JP4444362B2 - Combustion synthesis method and combustion synthesis apparatus for silicon alloy - Google Patents

Combustion synthesis method and combustion synthesis apparatus for silicon alloy Download PDF

Info

Publication number
JP4444362B2
JP4444362B2 JP2009060453A JP2009060453A JP4444362B2 JP 4444362 B2 JP4444362 B2 JP 4444362B2 JP 2009060453 A JP2009060453 A JP 2009060453A JP 2009060453 A JP2009060453 A JP 2009060453A JP 4444362 B2 JP4444362 B2 JP 4444362B2
Authority
JP
Japan
Prior art keywords
temperature
silicon
pressure
combustion synthesis
silicon alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009060453A
Other languages
Japanese (ja)
Other versions
JP2009132612A (en
Inventor
敏幸 渡辺
昌史 松下
利隆 櫻井
一也 佐藤
洋子 松下
Original Assignee
株式会社イスマンジェイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イスマンジェイ filed Critical 株式会社イスマンジェイ
Priority to JP2009060453A priority Critical patent/JP4444362B2/en
Publication of JP2009132612A publication Critical patent/JP2009132612A/en
Application granted granted Critical
Publication of JP4444362B2 publication Critical patent/JP4444362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、シリコンを主成分とするシリコン合金の製造方法、及び製造装置に関する。 The present invention relates to a method and apparatus for manufacturing a silicon alloy containing silicon as a main component.

シリコンは、工業用構造材料としては、主に、窒化ケイ素(Si3N4)化合物としてごく一部に使用されている(例えば、非特許文献1)。
しかし、シリコンをシリコン合金として工業用構造材料として活用している例は、まだない。
2005年ファインセラミックス産業動向調査、(財)日本ファインセラミックス刊(平成17年11月)
Silicon is mainly used as a structural material for industrial use mainly as a silicon nitride (Si3N4) compound (for example, Non-Patent Document 1).
However, there are no examples of utilizing silicon as a silicon alloy as an industrial structural material.
2005 Fine Ceramics Industry Trend Survey, published by Japan Fine Ceramics (November 2005)

そして又、窒化ケイ素は、シリコンと窒素とのが4:3の定比率で共有結合構成される化合物であるので、不純物、特に、酸素及び鉄等の金属元素の含有を全く許容できない。このため、原料コスト、合成コスト、製品加工コストが極めて高価となるため、窒化ケイ素は、シリコンを工業用構造材料に活用する有力な手段となっていない。   Moreover, since silicon nitride is a compound in which silicon and nitrogen are covalently bonded at a constant ratio of 4: 3, the inclusion of impurities, particularly metal elements such as oxygen and iron, cannot be allowed at all. For this reason, since the raw material cost, the synthesis cost, and the product processing cost become extremely expensive, silicon nitride is not an effective means for utilizing silicon for industrial structural materials.

本発明者等は上記問題に着目し、シリコン、特に、酸素及び鉄等の金属元素を不純物として含有する低価格金属シリコンを工業用構造材料に有効に活用することを目的に、その低価格金属シリコンを原料として、シリコン合金を合成する手法について鋭意研究を重ねた結果、本発明者等の開発による制御型燃焼合成法を用いて、酸素及び鉄等の金属元素を固溶元素として許容できるシリコン合金の合成に成功し、低価格金属であるシリコンを工業用構造材料として活用できることを見出し、本発明を完成するに至った。   The present inventors pay attention to the above problems, and in order to effectively use silicon, in particular, low-cost metal silicon containing metal elements such as oxygen and iron as impurities for industrial structural materials, the low-cost metal As a result of earnest research on the method of synthesizing silicon alloys using silicon as a raw material, silicon that can tolerate metal elements such as oxygen and iron as solid solution elements using the controlled combustion synthesis method developed by the present inventors The present inventors have succeeded in synthesizing alloys and found that silicon, which is a low-cost metal, can be used as an industrial structural material, and has completed the present invention.

