JP6693575B2 - Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot - Google Patents

Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot Download PDF

Info

Publication number
JP6693575B2
JP6693575B2 JP2018556696A JP2018556696A JP6693575B2 JP 6693575 B2 JP6693575 B2 JP 6693575B2 JP 2018556696 A JP2018556696 A JP 2018556696A JP 2018556696 A JP2018556696 A JP 2018556696A JP 6693575 B2 JP6693575 B2 JP 6693575B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
nitride powder
silicon
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018556696A
Other languages
Japanese (ja)
Other versions
JPWO2018110560A1 (en
Inventor
卓司 王丸
卓司 王丸
耕司 柴田
耕司 柴田
猛 山尾
猛 山尾
山田 哲夫
哲夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2018110560A1 publication Critical patent/JPWO2018110560A1/en
Application granted granted Critical
Publication of JP6693575B2 publication Critical patent/JP6693575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)
  • Mold Materials And Core Materials (AREA)

Description

本発明は、鋳型への密着性と離型性が良好な離型層を鋳型に形成し得る窒化ケイ素粉末に関し、特に多結晶シリコンインゴットの離型剤として好適な窒化ケイ素粉末に関する。   The present invention relates to a silicon nitride powder capable of forming a mold release layer having good adhesion to a mold and good mold releasability on a mold, and particularly to a silicon nitride powder suitable as a mold release agent for a polycrystalline silicon ingot.

太陽電池に用いられる多結晶シリコン基板は、通常、縦型ブリッジマン炉を用いて、溶融シリコンを一方向凝固させることにより製造される多結晶シリコンインゴットより採取される。多結晶シリコン基板においては高性能化と低コスト化が要求されており、その要求に応えるには、溶融シリコンの一方向凝固時の多結晶シリコンインゴットへの不純物混入の抑制と、多結晶シリコンインゴットの歩留まりの向上が重要である。縦型ブリッジマン法による溶融シリコンの一方向凝固においては、石英製などの鋳型が用いられるが、多結晶シリコンインゴットの歩留まりを高くするために、鋳型には多結晶シリコンインゴットの離型性が良いことが求められ、窒化ケイ素粉末を含む離型剤が内壁(溶融シリコンと接触する面)に塗布された鋳型が一般的に用いられている。   A polycrystalline silicon substrate used for a solar cell is usually obtained from a polycrystalline silicon ingot produced by unidirectionally solidifying molten silicon using a vertical Bridgman furnace. High performance and low cost are required for polycrystalline silicon substrates, and in order to meet these demands, suppression of impurity mixing into polycrystalline silicon ingots during directional solidification of molten silicon and polycrystalline silicon ingots are required. It is important to improve the yield of In unidirectional solidification of molten silicon by the vertical Bridgman method, a mold such as quartz is used, but in order to increase the yield of the polycrystalline silicon ingot, the mold has a good mold release property of the polycrystalline silicon ingot. Therefore, a mold in which a release agent containing silicon nitride powder is applied to the inner wall (the surface in contact with molten silicon) is generally used.

縦型ブリッジマン炉は、その構造上、鋳型底面より下方に向かって熱が逃げるため、鋳型には上下方向に大きな温度勾配が生じ、鋳型上部の温度が相対的に高くなる。近年太陽電池基板向けの多結晶シリコンインゴットはますます大型化する傾向にあり、鋳型底部のシリコン(融点;1414℃)が十分溶融するまで温度を上げると、ブリッジマン炉の構造によっては鋳型上部の温度は1500℃以上のような高温になることもある。このような場合、温度が高い鋳型上部では、多結晶シリコンインゴットの離型性が悪くなる、また離型層が鋳型から剥がれて多結晶シリコンインゴットに付着する、などの問題が生じることがある。したがって、多結晶シリコンインゴットの離型層には、高い温度、例えば1500℃以上で一方向凝固を行っても、多結晶シリコンインゴットの離型性や、離型層の鋳型への密着性が良いことが求められる。   Due to the structure of the vertical Bridgman furnace, heat escapes downward from the bottom of the mold, so that a large temperature gradient occurs in the mold in the vertical direction, and the temperature of the upper part of the mold becomes relatively high. In recent years, polycrystalline silicon ingots for solar cell substrates have tended to become larger and larger. If the temperature at the bottom of the mold (melting point: 1414 ° C) is sufficiently melted, depending on the structure of the Bridgman furnace, the upper part of the mold The temperature may be as high as 1500 ° C. or higher. In such a case, in the upper part of the mold where the temperature is high, there may be problems such that the releasability of the polycrystalline silicon ingot deteriorates, and the release layer peels off from the mold and adheres to the polycrystalline silicon ingot. Therefore, even if the release layer of the polycrystalline silicon ingot is unidirectionally solidified at a high temperature, for example, 1500 ° C. or higher, the release property of the polycrystalline silicon ingot and the adhesion of the release layer to the mold are good. Is required.

このような背景から、太陽電池の基板に適用可能な多結晶シリコンインゴットの歩留まりを向上させるために一方向凝固時のシリコンの溶融温度を高くしても、多結晶シリコンインゴットの離型性と、鋳型への密着性が良好な離型層を形成し得る窒化ケイ素粉末の開発が望まれている。また、長尺の多結晶シリコンインゴットを得るために、上下方向に寸法が大きい鋳型を用いると、鋳型上部は特に長時間高温に曝されることになるので、一方向凝固時のシリコンの溶融時間が長くても、多結晶シリコンインゴットの離型性と、鋳型への密着性が良好な離型層を形成し得る窒化ケイ素粉末の開発が望まれている。   From such a background, even if the melting temperature of silicon during directional solidification is increased to improve the yield of the polycrystalline silicon ingot applicable to the substrate of the solar cell, the releasability of the polycrystalline silicon ingot, and Development of a silicon nitride powder capable of forming a release layer having good adhesion to a mold has been desired. Further, in order to obtain a long polycrystalline silicon ingot, when a mold having a large size in the vertical direction is used, the upper part of the mold is exposed to high temperature for a particularly long time, so the melting time of silicon during unidirectional solidification It is desired to develop a silicon nitride powder capable of forming a mold release layer having a good mold releasability of a polycrystalline silicon ingot and a good adhesion to a mold even if the length is long.

特開2007−261832号公報JP, 2007-261832, A 特開2013−71864号公報JP, 2013-71864, A

特許文献1には、Feの濃度とD50を特定の範囲にする窒化ケイ素粉末が、強固な離型層を形成できて、太陽電池の変換効率が高い多結晶シリコンの製造に有用であることは記載されているものの、窒化ケイ素粉末の結晶構造や結晶子径については記載されておらず、シリコンの溶融温度を高くしたり、あるいはシリコンの溶融時間を長くしたりした場合の多結晶シリコンインゴットの離型性や離型層の鋳型への密着性については記載されていない。   Patent Document 1 discloses that a silicon nitride powder having Fe concentration and D50 within a specific range can form a strong release layer and is useful for production of polycrystalline silicon having high conversion efficiency of a solar cell. Although described, the crystal structure and crystallite size of the silicon nitride powder is not described, and the polycrystalline silicon ingot in the case of increasing the melting temperature of silicon or increasing the melting time of silicon It does not describe the releasability or the adhesion of the release layer to the mold.

また特許文献2には、粒度分布とβ相の比率と特定の金属不純物を特定の範囲とする窒化ケイ素粉末が、多結晶シリコンインゴットへの不純物混入量を低減させ、離型剤の剥がれを抑制できることは示されているものの、比較的小さいD50とD90を有する窒化ケイ素粉末や、50質量%のβ相の比率を有する窒化ケイ素粉末が最も離型剤の剥がれを抑制できることが示されているだけで、窒化ケイ素粉末の結晶子径については記載されておらず、シリコンの溶融温度を高くしたり、シリコンの溶融時間を長くしたりした場合の多結晶シリコンインゴットの離型性や離型層の鋳型への密着性については記載されていない。   Further, in Patent Document 2, a silicon nitride powder having a particle size distribution, a β phase ratio, and a specific metal impurity in a specific range reduces the amount of impurities mixed into a polycrystalline silicon ingot and suppresses peeling of a release agent. Although shown to be possible, it is only shown that a silicon nitride powder having a relatively small D50 and D90 or a silicon nitride powder having a β phase ratio of 50 mass% can most suppress the release agent from peeling off. However, the crystallite diameter of the silicon nitride powder is not described, and the release property of the polycrystalline silicon ingot and the release layer of the polycrystalline silicon ingot when the melting temperature of silicon is increased or the melting time of silicon is lengthened. No mention is made of adhesion to the mold.

そこで本発明は、一方向凝固時のシリコンの溶融温度を高くした場合でも、あるいはシリコンの溶融時間を長くした場合でも、多結晶シリコンインゴットの離型性が良好な、多結晶シリコンインゴットの離型剤として好適に使用することができる窒化ケイ素粉末を提供することを目的とする。   Therefore, the present invention has a good releasability of a polycrystalline silicon ingot, even if the melting temperature of silicon during unidirectional solidification is increased or the melting time of silicon is lengthened. An object of the present invention is to provide a silicon nitride powder that can be suitably used as an agent.

本発明者らは、前記課題を解決するために鋭意研究を重ね、特定の比表面積、特定のβ型窒化ケイ素の割合および特定の粒度分布を有し、特定の金属不純物とそれら以外の金属不純物の含有割合が特定の割合より少なく、結晶子径が特定の値より大きい窒化ケイ素粉末を用いて多結晶シリコンインゴット鋳造用鋳型の離型層を形成すると、一方向凝固時のシリコンの溶融温度を高くしても、多結晶シリコンインゴットの離型性、および離型層の鋳型への密着性が良好であることを見出し、本発明を完成するに至った。すなわち本発明は以下の事項に関する。   The present inventors have conducted extensive studies to solve the above problems, have a specific specific surface area, a specific β-type silicon nitride ratio and a specific particle size distribution, and have a specific metal impurity and other metal impurities. When the mold release layer of the polycrystalline silicon ingot casting mold is formed by using a silicon nitride powder having a content ratio of less than a specific ratio and a crystallite diameter larger than a specific value, the melting temperature of silicon during unidirectional solidification is increased. The inventors have found that the mold release property of the polycrystalline silicon ingot and the adhesion of the mold release layer to the mold are good even if they are increased, and have completed the present invention. That is, the present invention relates to the following matters.

(1) 窒化ケイ素粉末であって、BET法により測定される比表面積が0.4m/g以上5m/g以下であり、β型窒化ケイ素の割合が70質量%以上であり、レーザ回折散乱法により測定される体積基準の50%粒子径をD50とし、90%粒子径をD90としたときに、D50が2μm以上20μm以下であり、D90が8μm以上60μm以下であり、Feの含有割合が100ppm以下であり、Alの含有割合が100ppm以下であり、FeおよびAl以外の金属不純物の含有割合の合計が100ppm以下であり、β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたときに、Dが300nm以上であることを特徴とする窒化ケイ素粉末。(1) Silicon nitride powder having a specific surface area of 0.4 m 2 / g or more and 5 m 2 / g or less as measured by the BET method, a proportion of β-type silicon nitride of 70% by mass or more, and laser diffraction When D50 is the volume-based 50% particle diameter measured by the scattering method and 90% particle diameter is D90, D50 is 2 μm or more and 20 μm or less, D90 is 8 μm or more and 60 μm or less, and the Fe content ratio is Is 100 ppm or less, the content ratio of Al is 100 ppm or less, the total content ratio of metal impurities other than Fe and Al is 100 ppm or less, and the Williamson-Hall equation is calculated from the powder X-ray diffraction pattern of β-type silicon nitride. the crystallite size of β-type silicon nitride which is calculated using when a D C, silicon nitride powder, characterized in that D C is 300nm or more .

(2) β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶歪が0.8×10−4以下であることを特徴とする上記(1)の窒化ケイ素粉末。(2) The crystal strain of β-type silicon nitride calculated from the powder X-ray diffraction pattern of β-type silicon nitride using the Williamson-Hall equation is 0.8 × 10 −4 or less, (1) ) Silicon nitride powder.

(3) 前記比表面積より算出される比表面積相当径をDBETとしたときに、DBET/D(nm/nm)が5以下であることを特徴とする上記(1)または(2)の窒化ケイ素粉末に関する。(3) When the specific surface area equivalent diameter calculated from the specific surface area is D BET , D BET / D C (nm / nm) is 5 or less, (1) or (2) above Of silicon nitride powder.

(4) D50が3μm以上であることを特徴とする上記(1)〜(3)いずれかの窒化ケイ素粉末。   (4) D50 is 3 micrometers or more, The silicon nitride powder in any one of said (1)-(3) characterized by the above-mentioned.

(5) D90が50μm以下であることを特徴とする上記(1)〜(4)いずれかの窒化ケイ素粉末。   (5) D90 is 50 micrometers or less, The silicon nitride powder in any one of said (1)-(4) characterized by the above-mentioned.

(6) D90が13μm以上であることを特徴とする上記(1)〜(5)いずれかの窒化ケイ素粉末。   (6) D90 is 13 micrometers or more, The silicon nitride powder in any one of said (1)-(5) characterized by the above-mentioned.

(7) β型窒化ケイ素の割合が80質量%より大きいことを特徴とする上記(1)〜(6)いずれかの窒化ケイ素粉末。   (7) The silicon nitride powder according to any one of (1) to (6) above, wherein the proportion of β-type silicon nitride is greater than 80% by mass.

(8) Feの含有割合が20ppm以下であり、Alの含有割合が20ppm以下であり、FeおよびAl以外の金属不純物の含有割合の合計が20ppm以下であることを特徴とする上記(1)〜(7)いずれかの窒化ケイ素粉末。   (8) The Fe content is 20 ppm or less, the Al content is 20 ppm or less, and the total content of metal impurities other than Fe and Al is 20 ppm or less. (7) Any of the silicon nitride powders.

(9) レーザ回折散乱法により測定される体積基準の10%粒子径をD10としたときに、D10が0.5μm以上8μm以下であることを特徴とする上記(1)〜(8)いずれかの窒化ケイ素粉末。   (9) Any of the above (1) to (8), wherein D10 is 0.5 μm or more and 8 μm or less, where D10 is a volume-based 10% particle diameter measured by a laser diffraction scattering method. Silicon nitride powder.

(10) 上記(1)〜(9)いずれかの窒化ケイ素粉末を含む多結晶シリコンインゴット用離型剤。   (10) A mold release agent for a polycrystalline silicon ingot, which contains the silicon nitride powder according to any one of (1) to (9) above.

