 1-1 was performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−9)
実施例1−2の窒化ケイ素粉末を、空気分級機(日清エンジニアリング社製商品名「ターボクラシファイア」)を用いてカットポイントを2μmに設定して分級し、粒子径が大きい窒化ケイ素粉末と小さい窒化ケイ素粉末とを得た。粒子径が大きい方の窒化ケイ素粉末を回収し、その窒化ケイ素粉末と、市販の窒化ケイ素粉末(宇部興産株式会社製、製品名「SN−E10」(Feの含有割合;9ppm、Alの含有割合;2ppm、FeおよびAl以外の金属不純物の含有割合;4ppm))とを、質量比1:1の割合で、内面をウレタンでコーティングしたV型混合機を用いて0.17時間混合した。そして、得られた実施例1−9の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-9)
The silicon nitride powder of Example 1-2 was classified by using an air classifier (trade name “Turbo Classifier” manufactured by Nisshin Engineering Co., Ltd.) with a cut point set to 2 μm to classify the silicon nitride powder having a large particle diameter and small particles. A silicon nitride powder was obtained. The silicon nitride powder having the larger particle diameter is collected, and the silicon nitride powder and commercially available silicon nitride powder (manufactured by Ube Industries, Ltd., product name “SN-E10” (Fe content ratio; 9 ppm, Al content ratio) 2 ppm, content ratio of metal impurities other than Fe and Al; 4 ppm)) were mixed at a mass ratio of 1: 1 for 0.17 hours using a V-type mixer having an inner surface coated with urethane. Then, using the obtained silicon nitride powder of Example 1-9 as a mold release agent, two polycrystalline silicon ingot casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two different furnace temperatures similar to those of Example 1-1 were performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−10)
粗粉砕後、接吻部に窒化ケイ素製のライナーを備えた気流式粉砕機(日清エンジリング株式会社製SJ−1500型)を使用して、必要空気量3.0m/分、原料供給速度250g/分程度の条件で粉砕して得られた窒化ケイ素粉末と、市販の窒化ケイ素粉末(宇部興産株式会社製、製品名「SN−E10」(Feの含有割合;9ppm、Alの含有割合;2ppm、FeおよびAl以外の金属不純物の含有割合;4ppm))とを、質量比2:1の割合で、内面をウレタンでコーティングしたV型混合機を用いて0.17時間混合して実施例1−10の窒化ケイ素粉末を得た。そして、得られた実施例1−10の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-10)
After the coarse crushing, an air flow type crusher equipped with a silicon nitride liner in the kiss part (SJ-1500 type manufactured by Nisshin Engineering Co., Ltd.) was used, and the required air amount was 3.0 m 3 / min, the raw material supply rate. Silicon nitride powder obtained by pulverizing under a condition of about 250 g / min and commercially available silicon nitride powder (manufactured by Ube Industries, Ltd., product name "SN-E10" (Fe content ratio; 9 ppm, Al content ratio; 2 ppm, the content ratio of metallic impurities other than Fe and Al; 4 ppm)) in a mass ratio of 2: 1 for 0.17 hours using a V-type mixer having an inner surface coated with urethane. 1-10 silicon nitride powder was obtained. Then, using the obtained silicon nitride powder of Example 1-10 as a mold release agent, two polycrystalline silicon ingot casting molds were produced in the same manner as in Example 1-1. A directional solidification experiment at two different furnace temperatures similar to that of Example 1-1 was performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−11)
粗粉砕後、接吻部に窒化ケイ素製のライナーを備えた気流式粉砕機(日清エンジリング株式会社製SJ−1500型)を使用して、必要空気量3.0m/分、原料供給速度250g/分程度の条件で粉砕して得られた窒化ケイ素粉末と、市販の窒化ケイ素粉末(宇部興産株式会社製、製品名「SN−E10」(Feの含有割合;9ppm、Alの含有割合;2ppm、FeおよびAl以外の金属不純物の含有割合;4ppm))とを、質量比1:1の割合で、内面をウレタンでコーティングしたV型混合機を用いて0.17時間混合して実施例1−11の窒化ケイ素粉末を得た。そして、得られた実施例1−11の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を2個作製した。実施例1−7と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-11)
After the coarse crushing, an air flow type crusher equipped with a silicon nitride liner in the kiss part (SJ-1500 type manufactured by Nisshin Engineering Co., Ltd.) was used, and the required air amount was 3.0 m 3 / min, the raw material supply rate. Silicon nitride powder obtained by pulverizing under a condition of about 250 g / min and commercially available silicon nitride powder (manufactured by Ube Industries, Ltd., product name "SN-E10" (Fe content ratio; 9 ppm, Al content ratio; 2 ppm, the content ratio of metal impurities other than Fe and Al; 4 ppm)) were mixed in a mass ratio of 1: 1 for 0.17 hours using a V-type mixer whose inner surface was coated with urethane. 1-11 silicon nitride powder was obtained. Then, using the obtained silicon nitride powder of Example 1-11 as a mold release agent, two polycrystalline silicon ingot casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two different furnace temperatures similar to those in Example 1-7 were performed in the same manner as in Example 1-1 using these molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(比較例1−1、1−2)
微粉砕の時間を、比較例1−1では0.16時間に、比較例1−2では12.00時間にしたこと以外は実施例1−1と同様にして比較例1−1および1−2の窒化ケイ素粉末を得た。表2に見られるように、比較例1−1の窒化ケイ素粉末は比表面積が1.8m/gと小さい粉末であり、比較例1−2の窒化ケイ素粉末は比表面積が14.8m/gと大きい粉末であった。そして、得られた各比較例の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を1個作製した。各比較例において、その鋳型を用い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型とシリコンインゴットを評価した。
(Comparative Examples 1-1 and 1-2)
Comparative Examples 1-1 and 1-in the same manner as in Example 1-1 except that the fine grinding time was 0.16 hours in Comparative Example 1-1 and 12.00 hours in Comparative Example 1-2. 2 silicon nitride powder was obtained. As seen in Table 2, the silicon nitride powder of Comparative Example 1-1 is a powder having a small specific surface area of 1.8 m 2 / g, and the silicon nitride powder of Comparative Example 1-2 has a specific surface area of 14.8 m 2. The powder was as large as / g. Then, using the obtained silicon nitride powder of each comparative example as a mold release agent, one polycrystalline silicon ingot casting mold was produced in the same manner as in Example 1-1. In each comparative example, the mold was used to evaluate the polycrystalline silicon ingot casting mold and the silicon ingot in the same manner as in Example 1-1.

