JP2560252B2 - Silicon nitride fine powder and method for producing the same - Google Patents

Silicon nitride fine powder and method for producing the same

Info

Publication number
JP2560252B2
JP2560252B2 JP6092998A JP9299894A JP2560252B2 JP 2560252 B2 JP2560252 B2 JP 2560252B2 JP 6092998 A JP6092998 A JP 6092998A JP 9299894 A JP9299894 A JP 9299894A JP 2560252 B2 JP2560252 B2 JP 2560252B2
Authority
JP
Japan
Prior art keywords
particles
silicon nitride
powder
particle size
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6092998A
Other languages
Japanese (ja)
Other versions
JPH0834603A (en
Inventor
秀樹 広津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP6092998A priority Critical patent/JP2560252B2/en
Publication of JPH0834603A publication Critical patent/JPH0834603A/en
Application granted granted Critical
Publication of JP2560252B2 publication Critical patent/JP2560252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造機械、化学
プラント、非鉄金属製造機械、溶接ロボット等の分野に
おいて機械部品として利用される高強度、高精密、耐摩
耗性、耐食性窒化ケイ素焼結体用の出発原料として望ま
しい窒化ケイ素微粉末及びその製造方法に関するもので
ある。
FIELD OF THE INVENTION The present invention relates to a high strength, high precision, wear resistant, corrosion resistant silicon nitride sintered material used as a machine part in the fields of semiconductor manufacturing machines, chemical plants, non-ferrous metal manufacturing machines, welding robots and the like. The present invention relates to a desirable silicon nitride fine powder as a starting material for a body and a method for producing the same.

【0002】[0002]

【従来の技術】焼結用窒化ケイ素粉末としては、(1)高
α率、(2)微細な粒子、(3)高純度、(4)球形、(5)狭
い粒度分布、等の条件が必要とされてきた。このため、
高純度でα率が90%以上、かつ平均粒径が0.5〜0.
8ミクロン程度と細かい窒化ケイ素が市販されている。
この粉末は、大部分の粒子が1ミクロン以下であるので
サブミクロン粉末と呼ばれる。
2. Description of the Related Art As a silicon nitride powder for sintering, there are conditions such as (1) high α ratio, (2) fine particles, (3) high purity, (4) spherical shape, and (5) narrow particle size distribution. Has been needed. For this reason,
High purity, α ratio of 90% or more, and average particle size of 0.5 to 0.5.
Silicon nitride as fine as 8 microns is commercially available.
This powder is referred to as submicron powder because most particles are 1 micron or less.

【0003】この粉末に焼結助剤として酸化物を加え、
窒素中で1700℃以上に加熱すると高密度焼結体が製
造できる。焼結助剤を含む液相の中を窒化ケイ素が拡散
する液相焼結によって高密度化が達成される。高温では
β型が安定であるので、焼結の進行と共にα粒子は溶解
し、β粒子として析出する。この過程でαからβへの相
転移が進行する。
An oxide was added to this powder as a sintering aid,
When heated to 1700 ° C. or higher in nitrogen, a high density sintered body can be manufactured. Densification is achieved by liquid phase sintering in which silicon nitride diffuses in a liquid phase containing a sintering aid. Since β-type is stable at high temperature, α-particles are dissolved and precipitated as β-particles as sintering proceeds. In this process, the phase transition from α to β progresses.

【0004】冷却後、液相は固化してガラスとなるの
で、焼結体はβ粒子を少量のガラス相が結合した組織と
なる。αからβへの相転移と共に粒子は柱状に成長す
る。この焼結体の組織は小さなβ粒子が大部分で、少数
の柱状に成長したβ粒子が分散した複合組織となる。こ
の組織はウィカー強化セラミックスと同じである。柱状
粒子が亀裂の進行の抵抗となるため、焼結体は高靭性・
高強度となる。これが高α率が出発原料として必須の条
件となっていた理由である。
After cooling, the liquid phase solidifies into glass, so that the sintered body has a structure in which a small amount of β particles are bonded to the glass phase. The particles grow in a columnar shape with the phase transition from α to β. Most of the structure of this sintered body is small β particles, and a small number of columnar grown β particles are dispersed into a composite structure. This structure is the same as the wicker reinforced ceramics. Since the columnar particles resist the progress of cracks, the sintered body has high toughness and
It has high strength. This is the reason why the high α ratio was an essential condition as a starting material.

【0005】本発明者の一人は既に、特願平1−771
77号において、高α率は必須な条件でなく、サブミク
ロンの粉末であれば高β率の粉末でも焼結性が高くなる
ことを示した。また、粒成長の核を添加すると柱状粒子
が成長し、複合組織が発達するため、高強度・高靭性の
焼結体が得られた。その後の研究で柱状粒子が成長でき
る粒度分布を明らかにして、特願平3−245868
号、特願平3−338844号を提案した。
One of the inventors of the present invention is already in Japanese Patent Application No. 1-771.
In No. 77, it was shown that a high α ratio is not an essential condition, and that a powder with a high β ratio will have high sinterability if it is a submicron powder. Further, when grain growth nuclei were added, columnar grains grew and a composite structure developed, so that a high-strength / high-toughness sintered body was obtained. In the subsequent research, the particle size distribution in which columnar particles can grow was clarified, and Japanese Patent Application No. 3-245868.
And Japanese Patent Application No. 3-338844.

【0006】[0006]

【発明が解決しようとする課題】サブミクロンで高α率
の粉末は数多く市販されている。高α率の粉末を焼結す
る際の粒成長挙動は相転移と密接に結びついている。こ
の相転移は一定温度範囲で急激に進行し、制御できな
い。このため、組織の再現性が低く、焼結体の強度分布
は広くて材料としての信頼性は低い。
There are many commercially available powders having a submicron and a high α ratio. The grain growth behavior during sintering of powders with a high α ratio is closely linked to the phase transition. This phase transition rapidly progresses in a certain temperature range and cannot be controlled. Therefore, the reproducibility of the structure is low, the strength distribution of the sintered body is wide, and the reliability as a material is low.