(11) 鋳型内に収容された溶融シリコンを凝固させる多結晶シリコンインゴットの製造方法であって、前記鋳型として、前記溶融シリコンとの接触面に上記(1)〜(9)いずれかの窒化ケイ素粉末が塗布された鋳型を用いることを特徴とするシリコンインゴットの製造方法。   (11) A method for producing a polycrystalline silicon ingot, in which molten silicon contained in a mold is solidified, wherein the mold has a silicon nitride contact surface contacting with the molten silicon. A method for producing a silicon ingot, which comprises using a mold coated with powder.

本発明の窒化ケイ素粉末によれば、一方向凝固時のシリコンの溶融温度を高くしても、あるいはシリコンの溶融時間を長くしても、多結晶シリコンインゴットの離型性と、離型層の鋳型への密着性を向上させることができる、多結晶シリコンインゴットの離型剤として好適な窒化ケイ素粉末を提供することができる。   According to the silicon nitride powder of the present invention, even if the melting temperature of silicon during unidirectional solidification is increased or the melting time of silicon is lengthened, the releasability of the polycrystalline silicon ingot and the release layer It is possible to provide a silicon nitride powder which can improve the adhesion to a mold and is suitable as a mold release agent for a polycrystalline silicon ingot.

実施例1〜13および比較例1〜10の窒化ケイ素粉末の製造に用いた燃焼合成反応装置の模式図である。It is a schematic diagram of the combustion synthesis reaction device used for manufacture of the silicon nitride powder of Examples 1-13 and Comparative Examples 1-10.

本発明の窒化ケイ素粉末の実施形態について詳しく説明する。   An embodiment of the silicon nitride powder of the present invention will be described in detail.

(窒化ケイ素粉末)
本発明の窒化ケイ素粉末は、BET法により測定される比表面積が0.4m/g以上5m/g以下の窒化ケイ素粉末であって、β型窒化ケイ素の割合が70質量%以上であり、レーザ回折散乱法により測定される体積基準の50%粒子径をD50とし、90%粒子径をD90としたときに、D50が2μm以上20μm以下であり、D90が8μm以上60μm以下であり、Feの含有割合が100ppm以下であり、Alの含有割合が100ppm以下であり、FeおよびAl以外の金属不純物の含有割合の合計が100ppm以下であり、β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたときに、Dが300nm以上であることを特徴とする。
(Silicon nitride powder)
The silicon nitride powder of the present invention is a silicon nitride powder having a specific surface area measured by the BET method of 0.4 m 2 / g or more and 5 m 2 / g or less, and the proportion of β-type silicon nitride is 70% by mass or more. , D50 is 2 μm or more and 20 μm or less, D90 is 8 μm or more and 60 μm or less, and D50 is 50% by volume, and D90 is 50% by volume. Content of 100 ppm or less, Al content of 100 ppm or less, the total content of metal impurities other than Fe and Al is 100 ppm or less, from the powder X-ray diffraction pattern of β-type silicon nitride Williamson- the crystallite size of β-type silicon nitride which is calculated using the Hall type is taken as D C, to wherein the D C is 300nm or more .

本発明の窒化ケイ素粉末は、BET法により測定される比表面積が0.4m/g以上5m/g以下である。比表面積がこの範囲であれば、鋳型への密着性が良好な離型層を形成することができる。窒化ケイ素粉末のBET法により測定される比表面積は、4.0m/g以下、3.0m/g以下、2.0m/g以下でもよい。The silicon nitride powder of the present invention has a specific surface area measured by the BET method of 0.4 m 2 / g or more and 5 m 2 / g or less. When the specific surface area is within this range, it is possible to form a release layer having good adhesion to the mold. The specific surface area of the silicon nitride powder measured by the BET method may be 4.0 m 2 / g or less, 3.0 m 2 / g or less, and 2.0 m 2 / g or less.

本発明の窒化ケイ素粉末は、β型窒化ケイ素の割合が70質量%以上である。β型窒化ケイ素の割合がこの範囲であれば、多結晶シリコンインゴットの離型性も、鋳型への密着性も良好な離型層を形成することができる。この観点から、β型窒化ケイ素の割合は80質量%より大きいことがさらに好ましい。β型窒化ケイ素の割合は85質量%より大きいこと、90質量%より大きいこと、95質量%より大きいことができ、100質量%であることもできる。   In the silicon nitride powder of the present invention, the proportion of β-type silicon nitride is 70% by mass or more. When the proportion of β-type silicon nitride is within this range, it is possible to form a release layer having good release properties of the polycrystalline silicon ingot and good adhesion to the mold. From this viewpoint, the proportion of β-type silicon nitride is more preferably more than 80% by mass. The proportion of β-type silicon nitride can be greater than 85% by weight, greater than 90% by weight, greater than 95% by weight and even 100% by weight.

窒化ケイ素以外の成分は3質量%未満、さらには1質量%未満、特に0.1質量%未満が好ましい。窒化ケイ素以外の成分が存在すると、本願発明のような一方向凝時のシリコンの溶融温度を高くした場合でも、あるいはシリコンの溶融時間を長くした場合でも、多結晶シリコンインゴットの良好な離型性が得られなくなる恐れがある。   Components other than silicon nitride are less than 3% by mass, more preferably less than 1% by mass, and particularly preferably less than 0.1% by mass. When a component other than silicon nitride is present, good releasability of the polycrystalline silicon ingot is obtained even when the melting temperature of silicon during unidirectional solidification as in the present invention is increased or when the melting time of silicon is lengthened. May not be obtained.

本発明の窒化ケイ素粉末は、レーザ回折散乱法により測定される体積基準の50%粒子径をD50としたときに、D50が2μm以上20μm以下である。D50がこの範囲であれば、窒化ケイ素粒子同士の密着性も、窒化ケイ素粒子と鋳型との密着性も良くなりやすく、また緻密な離型層を形成しやすいので、多結晶シリコンインゴットの離型性も、鋳型への密着性も良好な離型層を形成することができる。D50は3μm以上であることが好ましい。D50は、5μm以上、10μm以上、15μm以上であってもよい。また、90%粒子径をD90としたときに、D90は8μm以上60μm以下である。D90がこの範囲であれば、離型層の表面が平滑になりやすく、多結晶シリコンインゴットの離型性が良好な離型層を形成することができる。D90は50μm以下であることがさらに好ましく、40μm以下であることが特に好ましい。D90は、13μm以上、14μm以上、15μm以上、17μm以上、20μm以上、30μm以上であってもよい。   The silicon nitride powder of the present invention has a D50 of 2 μm or more and 20 μm or less, where D50 is a volume-based 50% particle diameter measured by a laser diffraction scattering method. When D50 is in this range, the adhesion between the silicon nitride particles and the adhesion between the silicon nitride particles and the mold are likely to be improved, and a dense release layer is easily formed, so that the release of the polycrystalline silicon ingot is facilitated. It is possible to form a release layer having excellent properties and good adhesion to the mold. D50 is preferably 3 μm or more. D50 may be 5 μm or more, 10 μm or more, and 15 μm or more. When the 90% particle size is D90, D90 is 8 μm or more and 60 μm or less. When D90 is in this range, the surface of the release layer is likely to be smooth, and a release layer with good release properties of the polycrystalline silicon ingot can be formed. D90 is more preferably 50 μm or less, and particularly preferably 40 μm or less. D90 may be 13 μm or more, 14 μm or more, 15 μm or more, 17 μm or more, 20 μm or more, 30 μm or more.

本発明の窒化ケイ素粉末は、レーザ回折散乱法により測定される体積基準の10%粒子径をD10としたときに、D10が0.5μm以上8μm以下であることが好ましい。D10は、0.6μm以上、0.7μm以上、1.0μm以上、2.0μm以上、4.0μm以上、6.0μm以上であってもよい。D10がこの範囲であれば、離型層がより緻密化しやすくなり、多結晶シリコンインゴットの離型性も、鋳型への密着性もさらに良好な離型層を形成することができる。   The silicon nitride powder of the present invention preferably has D10 of 0.5 μm or more and 8 μm or less, where D10 is a volume-based 10% particle diameter measured by a laser diffraction scattering method. D10 may be 0.6 μm or more, 0.7 μm or more, 1.0 μm or more, 2.0 μm or more, 4.0 μm or more, 6.0 μm or more. When D10 is in this range, the release layer is more easily densified, and the release layer of the polycrystalline silicon ingot and the adhesiveness to the mold can be formed further excellently.

本発明の窒化ケイ素粉末は、Feの含有割合が100ppm以下である。Feの含有割合がこの範囲であれば、多結晶シリコンインゴットへのFeの混入を抑制することができるので、太陽電池用途に適用可能な多結晶シリコンインゴットの歩留まりが高くなる。Feの含有割合は20ppm以下であることが好ましく、10ppm以下、5ppm以下であることが特に好ましい。また、本発明の窒化ケイ素粉末は、Alの含有割合が100ppm以下である。Alの含有割合がこの範囲であれば、多結晶シリコンインゴットへのAlの混入を抑制することができるので、太陽電池用途に適用可能な多結晶シリコンインゴットの歩留まりが高くなる。Alの含有割合は20ppm以下であることが好ましく、10ppm以下、5ppm以下であることが特に好ましい。また、FeおよびAl以外の金属不純物の含有割合の合計が100ppm以下である。FeおよびAl以外の金属不純物の含有割合がこの範囲であれば、多結晶シリコンインゴットへのFeおよびAl以外の金属不純物の混入を抑制することができるので、太陽電池用途に適用可能な多結晶シリコンインゴットの歩留まりが高くなる。FeおよびAl以外の金属不純物の含有割合は20ppm以下であることが好ましく、10ppm以下、5ppm以下であることが特に好ましい。   The silicon nitride powder of the present invention has a Fe content of 100 ppm or less. When the content ratio of Fe is within this range, it is possible to suppress the mixing of Fe into the polycrystalline silicon ingot, so that the yield of the polycrystalline silicon ingot applicable to the solar cell application is increased. The content ratio of Fe is preferably 20 ppm or less, particularly preferably 10 ppm or less and 5 ppm or less. Further, the silicon nitride powder of the present invention has an Al content of 100 ppm or less. When the content ratio of Al is within this range, it is possible to suppress the mixing of Al into the polycrystalline silicon ingot, so that the yield of the polycrystalline silicon ingot applicable to the solar cell application is increased. The content ratio of Al is preferably 20 ppm or less, particularly preferably 10 ppm or less and 5 ppm or less. Further, the total content ratio of metal impurities other than Fe and Al is 100 ppm or less. If the content ratio of the metal impurities other than Fe and Al is within this range, it is possible to suppress the mixing of the metal impurities other than Fe and Al into the polycrystalline silicon ingot, and therefore the polycrystalline silicon applicable to the solar cell application Higher ingot yield. The content ratio of metal impurities other than Fe and Al is preferably 20 ppm or less, particularly preferably 10 ppm or less and 5 ppm or less.

β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたとき、本発明の窒化ケイ素粉末は、Dが300nm以上である。Dがこの範囲であれば、シリコンの溶融温度を高くしたり、溶融時間を長くしたりしても、多結晶シリコンインゴットの離型性も、鋳型への密着性も良好な離型層を形成することができる。Dを300nm以上とすることで、例えば1500℃以上の高温で溶融シリコンと長時間接触しても、本発明の窒化ケイ素粉末は結晶の構造的安定性を維持できるものと推察される。この観点から、Dは600nm以上であることが好ましく、1000nm以上、1500nm以上であることがさらに好ましい。When the crystallite diameter of the β-type silicon nitride which is calculated using the Williamson-Hall type from powder X-ray diffraction pattern of β-type silicon nitride was D C, silicon nitride powder of the present invention is a D C is 300nm or more is there. When D C is in this range, a release layer having good release properties of the polycrystalline silicon ingot and good adhesion to the mold even if the melting temperature of silicon is increased or the melting time is lengthened is obtained. Can be formed. By the D C and above 300 nm, even if prolonged contact with the molten silicon, for example 1500 ° C. or more high temperature, silicon nitride powder of the present invention is presumed to maintain the structural stability of the crystal. From this viewpoint, it is preferable that D C is 600nm or more, 1000 nm or more, and more preferably 1500nm or more.

本発明の窒化ケイ素粉末は、β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶歪が0.8×10−4以下であることが好ましい。β型窒化ケイ素の結晶歪がこの範囲であれば、シリコンの溶融温度をより高くしても、多結晶シリコンインゴットの離型性も、鋳型への密着性も良好な離型層を形成することができる。前記結晶歪を0.8×10−4以下とすることで、より高温で溶融シリコンと長時間接触しても、本発明の窒化ケイ素粉末は結晶の構造的安定性を維持できるものと推察される。この観点から、前記結晶歪は0.6×10−4以下であることがさらに好ましく、0.5×10−4以下、0.4×10−4以下、0.3×10−4以下であることが特に好ましい。In the silicon nitride powder of the present invention, the crystal strain of β-type silicon nitride calculated from the powder X-ray diffraction pattern of β-type silicon nitride using the Williamson-Hall equation is preferably 0.8 × 10 −4 or less. .. If the crystal strain of β-type silicon nitride is within this range, it is necessary to form a release layer that has good mold release properties of the polycrystalline silicon ingot and good adhesion to the mold even if the melting temperature of silicon is raised. You can By setting the crystal strain to 0.8 × 10 −4 or less, it is presumed that the silicon nitride powder of the present invention can maintain the structural stability of crystals even if it is in contact with molten silicon at a higher temperature for a long time. It From this viewpoint, the crystal strain is more preferably 0.6 × 10 −4 or less, and 0.5 × 10 −4 or less, 0.4 × 10 −4 or less, 0.3 × 10 −4 or less. It is particularly preferable that

本発明の窒化ケイ素粉末は、前記比表面積より算出される比表面積相当径をDBETとしたときに、DBET/D(nm/nm)が5以下であることが好ましい。DBET/D(nm/nm)は、4以下、3以下であってもよい。DBET/D(nm/nm)がこの範囲であれば、シリコンの溶融温度をより高くしても、多結晶シリコンインゴットの離型性も、鋳型への密着性も良好な離型層を形成することができる。その理由は定かではないが、窒化ケイ素粉末を構成する窒化ケイ素の一粒子中の結晶子の界面の面積が小さい方が、高温で溶融シリコンと長時間接触した場合の、窒化ケイ素の結晶の構造的安定性をより高めると推察される。It is preferable that the silicon nitride powder of the present invention has D BET / D C (nm / nm) of 5 or less, where D BET is a specific surface area equivalent diameter calculated from the specific surface area. D BET / D C (nm / nm) may be 4 or less and 3 or less. If D BET / D C (nm / nm) is in this range, a release layer having good mold releasability of the polycrystalline silicon ingot and good adhesion to the mold can be obtained even if the melting temperature of silicon is increased. Can be formed. The reason is not clear, but the smaller the area of the interface of the crystallites in one particle of silicon nitride constituting the silicon nitride powder, the structure of the crystal of silicon nitride when it is in contact with molten silicon for a long time at high temperature. It is presumed that the social stability will be further enhanced.