(比較例1−3)
原料粉末に、添加剤として塩化アンモニウム(和光純薬製、純度99.9%)を16.7質量%(シリコンと窒化ケイ素の混合粉末と塩化アンモニウムの質量比が83.3:16.7になるように)さらに添加したこと以外は、実施例1−3と同様にして比較例1−3の窒化ケイ素粉末を得た。比較例1−3の窒化ケイ素粉末は、表2に見られるように、β型窒化ケイ素の割合が46%と少ない粉末であった。そして、得られた比較例1−3の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を1個作製した。その鋳型を用い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型とシリコンインゴットを評価した。
(Comparative Example 1-3)
Ammonium chloride (manufactured by Wako Pure Chemical Industries, purity 99.9%) as an additive is added to the raw material powder at 16.7 mass% (mass ratio of mixed powder of silicon and silicon nitride to ammonium chloride is 83.3: 16.7) Comparative Example 1-3 was obtained in the same manner as in Example 1-3, except that the silicon nitride powder was further added. As shown in Table 2, the silicon nitride powder of Comparative Example 1-3 was a powder having a small proportion of β-type silicon nitride of 46%. Then, using the obtained silicon nitride powder of Comparative Example 1-3 as a release agent, one polycrystalline silicon ingot casting mold was produced in the same manner as in Example 1-1. Using the mold, a polycrystalline silicon ingot casting mold and a silicon ingot were evaluated in the same manner as in Example 1-1.