【0007】従来の研究で高β率の粉末から相転移の関
与なしに柱状粒子が成長することが明らかになってい
る。しかし、従来の研究で提供された粉末の平均粒子径
は大きく、相対密度98%以上の高密度焼結体を製造す
るには1850℃以上の高温が必要であった。また、上
述の提案(特願平3−245868号、特願平3−33
8844号)で規定した粒度分布を持つ粉末を高温で焼
結すると、核を導入しなくても、大きな粒子から柱状粒
子が成長することが明らかになった(J. Am. Ceram.
Soc. 76号、1892頁(1993))。したがって、
従来の高β率の粉末でも組織制御を行うには不十分であ
る。
Previous studies have revealed that columnar grains grow from powders with a high β ratio without the involvement of phase transition. However, the average particle diameter of the powder provided in the conventional research is large, and a high temperature of 1850 ° C. or higher is required to manufacture a high density sintered body having a relative density of 98% or more. In addition, the above-mentioned proposal (Japanese Patent Application No. 3-245868, Japanese Patent Application No. 3-33)
It has been revealed that columnar grains grow from large grains without introducing nuclei when a powder having a particle size distribution defined in (No. 8844) is sintered at high temperature (J. Am. Ceram.
Soc. 76, 1892 (1993)). Therefore,
Even the conventional powder having a high β ratio is not sufficient for controlling the structure.

【0008】これらの結果より、高α率及び高β率のど
の粉末でも、単にサブミクロンの粉末では組織を再現性
よく制御できない。そこで、焼結中に柱状粒子が発達せ
ず、細かく均一な組織を与える原料粉末が必要である。
その粉末にその粒度分布外の大きな粒子を核として添加
すれば、核からのみ柱状粒子が発達する筈である。柱状
粒子の大きさや形は、焼結温度や焼結助剤の種類のみで
なく、核の数と大きさで制御される。そこで、マトリッ
クス(母体)を与える原料粉末の粒度や粒度分布が複合組
織の制御に最も重要である。このため、サブミクロン粉
末の中から核として作用する0.5ミクロンより大きな
粒子を除去し、狭い粒度分布を持つ粉末を提供する必要
がある。
From these results, it is impossible to reproducibly control the texture of any powder having a high α ratio and a high β ratio simply by using a submicron powder. Therefore, a raw material powder that does not develop columnar particles during sintering and gives a fine and uniform structure is required.
If large particles outside the particle size distribution are added to the powder as cores, columnar particles should develop only from the cores. The size and shape of the columnar particles are controlled by not only the sintering temperature and the type of sintering aid, but also the number and size of nuclei. Therefore, the particle size and particle size distribution of the raw material powder that provides the matrix (matrix) are the most important for controlling the composite structure. Therefore, it is necessary to remove particles larger than 0.5 micron that act as nuclei from the submicron powder to provide a powder having a narrow particle size distribution.

【0009】組織発現を再現性よく制御するには、上記
のようにマトリックス(母体)として細かく均一な粒径の
焼結体を製造できる原料が必要である。
In order to control the tissue expression with good reproducibility, it is necessary to use a raw material capable of producing a sintered body having a fine and uniform grain size as a matrix (matrix) as described above.

【0010】本発明は、かゝる課題に応えるべく、従来
より更に細かく粒度分布が均一で、かつ広い比表面積を
持つ窒化ケイ素焼結体用原料微粉末を提供することを目
的としている。
In order to meet such a problem, an object of the present invention is to provide a raw material fine powder for a silicon nitride sintered body, which has a finer particle size distribution and a wider specific surface area than ever before.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
の手段として、本発明は、レーザー散乱法で測定した平
均粒子径が0.1〜0.35ミクロンの範囲内であり、粒
子径が0.5ミクロン以上の粒子の含有量が15体積%
以下で、粒子径が1.0ミクロン以上の粒子の含有量が
3体積%以下であり、かつ、比表面積が15〜50m2
gの範囲内であることを特徴とする結晶質の窒化ケイ素
微粉末を用途している。
Means for Solving the Problems As means for solving the above problems, the present invention has an average particle diameter measured by a laser scattering method within a range of 0.1 to 0.35 micron, and a particle diameter of The content of particles of 0.5 micron or more is 15% by volume
In the following, the content of particles having a particle size of 1.0 micron or more is 3% by volume or less, and the specific surface area is 15 to 50 m 2 /
It is used for crystalline silicon nitride fine powder characterized by being in the range of g.

【0012】また、その製造方法は、ボールミルにて窒
化ケイ素粉末を溶媒中で湿式粉砕しながら分散させて、
窒化ケイ素粉末スラリーとした後、湿式沈降分級にて粗
粒を除去して粒度分布の狭い微粒子を製造することを特
徴としている。
The manufacturing method is as follows. Disperse the silicon nitride powder in a solvent by wet pulverizing with a ball mill,
It is characterized in that after forming a silicon nitride powder slurry, coarse particles are removed by wet sedimentation classification to produce fine particles having a narrow particle size distribution.

【0013】更に、他の本発明は、レーザー散乱法で測
定した平均粒径が0.5ミクロンを超え1.5ミクロン以
下であり、その範囲内の粒子が全体の70体積%以上
で、かつ比表面積が5m2/g以下で、β相含有量が80
重量%以上の窒化ケイ素粉末を、上記の窒化ケイ素微粉
末に対して0.1〜5重量%混合してなることを特徴と
する窒化ケイ素微粉末を要旨としている。
Still another aspect of the present invention is that the average particle size measured by a laser scattering method is more than 0.5 micron and 1.5 micron or less, and the particles within the range are 70% by volume or more of the whole, and Specific surface area of 5 m 2 / g or less, β phase content of 80
The gist of the silicon nitride fine powder is characterized by mixing 0.1% to 5% by weight of the above silicon nitride fine powder with silicon nitride powder in an amount of at least wt%.