(多結晶シリコンインゴット用離型剤)
本発明の多結晶シリコンインゴット用離型剤は、本発明の窒化ケイ素粉末を含む。本発明の多結晶シリコンインゴット用離型剤は、本発明の窒化ケイ素粉末が主成分であれば良く、窒化ケイ素以外の成分を含んでいても良いが、本発明の窒化ケイ素粉末のみからなっていても良い。
(Release agent for polycrystalline silicon ingot)
The release agent for polycrystalline silicon ingots of the present invention contains the silicon nitride powder of the present invention. The release agent for a polycrystalline silicon ingot of the present invention may be the silicon nitride powder of the present invention as a main component, and may contain a component other than silicon nitride, but is composed only of the silicon nitride powder of the present invention. May be.

(多結晶シリコンインゴットの製造方法)
本発明の多結晶シリコンインゴットの製造方法を以下に説明する。本発明の多結晶シリコンインゴットの製造方法は、鋳型内に収容された溶融シリコンを凝固(特に一方向凝固)させる多結晶シリコンインゴットの製造方法であって、前記鋳型として、前記溶融シリコンとの接触面に本発明の窒化ケイ素粉末が塗布された鋳型を用いることを特徴とする。
(Method for manufacturing polycrystalline silicon ingot)
The method for producing the polycrystalline silicon ingot of the present invention will be described below. The method for producing a polycrystalline silicon ingot of the present invention is a method for producing a polycrystalline silicon ingot in which molten silicon contained in a mold is solidified (particularly unidirectionally solidified), and as the mold, contact with the molten silicon is performed. It is characterized by using a mold whose surface is coated with the silicon nitride powder of the present invention.

(窒化ケイ素粉末の製造方法)
本発明の窒化ケイ素粉末の製造方法の一例を以下に説明する。本発明の窒化ケイ素粉末は、例えば、シリコンの燃焼反応に伴う自己発熱および伝播現象を利用した燃焼合成法により窒化ケイ素を合成する窒化ケイ素の燃焼合成プロセスにおいて、特定の製造条件を用い、具体的には、原料のシリコン粉末に希釈剤として窒化ケイ素粉末を特定の割合で混合し、原料のシリコン粉末と希釈剤として窒化ケイ素粉末の金属不純物の含有割合を少なくし、シリコン粉末と窒化ケイ素粉末との混合物の充填密度を小さくして燃焼反応を行って圧壊強度が小さい燃焼生成物を作製し、得られた圧壊強度が小さい燃焼生成物を、粉砕エネルギーが小さくかつ金属不純物が混入し難い方法を用いて粉砕することによって、金属不純物の含有割合が少なく、β型窒化ケイ素の含有割合が大きく、本発明で特定する比表面積及び粒径分布を有し、結晶子径が大きく結晶歪が小さい等の特徴を有する窒化ケイ素粉末を製造することができる。以下、その製造方法の一例を具体的に説明する。
(Method for producing silicon nitride powder)
An example of the method for producing the silicon nitride powder of the present invention will be described below. The silicon nitride powder of the present invention, for example, in a silicon nitride combustion synthesis process for synthesizing silicon nitride by a combustion synthesis method utilizing a self-heating and propagation phenomenon associated with a combustion reaction of silicon, using specific manufacturing conditions, Is mixed with silicon nitride powder as a diluent to the raw material silicon powder at a specific ratio to reduce the content ratio of the metal impurities of the raw material silicon powder and the silicon nitride powder as the diluent, and the silicon powder and the silicon nitride powder. A method of producing a combustion product with a low crushing strength by performing a combustion reaction with a small packing density of the mixture of By crushing using, the content of metal impurities is small, the content of β-type silicon nitride is large, and the specific surface area specified in the present invention A beauty particle size distribution, it is possible to produce a silicon nitride powder having a characteristic such as large crystal strains crystallite size is smaller. Hereinafter, an example of the manufacturing method will be specifically described.

<混合原料粉末の調製工程>
はじめに、シリコン粉末と、希釈剤の窒化ケイ素粉末とを混合して、混合原料粉末を調製する。燃焼合成反応は1800℃以上の高温となるため、燃焼反応する部分でシリコンの溶融・溶着が起こることがある。これを抑制する目的で、燃焼反応の自己伝播を妨げない範囲で、原料粉末に希釈剤として窒化ケイ素粉末を添加することが好ましい。希釈剤の添加率は、通常、10〜50質量%(シリコン:窒化ケイ素の質量比が90:10〜50:50)、さらには15〜40質量%である。また、燃焼合成反応で得られる燃焼生成物のβ型窒化ケイ素の割合を調整する上で、NHClやNaClなどを添加しても良い。これらの添加物は顕熱、潜熱および吸熱反応により反応温度を下げる効果がある。ここで、得られる混合原料粉末における、Feの含有割合、Alの含有割合、FeおよびAl以外の金属不純物の含有割合は、それぞれ100ppm以下、さらには50ppm以下、10ppm以下とすることが好ましい。したがって、シリコン粉末にも、希釈剤の窒化ケイ素粉末にも、金属不純物の含有割合が少ない高純度な粉末を用いることが好ましい。また、原料粉末の混合に用いる混合容器の内面と混合メディアなどの、原料粉末と接触する箇所は、AlおよびFeなどの含有割合が少ない非金属製の素材であることが好ましい。原料粉末の混合方法は特に制限されないが、例えばボールミル混合を採用する場合は、混合容器の内面は樹脂製であることが好ましく、混合メディアの外面は窒化ケイ素製であることが好ましい。また、混合原料粉末のかさ密度を0.5g/cm未満とすることが好ましい。混合原料粉末のかさ密度を0.5g/cm未満にするには、かさ密度が0.45g/cm以下のシリコン粉末を原料粉末として用いることが好ましい。混合原料粉末のかさ密度が0.5g/cm未満ならば、後述する<燃焼合成反応工程>にて得られる塊状の燃焼生成物の圧壊強度を4MPa以下にすることが容易である。
<Preparation process of mixed raw material powder>
First, a silicon powder and a silicon nitride powder as a diluent are mixed to prepare a mixed raw material powder. Since the combustion synthesis reaction has a high temperature of 1800 ° C. or higher, silicon may be melted / welded in a portion where the combustion reaction occurs. For the purpose of suppressing this, it is preferable to add silicon nitride powder as a diluent to the raw material powder within a range that does not prevent self-propagation of the combustion reaction. The addition rate of the diluent is usually 10 to 50% by mass (the mass ratio of silicon: silicon nitride is 90:10 to 50:50), and further 15 to 40% by mass. Further, in adjusting the proportion of β-type silicon nitride in the combustion product obtained by the combustion synthesis reaction, NH 4 Cl, NaCl or the like may be added. These additives have the effect of lowering the reaction temperature by sensible heat, latent heat and endothermic reaction. Here, the content ratio of Fe, the content ratio of Al, and the content ratio of metal impurities other than Fe and Al in the obtained mixed raw material powder are preferably 100 ppm or less, more preferably 50 ppm or less and 10 ppm or less, respectively. Therefore, it is preferable to use a high-purity powder containing a small amount of metal impurities as both the silicon powder and the silicon nitride powder as a diluent. In addition, it is preferable that the inner surface of the mixing container used for mixing the raw material powders and the portion such as the mixing medium which come into contact with the raw material powders are made of a non-metallic material having a small content ratio of Al and Fe. The method of mixing the raw material powders is not particularly limited, but when ball mill mixing is adopted, for example, the inner surface of the mixing container is preferably made of resin, and the outer surface of the mixing medium is preferably made of silicon nitride. Further, the bulk density of the mixed raw material powder is preferably less than 0.5 g / cm 3 . The bulk density of the mixed raw material powder to be less than 0.5 g / cm 3, it is preferable that the bulk density is used 0.45 g / cm 3 or less of the silicon powder as the raw material powder. If the bulk density of the mixed raw material powder is less than 0.5 g / cm 3 , it is easy to make the crushing strength of the lumpy combustion product obtained in the <combustion synthesis reaction step> described below 4 MPa or less.

<燃焼合成反応工程>
次いで、得られた混合原料粉末を窒素含有雰囲気にて燃焼させて、窒化ケイ素からなる塊状の燃焼生成物を作製する。例えば、混合原料粉末を黒鉛製などの容器に着火剤と一緒に収容し、燃焼合成反応装置内で、着火剤に着火し、着火剤の窒化燃焼熱によって混合原料粉末中のシリコンの窒化反応を開始させ、同反応をシリコン全体に自己伝播させて燃焼合成反応を完了させ、窒化ケイ素からなる塊状の燃焼生成物を得る。
<Combustion synthesis reaction process>
Then, the obtained mixed raw material powder is burned in a nitrogen-containing atmosphere to produce a lumpy combustion product made of silicon nitride. For example, the mixed raw material powder is placed in a container such as graphite together with the igniting agent, the igniting agent is ignited in the combustion synthesis reaction device, and the nitriding reaction of silicon in the mixed raw material powder is performed by the nitriding combustion heat of the igniting agent. The reaction is initiated and the reaction is self-propagated through the silicon to complete the combustion synthesis reaction to obtain a bulk combustion product of silicon nitride.

ここで、得られる燃焼生成物は、その圧壊強度が4MPa以下であることが好ましい。燃焼生成物の圧壊強度が4MPa以下ならば、後述する<燃焼生成物の粉砕・分級工程>にて、金属不純物の混入が多くなるような、また窒化ケイ素粉末の結晶性が低下するような粉砕エネルギーの大きい粉砕を行わなくても、本発明にて特定する比表面積または粒度分布(D50、D90またはD10)の窒化ケイ素粉末を得ることが容易になる。   The crush strength of the obtained combustion product is preferably 4 MPa or less. If the crush strength of the combustion product is 4 MPa or less, crushing that will increase the amount of metal impurities mixed in and will reduce the crystallinity of the silicon nitride powder in the <crushing and classifying process of combustion product> described below. It becomes easy to obtain a silicon nitride powder having a specific surface area or particle size distribution (D50, D90 or D10) specified in the present invention without performing grinding with a large amount of energy.

<燃焼生成物の粉砕・分級工程>
次いで、得られた塊状の燃焼生成物を粗粉砕する。粗粉砕の粉砕手段に特に制限はないが、粉砕メディアとして、AlおよびFeなどの含有割合が少ない硬質な非金属製の素材を用いることが好ましく、窒化ケイ素製の粉砕メディアを用いることがさらに好ましい。燃焼生成物が塊状であることから、ロールクラッシャーによる粉砕が効率的であり、ロールクラッシャーとしては、窒化ケイ素などのセラミックス製のロールを供えていることが好ましい。
<Crushing and classification process of combustion products>
The lumpy combustion product obtained is then coarsely crushed. The crushing means for coarse crushing is not particularly limited, but as the crushing medium, it is preferable to use a hard non-metallic material having a small content ratio of Al and Fe, and it is more preferable to use a crushing medium made of silicon nitride. .. Since the combustion products are lumpy, the crushing by the roll crusher is efficient, and it is preferable that the roll crusher is provided with a roll made of ceramics such as silicon nitride.

以上のような粗粉砕によって得られた窒化ケイ素粉末を篩通して、特に粗大な粒子などを除去することで、本発明の窒化ケイ素粉末を得ることができる。篩通しに用いる篩は、AlおよびFeなどの含有割合が少ない非金属製であることが好ましく、樹脂製であることが好ましい。   The silicon nitride powder of the present invention can be obtained by sieving the silicon nitride powder obtained by the above coarse pulverization to remove particularly coarse particles. The sieve used for sieving is preferably made of a non-metal having a low content ratio of Al and Fe, and is preferably made of a resin.

また、所望の比表面積、D50またはD90によっては、得られた窒化ケイ素粉末を微粉砕することができる。微粉砕の粉砕手段に特に制限はないが、振動ミルによる粉砕が好ましい。振動ミル用のポットの内面と混合メディアなどの、原料粉末と接触する箇所は、AlおよびFeなどの含有割合が少ない非金属製の素材であることが好ましい。ポットの内面は樹脂製であることが好ましく、混合メディアは窒化ケイ素製であることが好ましい。振動ミルの条件(振幅、振動数、粉砕時間)を適宜調節して、所望の比表面積または粒度分布(D50、D90またはD10)の、本発明の窒化ケイ素粉末を得ることができる。   Further, the obtained silicon nitride powder can be finely pulverized depending on the desired specific surface area, D50 or D90. The pulverizing means for fine pulverization is not particularly limited, but pulverization with a vibration mill is preferable. The portion of the inner surface of the pot for the vibration mill that contacts the raw material powder, such as the mixed medium, is preferably made of a non-metallic material having a small content ratio of Al and Fe. The inner surface of the pot is preferably made of resin, and the mixed medium is preferably made of silicon nitride. The conditions (amplitude, frequency, grinding time) of the vibration mill can be adjusted appropriately to obtain the silicon nitride powder of the present invention having a desired specific surface area or particle size distribution (D50, D90 or D10).

以上のように、本発明の窒化ケイ素粉末は、シリコン粉末と、希釈剤の窒化ケイ素粉末とを混合し、得られた混合原料粉末を容器に充填して燃焼反応に伴う自己発熱および伝播現象を利用した燃焼合成法により前記シリコン粉末を燃焼させ、得られた燃焼生成物を粉砕する窒化ケイ素粉末の製造方法において、前記混合原料粉末は、Feの含有割合、Alの含有割合、およびFeとAl以外の金属不純物の含有割合が、それぞれ100ppm以下で、かさ密度が0.5g/cm未満である窒化ケイ素粉末の製造方法により製造されることが好ましく、さらに、前記燃焼生成物の圧壊強度が4MPa以下であることが好ましく、特に、前記燃焼生成物の粉砕に窒化ケイ素製の粉砕メディアを用いることが好ましい。As described above, the silicon nitride powder of the present invention is a mixture of a silicon powder and a silicon nitride powder as a diluent, and the resulting mixed raw material powder is filled in a container to prevent self-heating and propagation phenomena associated with combustion reaction. In the method for producing a silicon nitride powder in which the silicon powder is burned by a combustion synthesis method used and the obtained combustion product is crushed, the mixed raw material powder contains Fe content, Al content, and Fe and Al. The content of metal impurities other than is preferably 100 ppm or less, and is preferably produced by a method for producing a silicon nitride powder having a bulk density of less than 0.5 g / cm 3 , and further, the crush strength of the combustion product is It is preferably 4 MPa or less, and it is particularly preferable to use a grinding medium made of silicon nitride for grinding the combustion product.