(比較例1−4、比較例1−5)
D50が2.5μm、かさ密度が0.26g/cm、Feの含有割合が2ppm、Alの含有割合が3ppm、FeおよびAl以外の金属不純物の含有割合が3ppmのシリコン粉末を内径30mmの金型に充填し、1500kg/cmの圧力で一軸成型し、シリコン粉末の一軸成型体を得た。前記成型体を黒鉛製容器に充填し、それをバッチ式窒化炉に収容して、炉内を窒素雰囲気に置換した後、窒素雰囲気下で、1450℃まで昇温し、3時間保持した。室温まで冷却させた後に、窒化生成物を取り出した。得られた窒化生成物を、内面がウレタンコーティングされた、窒化ケイ素製ロールを備えたロールクラッシャーで粗粉砕して、目開きが100μmのナイロン製篩で篩通しし、篩下の粉末を回収した。次に、前記粉末を、窒化ケイ素ボールが充填された、内面がウレタンでライニングされたアルミナ製のポットに収容して、バッチ式振動ミルで振動数1200cpm、振幅8mmの条件で微粉砕した。微粉砕の時間を、比較例1−4では0.33時間、比較例1−5では2.00時間として、各比較例の窒化ケイ素粉末を得た。燃焼合成法でない直接窒化法による比較例1−4及び比較例1−5の窒化ケイ素粉末は、表2に見られるように、それぞれ、結晶子径Dが50nm及び45nmと小さく、結晶歪が2.55×10−4及び2.20×10−4と大きく、DBET/Dが11.0及び4.6と大きい粉末であった。そして、得られた各比較例の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を1個作製した。各比較例において、その鋳型を用い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型とシリコンインゴットを評価した。
(Comparative Examples 1-4, Comparative Example 1-5)
Silicon powder having an inner diameter of 30 mm and a D50 of 2.5 μm, a bulk density of 0.26 g / cm 3 , an Fe content of 2 ppm, an Al content of 3 ppm, and a metal impurity content of 3 ppm other than Fe and Al. The mold was filled and uniaxially molded at a pressure of 1500 kg / cm 2 , to obtain a uniaxially molded body of silicon powder. The molded body was filled in a graphite container, housed in a batch-type nitriding furnace, the atmosphere in the furnace was replaced with a nitrogen atmosphere, and then the temperature was raised to 1450 ° C. in a nitrogen atmosphere and kept for 3 hours. After cooling to room temperature, the nitriding product was taken out. The obtained nitriding product was coarsely crushed with a roll crusher having a urethane nitride inner surface and equipped with a roll made of silicon nitride, and then sieved through a nylon sieve having an opening of 100 μm to collect powder under the sieve. . Next, the powder was placed in an alumina pot filled with silicon nitride balls and having an inner surface lined with urethane, and finely pulverized by a batch type vibration mill under the conditions of a frequency of 1200 cpm and an amplitude of 8 mm. The fine pulverization time was set to 0.33 hours in Comparative Example 1-4 and 2.00 hours in Comparative Example 1-5 to obtain silicon nitride powder of each Comparative Example. Silicon nitride powder of Comparative Example 1-4 and Comparative Example 1-5 by the direct nitriding method not combustion synthesis method, as seen in Table 2, respectively, the crystallite diameter D c is as small as 50nm and 45 nm, the crystal strain The powder was as large as 2.55 × 10 −4 and 2.20 × 10 −4, and had a large D BET / D c of 11.0 and 4.6. Then, using the obtained silicon nitride powder of each comparative example as a mold release agent, one polycrystalline silicon ingot casting mold was produced in the same manner as in Example 1-1. In each comparative example, the mold was used to evaluate the polycrystalline silicon ingot casting mold and the silicon ingot in the same manner as in Example 1-1.

(比較例1−6)
実施例1−4の窒化ケイ素粉末を、空気分級機(日清エンジニアリング社製商品名「ターボクラシファイア」)を用いてカットポイントを1μmに設定して分級し、粒子径が大きい窒化ケイ素粉末と小さい窒化ケイ素粉末とを得た。粒子径が大きい方の窒化ケイ素粉末を回収して比較例1−6の窒化ケイ素粉末を得た。比較例1−6の窒化ケイ素粉末は、表2に見られるように、粒径が小さい方のピークトップが3.5μmと大きい粉末であった。そして、得られた比較例1−6の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を1個作製した。その鋳型を用い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型とシリコンインゴットを評価した。
(Comparative Example 1-6)
The silicon nitride powders of Examples 1-4 were classified by using an air classifier (trade name "Turbo Classifier" manufactured by Nisshin Engineering Co., Ltd.) with a cut point set to 1 μm, and a silicon nitride powder having a large particle size and a small particle size. A silicon nitride powder was obtained. The silicon nitride powder with the larger particle diameter was recovered to obtain a silicon nitride powder of Comparative Example 1-6. As seen in Table 2, the silicon nitride powder of Comparative Example 1-6 was a powder having a large peak top with a smaller particle size of 3.5 μm. Then, using the obtained silicon nitride powder of Comparative Example 1-6 as a mold release agent, one polycrystalline silicon ingot casting mold was produced in the same manner as in Example 1-1. Using the mold, a polycrystalline silicon ingot casting mold and a silicon ingot were evaluated in the same manner as in Example 1-1.