【0014】[0014]

【作用】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0015】焼結原料用として市販されている粉末はサ
ブミクロンであり、粒度分布が0.1〜3ミクロンの範
囲内であり、大部分の粒子が1ミクロン以下である。こ
の粉末から0.5ミクロンより大きな粒子を除去するに
は、大きな粒子の除去が保証される沈降法が望ましい。
そこで、解こう剤を溶解した分散剤溶液に市販の粉末を
分散し、ボールミルで粉砕と同時に均一分散を行い、そ
の後沈降法により大きな粒子を除去する。沈降法には各
種あるが、短時間で行える遠心沈降法が最も簡単であ
る。但し、細かい粒子と大きな粒子をサブミクロンの範
囲内の0.5ミクロンで分け、細かい粉末にそれより大
きな粒子を含まない分離法であればよく、沈降法に限定
されるものではない。
Commercially available powders for sintering raw materials are submicron, with a particle size distribution in the range of 0.1 to 3 microns, with most particles less than 1 micron. To remove particles larger than 0.5 micron from this powder, a sedimentation method that ensures the removal of large particles is desirable.
Therefore, a commercially available powder is dispersed in a dispersant solution in which a deflocculating agent is dissolved, and a ball mill is used to pulverize and uniformly disperse the powder, and then large particles are removed by a sedimentation method. Although there are various sedimentation methods, the centrifugal sedimentation method, which can be performed in a short time, is the simplest. However, it is not limited to the sedimentation method as long as it is a separation method in which fine particles and large particles are separated by 0.5 micron within a submicron range and fine particles do not include larger particles.

【0016】粒度分布の測定は、少量の粉末を水に分散
し、レーザー散乱法、沈降法、X線透過法を利用して行
う。直接的には透過型電子顕微鏡や走査型電子顕微鏡で
測定する。最も一般的にはレーザーの散乱が粒子の大き
さに依存することを利用する、レーザー散乱法が用いら
れる。ところが、測定された粒度分布は粒子の真の大き
さの分布ではない。これは多くの場合、細かい粒子が粉
末合成の過程で強く結びついた2次粒子が存在し、その
大きさが粒度分布に反映されるためである。焼結過程中
に大きな粒子は周辺の細かい粒子を吸収して、柱状に成
長する。2次粒子も強く結合しているため、マトリック
スより低温で焼結が進行し、大きな粒子と同じような核
としての作用を果たす。但し、粉砕や分散操作中に生成
した2次粒子は弱い結合なので、焼結中に分散して核と
しての作用を示さない。
The particle size distribution is measured by dispersing a small amount of powder in water and using a laser scattering method, a sedimentation method or an X-ray transmission method. Direct measurement is performed with a transmission electron microscope or a scanning electron microscope. Most commonly, the laser scattering method is used, which takes advantage of the fact that the scattering of laser depends on the size of particles. However, the measured particle size distribution is not the true size distribution of the particles. This is because in many cases, there are secondary particles in which fine particles are strongly bound in the process of powder synthesis, and their size is reflected in the particle size distribution. During the sintering process, the large particles absorb the surrounding fine particles and grow into columns. Since the secondary particles are also strongly bound to each other, the sintering proceeds at a temperature lower than that of the matrix, and the secondary particles act as nuclei like large particles. However, since the secondary particles generated during the pulverization and dispersion operations are weakly bonded, they are dispersed during sintering and do not act as nuclei.

【0017】この2次粒子の相違を明確にするには、粒
度分布の測定だけでは不十分で、窒素吸着法を利用した
比表面積の測定を併用する必要があることが判明した。
強い結合の2次粒子であれば大きな粒子と同様比表面積
は小さく評価されるが、弱い結合の粒子は粒子間にも窒
素が吸着され、1次粒子の比表面積として評価される。
サブミクロン粒子の比表面積は8〜12m2/g程度であ
り、大きな粒子を除去した粉末で大部分の粒子が0.1
〜0.5ミクロンの範囲にあるものでは15〜50m2/g
となる。
In order to clarify the difference between the secondary particles, it has been found that the measurement of the particle size distribution is not sufficient, and the measurement of the specific surface area using the nitrogen adsorption method must be used together.
If the secondary particles have a strong bond, the specific surface area is evaluated to be small like the large particles, but the particles having a weak bond are evaluated as the specific surface area of the primary particles because nitrogen is adsorbed between the particles.
The specific surface area of submicron particles is about 8 to 12 m 2 / g, and most of the particles are 0.1% in the powder with large particles removed.
15 to 50 m 2 / g in the range of up to 0.5 micron
Becomes

【0018】このように、ボールミルで粉砕・分散を行
い、その後沈降法で大きな粉末を除去する方法が、細か
く均一な粒度の粉末の調整に有効である。そして、レー
ザー散乱法による粒度分布と比表面積の測定を併用して
所望の粉末であることを確認する。
As described above, the method of pulverizing and dispersing with a ball mill and then removing the large powder by the sedimentation method is effective for adjusting the powder having a fine and uniform particle size. Then, the particle size distribution and the specific surface area are measured together by the laser scattering method to confirm that the desired powder is obtained.

【0019】市販されているサブミクロン粒子は、レー
ザー散乱法で粒度分布を測定すると図1の比較例3のよ
うになる。平均粒度とは体積%(重量%と同じ)が50%
になる粒度であり、図の場合、0.51ミクロンとな
る。このサブミクロン粉末は目的とする0.5ミクロン
以下の粒子を約50体積%含む。このような微細な領域
での分級を乾式で行うことは困難であるので、湿式で行
う。分散する液体(分散剤という)は水、アルコール等で
ある。安定に分散させるには粒子を帯電させる必要があ
るので、極性の高い水が望ましい。粒子を帯電させ、安
定なスラリーを作製するために加える物質を解こう剤と
いう。解こう剤はアクリル酸塩やリン酸塩が用いられ
る。必要に応じてpHをスラリーが安定な範囲に調整す
る。通常は解こう剤を0.2〜0.5重量%溶解した水溶
液に粉末を分散する。大きな粒子の粉砕や2次粒子の分
散を行うために粉体を分散した溶液をボールミルで処理
する。ボールミルは不純物の混入を防ぐために、すべて
窒化ケイ素焼結体製のものが望ましい。
The commercially available submicron particles have a particle size distribution measured by a laser scattering method as shown in Comparative Example 3 in FIG. Average particle size is 50% volume% (same as weight%)
In the figure, it is 0.51 micron. The submicron powder contains about 50% by volume of the desired particles of 0.5 micron or less. Since it is difficult to carry out classification in such a fine region by a dry method, it is carried out by a wet method. The liquid to be dispersed (referred to as a dispersant) is water, alcohol or the like. Since the particles need to be charged for stable dispersion, highly polar water is desirable. The substance added to charge the particles and make a stable slurry is called a peptizer. Acrylate or phosphate is used as the peptizer. If necessary, adjust the pH to a range within which the slurry is stable. Usually, the powder is dispersed in an aqueous solution in which the peptizer is dissolved in an amount of 0.2 to 0.5% by weight. A solution in which the powder is dispersed is treated with a ball mill in order to grind large particles and disperse secondary particles. The ball mill is preferably made of a silicon nitride sintered body in order to prevent contamination of impurities.