以下に具体例を挙げて、本発明をさらに詳しく説明する。本発明の窒化ケイ素粉末、原料粉末として用いたシリコン粉末、原料混合粉末および燃焼生成物の物性測定と、本発明の窒化ケイ素粉末を鋳型の離型剤に適用した場合の多結晶シリコンインゴットの離型性の評価は、以下の方法により行った。   Hereinafter, the present invention will be described in more detail with reference to specific examples. Silicon nitride powder of the present invention, silicon powder used as a raw material powder, raw material mixed powder and measurement of physical properties of combustion products, and release of polycrystalline silicon ingot when the silicon nitride powder of the present invention is applied to a mold release agent The moldability was evaluated by the following method.

(窒化ケイ素粉末の比表面積の測定方法、および比表面積相当径DBETの算出方法)
本発明の窒化ケイ素粉末の比表面積は、Mountech社製Macsorbを用いて、窒素ガス吸着によるBET1点法にて測定して求めた。
(Method of measuring specific surface area of silicon nitride powder and method of calculating specific surface area equivalent diameter D BET )
The specific surface area of the silicon nitride powder of the present invention was obtained by measuring with a BET one-point method by nitrogen gas adsorption using Macsorb manufactured by Mountech.

また、比表面積相当径DBETは、粉末を構成する全ての粒子が同一径の球と仮定して、下記の式(1)より求めた。
BET=6/(ρ×S)・・・(1)
Further, the specific surface area equivalent diameter D BET was calculated by the following formula (1), assuming that all particles constituting the powder are spheres having the same diameter.
D BET = 6 / (ρ S × S) (1)

ここで、ρは窒化ケイ素の真密度(α-Siの真密度3186kg/m、β-Siの真密度3192kg/mと、α相とβ相との比により平均真密度を算出し、真密度とした。)、Sは比表面積(m/g)である。Here, ρ S is the true density of silicon nitride (the true density of α-Si 3 N 4 is 3186 kg / m 3 , the true density of β-Si 3 N 4 is 3192 kg / m 3 , and the ratio of α phase to β phase The average true density was calculated and defined as the true density.) And S is the specific surface area (m 2 / g).

(窒化ケイ素粉末のβ型窒化ケイ素の割合の測定方法)
本発明の窒化ケイ素粉末のβ型窒化ケイ素粉末の割合は以下のようにして算出した。本発明の窒化ケイ素粉末について、銅の管球からなるターゲットおよびグラファイトモノクロームメーターを使用して、回折角(2θ)15〜80°の範囲を0.02°刻みでX線検出器をステップスキャンする定時ステップ走査法にてX線回折測定を行った。窒化ケイ素粉末が窒化ケイ素以外の成分を含む場合には、それらの成分のピークをそれらの成分の標準試料の対応するピークと対比することでそれらの成分の割合を求めることができる。以下のすべての実施例及び比較例では、得られた粉末X線回折パターンより、本発明の窒化ケイ素粉末がα型窒化ケイ素とβ型窒化ケイ素のみから構成されていることを確認した。その上で、本発明の窒化ケイ素粉末のβ型窒化ケイ素の割合は、G.P.Gazzara and D.P.Messier,“Determination of Phase Content of Si3N4 by X−ray Diffraction Analysis”,Am. Ceram.Soc.Bull.,56[9]777−80(1977)に記載されたGazzara & Messierの方法により、算出した。
(Method for measuring proportion of β-type silicon nitride in silicon nitride powder)
The proportion of β-type silicon nitride powder in the silicon nitride powder of the present invention was calculated as follows. For the silicon nitride powder of the present invention, a step consisting of a target made of a copper tube and a graphite monochromator is used to step-scan an X-ray detector in a diffraction angle (2θ) range of 15 to 80 ° in 0.02 ° steps. X-ray diffraction measurement was performed by the regular step scanning method. When the silicon nitride powder contains components other than silicon nitride, the peaks of those components can be compared with the corresponding peaks of a standard sample of those components to determine the proportions of those components. In all the following Examples and Comparative Examples, it was confirmed from the obtained powder X-ray diffraction patterns that the silicon nitride powder of the present invention was composed of only α-type silicon nitride and β-type silicon nitride. In addition, the proportion of β-type silicon nitride in the silicon nitride powder of the present invention is G. P. Gazzara and D.M. P. Messier, "Determination of Phase Content of Si3N4 by X-ray Diffraction Analysis", Am. Ceram. Soc. Bull. , 56 [9] 777-80 (1977) and by the method of Gazzara & Messier.

(窒化ケイ素粉末のD10、D50およびD90の測定方法)
本発明の窒化ケイ素粉末、本発明で原料として使用したシリコン粉末の粒度分布は、以下のようにして測定した。前記粉末を、ヘキサメタリン酸ソーダ0.2質量%水溶液中に投入して、直径26mmのステンレス製センターコーンを取り付けた超音波ホモジナイザーを用いて300Wの出力で6分間分散処理して希薄溶液を調製し、測定試料とした。レーザ回折/散乱式粒子径分布測定装置(日機装株式会社製マイクロトラックMT3000)を用いて測定試料の粒度分布を測定し、体積基準の粒度分布曲線とそのデータを得た。得られた粒度分布曲線とそのデータより、本発明の窒化ケイ素粉末のD50、D90およびD10と、本発明で原料として使用したシリコン粉末のD50を算出した。
(Method of measuring D10, D50 and D90 of silicon nitride powder)
The particle size distributions of the silicon nitride powder of the present invention and the silicon powder used as a raw material in the present invention were measured as follows. The powder was put into a 0.2 mass% aqueous solution of sodium hexametaphosphate and dispersed for 6 minutes at an output of 300 W using an ultrasonic homogenizer equipped with a stainless steel center cone having a diameter of 26 mm to prepare a dilute solution. , And used as a measurement sample. The particle size distribution of the measurement sample was measured using a laser diffraction / scattering particle size distribution measuring device (Microtrac MT3000 manufactured by Nikkiso Co., Ltd.) to obtain a volume-based particle size distribution curve and its data. From the obtained particle size distribution curve and its data, D50, D90 and D10 of the silicon nitride powder of the present invention and D50 of the silicon powder used as a raw material in the present invention were calculated.

(窒化ケイ素粉末、シリコン粉末および原料混合粉末のFe、Al、およびFeとAl以外の金属不純物の含有割合の測定方法)
本発明の窒化ケイ素粉末、本発明で原料として使用したシリコン粉末、および原料混合粉末のFeおよびAl、FeおよびAl以外の金属不純物の含有割合は、以下のようにして測定した。フッ酸と硝酸とを混合した液を収容した容器に、上記粉末を投入し密栓して、同容器にマイクロ波を照射して加熱し、窒化ケイ素またはシリコンを完全に分解し、得られた分解液を超純水で定容して検液とした。エスアイアイ・ナノテクノロジー社製ICP−AES(SPS5100型)を用いて、検出された波長とその発光強度から検液中のFe、Al、およびFeとAl以外の金属不純物を定量し、Fe、Al、およびFeとAl以外の金属不純物の含有割合を算出した。
(Method for measuring the content ratio of Fe, Al, and metal impurities other than Fe and Al in silicon nitride powder, silicon powder, and raw material mixed powder)
Content ratios of Fe and Al, and metal impurities other than Fe and Al in the silicon nitride powder of the present invention, the silicon powder used as a raw material in the present invention, and the raw material mixed powder were measured as follows. In a container containing a liquid mixture of hydrofluoric acid and nitric acid, put the above powder into a tightly closed container, irradiate microwaves in the container and heat to completely decompose silicon nitride or silicon, and obtain the decomposition The solution was made up to volume with ultrapure water to give a test solution. Using ICP-AES (SPS5100 type) manufactured by SII Nanotechnology Inc., Fe, Al, and Fe and Al other than Al in the test solution were quantified from the detected wavelength and its emission intensity, and Fe, Al , And the content ratio of metal impurities other than Fe and Al were calculated.

(β型窒化ケイ素の結晶子径Dおよび結晶歪の測定方法)
本発明の窒化ケイ素粉末のβ型窒化ケイ素の結晶子径Dおよび結晶歪は、次のようにして測定した。本発明の窒化ケイ素粉末について、銅の管球からなるターゲットおよびグラファイトモノクロームメーターを使用して、回折角(2θ)15〜80°の範囲を0.02°刻みでX線検出器をステップスキャンする定時ステップ走査法にてX線回折測定を行った。得られた本発明の窒化ケイ素粉末のX線回折パターンより、β型窒化ケイ素の(101)、(110)、(200)、(201)および(210)面のそれぞれの積分幅を算出し、前記積分幅を下記の式(2)のWilliamson−Hall式に代入した。下記の式(2)における「2sinθ/λ」をx軸、「βcosθ/λ」をy軸としてプロットし、最小二乗法を用いて、このWilliamson−Hall式より得られる直線の切片および傾きを求めた。そして、前記切片よりβ型窒化ケイ素の結晶子径Dcを、また、前記傾きよりβ型窒化ケイ素の結晶歪を算出した。
βcosθ/λ=η×(2sinθ/λ)+(1/Dc)・・・(2)
(β;積分幅(rad)、θ;ブラッグ角(rad)、η;結晶歪、λ;X線源の波長(nm)、Dc;結晶子径(nm))
(Method for measuring crystallite diameter D C and crystal strain of β-type silicon nitride)
The crystallite diameter D C and crystal strain of β-type silicon nitride of the silicon nitride powder of the present invention were measured as follows. With respect to the silicon nitride powder of the present invention, a target made of a copper tube and a graphite monochromator are used to step-scan an X-ray detector in a diffraction angle (2θ) range of 15 to 80 ° in 0.02 ° steps. X-ray diffraction measurement was performed by the regular step scanning method. From the X-ray diffraction pattern of the obtained silicon nitride powder of the present invention, the respective integral widths of the (101), (110), (200), (201) and (210) planes of β-type silicon nitride were calculated, The integration width was substituted into the Williamson-Hall formula of the following formula (2). In the following equation (2), “2 sin θ / λ” is plotted as the x-axis and “β cos θ / λ” is plotted as the y-axis, and the least squares method is used to obtain the intercept and slope of the straight line obtained from the Williamson-Hall equation. It was Then, the crystallite diameter Dc of β-type silicon nitride was calculated from the intercept, and the crystal strain of β-type silicon nitride was calculated from the slope.
β cos θ / λ = η × (2 sin θ / λ) + (1 / Dc) (2)
(Β: integral width (rad), θ: Bragg angle (rad), η: crystal strain, λ: wavelength of X-ray source (nm), Dc: crystallite diameter (nm))

(混合原料粉末のかさ密度の測定方法)
本発明で得られる混合原料粉末のかさ密度は、JIS R1628「ファインセラミックス粉末のかさ密度測定方法」に準拠した方法により求めた。
(Measurement method of bulk density of mixed raw material powder)
The bulk density of the mixed raw material powder obtained in the present invention was determined by a method according to JIS R1628 "Measurement method of bulk density of fine ceramic powder".

(燃焼生成物の圧壊強度の測定方法)
本発明で得られる燃焼生成物の圧壊強度は、以下のようにして測定した。燃焼生成物より、一辺が10mmの立方体を5個切り出して測定試料とした。手動式圧壊強度測定装置(アイコーエンジニアリング株式会社製、MODEL-1334型)を用いて前記測定試料の圧壊強度を測定した。台座に載置した測定試料に荷重を印加して圧縮試験を行い、測定された最大荷重より圧壊強度を算出した。本発明で得られる燃焼生成物の圧壊強度は、5個の測定試料の圧壊強度の平均値とした。
(Method of measuring the crush strength of combustion products)
The crush strength of the combustion product obtained by the present invention was measured as follows. Five cubes each having a side of 10 mm were cut out from the combustion product to obtain measurement samples. The crushing strength of the measurement sample was measured using a manual crushing strength measuring device (Model 1334, manufactured by Aiko Engineering Co., Ltd.). A compression test was conducted by applying a load to the measurement sample placed on the pedestal, and the crush strength was calculated from the measured maximum load. The crushing strength of the combustion product obtained in the present invention was an average value of the crushing strength of five measurement samples.

(多結晶シリコンインゴットの離型性の評価方法)
本発明においては、本発明の窒化ケイ素粉末を離型剤として塗布して作製した鋳型を用いて多結晶シリコンインゴットの一方向凝固実験を行い、多結晶シリコンインゴットを鋳型から離型して、以下のようにして本発明の窒化ケイ素粉末を評価した。多結晶シリコンインゴットが鋳型から離型でき、多結晶シリコンインゴットに離型層の付着が確認されない場合を○、多結晶シリコンインゴットが鋳型から離型できるものの、多結晶シリコンインゴットに離型層の付着が確認される場合を△、多結晶シリコンインゴットが鋳型から離型できないか、離型できても多結晶シリコンインゴットに割れまたは欠けが生じる場合を×とした。
(Evaluation method of releasability of polycrystalline silicon ingot)
In the present invention, a unidirectional solidification experiment of a polycrystalline silicon ingot using a mold produced by applying the silicon nitride powder of the present invention as a release agent, and releasing the polycrystalline silicon ingot from the mold, Thus, the silicon nitride powder of the present invention was evaluated. When the polycrystalline silicon ingot can be released from the mold and the release layer is not confirmed to be attached to the polycrystalline silicon ingot, ○, the polycrystalline silicon ingot can be released from the mold, but the release layer is attached to the polycrystalline silicon ingot. The case was confirmed as Δ, and the case where the polycrystalline silicon ingot could not be released from the mold, or the polycrystalline silicon ingot was cracked or chipped even if it could be released was taken as ×.