(比較例1−7)
微粉砕の時間を0.2時間にしたこと以外は実施例1−1と同様にして窒化ケイ素粉末を得た。得られた窒化ケイ素粉末を、空気分級機(日清エンジニアリング社製商品名「ターボクラシファイア」)を用いてカットポイントを2μmに設定して分級し、粒子径が大きい窒化ケイ素粉末と小さい窒化ケイ素粉末とを得た。粒子径が大きい方の窒化ケイ素粉末を回収し、その窒化ケイ素粉末と、市販の窒化ケイ素粉末(宇部興産株式会社製、製品名「SN−E10」(Feの含有割合;9ppm、Alの含有割合;2ppm、FeおよびAl以外の金属不純物の含有割合;4ppm))とを、質量比で1:1の割合で、内面がウレタンでコーティングされたV型混合機を用いて0.17時間混合して、比較例1−7の窒化ケイ素粉末を得た。比較例1−7の窒化ケイ素粉末は、表2に見られるように、粒径が小さい方のピークトップが32.3μmと大きい粉末であった。そして、得られた比較例1−8の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を1個作製した。その鋳型を用い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型とシリコンインゴットを評価した。
(Comparative Example 1-7)
A silicon nitride powder was obtained in the same manner as in Example 1-1, except that the pulverizing time was 0.2 hours. The obtained silicon nitride powder was classified by using an air classifier (trade name “Turbo Classifier” manufactured by Nisshin Engineering Co., Ltd.) with a cut point set to 2 μm, and a silicon nitride powder having a large particle diameter and a small silicon nitride powder were classified. And got. The silicon nitride powder having the larger particle diameter is collected, and the silicon nitride powder and commercially available silicon nitride powder (manufactured by Ube Industries, Ltd., product name “SN-E10” (Fe content ratio; 9 ppm, Al content ratio) 2 ppm, content ratio of metal impurities other than Fe and Al; 4 ppm)) in a mass ratio of 1: 1 using a V-type mixer having an inner surface coated with urethane for 0.17 hours. Thus, a silicon nitride powder of Comparative Example 1-7 was obtained. As seen in Table 2, the silicon nitride powder of Comparative Example 1-7 was a powder having a large peak top of 32.3 μm with a smaller particle size. Then, using the obtained silicon nitride powder of Comparative Example 1-8 as a mold release agent, one polycrystalline silicon ingot casting mold was produced in the same manner as in Example 1-1. Using the mold, a polycrystalline silicon ingot casting mold and a silicon ingot were evaluated in the same manner as in Example 1-1.

(比較例1−8)
実施例1−3の窒化ケイ素粉末を、空気分級機(日清エンジニアリング社製商品名「ターボクラシファイア」)を用いてカットポイントを12μmに設定して分級し、粒子径が大きい窒化ケイ素粉末と小さい窒化ケイ素粉末とを得た。粒子径が小さい方の窒化ケイ素粉末を回収して比較例1−8の窒化ケイ素粉末を得た。比較例1−8の窒化ケイ素粉末は、表2に見られるように、粒径が小さい方のピークトップの頻度の粒径と大きい方のピークトップの頻度との比が1.54と大きい粉末であった。そして、得られた比較例1−8の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を1個作製した。その鋳型を用い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型とシリコンインゴットを評価した。
(Comparative Example 1-8)
The silicon nitride powder of Example 1-3 was classified using an air classifier (trade name “Turbo Classifier” manufactured by Nisshin Engineering Co., Ltd.) with a cut point set to 12 μm, and a silicon nitride powder having a large particle size and a small particle size were used. A silicon nitride powder was obtained. The silicon nitride powder having the smaller particle diameter was recovered to obtain a silicon nitride powder of Comparative Example 1-8. As shown in Table 2, the silicon nitride powders of Comparative Examples 1-8 are powders having a large ratio of the peak top frequency of the smaller particle size to the peak top frequency of the larger particle size of 1.54. Met. Then, using the obtained silicon nitride powder of Comparative Example 1-8 as a mold release agent, one polycrystalline silicon ingot casting mold was produced in the same manner as in Example 1-1. Using the mold, a polycrystalline silicon ingot casting mold and a silicon ingot were evaluated in the same manner as in Example 1-1.

(比較例1−9)
比較例1−8の窒化ケイ素粉末を、空気分級機(日清エンジニアリング社製 商品名「ターボクラシファイア」)を用いてカットポイントを2μmに設定して分級し、粒子径が大きい窒化ケイ素粉末と小さい窒化ケイ素粉末とを得た。粒子径が小さい方の窒化ケイ素粉末を回収して比較例1−9の窒化ケイ素粉末を得た。比較例1−9の窒化ケイ素粉末は、粒径のピークトップが1つの粉末であった。そして、得られた比較例1−9の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を1個作製した。その鋳型を用い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型とシリコンインゴットを評価した。
(Comparative Example 1-9)
The silicon nitride powder of Comparative Example 1-8 was classified by using an air classifier (trade name “Turbo Classifier” manufactured by Nisshin Engineering Co., Ltd.) with a cut point set to 2 μm to classify the silicon nitride powder having a large particle diameter and a small particle size. A silicon nitride powder was obtained. The silicon nitride powder having the smaller particle diameter was recovered to obtain a silicon nitride powder of Comparative Example 1-9. The silicon nitride powder of Comparative Example 1-9 had a single particle size peak top. Then, using the obtained silicon nitride powder of Comparative Example 1-9 as a mold release agent, one polycrystalline silicon ingot casting mold was produced in the same manner as in Example 1-1. Using the mold, a polycrystalline silicon ingot casting mold and a silicon ingot were evaluated in the same manner as in Example 1-1.