併せて、平均粒径を特定値以下に制御したシリコン合金粉末と、水、及び成形用バインダとで構成したことを特徴とする、湿式コンパウンド法と焼結法との組合わせを用いた新たな製品加工技術の発明により、シリコン合金焼結体の製造に成功した。   In addition, a new combination using a wet compound method and a sintering method, characterized in that it is composed of a silicon alloy powder whose average particle size is controlled to a specific value or less, water, and a molding binder. With the invention of product processing technology, we succeeded in producing sintered silicon alloy.

すなわち、本発明は、真空状態とした装置内に、所定量の窒素を供給し、
金属シリコン、アルミニウム、アルミナ及び/又はシリカを装置内の反応容器中に供給して、着火して燃焼させ、
圧力センサにより装置内の圧力を検出し、窒素供給機能と装置内の反応ガス排出機能とを具えたガス圧力制御弁により装置内の圧力を制御し、
温度検知手段により前記反応容器内温度を検出し、前記温度検知手段により検出された温度に応じて、装置全体を覆う水冷ジャケットによる第1冷却機構と、装置内に設けた冷却用プレートによる第2冷却機構に供給される冷却水量を制御して前記反応容器内温度を制御し、
装置内圧力を1MPa以下、前記反応容器内温度を2000℃以下に制御しながら燃焼合成することを特徴とする、シリコン合金の燃焼合成方法により、前記課題を解決した。
That is, the present invention supplies a predetermined amount of nitrogen into a vacuumed apparatus,
Metal silicon, aluminum, alumina and / or silica are supplied into a reaction vessel in the apparatus, ignited and burned,
The pressure in the device is detected by a pressure sensor, and the pressure in the device is controlled by a gas pressure control valve having a nitrogen supply function and a reactive gas discharge function in the device.
The temperature in the reaction vessel is detected by a temperature detection means, and a second cooling mechanism by a water cooling jacket that covers the entire apparatus according to the temperature detected by the temperature detection means, and a second by a cooling plate provided in the apparatus. Controlling the temperature in the reaction vessel by controlling the amount of cooling water supplied to the cooling mechanism,
The above problem has been solved by a method for combustion synthesis of a silicon alloy, characterized in that combustion synthesis is performed while controlling the internal pressure of the apparatus to 1 MPa or less and the reaction container temperature to 2000 ° C. or less .

又、本発明は、少なくとも1つの着火機構と、装置内の圧力を検出する圧力センサと、外部から窒素を供給する窒素供給機構と、窒素供給機能と装置内の反応ガス排出機能とを具えたガス圧力制御弁による圧力制御機構と、反応容器内温度の検知手段と、装置全体を覆う水冷ジャケットによる第1冷却機構と、装置内に設けた冷却用プレートによる第2冷却機構とを有し、
前記検知手段により検出された温度に応じて前記第1及び/又は第2冷却機構に供給される冷却水量を制御して前記反応容器内温度を制御する温度制御機構をさらに具え、
装置内圧力を1MPa以下、前記反応容器内温度を2000℃以下に制御しながら燃焼合成することを特徴とする、
制御型燃焼合成装置を提供する。
The present invention also includes at least one ignition mechanism, a pressure sensor for detecting the pressure in the apparatus, a nitrogen supply mechanism for supplying nitrogen from the outside, a nitrogen supply function, and a reactive gas discharge function in the apparatus. A pressure control mechanism using a gas pressure control valve, a means for detecting the temperature in the reaction vessel, a first cooling mechanism using a water cooling jacket covering the entire apparatus, and a second cooling mechanism using a cooling plate provided in the apparatus,
A temperature control mechanism for controlling the temperature in the reaction vessel by controlling the amount of cooling water supplied to the first and / or second cooling mechanism according to the temperature detected by the detection means;
Combustion synthesis is carried out while controlling the internal pressure of the apparatus to 1 MPa or less and the reaction container temperature to 2000 ° C. or less.
A controlled combustion synthesizer is provided.