【0020】スラリーを放置すると大きな粒子が早く沈
む。これを自然沈降と言うが、一定時間に一定高さを沈
下する粒子径は容易に算出できる。この現象は粒度分布
の測定法としても利用されている。このため、一定時間
経過後には、上部の液体中にはある粒子より大きなもの
はないことが保証できる。ここで問題としている0.5
ミクロンより大きな粒子を除去するには、自然沈降では
長時間かかる。そこで、遠心分離機を利用した遠心分離
法が望ましい。細かい粒子のみを分散した上澄み液を希
薄にして粒度分布を測定すると、沈降条件と除去される
粒子径の関係が解ける。
When the slurry is left to stand, large particles settle quickly. This is called spontaneous sedimentation, and the particle size that sinks at a certain height for a certain period of time can be easily calculated. This phenomenon is also used as a method for measuring particle size distribution. Therefore, it can be guaranteed that, after a certain period of time, there are no particles larger than some particles in the upper liquid. The problem here is 0.5
Natural sedimentation takes a long time to remove particles larger than micron. Therefore, a centrifugal separation method using a centrifugal separator is desirable. When the supernatant liquid in which only fine particles are dispersed is diluted and the particle size distribution is measured, the relationship between the sedimentation conditions and the particle size to be removed can be solved.

【0021】このような方法で0.5ミクロン以上の粒
子をほとんど含まない粒子が調整できる。この粉末の粒
度分布を測定すると、例えば、図1の実施例3のように
0.5ミクロンを超える粒子が少量観察される。この比
表面積を窒素吸着法で測定すると31.5m2/gと、粒度
分布から計算された値の数倍である。また、電子顕微鏡
を用いても大きな粒子は観察されない。それらの事実か
ら、測定された大きな粒度は分散した粒子が再結合し
た、結合の弱い2次粒子と推定される。事実、この粉末
に酸化物を焼結助剤として加え、1800℃で長時間焼
結しても均一で細かい粒子からなる焼結体となり、柱状
粒子は観察されなかった。したがって、この粉末は柱状
粒子となる核の存在しない、粒度の均一なものである。
Particles containing almost no particles of 0.5 microns or more can be prepared by such a method. When the particle size distribution of this powder is measured, for example, a small amount of particles exceeding 0.5 micron are observed as in Example 3 of FIG. When this specific surface area is measured by the nitrogen adsorption method, it is 31.5 m 2 / g, which is several times the value calculated from the particle size distribution. Also, no large particles are observed using an electron microscope. From these facts, the large particle size measured is presumed to be the weakly bonded secondary particles in which the dispersed particles are recombined. In fact, even if an oxide was added to this powder as a sintering aid and sintered at 1800 ° C. for a long time, a sintered body composed of uniform and fine particles was obtained, and no columnar particles were observed. Therefore, this powder has a uniform particle size without the core of columnar particles.

【0022】この結果、平均粒度は0.1〜0.35ミク
ロンの範囲内が望ましいことが明らかとなった。しか
し、0.35ミクロンより大きいと粒成長の核となる大
きな粒子が必ず存在する。0.1ミクロンより小さいと
粉末の化学的反応性が高くなり処理中に酸化が進行し、
また粉末の密な充填が困難で焼結に適さない。したがっ
て、その粉末の比表面積は15〜50m2/gとする。望
ましくは20〜35m2/gの範囲である。
As a result, it became clear that the average particle size is preferably in the range of 0.1 to 0.35 micron. However, if it is larger than 0.35 micron, there is always a large particle serving as a nucleus of grain growth. If it is smaller than 0.1 micron, the chemical reactivity of the powder becomes high and oxidation progresses during the treatment,
Moreover, it is not suitable for sintering because it is difficult to densely fill the powder. Therefore, the specific surface area of the powder is 15 to 50 m 2 / g. It is preferably in the range of 20 to 35 m 2 / g.

【0023】平均粒径が上記の所定範囲内であり、か
つ、比表面積が15m2/gより小さいと大きな粒子や強
い結合の2次粒子が残留している可能性が高い。一方、
平均粒径が上記の所定範囲内であり、かつ比表面積が5
0m2/gより大きい場合は平均粒径が0.1ミクロンより
小さい場合と同じ問題点がある。平均粒径と比表面積が
上記の範囲内であれば、粉体中のα/β比は基本的には
任意でよい。しかし、αとβが混在すると焼結中に相転
移が不均一に起こり、組織制御は容易でない。そこで、
α相又はβ相を80重量%以上含有する単相又はそれに
近い粉末が望ましい。
When the average particle diameter is within the above-mentioned predetermined range and the specific surface area is less than 15 m 2 / g, there is a high possibility that large particles or secondary particles having strong bonding remain. on the other hand,
The average particle size is within the above range and the specific surface area is 5
When the average particle size is larger than 0 m 2 / g, the same problem occurs as when the average particle size is smaller than 0.1 micron. If the average particle size and the specific surface area are within the above ranges, the α / β ratio in the powder may be basically arbitrary. However, when α and β are mixed, the phase transition occurs non-uniformly during sintering, and it is not easy to control the structure. Therefore,
A single phase containing 80% by weight or more of α phase or β phase or a powder close to it is desirable.

【0024】上記の平均粒径と比表面積を満足する粉末
は、それのみで焼結体原料用として利用し得るが、更に
は、この粉末に他の粒度分布の粉末を加えた混合として
も利用できる。
The powder satisfying the above-mentioned average particle size and specific surface area can be used as a raw material for a sintered body by itself, and can also be used as a mixture by adding a powder having another particle size distribution to this powder. it can.