(比較例1−10〜1−12)
原料シリコン粉末として表1に示す粉末を使用したこと以外は実施例1−4と同様にして、比較例1−10〜1−12の窒化ケイ素粉末を得た。比較例1−10〜1−12の窒化ケイ素粉末は、それぞれ、Feの含有量、Alの含有量、及び、Fe,Al以外の金属不純物の含有量が、159ppm、140ppm、及び、134ppmと、多い粉末であった。そして、得られた比較例1−10〜1−12の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を各々1個作製した。各実施例において、その鋳型を用い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型とシリコンインゴットを評価した。
(Comparative Examples 1-10 to 1-12)
Silicon nitride powders of Comparative Examples 1-10 to 1-12 were obtained in the same manner as in Example 1-4, except that the powder shown in Table 1 was used as the raw material silicon powder. In the silicon nitride powders of Comparative Examples 1-10 to 1-12, the content of Fe, the content of Al, and the content of metal impurities other than Fe and Al are 159 ppm, 140 ppm, and 134 ppm, respectively. It was a lot of powder. Then, using the obtained silicon nitride powders of Comparative Examples 1-10 to 1-12 as a mold release agent, one polycrystalline silicon ingot casting mold was produced in the same manner as in Example 1-1. In each of the examples, the template was used to evaluate the polycrystalline silicon ingot casting mold and the silicon ingot in the same manner as in Example 1-1.

(比較例1−13)
燃焼生成物の粗粉砕にアルミナ製ロールを備えたロールクラッシャーを用いたことと、バッチ式振動ミルによる微粉砕に、アルミナ製ボールが充填されたアルミナ製のポットを用いたこと以外は実施例1−4と同様にして、比較例1−13の窒化ケイ素粉末を作製した。比較例1−13の窒化ケイ素粉末は、Feの含有量、Alの含有量、及びFe,Al以外の金属不純物の含有量が、240ppm、3700ppm、129ppmのいずれも多い粉末であった。そして、得られた比較例1−13の窒化ケイ素粉末を離型剤として用いて実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を1個作製した。その鋳型を用い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型とシリコンインゴットを評価した。
(Comparative Example 1-13)
Example 1 except that a roll crusher equipped with an alumina roll was used for coarse pulverization of combustion products, and an alumina pot filled with alumina balls was used for fine pulverization by a batch type vibration mill. A silicon nitride powder of Comparative Example 1-13 was produced in the same manner as in -4. The silicon nitride powder of Comparative Example 1-13 was a powder having a large content of Fe, a content of Al, and a content of metal impurities other than Fe and Al of 240 ppm, 3700 ppm, and 129 ppm. Then, using the obtained silicon nitride powder of Comparative Example 1-13 as a mold release agent, one polycrystalline silicon ingot casting mold was produced in the same manner as in Example 1-1. Using the mold, a polycrystalline silicon ingot casting mold and a silicon ingot were evaluated in the same manner as in Example 1-1.

実施例1−2〜1−11および比較例1−1〜1−13における、原料粉末に用いたシリコン粉末、および添加剤の物性値と、混合原料粉末の物性値と、記燃焼生成物の圧壊強度を表1に、また、窒化ケイ素粉末の物性値を表2に示す。また、実施例1−2〜1−11および比較例1−1〜1−13の多結晶シリコンインゴット鋳造用鋳型および多結晶シリコンインゴットの評価結果を表3に示す。   In Examples 1-2 to 1-11 and Comparative Examples 1-1 to 1-13, the physical properties of the silicon powder used as the raw powder and the additive, the physical properties of the mixed raw powder, and the combustion products The crushing strength is shown in Table 1, and the physical properties of the silicon nitride powder are shown in Table 2. Table 3 shows the evaluation results of the polycrystalline silicon ingot casting molds and the polycrystalline silicon ingots of Examples 1-2 to 1-11 and Comparative examples 1-1 to 1-13.

(実施例2−1)
以下に述べる手法で、実施例1−1の窒化ケイ素粉末を含む離型層を具えた多結晶シリコンインゴット鋳造用鋳型を作製し、多結晶シリコンインゴット鋳造用鋳型、およびシリコンインゴットの評価を実施した。
(Example 2-1)
By the method described below, a polycrystalline silicon ingot casting mold having a release layer containing the silicon nitride powder of Example 1-1 was prepared, and the polycrystalline silicon ingot casting mold and the silicon ingot were evaluated. .

実施例1−1の窒化ケイ素粉末を、密封できるポリエチレン製容器に収容し、シリカ濃度20質量%のシリカゾル(扶桑化学社製、製品名「PL−3」)と水を添加した。このとき、質量比で、窒化ケイ素:シリカゾル:水が20:8:72となるように混合した。次に、窒化ケイ素粉末とシリカゾルと水を収容した容器に、窒化ケイ素製ボールを投入して密封し、バッチ式振動ミルを用いて、振幅5mm、振動数1780cpmで5分間混合し、窒化ケイ素スラリーを得た。   The silicon nitride powder of Example 1-1 was housed in a sealable polyethylene container, and silica sol having a silica concentration of 20% by mass (Fuso Chemical Co., Ltd., product name "PL-3") and water were added. At this time, silicon nitride: silica sol: water were mixed in a mass ratio of 20: 8: 72. Next, a silicon nitride ball was placed in a container containing silicon nitride powder, silica sol, and water and sealed, and a batch type vibration mill was used to mix for 5 minutes at an amplitude of 5 mm and a frequency of 1780 cpm to obtain a silicon nitride slurry. Got