さらには、湿式コンパウンド法とミリ波焼結法の組合わせによる、シリコン合金焼結体の製造方法として、本発明の燃焼合成方法及び燃焼合成装置を用いて製造したシリコン合金粉末を原料として、重量%で、0.1〜10のシリコン、アルミニウムを主成分とする無機バインダーの添加、又は該無機バインダーの無添加にて製造する含水コンパウンド製造工程と、中間製品形状又は完成品形状に成形する成形工程と、乾燥により含有水量を重量%で1以下とする乾燥工程とにより製造したグリーン成形品を、常圧又は常圧以上に保持した窒素雰囲気中において、15GHz以上のミリ波環境におけるミリ波加熱により、1300〜1900℃の温度範囲、及び、30分〜3時間の加熱時間で焼結することを特徴とするシリコン合金焼結体の製造方法について説明する。 Furthermore, due to the combination of a wet compound process and millimeter wave sintering method, as a manufacturing method for a sintered silicon alloy, a powder of silicon alloy produced using the SHS method and combustion synthesis apparatus of the present invention as a starting material, A hydrous compound manufacturing process in which 0.1% to 10% by weight of an inorganic binder mainly composed of silicon and aluminum, or no addition of the inorganic binder, and an intermediate product shape or a finished product shape are formed. Millimeter wave in a millimeter wave environment of 15 GHz or more in a nitrogen atmosphere in which a green molded product produced by a molding process and a drying process in which the water content is 1% or less by drying is maintained at normal pressure or above normal pressure. Sintered silicon alloy, which is sintered by heating in a temperature range of 1300 to 1900 ° C. and a heating time of 30 minutes to 3 hours The manufacturing method will be described.

本発明により、これまで殆ど未活用で、酸化シリコンの形で、硅石鉱山の硅石又は砂漠等の砂、硅砂として死蔵状態で埋蔵されている最多含有地球資源であるシリコンが、汎用工業用構造材料として大量に有効活用できることになった。   According to the present invention, silicon, which is the most abundant earth resource that has been buried in a state of being stored in a dead state in the form of silicon oxide, in the form of silicon oxide, sand in a meteorite mine, desert, etc. As a result, it can be effectively used in large quantities.

以下、本発明の構成について詳述する。本発明が提供するシリコン合金の製造方法は、主成分となるシリコン、アルミニウムの粉体の所定量と、シリコン及び/又はアルミニウムの酸化物の所定量と、鉄、ニッケル、クロム、モリブデン、マンガン、チタン、イットリウム、マグネシウム、カルシウム、ジルコニウム、バナジウム、ボロン、タングステン及びコバルトのうち少なくとも1種の必要に応じた所定量と共に、必要に応じて窒素を任意の圧力で連続供給でき、反応時の圧力及び温度が制御できるとともに、燃焼合成反応終了後に装置内で制御冷却できる構成とした発明者等の開発による制御型燃焼合成装置に装入し、圧力及び反応温度を制御しつつ行う燃焼合成方法である。なお、低価格金属シリコン、リサイクルシリコン及び/又は金属アルニウムを、シリコン及び/又はアルミニム原料として使用することができる。 Hereinafter, the configuration of the present invention will be described in detail. The silicon alloy manufacturing method provided by the present invention includes a predetermined amount of silicon and aluminum powder as a main component, a predetermined amount of silicon and / or aluminum oxide, iron, nickel, chromium, molybdenum, manganese, Nitrogen can be continuously supplied at an arbitrary pressure as required, together with a predetermined amount according to need of at least one of titanium, yttrium, magnesium, calcium, zirconium, vanadium, boron, tungsten and cobalt. This is a combustion synthesis method in which the temperature can be controlled and the pressure and reaction temperature are controlled while being charged into a control-type combustion synthesis apparatus developed by the inventors and the like that is configured to be controlled and cooled in the apparatus after completion of the combustion synthesis reaction. . The low cost metallic silicon, recycled silicon and / or metal Aluminum chloride, can be used as the silicon and / or Aruminimu material.

本発明においては、通常の電気炉還元精錬によって硅石又は硅砂から製造される金属シリコンの内、半導体用途用の酸素含有量の少ない高価格の高グレード金属シリコンではなく、酸素含有量が多く、且つ、鉄等の金属元素等を不純物元素として含有する低価格金属シリコンを、原料として使用することができる。 In the present invention, among metal silicon produced from meteorite or cinnabar by ordinary electric furnace reduction refining, it is not a high-priced high-grade metal silicon with low oxygen content for semiconductor use, but has a high oxygen content, and In addition, low-cost metal silicon containing a metal element such as iron as an impurity element can be used as a raw material.