【0025】例えば、上記の平均粒径と比表面積を満足
する微細な粉末に、平均粒径が0.5ミクロンを超え1.
5ミクロン以下である(望ましくは0.7〜1.0ミクロ
ン)粉末を核として混合すると、大きな粒子のみ柱状に
成長する。後者の粒子の平均粒径がこの範囲であり、か
つこの範囲内の粒子が全体の70容積%あれば核として
の作用は十分果たす。この範囲より小さいとマトリック
スとの差が小さく、選択的な成長は必ずしも起こらな
い。この範囲より大きいと成長した柱状粒子が大きす
ぎ、焼結体の強度を低下させる。この粒子は核の作用を
するので、単一の粒子である必要がある。そこで、比表
面積が5m2/g以下である必要がある。この粉末を上記
微細な粉末に対して0.05〜5重量%加えて焼結して
も、少量であるので優れた焼結特性は維持される。ま
た、焼結の進行と共に核が柱状粒子として成長し複合組
織が発現する。しかし、上記所定の量より少ないと核と
しての作用が十分でなく、また、5重量%より多いと核
の数が多すぎ、柱状粒子が互いに接触し、大きな欠陥と
して作用して強度を低下させると共に大きな強度分布を
示す。望ましくは0.5〜2重量%の範囲である。添加
した粉末粒子が核としての作用を示すには高温安定なβ
型である必要があり、その含有率は80重量%以上とす
る。
For example, in a fine powder satisfying the above average particle diameter and specific surface area, the average particle diameter exceeds 0.5 micron and 1.
When a powder having a size of 5 microns or less (preferably 0.7 to 1.0 micron) is mixed as a nucleus, only large particles grow in a columnar shape. If the average particle size of the latter particles is within this range, and the particles within this range account for 70% by volume of the total, the function as a core is sufficiently achieved. If it is smaller than this range, the difference from the matrix is small and selective growth does not always occur. If it exceeds this range, the grown columnar particles are too large and the strength of the sintered body is reduced. Since this particle acts as a nucleus, it needs to be a single particle. Therefore, the specific surface area needs to be 5 m 2 / g or less. Even if this powder is added in an amount of 0.05 to 5% by weight with respect to the above-mentioned fine powder and sintered, the amount is small and excellent sintering characteristics are maintained. Further, as the sintering progresses, nuclei grow as columnar particles and a composite structure is developed. However, if it is less than the above-mentioned predetermined amount, the action as a nucleus is not sufficient, and if it is more than 5% by weight, the number of nuclei is too large and the columnar particles come into contact with each other to act as a large defect to reduce the strength. And shows a large intensity distribution. It is preferably in the range of 0.5 to 2% by weight. In order for the added powder particles to act as nuclei, β that is stable at high temperature
It must be a mold, and its content is 80% by weight or more.

【0026】[0026]

【実施例】以下に、本発明の実施例と比較例を挙げて更
に具体的に本発明を説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples of the present invention.

【0027】[0027]

【実施例1〜3】、[Examples 1 to 3],

【比較例1〜3】焼結用原料として市販されている窒化
ケイ素粉末(A:宇部興産社製SN−E10、B:電気
化学工業社製SN−P21EC、C:電気化学工業社製
SN−P21FC)各20gに対し、スラリー濃度が10
重量%となるように濃度0.3重量%のヘキサメタリン
酸ナトリウム水溶液を添加し、窒化ケイ素製のボールミ
ルにて3時間湿式混合と分散を行い、窒化ケイ素粉末ス
ラリーを作成した。
Comparative Examples 1 to 3 Silicon nitride powder commercially available as a sintering raw material (A: SN-E10 manufactured by Ube Industries, B: SN-P21EC manufactured by Denki Kagaku Kogyo Co., Ltd., C: SN- manufactured by Denki Kagaku Kogyo Co., Ltd.) P21FC) For each 20 g, the slurry concentration is 10
An aqueous solution of sodium hexametaphosphate having a concentration of 0.3% by weight was added so that the concentration became 0.3% by weight, and wet mixing and dispersion were performed for 3 hours in a ball mill made of silicon nitride to prepare a silicon nitride powder slurry.

【0028】次いで、このスラリーを遠心分離機で14
00Gの条件で5分間処理した後、上澄みの窒化ケイ素
微粉末スラリー150ccを回収した。また、遠心分離に
よる沈降物は、ヘキサメタリン酸ナトリウム水溶液15
0ccを添加し、出力400Wのホモジナイザーで10分
間再分散した後、遠心力1400Gの条件で5分間遠心
分離した。これらの分散−分級操作を4回繰り返して、
合計750ccの窒化ケイ素微粉末スラリーを作成した。
次に、この窒化ケイ素微粉末スラリーを、遠心力140
0Gで再度遠心分離し、分級精度を高めた。得られた窒
化ケイ素微粉末スラリーは、分散剤として添加したヘキ
サメタリン酸ナトリウムを除去するために、遠心力16
00Gで1時間遠心沈降させて上澄み液を除去し、蒸留
水を加え出力400Wのホモジナイザーで10分間分散
させて再度窒化ケイ素微粉末スラリーとした。このよう
な洗浄操作を3回行った後、得られた窒化ケイ素微粉末
スラリーを乾燥して窒化ケイ素微粉末を作成した。な
お、比較のために、実施例1〜3の粉末をそのままヘキ
サメタリン酸ナトリウム水溶液に超音波分散させた結果
をそれぞれ比較例1〜3とした。
Next, this slurry was centrifuged with a centrifuge.
After treating for 5 minutes under the condition of 00G, 150 cc of the supernatant silicon nitride fine powder slurry was recovered. In addition, the sediment obtained by centrifugation is an aqueous solution of sodium hexametaphosphate 15
After adding 0 cc and redispersing for 10 minutes with a homogenizer having an output of 400 W, centrifugation was performed for 5 minutes under the condition of centrifugal force of 1400 G. Repeating these dispersion-classification operations four times,
A total of 750 cc of silicon nitride fine powder slurry was prepared.
Next, this silicon nitride fine powder slurry was subjected to a centrifugal force of 140
Centrifugation was performed again at 0 G to improve the classification accuracy. The obtained silicon nitride fine powder slurry was subjected to centrifugal force 16 to remove sodium hexametaphosphate added as a dispersant.
The mixture was centrifuged at 00 G for 1 hour to remove the supernatant, distilled water was added, and the mixture was dispersed for 10 minutes with a homogenizer having an output of 400 W to obtain a silicon nitride fine powder slurry again. After performing such washing operation three times, the obtained silicon nitride fine powder slurry was dried to prepare silicon nitride fine powder. For comparison, the results obtained by ultrasonically dispersing the powders of Examples 1 to 3 in an aqueous sodium hexametaphosphate solution were set as Comparative Examples 1 to 3, respectively.