(多結晶シリコンインゴットに含まれる金属不純物の測定方法)
一方向凝固実験にて得られた多結晶シリコンインゴットに含まれるFe、Al、およびFeとAl以外の金属不純物を、以下のようにして測定した。得られた多結晶シリコンインゴットを、切断面が凝固方向に対して平行になるように二分割し、その切断面の中心軸上で、底から1cm上の位置を測定位置として、飛行時間型二次イオン質量分析法(アルバック・ファイ社製(TRIFT V nano TOF型))にて表面分析を行った。Fe、Al、およびFeとAl以外の金属不純物の二次質量スペクトルの規格化二次イオン強度が1×10−4以上の場合を検出、1×10−4未満の場合を未検出とした。ここで、規格化二次イオン強度とは、各スペクトルの二次イオン強度を、検出された全スペクトルの二次イオン強度で除したものである。
(Measuring method of metal impurities contained in polycrystalline silicon ingot)
Fe, Al, and metal impurities other than Fe and Al contained in the polycrystalline silicon ingot obtained by the directional solidification experiment were measured as follows. The obtained polycrystalline silicon ingot was divided into two parts so that the cut surface was parallel to the solidification direction, and the time of flight was measured on the central axis of the cut surface at a position 1 cm above the bottom as the measurement position. Surface analysis was performed by a secondary ion mass spectrometry method (manufactured by ULVAC-PHI, Inc. (TRIFT V nano TOF type)). Normalized secondary mass spectra of Fe, Al, and metallic impurities other than Fe and Al were detected to have a secondary ion intensity of 1 × 10 −4 or more and to have no detection of less than 1 × 10 −4 . Here, the normalized secondary ion intensity is the secondary ion intensity of each spectrum divided by the secondary ion intensity of all detected spectra.

(実施例1−1)
D50が4.0μm、かさ密度が0.40g/cmで、Feの含有割合が3ppm、Alの含有割合が4ppm、FeおよびAl以外の金属不純物の含有割合が3ppmのシリコン粉末に、希釈剤として、窒化ケイ素粉末(宇部興産株式会社製、製品名「SN−E10」(Feの含有割合;9ppm、Alの含有割合;2ppm、FeおよびAl以外の金属不純物の含有割合;4ppm))を、窒化ケイ素の添加率が20質量%(シリコン:窒化ケイ素の質量比が80:20)になるように添加して原料粉末とした。前記原料粉末を、窒化ケイ素製ボールが充填された、内壁面がウレタンでライニングされたナイロン製のポットに収容して、バッチ式振動ミルを用いて、振動数1200cpm、振幅8mmで0.5時間混合し、混合原料粉末を得た。
(Example 1-1)
D50 is 4.0 μm, bulk density is 0.40 g / cm 3 , Fe content is 3 ppm, Al content is 4 ppm, and content of metal impurities other than Fe and Al is 3 ppm. As a silicon nitride powder (manufactured by Ube Industries, Ltd., product name "SN-E10" (content ratio of Fe; 9 ppm, content ratio of Al; 2 ppm, content ratio of metal impurities other than Fe and Al; 4 ppm)), A raw material powder was obtained by adding silicon nitride so that the addition ratio was 20 mass% (the mass ratio of silicon: silicon nitride was 80:20). The raw material powder was stored in a nylon pot filled with silicon nitride balls and having an inner wall surface lined with urethane, and a batch type vibrating mill was used to obtain a frequency of 1200 cpm and an amplitude of 8 mm for 0.5 hours. The mixture was mixed to obtain a mixed raw material powder.

図1に、本実施例にてシリコンの燃焼合成反応に用いる燃焼合成反応装置1を示す。前記原料粉末を混合して得られた混合原料粉末2を、底面が200×400mmで、深さが30mmで、厚みが10mmの角サヤ状の黒鉛製容器3に収容した。このとき混合原料粉末のかさ密度は0.45g/cmであった。チタン粉末とカーボン粉末とをチタン:カーボンが4:1の質量比で混合し成形して、燃焼合成反応に用いる着火剤4を調製し、着火剤4を混合原料粉末2の上に載置した。次いで、混合原料粉末2および着火剤4が収容された黒鉛製容器3を、着火剤加熱用のカーボンヒータ5を備えた耐圧性容器6内に、着火剤4の直上にカーボンヒータ5が位置するように収容した。FIG. 1 shows a combustion synthesis reaction apparatus 1 used in the combustion synthesis reaction of silicon in this example. The mixed raw material powder 2 obtained by mixing the raw material powders was housed in a square sheath-shaped graphite container 3 having a bottom surface of 200 × 400 mm, a depth of 30 mm, and a thickness of 10 mm. At this time, the bulk density of the mixed raw material powder was 0.45 g / cm 3 . Titanium powder and carbon powder were mixed at a mass ratio of titanium: carbon of 4: 1 and molded to prepare an igniting agent 4 used in the combustion synthesis reaction, and the igniting agent 4 was placed on the mixed raw material powder 2. .. Next, the graphite container 3 containing the mixed raw material powder 2 and the igniting agent 4 is placed in a pressure resistant container 6 equipped with a carbon heater 5 for heating the igniting agent, and the carbon heater 5 is positioned directly above the igniting agent 4. So housed.

耐圧性容器6内を、真空ポンプ7を用いて脱気した後、前記反応容器内に窒素ボンベ8より窒素ガスを導入して雰囲気圧力を0.6MPaとした。次に、カーボンヒータ5に通電して着火剤4を加熱し、前記混合原料粉末を着火させ、燃焼合成反応を開始させた。燃焼合成反応中、耐圧性容器6の窒素雰囲気圧力は0.6MPaでほぼ一定であった。覗き窓9から耐圧性容器6の内部を観察したところ、燃焼合成反応は、約20分継続した後、終了した。反応終了後、耐圧性容器6から黒鉛製容器3を取り出し、塊状の燃焼生成物を回収した。   After degassing the inside of the pressure-resistant container 6 using the vacuum pump 7, nitrogen gas was introduced from the nitrogen cylinder 8 into the reaction container to set the atmospheric pressure to 0.6 MPa. Next, the carbon heater 5 was energized to heat the igniting agent 4 to ignite the mixed raw material powder to start the combustion synthesis reaction. During the combustion synthesis reaction, the pressure of the nitrogen atmosphere in the pressure resistant container 6 was 0.6 MPa, which was almost constant. When the inside of the pressure resistant container 6 was observed through the viewing window 9, the combustion synthesis reaction was completed after continuing for about 20 minutes. After the reaction was completed, the graphite container 3 was taken out from the pressure resistant container 6 and the lumpy combustion product was collected.

得られた燃焼生成物から着火剤近傍部分を除去し、残りの部分を、内面がウレタンコーティングされ、窒化ケイ素製ロールを備えたロールクラッシャーで粗粉砕して、目開きが100μmのナイロン製篩で篩通しし、篩下の粉末を回収して、実施例1−1の窒化ケイ素粉末を得た。   A portion near the igniting agent was removed from the obtained combustion product, and the remaining portion was coarsely pulverized with a roll crusher having an inner surface coated with urethane and equipped with a roll made of silicon nitride, and then a nylon sieve having an opening of 100 μm was used. After passing through a sieve, the powder under the sieve was collected to obtain a silicon nitride powder of Example 1-1.

実施例1−1における、原料粉末に用いたシリコン粉末および希釈剤の物性値と、混合原料粉末の物性値と、燃焼生成物の圧壊強度を表1に、また、窒化ケイ素粉末の物性値を表2に示す。   Table 1 shows the physical property values of the silicon powder and the diluent used for the raw material powder, the physical property values of the mixed raw material powder, and the crush strength of the combustion products in Example 1-1, and the physical property values of the silicon nitride powder. It shows in Table 2.

Figure 0006693575
Figure 0006693575

Figure 0006693575
Figure 0006693575

実施例1−1の窒化ケイ素粉末の多結晶シリコンインゴット鋳造用鋳型の離型剤としての評価は、以下のように実施した。   Evaluation of the silicon nitride powder of Example 1-1 as a mold release agent for the casting mold for polycrystalline silicon ingots was carried out as follows.

実施例1−1の窒化ケイ素粉末を、密栓できるポリエチレン製容器に収容し、水を添加することで窒化ケイ素粉末の混合比が20質量%となるように調製した。窒化ケイ素粉末と水を収納した容器に、窒化ケイ素製ボールを投入して密栓し、バッチ式振動ミルを用いて、振幅5mm、振動数1780cpmで5分間混合し、窒化ケイ素スラリーを得た。   The silicon nitride powder of Example 1-1 was housed in a polyethylene container capable of being hermetically sealed, and water was added to prepare a mixture ratio of the silicon nitride powder of 20 mass%. A silicon nitride ball was placed in a container containing silicon nitride powder and water, and the container was tightly stoppered and mixed with a batch type vibration mill at an amplitude of 5 mm and a frequency of 1780 cpm for 5 minutes to obtain a silicon nitride slurry.

得られた実施例1−1の窒化ケイ素スラリーを、予め90℃に加温した、気孔率16%で、底面が100mmの正方形で、深さ100mmの石英製坩堝の内面にスプレー塗布し、次いで90℃で15時間乾燥した。このときの離型層の厚みは約0.2mmであった。さらに、大気雰囲気炉を用いて、空気中1100℃で3時間保持して加熱処理し、実施例1−1の窒化ケイ素粉末を離型層に適用した多結晶シリコンインゴット鋳造用鋳型を得た。   The obtained silicon nitride slurry of Example 1-1 was spray-applied to the inner surface of a quartz crucible having a square shape having a porosity of 16% and a bottom surface of 100 mm and a depth of 100 mm, which had been heated in advance to 90 ° C. It was dried at 90 ° C. for 15 hours. At this time, the release layer had a thickness of about 0.2 mm. Further, using an air atmosphere furnace, the mold was held in air at 1100 ° C. for 3 hours for heat treatment to obtain a polycrystalline silicon ingot casting mold in which the silicon nitride powder of Example 1-1 was applied to the release layer.

前記鋳型に、純度が7Nで、大きさが2〜5mmのシリコン顆粒を300g充填し、ブリッジマン炉に収容した。大気圧のアルゴン流通下で1500℃まで5時間かけて炉内を昇温してシリコン顆粒を溶融させた。1500℃で24時間保持した後、50mm/hの引き下げ速度で前記鋳型を引き下げることで、溶融シリコンを一方向凝固させ、さらに室温まで冷却した。また、実施例1−1の多結晶シリコンインゴット鋳造用鋳型をもう一つ作製し、その鋳型を用いて、保持温度を1550℃に変更したこと以外は、前記一方向凝固実験と同様の方法で一方向凝固実験を行った。   The mold was filled with 300 g of silicon granules having a purity of 7 N and a size of 2 to 5 mm and housed in a Bridgman furnace. Under argon flow at atmospheric pressure, the temperature in the furnace was raised to 1500 ° C. over 5 hours to melt the silicon granules. After holding at 1500 ° C. for 24 hours, the molten silicon was unidirectionally solidified by pulling down the mold at a pulling rate of 50 mm / h, and further cooled to room temperature. Further, another method for casting the polycrystalline silicon ingot of Example 1-1 was prepared, and the holding temperature was changed to 1550 ° C. by using the mold, by the same method as in the unidirectional solidification experiment. A unidirectional solidification experiment was conducted.

取り出した前記鋳型から多結晶シリコンインゴットを離型し、「多結晶シリコンインゴット鋳造用鋳型の評価方法」で説明した方法で、実施例1−1の多結晶シリコンインゴット鋳造用鋳型および多結晶シリコンインゴットを評価した。その結果を表3に示す。   The polycrystalline silicon ingot is released from the taken-out mold, and the polycrystalline silicon ingot casting mold and the polycrystalline silicon ingot of Example 1-1 are manufactured by the method described in "Evaluation method of polycrystalline silicon ingot casting mold". Was evaluated. The results are shown in Table 3.

Figure 0006693575
Figure 0006693575

(実施例1−2)
粗粉砕後の篩通しを、目開き120μmの篩を用いて行ったこと以外は実施例1−1と同様にして、実施例1−2の窒化ケイ素粉末を作製した。そして、実施例1−2の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を2個作製した。1500℃および1525℃の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-2)
A silicon nitride powder of Example 1-2 was produced in the same manner as in Example 1-1, except that the sieving after coarse pulverization was performed using a sieve having an opening of 120 μm. Then, using the silicon nitride powder of Example 1-2, two polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Unidirectional solidification experiments at two furnace temperatures of 1500 ° C. and 1525 ° C. were performed in the same manner as in Example 1-1 using these molds, and polycrystals were performed in the same manner as in Example 1-1. A silicon ingot casting mold was evaluated.

(実施例1−3)
粗粉砕後の篩通しを、目開き80μmの篩を用いて行ったこと以外は実施例1−1と同様にして、実施例1−3の窒化ケイ素粉末を作製した。そして、実施例1−3の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-3)
A silicon nitride powder of Example 1-3 was produced in the same manner as in Example 1-1, except that the sieving after coarse crushing was performed using a sieve having an opening of 80 μm. Then, using the silicon nitride powder of Example 1-3, two polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two different furnace temperatures similar to those of Example 1-1 were performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−4)
粗粉砕後の篩通しを、目開き125μmの篩を用いて行ったこと以外は実施例1−1と同様にして、実施例1−4の窒化ケイ素粉末を作製した。そして、実施例1−4の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を3個作製した。1500℃、1525℃および1550℃の三通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-4)
A silicon nitride powder of Example 1-4 was produced in the same manner as in Example 1-1, except that the sieving after coarse pulverization was performed using a sieve having an opening of 125 μm. Then, using the silicon nitride powder of Example 1-4, three polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at three furnace temperatures of 1500 ° C., 1525 ° C. and 1550 ° C. were carried out in the same manner as in Example 1-1 using those molds, and the same method as in Example 1-1. Evaluated the casting mold for polycrystalline silicon ingot.