得られた実施例2−1の窒化ケイ素スラリーを、予め90℃に加温した、気孔率16%で、底面が100mmの正方形で、深さ100mmの石英製坩堝の内面にスプレー塗布し、次いで90℃で15時間乾燥し、実施例2−1の窒化ケイ素粉末を含む離型層を具えた多結晶シリコンインゴット鋳造用鋳型を得た。このときの離型層の厚みは約0.2mmであった。   The obtained silicon nitride slurry of Example 2-1 was spray-coated on the inner surface of a quartz crucible having a square shape having a porosity of 16%, a bottom surface of 100 mm, and a depth of 100 mm, which had been heated to 90 ° C. in advance. After drying at 90 ° C. for 15 hours, a mold for casting a polycrystalline silicon ingot having a release layer containing the silicon nitride powder of Example 2-1 was obtained. The thickness of the release layer at this time was about 0.2 mm.

得られた実施例2−1の多結晶シリコンインゴット鋳造用鋳型を用いて実施例1−1と同様にして一方向凝固実験を行い、実施例1−1と同様の方法で実施例2−1の多結晶シリコンインゴット鋳造用鋳型、およびシリコンインゴットを評価した。その結果を表4に示す。   Using the obtained polycrystalline silicon ingot casting mold of Example 2-1, a directional solidification experiment was conducted in the same manner as in Example 1-1, and Example 2-1 was carried out in the same manner as in Example 1-1. The polycrystalline silicon ingot casting mold and the silicon ingot were evaluated. The results are shown in Table 4.

Figure 0006690735
Figure 0006690735

(実施例2−2〜2−11、比較例2−1〜2−13)
表4に示す窒化ケイ素粉末を用いたこと以外は実施例2−1と同様の手法で、窒化ケイ素スラリーを作製し、多結晶シリコンインゴット鋳造用鋳型を製造した。得られた各実施例および各比較例の多結晶シリコンインゴット鋳造用鋳型を用いて、実施例1−1と同様にして一方向凝固実験を行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型およびシリコンインゴットを評価した。その結果を表4に示す。
(Examples 2-2 to 2-11, Comparative examples 2-1 to 2-13)
A silicon nitride slurry was produced in the same manner as in Example 2-1 except that the silicon nitride powder shown in Table 4 was used, to produce a polycrystalline silicon ingot casting mold. Using the obtained polycrystalline silicon ingot casting molds of Examples and Comparative Examples, a unidirectional solidification experiment was conducted in the same manner as in Example 1-1, and the polycrystalline method was performed in the same manner as in Example 1-1. The silicon ingot casting mold and the silicon ingot were evaluated. The results are shown in Table 4.

以上の通り、本発明の窒化ケイ素粉末は、鋳型に塗布した後に高温で熱処理することで、実質的にそれ単独で密着性と離型性が良好な離型層を鋳型に形成し得ること、また、シリカゾルと混合して鋳型に塗布することで、高温の熱処理を行わなくても密着性と離型性が良好な離型層を鋳型に形成し得ることがわかった。   As described above, the silicon nitride powder of the present invention is that by applying a heat treatment at a high temperature after coating the mold, it is possible to form a mold release layer having good adhesion and releasability substantially by itself. It was also found that a mold release layer having good adhesion and mold releasability can be formed on a mold without heat treatment at high temperature by mixing with silica sol and applying it to the mold.

本発明の窒化ケイ素粉末は、鋳型への密着性と離型性が良好な離型層を鋳型に形成し得る離型剤として有用であり、特に、太陽電池用の高品質なシリコン基板を高い歩留まりで採取し得る多結晶シリコンインゴットの離型剤として有用である。また、本発明の窒化ケイ素粉末は、緻密な離型層を形成し得ること、結晶性が高いことから、高温で高強度を発現する窒化ケイ素焼結体の原料としても有用である。   INDUSTRIAL APPLICABILITY The silicon nitride powder of the present invention is useful as a mold release agent capable of forming a mold release layer having good adhesion to a mold and good mold releasability, and particularly high quality silicon substrates for solar cells It is useful as a release agent for polycrystalline silicon ingots that can be collected at a yield. Further, the silicon nitride powder of the present invention is capable of forming a dense release layer and has high crystallinity, and therefore is also useful as a raw material for a silicon nitride sintered body that exhibits high strength at high temperatures.