【0029】図1に上記操作中に得られたヘキサメタリ
ン酸ナトリウム水溶液に分散した窒化ケイ素粉末スラリ
ーを希薄にして粒度分布を測定し(実施例3)、比較例3
の結果と比較して示す。粒度分布はレーザー散乱法(N
&L社製粒度分布計「マイクロトラック−SPA」)で
測定した。実施例1〜3及び比較例1〜3の窒化ケイ素
粉末の粉体特性を表1に示す。
In FIG. 1, the particle size distribution was measured by diluting the silicon nitride powder slurry dispersed in the sodium hexametaphosphate aqueous solution obtained during the above operation (Example 3), and Comparative Example 3
It shows in comparison with the result of. Laser scattering method (N
& L company particle size distribution meter "Microtrac-SPA"). Table 1 shows the powder characteristics of the silicon nitride powders of Examples 1 to 3 and Comparative Examples 1 to 3.

【0030】なお、表1に示された各物性は以下に従っ
て測定した。 α相含有量(%):粉末X線回折法により、α相の(2
10)面及びβ相の(210)面の強度比より算出した。 酸素量(wt%):LECO社製O/N分析計「TC−1
36」にて測定した。 比表面積(m2/g):湯浅アイオニクス社製カンターソ
ープJr.BET1点法によった。
The physical properties shown in Table 1 were measured as follows. α phase content (%): According to the powder X-ray diffraction method,
It was calculated from the intensity ratio of the (10) plane and the (210) plane of the β phase. Oxygen amount (wt%): LECO O / N analyzer "TC-1"
36 ". Specific surface area (m 2 / g): Canter Soap Jr. manufactured by Yuasa Ionics Co., Ltd. It was based on the BET one-point method.

【0031】この結果、表1より明らかなように、実施
例1〜3の粉末は、比較例1〜3のものに比べて、平均
粒径が小さく、比表面積が大きいことが示されている。
As a result, as is clear from Table 1, the powders of Examples 1 to 3 have a smaller average particle size and a larger specific surface area than those of Comparative Examples 1 to 3. .

【0032】次に、実施例1〜3及び比較例1〜3の窒
化ケイ素粉末各93重量%に、Y23(信越化学工業社
製微粉末)5重量%、MgO(和光純薬社製特級試薬)2重
量%を添加し、ヘキサン中で3時間湿式混合し乾燥した
後、解砕を行った。
Next, 93% by weight of each of the silicon nitride powders of Examples 1 to 3 and Comparative Examples 1 to 3 was added with 5% by weight of Y 2 O 3 (fine powder manufactured by Shin-Etsu Chemical Co., Ltd.) and MgO (Wako Pure Chemical Industries, Ltd.). 2% by weight of special grade reagent manufactured by, made by wet mixing in hexane for 3 hours, dried and then crushed.

【0033】次いで、これらの混合粉末約2gを、窒化
ホウ素粉末を塗布した直径15mmのカーボンダイスに充
填し、窒素雰囲気下、プレス圧20MPa、昇温速度3
0℃/minの条件で、焼結体密度が90%以上になる温
度まで昇温し、急冷するパターンでホットプレス焼結を
行い、焼結性を比較すると共に窒化ケイ素焼結体を作成
した。得られた焼結体は、アルキメデス法による焼結体
密度の測定を行った。破面を走査型電子顕微鏡(SEM)
を用いて観察し、微細組織の均一性を調べた。得られた
窒化ケイ素焼結体の相対密度を表2に示す。
Next, about 2 g of these mixed powders was filled in a carbon die having a diameter of 15 mm coated with boron nitride powder, and under a nitrogen atmosphere, a pressing pressure of 20 MPa and a heating rate of 3
Under the condition of 0 ° C./min, the temperature was raised to a temperature at which the density of the sintered body was 90% or more, and hot press sintering was performed in a rapid cooling pattern to compare the sinterability and prepare a silicon nitride sintered body. . The density of the obtained sintered body was measured by the Archimedes method. Scanning electron microscope (SEM)
Was used to examine the homogeneity of the fine structure. Table 2 shows the relative density of the obtained silicon nitride sintered body.

【0034】表2の結果より、各実施例の粉末は、比較
例の粉末に比べ、焼結性に優れており、低温で高密度に
達した。その焼結体組織は、粗大粒子を含まない非常に
微細かつ均一な焼結体組織であった。
From the results shown in Table 2, the powders of the respective examples were superior to the powders of the comparative examples in sinterability and reached a high density at low temperature. The sintered body structure was a very fine and uniform sintered body structure containing no coarse particles.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【実施例4、5】、[Examples 4 and 5],

【比較例4】実施例1、3及び比較例1の窒化ケイ素微
粉末各93重量%に、Al23(住友化学社製AKP−2
0)重量%、Y23(信越化学工業社製微粉末)4重量%
を添加し、ヘキサン中で3時間湿式混合し乾燥した後、
解砕を行った。
[Comparative Example 4] Al 2 O 3 (AKP-2 manufactured by Sumitomo Chemical Co., Ltd.) was added to 93% by weight of each of the silicon nitride fine powders of Examples 1 and 3 and Comparative Example 1.
0) wt%, Y 2 O 3 (Shin-Etsu Chemical Co., Ltd. fine powder) 4 wt%
Was added, wet-mixed in hexane for 3 hours and dried,
It was crushed.

【0038】次いで、これらの粉末を100kg/cm2
圧力で金型成形した後、3トン/mm2の圧力で静水圧(C
IP)を成形した。得られたCIP成形体は、窒化ケイ
素粉末及びBN粉末からなる詰め粉と共にカーボン製ル
ツボにセットし、1MPaの窒素雰囲気中、温度175
0℃で2時間ガス圧焼結を行い焼結体を作成した。
Next, these powders were molded into a mold at a pressure of 100 kg / cm 2 and then subjected to hydrostatic pressure (C) at a pressure of 3 tons / mm 2.
IP) was molded. The obtained CIP compact was set in a carbon crucible together with a stuffing consisting of silicon nitride powder and BN powder, and was placed in a nitrogen atmosphere of 1 MPa at a temperature of 175.
Gas pressure sintering was performed at 0 ° C. for 2 hours to prepare a sintered body.