(実施例1−5)
粗粉砕し篩通しして得られた窒化ケイ素粉末を、窒化ケイ素製ボールが充填された内壁面がウレタンでライニングされたナイロン製のポットに収容し、バッチ式振動ミルを用いて、振動数1780cpm、振幅5mm、で20分微粉砕したこと以外は実施例1−1と同様にして、実施例1−5の窒化ケイ素粉末を作製した。なお、バッチ式振動ミルでの粉砕の際には、粉砕助剤として燃焼生成物に対して1質量%のエタノールを添加した。そして、実施例1−5の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-5)
The silicon nitride powder obtained by coarsely crushing and sieving was housed in a nylon pot whose inner wall surface filled with silicon nitride balls was lined with urethane, and the vibration frequency was 1780 cpm using a batch type vibration mill. A silicon nitride powder of Example 1-5 was produced in the same manner as in Example 1-1, except that the powder was pulverized with an amplitude of 5 mm for 20 minutes. In addition, at the time of pulverization with a batch type vibration mill, 1% by mass of ethanol was added to the combustion product as a pulverization aid. Then, using the silicon nitride powder of Example 1-5, two polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two different furnace temperatures similar to those of Example 1-1 were performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−6)
微粉砕の時間を40分にしたこと以外は実施例1−5と同様にして、実施例1−6の窒化ケイ素粉末を作製した。そして、実施例1−6の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-6)
A silicon nitride powder of Example 1-6 was produced in the same manner as in Example 1-5, except that the pulverization time was 40 minutes. Then, using the silicon nitride powder of Example 1-6, two polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two different furnace temperatures similar to those of Example 1-1 were performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−7)
微粉砕の時間を50分にしたこと以外は実施例1−5と同様にして、実施例1−7の窒化ケイ素粉末を作製した。そして、実施例1−7の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-7)
A silicon nitride powder of Example 1-7 was produced in the same manner as in Example 1-5, except that the pulverization time was 50 minutes. Then, using the silicon nitride powder of Example 1-7, two polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two different furnace temperatures similar to those of Example 1-1 were performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−8)
粗粉砕後の篩通しを、目開き20μmの篩を用いて行ったこと以外は実施例1−7と同様にして、実施例1−8の窒化ケイ素粉末を作製した。そして、実施例1−8の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を2個作製した。実施例1−2と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−2と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-8)
A silicon nitride powder of Example 1-8 was produced in the same manner as in Example 1-7, except that the sieving after coarse crushing was performed using a sieve having an opening of 20 μm. Then, using the silicon nitride powder of Example 1-8, two polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. A directional solidification experiment at two different furnace temperatures similar to that of Example 1-2 was performed in the same manner as in Example 1-2 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−9)
粗粉砕して得られた窒化ケイ素粉末を、接吻部に窒化ケイ素製のライナーを備えた気流式粉砕機(日清エンジリング株式会社製SJ−1500型)を使用して、必要空気量3.0m/分、原料供給速度250g/分程度の条件で粉砕し、実施例1−9の窒化ケイ素粉末を作製した。そして、実施例1−9の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-9)
The silicon nitride powder obtained by coarse crushing was used with an air flow type crusher (SJ-1500 type manufactured by Nisshin Engineering Co., Ltd.) equipped with a silicon nitride liner at the kissing portion to obtain the required air volume of 3. The silicon nitride powder of Example 1-9 was produced by crushing under conditions of 0 m 3 / min and a raw material supply rate of about 250 g / min. Then, using the silicon nitride powder of Example 1-9, two polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two different furnace temperatures similar to those of Example 1-1 were performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−10)
原料粉末に、添加剤として、塩化アンモニウム(和光純薬製、純度99.9%)を、6.9質量%(シリコンと窒化ケイ素の混合粉末と塩化アンモニウムの質量比が93.1:6.9になるように)さらに添加したこと以外は実施例1−6と同様にして、実施例1−10の窒化ケイ素粉末を作製した。そして、実施例1−10の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-10)
Ammonium chloride (manufactured by Wako Pure Chemical Industries, purity 99.9%) was added to the raw material powder as an additive at 6.9 mass% (the mass ratio of the mixed powder of silicon and silicon nitride and ammonium chloride was 93.1: 6. The silicon nitride powder of Example 1-10 was prepared in the same manner as in Example 1-6, except that it was further added. Then, using the silicon nitride powder of Example 1-10, two polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two different furnace temperatures similar to those of Example 1-1 were performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−11)
添加剤の塩化アンモニウムの添加割合を、9.2質量%(シリコンと窒化ケイ素の混合粉末と塩化アンモニウムとの質量比が90.8:9.2となるように)としたこと以外は実施例1−10と同様にして、実施例1−11の窒化ケイ素粉末を作製した。そして、実施例1−11の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を3個作製した。実施例1−4と同様の三通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-11)
Example except that the addition ratio of ammonium chloride as an additive was set to 9.2 mass% (so that the mass ratio of the mixed powder of silicon and silicon nitride and ammonium chloride was 90.8: 9.2). A silicon nitride powder of Example 1-11 was produced in the same manner as 1-10. Then, using the silicon nitride powder of Example 1-11, three polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at three furnace temperatures similar to those in Example 1-4 were performed in the same manner as in Example 1-1 using these molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−12)
原料粉末のシリコン粉末を、D50が3.3μm、かさ密度が0.36g/cmで、Feの含有割合が3ppmのシリコン粉末にし、Alの含有割合が3ppm、FeおよびAl以外の金属不純物の含有割合が3ppm、希釈剤を、SKW社製窒化ケイ素粉末(Feの含有割合;310ppm、Alの含有割合;145ppm、FeおよびAl以外の金属不純物の含有割合;42ppm)にしたこと以外は実施例1−1と同様にして、実施例1−12の窒化ケイ素粉末を作製した。そして、実施例1−12の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Example 1-12)
The silicon powder of the raw material powder is made into silicon powder having D50 of 3.3 μm, bulk density of 0.36 g / cm 3 , and Fe content of 3 ppm, and Al content of 3 ppm, and Fe and metal impurities other than Al. Example except that the content ratio was 3 ppm and the diluent was silicon nitride powder manufactured by SKW (content ratio of Fe: 310 ppm, content ratio of Al: 145 ppm, content ratio of metal impurities other than Fe and Al: 42 ppm) The silicon nitride powder of Example 1-12 was produced in the same manner as in 1-1. Then, using the silicon nitride powder of Example 1-12, two polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two different furnace temperatures similar to those of Example 1-1 were performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(実施例1−13)
原料粉末のシリコン粉末を、D50が3.3μm、かさ密度が0.36g/cmで、Feの含有割合が3ppm、Alの含有割合が3ppm、FeおよびAl以外の金属不純物の含有割合が3ppmのシリコン粉末にし、希釈剤を、VESTA Si社製製窒化ケイ素粉末(Feの含有割合;224ppm、Alの含有割合;500ppm、FeおよびAl以外の金属不純物の含有割合;174ppm)にしたこと以外は実施例1−7と同様にして、実施例1−13の窒化ケイ素粉末を作製した。そして、実施例1−13の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を2個作製した。実施例1−1と同様の二通りの炉内温度での一方向凝固実験を、それらの鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Examples 1-13)
The silicon powder of the raw material powder has a D50 of 3.3 μm, a bulk density of 0.36 g / cm 3 , an Fe content of 3 ppm, an Al content of 3 ppm, and a metal impurity content of 3 ppm other than Fe and Al. Except that the silicon powder of No. 1 was used and the diluent was silicon nitride powder (Fe content ratio: 224 ppm, Al content ratio: 500 ppm, metal impurity content ratio other than Fe and Al: 174 ppm) manufactured by VESTA Si. The silicon nitride powder of Example 1-13 was produced in the same manner as in Example 1-7. Then, using the silicon nitride powder of Example 1-13, two polycrystalline silicon casting molds were produced in the same manner as in Example 1-1. Directional solidification experiments at two different furnace temperatures similar to those of Example 1-1 were performed in the same manner as in Example 1-1 using those molds, and in the same manner as in Example 1-1. A casting mold for polycrystalline silicon ingots was evaluated.

(比較例1−1)
粗粉砕後の篩通しを行わなかったこと以外は実施例1−1と同様にして、比較例1−1の窒化ケイ素粉末を作製した。比較例1−1で得られた窒化ケイ素粉末は、表2に見られるように、比表面積が0.25m/gと小さく、D10,D50,D90はそれぞれ15.50μm、26.34μm、62.34μmといずれも大きかった。そして、比較例1−1の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を1個作製した。1500℃の炉内温度での一方向凝固実験のみを、その鋳型を用いて実施例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Comparative Example 1-1)
A silicon nitride powder of Comparative Example 1-1 was produced in the same manner as in Example 1-1, except that sieving after coarse pulverization was not performed. As seen in Table 2, the specific surface area of the silicon nitride powder obtained in Comparative Example 1-1 was as small as 0.25 m 2 / g, and D10, D50, and D90 were 15.50 μm, 26.34 μm, and 62, respectively. It was as large as 0.34 μm. Then, using the silicon nitride powder of Comparative Example 1-1, one polycrystalline silicon casting mold was produced in the same manner as in Example 1-1. Only the unidirectional solidification experiment at a furnace temperature of 1500 ° C. was performed in the same manner as in Example 1-1 using the mold, and a polycrystalline silicon ingot casting mold was prepared in the same manner as in Example 1-1. evaluated.

(比較例1−2)
微粉砕の時間を60分にしたこと以外は実施例1−5と同様の方法で、比較例1−2の窒化ケイ素粉末を作製した。比較例1−2で得られた窒化ケイ素粉末は、表2に見られるように、比表面積が5.70m/g、D90が5.69μmであり、粒径が小さい粉末であった。そして、比較例1−2の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を1個作製した。比較例1−1と同様の炉内温度での一方向凝固実験を、その鋳型を用いて比較例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Comparative Example 1-2)
A silicon nitride powder of Comparative Example 1-2 was produced in the same manner as in Example 1-5, except that the pulverization time was 60 minutes. As shown in Table 2, the silicon nitride powder obtained in Comparative Example 1-2 had a specific surface area of 5.70 m 2 / g, D90 of 5.69 μm, and was a powder having a small particle size. Then, using the silicon nitride powder of Comparative Example 1-2, one polycrystalline silicon casting mold was produced in the same manner as in Example 1-1. A unidirectional solidification experiment at the same furnace temperature as in Comparative Example 1-1 was performed in the same manner as in Comparative Example 1-1 using the mold, and a polycrystalline silicon ingot was obtained in the same manner as in Example 1-1. The casting mold was evaluated.

(比較例1−3)
原料粉末に、添加剤として塩化アンモニウム(和光純薬製、純度99.9%)を、12.3質量%(シリコンと窒化ケイ素の混合粉末と塩化アンモニウムとの質量比が87.7:12.3となるように)さらに添加したこと以外は実施例1−7と同様にして、比較例1−3の窒化ケイ素粉末を作製した。比較例1−3で得られた窒化ケイ素粉末は、表2に見られるように、β型窒化ケイ素の割合が64%で少ない粉末であった。そして、比較例1−3の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を1個作製した。比較例1−1と同様の炉内温度での一方向凝固実験を、その鋳型を用いて比較例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Comparative Example 1-3)
Ammonium chloride (manufactured by Wako Pure Chemical Industries, purity 99.9%) as an additive was added to the raw material powder in an amount of 12.3% by mass (the mass ratio of the mixed powder of silicon and silicon nitride and ammonium chloride was 87.7: 12. A silicon nitride powder of Comparative Example 1-3 was prepared in the same manner as in Example 1-7 except that it was further added. As shown in Table 2, the silicon nitride powder obtained in Comparative Example 1-3 was a powder having a small proportion of β-type silicon nitride of 64%. Then, using the silicon nitride powder of Comparative Example 1-3, one polycrystalline silicon casting mold was produced in the same manner as in Example 1-1. A unidirectional solidification experiment at the same furnace temperature as in Comparative Example 1-1 was performed in the same manner as in Comparative Example 1-1 using the mold, and a polycrystalline silicon ingot was obtained in the same manner as in Example 1-1. The casting mold was evaluated.

(比較例1−4)
原料粉末に、D50が6.0μm、かさ密度が0.60g/cmで、Feの含有割合が4ppm、Alの含有割合が4ppm、FeおよびAl以外の金属不純物の含有割合が4ppmのシリコン粉末を用いたこと以外は実施例1−7と同様にして、比較例1−4の窒化ケイ素粉末を作製した。比較例1−4で得られた窒化ケイ素粉末は、表2に見られるように、結晶子径Dが290nmと小さく、結晶歪が0.92×10−4と大きい粉末であった。そして、比較例1−4の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を1個作製した。比較例1−1と同様の炉内温度での一方向凝固実験を、その鋳型を用いて比較例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Comparative Example 1-4)
Silicon powder having D50 of 6.0 μm, bulk density of 0.60 g / cm 3 , Fe content of 4 ppm, Al content of 4 ppm, and metal impurities other than Fe and Al content of 4 ppm. A silicon nitride powder of Comparative Example 1-4 was produced in the same manner as in Example 1-7 except that the above was used. Silicon nitride powder obtained in Comparative Example 1-4, as seen in Table 2, the crystallite diameter D c is as small as 290 nm, crystal strains were big powder and 0.92 × 10 -4. Then, using the silicon nitride powder of Comparative Example 1-4, one polycrystalline silicon casting mold was produced in the same manner as in Example 1-1. A unidirectional solidification experiment at the same furnace temperature as in Comparative Example 1-1 was performed in the same manner as in Comparative Example 1-1 using the mold, and a polycrystalline silicon ingot was obtained in the same manner as in Example 1-1. The casting mold was evaluated.

(比較例1−5)
微粉砕の時間を100分にしたこと以外は比較例1−4と同様にして、比較例1−5の窒化ケイ素粉末を作製した。比較例1−5で得られた窒化ケイ素粉末は、表2に見られるように、結晶子径Dが182nmと小さく、結晶歪が1.25×10−4と大きい粉末であった。そして、比較例1−5の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を1個作製した。比較例1−1と同様の炉内温度での一方向凝固実験を、その鋳型を用いて比較例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Comparative Example 1-5)
A silicon nitride powder of Comparative Example 1-5 was produced in the same manner as Comparative Example 1-4, except that the pulverizing time was 100 minutes. As seen in Table 2, the silicon nitride powder obtained in Comparative Example 1-5 was a powder having a small crystallite diameter D c of 182 nm and a large crystal strain of 1.25 × 10 −4 . Then, using the silicon nitride powder of Comparative Example 1-5, one polycrystalline silicon casting mold was produced in the same manner as in Example 1-1. A unidirectional solidification experiment at the same furnace temperature as in Comparative Example 1-1 was performed in the same manner as in Comparative Example 1-1 using the mold, and a polycrystalline silicon ingot was obtained in the same manner as in Example 1-1. The casting mold was evaluated.