1 燃焼合成反応装置
2 混合原料粉末
3 黒鉛製容器
4 着火剤
5 カーボンヒータ
6 耐圧性容器
7 真空ポンプ
8 窒素ボンベ
9 覗き窓
1 Combustion Synthesis Reaction Device 2 Mixed Raw Material Powder 3 Graphite Container 4 Ignition Agent 5 Carbon Heater 6 Pressure Resistant Container 7 Vacuum Pump 8 Nitrogen Cylinder 9 Peep Window

Claims (8)

BET法により測定される比表面積が2m/g以上13m/g以下であり、
β型窒化ケイ素の割合が50質量%以上であり、
β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたときに、Dが150nm以上であり、
前記比表面積より算出される比表面積相当径をDBETとしたときに、DBET/D(nm/nm)が3以下であり、
レーザ回折散乱法による体積基準の粒度分布測定により得られる頻度分布曲線が二つのピークを有し、
該ピークのピークトップが、0.5〜2μmの範囲と、6〜30μmの範囲にあり、
前記ピークトップの頻度の比(粒子径0.5〜2μmの範囲のピークトップの頻度/粒子径6〜30μmの範囲のピークトップの頻度)が0.1〜1であることを特徴とする窒化ケイ素粉末。
The specific surface area measured by the BET method is 2 m 2 / g or more and 13 m 2 / g or less,
the proportion of β-type silicon nitride is 50% by mass or more,
The crystallite size of β-type silicon nitride which is calculated using the Williamson-Hall type from powder X-ray diffraction pattern of β-type silicon nitride is taken as D C, and a D C is 150nm or more,
When the specific surface area equivalent diameter calculated from the specific surface area is D BET , D BET / D C (nm / nm) is 3 or less,
The frequency distribution curve obtained by the volume-based particle size distribution measurement by the laser diffraction scattering method has two peaks,
The peak top of the peak is in the range of 0.5 to 2 μm and the range of 6 to 30 μm,
Nitriding, characterized in that the ratio of the frequency of peak tops (frequency of peak tops in the range of particle diameter 0.5 to 2 μm / frequency of peak top in the range of particle diameter 6 to 30 μm) is 0.1 to 1. Silicon powder.
β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶歪が1.5×10−4以下であることを特徴とする請求項1記載の窒化ケイ素粉末。The crystal strain of β-type silicon nitride calculated from the powder X-ray diffraction pattern of β-type silicon nitride using the Williamson-Hall equation is 1.5 × 10 −4 or less, and the nitriding according to claim 1. Silicon powder. 前記ピークトップが、0.5〜2μmの範囲と、9〜30μmの範囲にあることを特徴とする請求項1または2記載の窒化ケイ素粉末。   The silicon nitride powder according to claim 1 or 2, wherein the peak tops are in the range of 0.5 to 2 µm and in the range of 9 to 30 µm. β型窒化ケイ素の割合が70質量%以上であることを特徴とする請求項1〜3いずれか一項に記載の窒化ケイ素粉末。   The ratio of β-type silicon nitride is 70% by mass or more, and the silicon nitride powder according to claim 1. 前記比表面積が2m/g以上10m/g以下であることを特徴とする請求項1〜4いずれか一項に記載の窒化ケイ素粉末。The silicon nitride powder according to any one of claims 1 to 4, characterized in that the specific surface area is less than 2m 2 / g or more 10 m 2 / g. Feの含有割合が100ppm以下であり、
Alの含有割合が100ppm以下であり、
FeおよびAl以外の金属不純物の含有割合の合計が100ppm以下であることを特徴とする請求項1〜5いずれか一項に記載の窒化ケイ素粉末。
Fe content ratio is 100 ppm or less,
The content ratio of Al is 100 ppm or less,
The silicon nitride powder according to any one of claims 1 to 5, wherein the total content of metal impurities other than Fe and Al is 100 ppm or less.
請求項1〜6いずれか一項に記載の窒化ケイ素粉末を含む多結晶シリコンインゴット用離型剤。   A mold release agent for a polycrystalline silicon ingot, which comprises the silicon nitride powder according to claim 1. 鋳型内に収容された溶融シリコンを凝固させるシリコンインゴットの製造方法であって、前記鋳型として、前記溶融シリコンとの接触面に請求項1〜6いずれか一項に記載の窒化ケイ素粉末が塗布された鋳型を用いることを特徴とするシリコンインゴットの製造方法。   A method for producing a silicon ingot for solidifying molten silicon housed in a mold, wherein the silicon nitride powder according to any one of claims 1 to 6 is applied to the contact surface with the molten silicon as the mold. A method for manufacturing a silicon ingot, which comprises using a mold.
JP2018556701A 2016-12-12 2017-12-12 Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot Active JP6690735B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016240752 2016-12-12
JP2016240752 2016-12-12
PCT/JP2017/044619 WO2018110567A1 (en) 2016-12-12 2017-12-12 Silicon nitride powder, mold release agent for polycrystalline silicon ingots, and method for producing polycrystalline silicon ingots

Publications (2)