【0039】得られた焼結体は、アルキメデス法による
焼結体密度の測定を行った後、切断、鏡面研磨を行い、
研磨面をプラズマエッチングして走査型電子顕微鏡(S
EM)による焼結体組織の観察を行った。得られた窒化
ケイ素焼結体の相対密度を表3に示す。
The density of the obtained sintered body was measured by the Archimedes method, and then cut and mirror-polished.
The polished surface is plasma-etched and scanning electron microscope (S
The structure of the sintered body was observed by EM). Table 3 shows the relative density of the obtained silicon nitride sintered body.

【0040】表3より明らかなように、実施例4、5の
各粉末は相対密度が99%以上であり、比較例4に比
べ、焼結性に優れており、その焼結体組織は、異常粒成
長したβ柱状粒子を含まない微細かつ均一な焼結体組織
であった。
As is clear from Table 3, each of the powders of Examples 4 and 5 has a relative density of 99% or more, and is superior in sinterability as compared with Comparative Example 4, and the sintered body structure thereof is The structure was a fine and uniform sintered body that did not contain β-columnar particles with abnormal grain growth.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【実施例6】実施例3において、5回の遠心分離処理後
に残った沈降物を300ccをビーカーに移し、ヘキサメ
タリン酸ナトリウム水溶液250ccを添加し、出力40
0Wのホモジナイザーで10分間分散させ窒化ケイ素粉
末スラリーを作成した。このスラリーを20時間静置し
て自然沈降させた後、上澄み液200ccを除去した。上
記の再分散−沈降分級処理を10回繰り返した。次いで
蒸留水200ccを添加してホモジナイザーで分散し、再
度20時間自然沈降で分級し、分散剤として添加したヘ
キサメタリン酸ナトリウムの除去を行った。このような
洗浄操作を3回行った後、乾燥して表4に示す窒化ケイ
素粉末Dを作成した。この粉末の粒度分布を図1に示
す。
[Example 6] In Example 3, 300 cc of the sediment remaining after 5 times of centrifugation was transferred to a beaker, 250 cc of an aqueous solution of sodium hexametaphosphate was added, and an output of 40
A 0 W homogenizer was used for dispersion for 10 minutes to prepare a silicon nitride powder slurry. The slurry was allowed to stand for 20 hours to spontaneously settle, and 200 cc of the supernatant was removed. The above redispersion-sedimentation classification treatment was repeated 10 times. Then, 200 cc of distilled water was added and dispersed by a homogenizer, and again classified by natural sedimentation for 20 hours to remove sodium hexametaphosphate added as a dispersant. After performing such a washing operation three times, it was dried to prepare a silicon nitride powder D shown in Table 4. The particle size distribution of this powder is shown in FIG.

【0043】次に、実施例3の窒化ケイ素微粉末9l.
5重量%に、窒化ケイ素粉末Dを1.5重量%、Al23
(住友化学社製AKP−20)3重量%、Y23(信越化
学工業社製微粉末)4重量%を添加し、ヘキサン中で3
時間湿式混合し乾燥した後、解砕を行った。この混合粉
末を実施例4と同様の方法で焼結して窒化ケイ素焼結体
を作成した。
Next, the silicon nitride fine powder of Example 3 9 l.
5% by weight, 1.5% by weight of silicon nitride powder D, Al 2 O 3
(AKP-20 manufactured by Sumitomo Chemical Co., Ltd.) 3% by weight and Y 2 O 3 (fine powder manufactured by Shin-Etsu Chemical Co., Ltd.) 4% by weight were added, and 3% in hexane was added.
After wet-mixing for an hour and drying, it was crushed. This mixed powder was sintered in the same manner as in Example 4 to prepare a silicon nitride sintered body.

【0044】得られた焼結体は、相対密度が98.9%
であり、その焼結体組織は微細なマトリックス粒子と粒
成長したβ柱状粒子とからなる複合組織であった。10
kgの圧力でダイヤモンド(ヴィカース)圧子を押しつけ、
生じた亀裂長さから測定した破壊靭性値は8.2MPa・
The relative density of the obtained sintered body was 98.9%.
The structure of the sintered body was a composite structure composed of fine matrix particles and grown β-columnar particles. 10
Press the diamond (Vikars) indenter with a pressure of kg,
Fracture toughness value measured from the length of the generated crack is 8.2MPa

【数1】 で、核を導入しない表2の実施例3の焼結体の値(4.2
MPa・
[Equation 1] Then, the value of the sintered body of Example 3 in Table 2 in which nuclei were not introduced (4.2
MPa

【数2】 )より高靭性であった。[Equation 2] ) It has higher toughness.

【0045】このように均一組織のマトリックスを与え
る粉末を利用し、核から柱状粒子を発達させることによ
り複合組織を持つ焼結体を作製することが可能になっ
た。
As described above, it became possible to produce a sintered body having a composite structure by developing columnar particles from the nucleus by using the powder which gives a matrix of uniform structure.

【0046】[0046]

【表4】 [Table 4]

【0047】[0047]