(比較例1−6)
原料粉末に、D50が5.0μm、かさ密度が0.50g/cmで、Feの含有割合が205ppm、Alの含有割合が220ppm、FeおよびAl以外の金属不純物の含有割合が503ppmのシリコン粉末を用いたこと以外は比較例1−4と同様にして、比較例1−6の窒化ケイ素粉末を作製した。比較例1−6で得られた窒化ケイ素粉末は、表2に見られるように、Feの含有割合が109ppm、Alの含有割合が127ppm、FeおよびAl以外の金属不純物の含有割合が271ppmと、金属不純物の含有割合が多い粉末であった。そして、比較例1−6の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を1個作製した。比較例1−1と同様の炉内温度での一方向凝固実験を、その鋳型を用いて比較例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Comparative Example 1-6)
Silicon powder having D50 of 5.0 μm, bulk density of 0.50 g / cm 3 , Fe content of 205 ppm, Al content of 220 ppm, and metal impurities other than Fe and Al content of 503 ppm. A silicon nitride powder of Comparative Example 1-6 was produced in the same manner as Comparative Example 1-4 except that was used. The silicon nitride powder obtained in Comparative Example 1-6, as shown in Table 2, the content ratio of Fe is 109 ppm, the content ratio of Al is 127 ppm, the content ratio of metal impurities other than Fe and Al is 271 ppm, The powder contained a large proportion of metal impurities. Then, using the silicon nitride powder of Comparative Example 1-6, one polycrystalline silicon casting mold was produced in the same manner as in Example 1-1. A unidirectional solidification experiment at the same furnace temperature as in Comparative Example 1-1 was performed in the same manner as in Comparative Example 1-1 using the mold, and a polycrystalline silicon ingot was obtained in the same manner as in Example 1-1. The casting mold was evaluated.

(比較例1−7)
原料粉末に、D50が8.5μm、かさ密度が0.70g/cmで、Feの含有割合が2ppm、Alの含有割合が1ppm、FeおよびAl以外の金属不純物の含有割合が2ppmのシリコン粉末を用いたことと、原料粉末を、アルミナ製ボールが充填されたナイロン製のポットに収容してエタノールを溶媒として用いて24時間ボールミル混合したことと、燃焼生成物の粗粉砕を、アルミナ製ロールを備えたロールクラッシャーを用いて行ったことと、粗粉砕後の篩通しを、ステンレス製の目開き150μmの篩を用いて行ったこと以外は実施例1−1と同様にして、比較例1−7の窒化ケイ素粉末を作製した。比較例1−7で得られた窒化ケイ素粉末は、表2に見られるように、Alの含有割合が846ppmと、金属不純物の含有割合が多く、比表面積が0.21m/gと小さく、D10,D50,D90はそれぞれ15.43μm、26.50μm、62.44μmといずれも大きい粉末であった。そして、比較例1−7の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を1個作製した。比較例1−1と同様の炉内温度での一方向凝固実験を、その鋳型を用いて比較例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Comparative Example 1-7)
Silicon powder with D50 of 8.5 μm, bulk density of 0.70 g / cm 3 , Fe content of 2 ppm, Al content of 1 ppm, and metal impurities other than Fe and Al content of 2 ppm. Was used, and the raw material powder was placed in a nylon pot filled with alumina balls and ball-milled for 24 hours using ethanol as a solvent. Comparative Example 1 was carried out in the same manner as in Example 1-1, except that the roll crusher provided with the above was used, and that the sieving after coarse crushing was performed using a stainless steel sieve having an opening of 150 μm. A -7 silicon nitride powder was prepared. As shown in Table 2, the silicon nitride powder obtained in Comparative Example 1-7 had a content ratio of Al of 846 ppm, a high content ratio of metal impurities, and a small specific surface area of 0.21 m 2 / g. D10, D50, and D90 were large powders of 15.43 μm, 26.50 μm, and 62.44 μm, respectively. Then, using the silicon nitride powder of Comparative Example 1-7, one polycrystalline silicon casting mold was produced in the same manner as in Example 1-1. A unidirectional solidification experiment at the same furnace temperature as in Comparative Example 1-1 was performed in the same manner as in Comparative Example 1-1 using the mold, and a polycrystalline silicon ingot was obtained in the same manner as in Example 1-1. The casting mold was evaluated.

(比較例1−8)
原料粉末に、D50が5.0μm、かさ密度が0.50g/cmで、Feの含有割合が205ppm、Alの含有割合が220ppm、FeおよびAl以外の金属不純物の含有割合が503ppmのシリコン粉末を用いたことと、原料粉末を、アルミナ製ボールが充填された遊星ボールミルにて1時間混合したこと以外は実施例1−6と同様にして、比較例1−8の窒化ケイ素粉末を作製した。比較例1−8で得られた窒化ケイ素粉末は、表2に見られるように、Feの含有割合が109ppm、Alの含有割合が420ppm、FeおよびAl以外の金属不純物の含有割合が312ppmと、金属不純物の含有割合が多く、結晶子径D290nmと小さい粉末であった。そして、比較例1−8の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を1個作製した。比較例1−1と同様の炉内温度での一方向凝固実験を、その鋳型を用いて比較例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Comparative Example 1-8)
Silicon powder having D50 of 5.0 μm, bulk density of 0.50 g / cm 3 , Fe content of 205 ppm, Al content of 220 ppm, and metal impurities other than Fe and Al content of 503 ppm. Was used, and the raw material powder was mixed for 1 hour in a planetary ball mill filled with alumina balls to prepare a silicon nitride powder of Comparative Example 1-8 in the same manner as in Example 1-6. .. The silicon nitride powder obtained in Comparative Example 1-8, as shown in Table 2, the content ratio of Fe is 109 ppm, the content ratio of Al is 420 ppm, the content ratio of metal impurities other than Fe and Al is 312 ppm, the content of metal impurities is large and had a crystallite size D c 290 nm and smaller powder. Then, using the silicon nitride powder of Comparative Example 1-8, one polycrystalline silicon casting mold was produced in the same manner as in Example 1-1. A unidirectional solidification experiment at the same furnace temperature as in Comparative Example 1-1 was performed in the same manner as in Comparative Example 1-1 using the mold, and a polycrystalline silicon ingot was obtained in the same manner as in Example 1-1. The casting mold was evaluated.

(比較例1−9)
D50が2.5μm、かさ密度が0.26g/cm、Feの含有割合が2ppm、Alの含有割合が3ppm、FeおよびAl以外の金属不純物の含有割合が3ppmのシリコン粉末を、内径30mmの金型に充填し、1500kg/cmの圧力で一軸成型し、シリコン粉末の一軸成型体を得た。前記成型体を黒鉛製容器に充填し、それをバッチ式窒化炉に収容して、炉内を窒素雰囲気に置換した後、窒素雰囲気下で、1450℃まで昇温し、3時間保持させた。室温まで冷却させた後に、窒化生成物を取り出した。得られた窒化生成物を、内面がウレタンコーティングされた、窒化ケイ素製ロールを備えたロールクラッシャーで粗粉砕して、目開きが100μmのナイロン製篩で篩通しし、篩下の粉末を回収した。次に、前記粉末を、窒化ケイ素製ボールが充填され、内面がウレタンでライニングされたアルミナ製のポットに収容して、バッチ式振動ミルで振動数1780cpm、振幅5mmで、30分間微粉砕することで、比較例1−9の窒化ケイ素粉末を作製した。燃焼合成でない直接窒化法である比較例1−9で得られた窒化ケイ素粉末は、表2に見られるように、比表面積が6.10m/gと大きく、β型窒化ケイ素の割合が50%と少なく、D10、D50はそれぞれ0.40μm、1.60μmといずれも小さく、結晶子径Dが55nmと小さく、結晶歪が3.01×10−4と大きく、DBET/Dが5.6と大きい粉末であった。そして、比較例1−9の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を1個作製した。比較例1−1と同様の炉内温度での一方向凝固実験を、その鋳型を用いて比較例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Comparative Example 1-9)
D50 is 2.5 μm, bulk density is 0.26 g / cm 3 , content ratio of Fe is 2 ppm, content ratio of Al is 3 ppm, and content ratio of metal impurities other than Fe and Al is 3 ppm. The mold was filled and uniaxially molded at a pressure of 1500 kg / cm 2 , to obtain a uniaxially molded body of silicon powder. The molded body was filled in a graphite container, housed in a batch type nitriding furnace, the atmosphere in the furnace was replaced with a nitrogen atmosphere, and then the temperature was raised to 1450 ° C. in a nitrogen atmosphere and kept for 3 hours. After cooling to room temperature, the nitriding product was taken out. The obtained nitriding product was coarsely crushed by a roll crusher having a urethane nitride inner surface and provided with a roll made of silicon nitride, and sieved with a nylon sieve having an opening of 100 μm to collect powder under the sieve. .. Next, the powder is stored in an alumina pot filled with silicon nitride balls and whose inner surface is lined with urethane, and finely pulverized for 30 minutes with a batch type vibration mill at a vibration frequency of 1780 cpm and an amplitude of 5 mm. Then, a silicon nitride powder of Comparative Example 1-9 was produced. As shown in Table 2, the silicon nitride powder obtained in Comparative Example 1-9, which is a direct nitriding method without combustion synthesis, has a large specific surface area of 6.10 m 2 / g and a ratio of β-type silicon nitride of 50. %, D10 and D50 are as small as 0.40 μm and 1.60 μm, respectively, the crystallite diameter D c is as small as 55 nm, the crystal strain is large as 3.01 × 10 −4, and the D BET / D c is The powder was as large as 5.6. Then, using the silicon nitride powder of Comparative Example 1-9, one polycrystalline silicon casting mold was produced in the same manner as in Example 1-1. A unidirectional solidification experiment at the same furnace temperature as in Comparative Example 1-1 was performed in the same manner as in Comparative Example 1-1 using the mold, and a polycrystalline silicon ingot was obtained in the same manner as in Example 1-1. The casting mold was evaluated.

(比較例1−10)
微粉砕の時間を10分にしたこと以外は比較例1−9と同様にして比較例1−10の窒化ケイ素粉末を作製した。燃焼合成でない直接窒化法である比較例1−10で得られた窒化ケイ素粉末は、表2に見られるように、β型窒化ケイ素の割合が58%と少なく、D15,D90はそれぞれ1.60μm、5.90μmといずれも小さく、結晶子径Dcが88nmと小さく、結晶歪が1.90×10−4と大きく、DBET/Dが6.7と大きい粉末であった。そして、比較例1−10の窒化ケイ素粉末を用いて実施例1−1と同様の方法で多結晶シリコン鋳造用鋳型を1個作製した。比較例1−1と同様の炉内温度での一方向凝固実験を、その鋳型を用いて比較例1−1と同様の方法で行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型を評価した。
(Comparative Example 1-10)
A silicon nitride powder of Comparative Example 1-10 was produced in the same manner as Comparative Example 1-9, except that the pulverization time was 10 minutes. As shown in Table 2, the silicon nitride powder obtained in Comparative Example 1-10, which is a direct nitriding method without combustion synthesis, has a small proportion of β-type silicon nitride of 58% and D15 and D90 of 1.60 μm each. The powder was as small as 5.90 μm, the crystallite diameter Dc was as small as 88 nm, the crystal strain was large as 1.90 × 10 −4, and the D BET / D c was as large as 6.7. Then, using the silicon nitride powder of Comparative Example 1-10, one polycrystalline silicon casting mold was produced in the same manner as in Example 1-1. A unidirectional solidification experiment at the same furnace temperature as in Comparative Example 1-1 was performed in the same manner as in Comparative Example 1-1 using the mold, and a polycrystalline silicon ingot was obtained in the same manner as in Example 1-1. The casting mold was evaluated.

実施例1−2〜1−13および比較例1−1〜1−10における、原料粉末に用いたシリコン粉末および希釈剤の物性値と、混合原料粉末の物性値と、燃焼生成物の圧壊強度を表1に、また、窒化ケイ素粉末の物性値を表2に示す。また、実施例1−2〜1−13および比較例1−1〜1−10の多結晶シリコンインゴット鋳造用鋳型および多結晶シリコンインゴットの評価結果を表3に示す。   In Examples 1-2 to 1-13 and Comparative Examples 1-1 to 1-10, the physical property values of the silicon powder and the diluent used as the raw material powder, the physical property values of the mixed raw material powder, and the crushing strength of the combustion product. Is shown in Table 1, and the physical properties of the silicon nitride powder are shown in Table 2. Table 3 shows the evaluation results of the polycrystalline silicon ingot casting molds and the polycrystalline silicon ingots of Examples 1-2 to 1-13 and Comparative examples 1-1 to 1-10.

(実施例2−1)
以下に述べる手法で、実施例1−1の窒化ケイ素粉末を含む離型層を具えた多結晶シリコンインゴット鋳造用鋳型を作製し、多結晶シリコンインゴット鋳造用鋳型、およびシリコンインゴットの評価を実施した。
(Example 2-1)
According to the method described below, a polycrystalline silicon ingot casting mold having a release layer containing the silicon nitride powder of Example 1-1 was prepared, and the polycrystalline silicon ingot casting mold and the silicon ingot were evaluated. ..

実施例1−1の窒化ケイ素粉末を、密閉できるポリエチレン製容器に収容し、シリカ濃度20質量%のシリカゾル(扶桑化学社製、製品名「PL−3」)と水を添加した。このとき、質量比で窒化ケイ素:シリカゾル:水が20:8:72となるように混合した。次に、窒化ケイ素粉末とシリカゾルと水を収容した容器に、窒化ケイ素製ボールを投入して密閉し、バッチ式振動ミルを用いて、振幅5mm、振動数1780rpmの振動ミルで5分間混合し、窒化ケイ素スラリーを得た。   The silicon nitride powder of Example 1-1 was placed in a sealable polyethylene container, and silica sol having a silica concentration of 20 mass% (Fuso Chemical Co., Ltd., product name “PL-3”) and water were added. At this time, silicon nitride: silica sol: water were mixed in a mass ratio of 20: 8: 72. Next, in a container containing silicon nitride powder, silica sol, and water, balls made of silicon nitride were placed and hermetically sealed, and a batch type vibration mill was used to mix for 5 minutes with a vibration mill having an amplitude of 5 mm and a frequency of 1780 rpm, A silicon nitride slurry was obtained.

得られた実施例2−1の窒化ケイ素スラリーを、予め90℃に加温した、気孔率16%で、底面が100mmの正方形で、深さ100mmの石英製坩堝の内壁面にスプレー塗布し、90℃で15時間乾燥し、実施例2−1の窒化ケイ素粉末を含む離型層を具えた多結晶シリコンインゴット鋳造用鋳型を得た。このときの離型層の厚みは約0.2mmであった。   The obtained silicon nitride slurry of Example 2-1 was sprayed on the inner wall surface of a quartz crucible having a square shape having a porosity of 16%, a bottom surface of 100 mm and a depth of 100 mm, which had been heated to 90 ° C. in advance, It was dried at 90 ° C. for 15 hours to obtain a polycrystalline silicon ingot casting mold having a release layer containing the silicon nitride powder of Example 2-1. The thickness of the release layer at this time was about 0.2 mm.