Publication Number Publication Date
JPWO2018110567A1 JPWO2018110567A1 (en) 2019-06-24
JP6690735B2 true JP6690735B2 (en) 2020-04-28

Family

ID=62559522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018556701A Active JP6690735B2 (en) 2016-12-12 2017-12-12 Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot

Country Status (4)

Country Link
JP (1) JP6690735B2 (en)
CN (1) CN110049946A (en)
TW (1) TWI657042B (en)
WO (1) WO2018110567A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761206A (en) * 2019-03-18 2019-05-17 青岛瓷兴新材料有限公司 A kind of spherical beta silicon nitride powder of high-purity low aluminium, its manufacturing method and application
JPWO2022004755A1 (en) * 2020-06-30 2022-01-06

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3877645B2 (en) * 2002-06-03 2007-02-07 電気化学工業株式会社 Method for producing silicon nitride powder
JP5440977B2 (en) * 2009-09-03 2014-03-12 電気化学工業株式会社 Method for producing high-purity silicon nitride fine powder
JP5518584B2 (en) * 2010-06-16 2014-06-11 電気化学工業株式会社 Silicon nitride powder for release agent.
KR20140005221A (en) * 2010-12-28 2014-01-14 우베 고산 가부시키가이샤 Polycrystalline silicon ingot casting mold, and silicon nitride powder for mold release material, slurry containing silicon nitride powder for mold release layer and casting release material therefor
JP5930637B2 (en) * 2011-09-28 2016-06-08 デンカ株式会社 Silicon nitride powder for mold release agent and method for producing the same
JP5901448B2 (en) * 2012-06-28 2016-04-13 デンカ株式会社 Silicon nitride powder for mold release agent
CN103396170B (en) * 2013-07-08 2015-11-25 特变电工新疆新能源股份有限公司 The preparation method of crucible pot coating for polysilicon casting ingot and crucible
JP5975176B2 (en) * 2013-07-11 2016-08-23 宇部興産株式会社 Silicon nitride powder for mold release agent of polycrystalline silicon ingot casting mold and manufacturing method thereof, slurry containing silicon nitride powder, casting mold for polycrystalline silicon ingot and manufacturing method thereof, and polycrystalline silicon using the mold Manufacturing method of ingot casting
JP6245602B2 (en) * 2013-10-21 2017-12-13 国立研究開発法人産業技術総合研究所 Silicon nitride filler, resin composite, insulating substrate, semiconductor encapsulant, method for producing silicon nitride filler
KR20170021282A (en) * 2014-06-16 2017-02-27 우베 고산 가부시키가이샤 Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder

Also Published As

Publication number Publication date
WO2018110567A1 (en) 2018-06-21
TW201829303A (en) 2018-08-16
JPWO2018110567A1 (en) 2019-06-24
TWI657042B (en) 2019-04-21
CN110049946A (en) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
JP6690734B2 (en) Method for producing silicon nitride powder and silicon nitride sintered body
JP6292306B2 (en) Silicon nitride powder, silicon nitride sintered body and circuit board, and method for producing silicon nitride powder
TWI788533B (en) Process for producing silicon nitride powder
JP5975176B2 (en) Silicon nitride powder for mold release agent of polycrystalline silicon ingot casting mold and manufacturing method thereof, slurry containing silicon nitride powder, casting mold for polycrystalline silicon ingot and manufacturing method thereof, and polycrystalline silicon using the mold Manufacturing method of ingot casting
JP6693575B2 (en) Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP5637220B2 (en) Polycrystalline silicon ingot casting mold, manufacturing method thereof, silicon nitride powder for mold release material of polycrystalline silicon ingot casting mold, and slurry containing the same
JP5930637B2 (en) Silicon nitride powder for mold release agent and method for producing the same
WO2012090542A1 (en) Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
JP6690735B2 (en) Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP5700052B2 (en) Polycrystalline silicon ingot casting mold, silicon nitride powder for mold release material, silicon nitride powder-containing slurry for mold release layer, and mold release material for casting
TW202225089A (en) Boron nitride powder, and method for producing boron nitride powder
JP5759065B2 (en) Alumina production method
WO2015045547A1 (en) Method for producing ingot and powder of zirconium carbide
JP6354367B2 (en) Silicon nitride powder for release agent of polycrystalline silicon ingot casting mold and manufacturing method thereof, slurry containing silicon nitride powder for release agent of casting mold of polycrystalline silicon ingot, and casting mold for polycrystalline silicon ingot and manufacturing method thereof
TWI523827B (en) Crucibles
Titova et al. Development of SHS azide technology of silicon carbide nanopowder
WO2021161911A1 (en) Metal composite
JP2003112977A (en) Method for producing high purity silicon nitride powder
KR101124708B1 (en) Fabrication Method of Silicon Powder by Combustion Synthesis using Molten Salt
JP2001011609A (en) Sputtering target and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6690735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250