【発明の効果】以上詳述したように、本発明によれば、
平均粒径が0.1〜0.35ミクロンの範囲内で、かつ、
比表面積が15〜50m2/gの範囲内である微細で均一
粒度の窒化ケイ素微粉末が得られる。この粉末を用いる
と従来市販されているものより低温で焼結でき、焼結体
の組織も微細で均一である。また、この微細粉末に平均
粒径が0.5ミクロンを超え1.5ミクロン以下で比表面
積が5m2/g以下のβ型を主成分とする粗粒を核として
添加すれば、その粗粒から柱状粒子が発達し、複合組織
を持つ焼結体が製造できる。
As described in detail above, according to the present invention,
An average particle size within the range of 0.1 to 0.35 microns, and
A fine and uniform particle size of silicon nitride fine powder having a specific surface area of 15 to 50 m 2 / g is obtained. By using this powder, it is possible to sinter at a lower temperature than that which is commercially available, and the structure of the sintered body is fine and uniform. Also, if coarse particles mainly composed of β-type having an average particle size of more than 0.5 micron and 1.5 micron or less and a specific surface area of 5 m 2 / g or less are added to this fine powder as a core, From this, columnar particles develop and a sintered body having a composite structure can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】レーザー散乱法による粒度分布測定結果を示す
図である。
FIG. 1 is a diagram showing a result of particle size distribution measurement by a laser scattering method.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レーザー散乱法で測定した平均粒子径が
0.1〜0.35ミクロンの範囲内であり、粒子径が0.
5ミクロン以上の粒子の含有量が15体積%以下で、粒
子径が1.0ミクロン以上の粒子の含有量が3体積%以
下であり、かつ、比表面積が15〜50m2/gの範囲内
であることを特徴とする結晶質の窒化ケイ素微粉末。
1. An average particle diameter measured by a laser scattering method is in the range of 0.1 to 0.35 micron, and the particle diameter is 0.3.
The content of particles of 5 microns or more is 15% by volume or less, the content of particles of particle size of 1.0 micron or more is 3% by volume or less, and the specific surface area is in the range of 15 to 50 m 2 / g. A crystalline silicon nitride fine powder characterized by:
【請求項2】 β相含有量が80重量%以上であること
を特徴とする請求項1記載の窒化ケイ素微粉末。
2. The silicon nitride fine powder according to claim 1, wherein the β phase content is 80% by weight or more.
【請求項3】 α相含有量が80重量%以上であること
を特徴とする請求項1記載の窒化ケイ素微粉末。
3. The silicon nitride fine powder according to claim 1, wherein the α phase content is 80% by weight or more.
【請求項4】 ボールミルにて窒化ケイ素粉末を溶媒中
で湿式粉砕しながら分散させて、窒化ケイ素粉末スラリ
ーとした後、湿式沈降分級にて粗粒を除去して粒度分布
の狭い微粒子を製造することを特徴とする請求項1に記
載の窒化ケイ素微粉末の製造方法。
4. A ball mill is used to wet-disperse silicon nitride powder in a solvent to form a silicon nitride powder slurry, and coarse particles are removed by wet sedimentation classification to produce fine particles having a narrow particle size distribution. The method for producing a silicon nitride fine powder according to claim 1, wherein.
【請求項5】 レーザー散乱法で測定した平均粒径が
0.5ミクロンを超え1.5ミクロン以下であり、その範
囲内の粒子が全体の70体積%以上で、かつ比表面積が
5m2/g以下で、β相含有量が80重量%以上の窒化ケ
イ素粉末を、請求項1に記載の窒化ケイ素微粉末に対し
て0.1〜5重量%混合してなることを特徴とする窒化
ケイ素微粉末。
5. The average particle size measured by a laser scattering method is more than 0.5 micron and 1.5 micron or less, the particles within the range are 70% by volume or more of the whole, and the specific surface area is 5 m 2 / Silicon nitride powder having a β phase content of 80% by weight or more and a g content of 0.1 to 5% by weight with respect to the silicon nitride fine powder according to claim 1. Fine powder.
JP6092998A 1994-04-05 1994-04-05 Silicon nitride fine powder and method for producing the same Expired - Lifetime JP2560252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6092998A JP2560252B2 (en) 1994-04-05 1994-04-05 Silicon nitride fine powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6092998A JP2560252B2 (en) 1994-04-05 1994-04-05 Silicon nitride fine powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0834603A JPH0834603A (en) 1996-02-06
JP2560252B2 true JP2560252B2 (en) 1996-12-04

Family

ID=14070038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6092998A Expired - Lifetime JP2560252B2 (en) 1994-04-05 1994-04-05 Silicon nitride fine powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2560252B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261832A (en) * 2006-03-27 2007-10-11 Sumco Solar Corp Silicon nitride release material powder, method for producing release material and firing method
JP6312431B2 (en) * 2013-12-27 2018-04-18 日本特殊陶業株式会社 Method for manufacturing silicon carbide sintered body
WO2018110560A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
KR102643831B1 (en) * 2018-02-28 2024-03-07 가부시끼가이샤 도꾸야마 Method for producing silicon nitride powder
CN115479872A (en) * 2022-09-28 2022-12-16 西北核技术研究所 Device and method for measuring wet sedimentation removal coefficient of small-particle-size aerosol particles

Also Published As

Publication number Publication date
JPH0834603A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
JP2512061B2 (en) Homogeneous silicon nitride sintered body and method for producing the same
US4624808A (en) Forming a ceramic by flocculation and centrifugal casting
JP3540343B2 (en) Method of manufacturing whisker reinforced ceramic body
JP2560252B2 (en) Silicon nitride fine powder and method for producing the same
Lange et al. Effects of attrition milling and post-sintering heat treatment on fabrication, microstructure and properties of transformation toughened ZrO 2
US4205964A (en) Process for producing ceramic powders and products resulting therefrom
US5641434A (en) Silicon nitride powder
DE60307777T2 (en) Tool insert and associated manufacturing method
US4980322A (en) Sinterable SI3 N4 powders containing sintering additives and a process for their preparation
Rhee et al. Effect of heating rate on the exaggerated grain growth behavior of β-Si3N4
JP2002137913A (en) Silica gel and its manufacturing method
EP0239789A2 (en) Method of manufacturing bodies of boron carbide
Cho et al. Chemical inhomogeneity in commercial alumina powders and its effect on abnormal grain growth during sintering
Srivatsan et al. Microstructure and hardness of copper powder consolidated by plasma pressure compaction
JPH0333046A (en) Pulverized body and its production and production of sintered compact using the same
JP3237965B2 (en) Method for producing aluminum nitride powder
JP2723170B2 (en) Superplastic silicon nitride sintered body
Naito et al. Powder processing issues for high quality advanced ceramics
Maher et al. Green Microstructural Visualization of Dry-Pressed Spray-Dried Alumina (Al 2 O 3)
JPH0987027A (en) Silicon carbide sintered compact excellent in toughness and its production
JPH0848564A (en) Silicon nitride sintered compact and its production
JP2831871B2 (en) Method of preparing slurry for pressure casting
RU1794934C (en) Method of aqueous siliceous slip production
Matović et al. The effect of different homogenization procedures on the properties of silicon nitride powder mixtures and sintered bodies
JP2024001919A (en) Aluminum nitride sintered compact

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term