得られた実施例2−1の多結晶シリコン鋳造用鋳型を用いて実施例1−1と同様にして一方向凝固実験を行い、実施例1−1と同様の方法で実施例2−1の多結晶シリコン鋳造用鋳型および多結晶シリコンインゴットを評価した。その結果を表4に示す。   Using the obtained casting mold for polycrystalline silicon of Example 2-1, a unidirectional solidification experiment was conducted in the same manner as in Example 1-1, and a method similar to that in Example 1-1 was used. A casting mold for polycrystalline silicon and a polycrystalline silicon ingot were evaluated. The results are shown in Table 4.

Figure 0006693575
Figure 0006693575

(実施例2−2〜2−13、比較例2−1〜2−10)
表4に示す窒化ケイ素粉末を用いたこと以外は実施例2−1と同様にして、窒化ケイ素スラリーを作製し、多結晶シリコン鋳造用鋳型を製造した。得られた各実施例および各比較例の多結晶シリコン鋳造用鋳型を用いて、実施例1−1と同様にして一方向凝固実験を行い、実施例1−1と同様の方法で多結晶シリコンインゴット鋳造用鋳型およびシリコンインゴットを評価した。その結果を表4に示す。
(Examples 2-2 to 2-13, Comparative examples 2-1 to 2-10)
A silicon nitride slurry was produced in the same manner as in Example 2-1, except that the silicon nitride powder shown in Table 4 was used, to produce a polycrystalline silicon casting mold. Using the obtained polycrystalline silicon casting molds of Examples and Comparative Examples, a directional solidification experiment was conducted in the same manner as in Example 1-1, and polycrystalline silicon was produced in the same manner as in Example 1-1. The ingot casting mold and the silicon ingot were evaluated. The results are shown in Table 4.

以上の通り、本発明の窒化ケイ素粉末は、鋳型に塗布した後に高温で熱処理することで、実質的にそれ単独で密着性と離型性が良好な離型層を鋳型に形成し得ること、また、シリカゾルと混合して鋳型に塗布することで、高温の熱処理を行わなくても密着性と離型性が良好な離型層を鋳型に形成し得ることがわかった。   As described above, the silicon nitride powder of the present invention, by applying a heat treatment at a high temperature after coating the mold, it is possible to form a mold release layer having good adhesion and releasability substantially by itself. It was also found that by mixing with silica sol and coating it on a mold, a mold release layer having good adhesion and mold releasability can be formed on the mold without heat treatment at high temperature.

本発明の窒化ケイ素粉末は、鋳型への密着性と離型性が良好な離型層を鋳型に形成し得る離型剤として有用であり、特に、太陽電池用の高品質なシリコン基板を高い歩留まりで採取し得る多結晶シリコンインゴットの離型剤として有用である。また、本発明の窒化ケイ素粉末は、緻密な離型層を形成し得ること、結晶性が高いことから、高温で高強度を発現する窒化ケイ素焼結体の原料としても有用である。   INDUSTRIAL APPLICABILITY The silicon nitride powder of the present invention is useful as a mold release agent capable of forming a mold release layer having good adhesion and mold releasability to a mold, and particularly high quality silicon substrates for solar cells. It is useful as a release agent for polycrystalline silicon ingots that can be collected at a yield. Further, the silicon nitride powder of the present invention is capable of forming a dense release layer and has high crystallinity, and therefore is useful as a raw material for a silicon nitride sintered body that exhibits high strength at high temperatures.

1 燃焼合成反応装置
2 混合原料粉末
3 黒鉛製容器
4 着火剤
5 カーボンヒータ
6 耐圧性容器
7 真空ポンプ
8 窒素ボンベ
9 覗き窓
1 Combustion Synthesis Reaction Device 2 Mixed Raw Material Powder 3 Graphite Container 4 Ignition Agent 5 Carbon Heater 6 Pressure Resistant Container 7 Vacuum Pump 8 Nitrogen Cylinder 9 Peep Window

Claims (11)

窒化ケイ素粉末であって、
BET法により測定される比表面積が0.4m/g以上5m/g以下であり、
β型窒化ケイ素の割合が70質量%以上であり、
レーザ回折散乱法により測定される体積基準の50%粒子径をD50とし、90%粒子径をD90としたときに、D50が2μm以上20μm以下であり、D90が8μm以上60μm以下であり、
Feの含有割合が100ppm以下であり、
Alの含有割合が100ppm以下であり、
FeおよびAl以外の金属不純物の含有割合の合計が100ppm以下であり、
β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶子径をDとしたときに、Dが300nm以上であることを特徴とする窒化ケイ素粉末。
Silicon nitride powder,
The specific surface area measured by the BET method is 0.4 m 2 / g or more and 5 m 2 / g or less,
The proportion of β-type silicon nitride is 70% by mass or more,
When the volume-based 50% particle diameter measured by the laser diffraction scattering method is D50 and the 90% particle diameter is D90, D50 is 2 μm or more and 20 μm or less, and D90 is 8 μm or more and 60 μm or less,
Fe content ratio is 100 ppm or less,
Al content is 100 ppm or less,
The total content of metal impurities other than Fe and Al is 100 ppm or less,
When the crystallite diameter of β-type silicon nitride calculated from the powder X-ray diffraction pattern of β-type silicon nitride using the Williamson-Hall equation is D C , D C is 300 nm or more. Silicon powder.
β型窒化ケイ素の粉末X線回折パターンよりWilliamson−Hall式を用いて算出されるβ型窒化ケイ素の結晶歪が0.8×10−4以下であることを特徴とする請求項1記載の窒化ケイ素粉末。The crystal strain of β-type silicon nitride calculated from the powder X-ray diffraction pattern of β-type silicon nitride using the Williamson-Hall formula is 0.8 × 10 −4 or less, and the nitriding according to claim 1. Silicon powder. 前記比表面積より算出される比表面積相当径をDBETとしたときに、DBET/D(nm/nm)が5以下であることを特徴とする請求項1または2に記載の窒化ケイ素粉末。D BET / D C (nm / nm) is 5 or less when the specific surface area equivalent diameter calculated from the specific surface area is D BET, and the silicon nitride powder according to claim 1 or 2. .. D50が3μm以上であることを特徴とする請求項1〜3いずれか一項に記載の窒化ケイ素粉末。   D50 is 3 micrometers or more, The silicon nitride powder as described in any one of Claims 1-3 characterized by the above-mentioned. D90が50μm以下であることを特徴とする請求項1〜4いずれか一項に記載の窒化ケイ素粉末。   D90 is 50 micrometers or less, The silicon nitride powder as described in any one of Claims 1-4. D90が13μm以上であることを特徴とする請求項1〜5いずれか一項に記載の窒化ケイ素粉末。   D90 is 13 micrometers or more, The silicon nitride powder as described in any one of Claims 1-5 characterized by the above-mentioned. β型窒化ケイ素の割合が80質量%より大きいことを特徴とする請求項1〜6いずれか一項に記載の窒化ケイ素粉末。   The ratio of β-type silicon nitride is greater than 80% by mass, and the silicon nitride powder according to claim 1. Feの含有割合が20ppm以下であり、
Alの含有割合が20ppm以下であり、
Fe及びAl以外の金属不純物の含有割合の合計が20ppm以下であることを特徴とする請求項1〜7いずれか一項に記載の窒化ケイ素粉末。
Fe content ratio is 20 ppm or less,
Al content ratio is 20 ppm or less,
The silicon nitride powder according to any one of claims 1 to 7, wherein the total content of metal impurities other than Fe and Al is 20 ppm or less.
レーザ回折散乱法により測定される体積基準の10%粒子径をD10としたときに、D10が0.5μm以上8μm以下であることを特徴とする請求項1〜8いずれか一項に記載の窒化ケイ素粉末。   D10 is 0.5 μm or more and 8 μm or less, where D10 is a volume-based 10% particle diameter measured by a laser diffraction / scattering method, and nitriding according to any one of claims 1 to 8. Silicon powder. 請求項1〜9いずれか一項に記載の窒化ケイ素粉末を含む多結晶シリコンインゴット用離型剤。   A mold release agent for a polycrystalline silicon ingot, comprising the silicon nitride powder according to claim 1. 鋳型内に収容された溶融シリコンを凝固させるシリコンインゴットの製造方法であって、前記鋳型として、前記溶融シリコンとの接触面に請求項1〜9いずれか一項に記載の窒化ケイ素粉末が塗布された鋳型を用いることを特徴とするシリコンインゴットの製造方法。   A method for manufacturing a silicon ingot for solidifying molten silicon contained in a mold, wherein the silicon nitride powder according to any one of claims 1 to 9 is applied to the contact surface with the molten silicon as the mold. A method for manufacturing a silicon ingot, which comprises using a mold.
JP2018556696A 2016-12-12 2017-12-12 Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot Active JP6693575B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016240750 2016-12-12
JP2016240750 2016-12-12
PCT/JP2017/044606 WO2018110560A1 (en) 2016-12-12 2017-12-12 Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot

Publications (2)

Publication Number Publication Date
JPWO2018110560A1 JPWO2018110560A1 (en) 2019-07-04
JP6693575B2 true JP6693575B2 (en) 2020-05-13

Family

ID=62558677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018556696A Active JP6693575B2 (en) 2016-12-12 2017-12-12 Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot

Country Status (4)

Country Link
JP (1) JP6693575B2 (en)
CN (1) CN110062745A (en)
TW (1) TWI634071B (en)
WO (1) WO2018110560A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353994B2 (en) * 2020-01-17 2023-10-02 株式会社トクヤマ Silicon nitride manufacturing method
JPWO2022004755A1 (en) * 2020-06-30 2022-01-06
WO2023210649A1 (en) * 2022-04-27 2023-11-02 株式会社燃焼合成 COLUMNAR PARTICLES OF β-SILICON NITRIDE, COMPOSITE PARTICLES, SINTERED SUBSTRATE FOR HEAT RADIATION, RESIN COMPOSITE, INORGANIC COMPOSITE, METHOD FOR PRODUCING COLUMNAR PARTICLES OF β-SILICON NITRIDE, AND METHOD FOR PRODUCING COMPOSITE PARTICLES

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560252B2 (en) * 1994-04-05 1996-12-04 科学技術庁無機材質研究所長 Silicon nitride fine powder and method for producing the same
DE10165080B4 (en) * 2000-09-20 2015-05-13 Hitachi Metals, Ltd. Silicon nitride powder and sintered body and method of making the same and printed circuit board therewith
JP3877645B2 (en) * 2002-06-03 2007-02-07 電気化学工業株式会社 Method for producing silicon nitride powder
JP4089974B2 (en) * 2004-04-27 2008-05-28 日立金属株式会社 Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
JP2007261832A (en) * 2006-03-27 2007-10-11 Sumco Solar Corp Silicon nitride release material powder, method for producing release material and firing method
JP5440977B2 (en) * 2009-09-03 2014-03-12 電気化学工業株式会社 Method for producing high-purity silicon nitride fine powder
JP5518584B2 (en) * 2010-06-16 2014-06-11 電気化学工業株式会社 Silicon nitride powder for release agent.
JP5930637B2 (en) * 2011-09-28 2016-06-08 デンカ株式会社 Silicon nitride powder for mold release agent and method for producing the same
JP5901448B2 (en) * 2012-06-28 2016-04-13 デンカ株式会社 Silicon nitride powder for mold release agent
CN105143399B (en) * 2013-03-21 2017-02-15 宇部兴产株式会社 Oxynitride fluorescent powder and method for manufacturing same
WO2015005390A1 (en) * 2013-07-11 2015-01-15 宇部興産株式会社 Silicon nitride powder for mold release agent of casting mold for casting polycrystalline silicon ingot and method for manufacturing said silicon nitride powder, slurry containing said silicon nitride powder, casting mold for casting polycrystalline silicon ingot and method for manufacturing same, and method for manufacturing polycrystalline silicon ingot cast using said casting mold
JP6245602B2 (en) * 2013-10-21 2017-12-13 国立研究開発法人産業技術総合研究所 Silicon nitride filler, resin composite, insulating substrate, semiconductor encapsulant, method for producing silicon nitride filler
KR20170021282A (en) * 2014-06-16 2017-02-27 우베 고산 가부시키가이샤 Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder

Also Published As

Publication number Publication date
TW201829302A (en) 2018-08-16
JPWO2018110560A1 (en) 2019-07-04
TWI634071B (en) 2018-09-01
WO2018110560A1 (en) 2018-06-21
CN110062745A (en) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
TWI788533B (en) Process for producing silicon nitride powder
TWI552977B (en) Α alumina sintered body for production of sapphire single crystal
JP6292306B2 (en) Silicon nitride powder, silicon nitride sintered body and circuit board, and method for producing silicon nitride powder
JP6690734B2 (en) Method for producing silicon nitride powder and silicon nitride sintered body
JP6693575B2 (en) Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP5975176B2 (en) Silicon nitride powder for mold release agent of polycrystalline silicon ingot casting mold and manufacturing method thereof, slurry containing silicon nitride powder, casting mold for polycrystalline silicon ingot and manufacturing method thereof, and polycrystalline silicon using the mold Manufacturing method of ingot casting
JP6690735B2 (en) Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JP5637220B2 (en) Polycrystalline silicon ingot casting mold, manufacturing method thereof, silicon nitride powder for mold release material of polycrystalline silicon ingot casting mold, and slurry containing the same
JP5930637B2 (en) Silicon nitride powder for mold release agent and method for producing the same
JP5759065B2 (en) Alumina production method
EP2660200A1 (en) Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
JP5700052B2 (en) Polycrystalline silicon ingot casting mold, silicon nitride powder for mold release material, silicon nitride powder-containing slurry for mold release layer, and mold release material for casting
JP6354367B2 (en) Silicon nitride powder for release agent of polycrystalline silicon ingot casting mold and manufacturing method thereof, slurry containing silicon nitride powder for release agent of casting mold of polycrystalline silicon ingot, and casting mold for polycrystalline silicon ingot and manufacturing method thereof
TWI523827B (en) Crucibles
JP7224997B2 (en) Al4SiC4 powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6693575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250