燃焼合成は、装入原料の発熱反応を応用する合成法であり、合成の為の投入エネルギーが不要な合成手段として期待されているが、燃焼合成反応時に、3000℃以上の高温、数十気圧の高圧となる為、装置としては高温・高圧反応に対応できる機能及び構造が必要となるばかりでなく、合成生成物を常に一定組成で安定して合成する為の燃焼合成反応の制御技術が確立できていないという課題があり、実験室的レベルでの小規模試作は行われているものの、工業的な実用化は行われていない。   Combustion synthesis is a synthesis method that applies the exothermic reaction of the charged raw materials, and is expected as a synthesis means that does not require input energy for synthesis, but at a high temperature of 3000 ° C. or more and several tens of atmospheres during the combustion synthesis reaction Therefore, the equipment must have functions and structures that can handle high-temperature and high-pressure reactions, as well as a combustion synthesis reaction control technology to synthesize synthetic products stably at a constant composition. There is a problem that it has not been made, and although a small-scale trial production at the laboratory level has been performed, industrial practical use has not been performed.

発明者等は、長年に亘り燃焼合成の制御に関する研究を鋭意推進し、窒素雰囲気中でのシリコンの燃焼合成反応を2000℃以下、1MPa以下に制御できるとともに、装置内で、燃焼合成生成物が制御冷却できる構成とした制御型燃焼合成装置を、世界に先駆けて開発することに成功した。   The inventors have eagerly promoted research on the control of combustion synthesis for many years, and can control the combustion synthesis reaction of silicon in a nitrogen atmosphere to 2000 ° C. or less and 1 MPa or less, and the combustion synthesis product is generated in the apparatus. We have succeeded in developing the world's first controlled combustion synthesizer with a controlled cooling configuration.

発明者等は、本発明の制御型燃焼合成装置を用いることにより、低価格金属シリコンを原料として、シリコンと窒素とを主成分とする固溶体型のシリコン合金を開発することに初めて成功した。すなわち、上記のシリコン合金は、本発明の制御型燃焼合成装置により合成されることにより初めて創出されたものである。 Inventors have by Rukoto with controlled combustion synthesis apparatus of the present invention, a low-cost metal silicon as the raw material, the first time succeeded in developing a solid solution of silicon alloy mainly composed of silicon and nitrogen. That is, the above silicon alloy was first created by being synthesized by the controlled combustion synthesis apparatus of the present invention.

制御型燃焼合成装置の機能上及び操作の特徴を図1により説明する。図1は、本発明の制御型燃焼合成装置10の概念的構成図である。
この装置10は、燃焼合成開始前に装置内の空気を排出する真空排気機構17と、燃焼合成開始点となる単数又は複数の遠隔操作可能な原料粉末への少なくとも1つの着火機構12と、燃焼合成時に装置内の圧力を連続的に検出する圧力センサ14と、圧力センサ14からの出力に連動駆動されて、窒素供給機構を構成する管体15を介して外部窒素源(図示せず。)からの窒素を装置内に供給するとともに、装置内の反応ガスを外部に排出して装置内圧力を制御できるガス圧力制御弁16とを具える。
さらに、装置全体を覆う水冷ジャケット18と、反応容器20底部に接して設置される冷却用プレート22を配し、温度検知手段23からの出力により、流量制御バルブ24の開口度合を自動制御して、冷却水量の制御により温度を自動制御するようにしている。なお、水冷ジャケット18の流量制御バルブの図示は省略した。温度検出に基づく冷却用プレート22と水冷ジャケット18の流量制御は、双方で行なっても、一方だけで行なってもよい。
なお、反応時の過剰な冷却の際の補填装置として、装置内に加熱装置を設置することがある(図示せず)。
The functional and operational features of the controlled combustion synthesizer will be described with reference to FIG. FIG. 1 is a conceptual configuration diagram of a controlled combustion synthesis apparatus 10 of the present invention.
This apparatus 10 includes an evacuation mechanism 17 that discharges air in the apparatus before the start of combustion synthesis, at least one ignition mechanism 12 for one or more remotely operable raw material powders that serve as a combustion synthesis start point, and a combustion A pressure sensor 14 that continuously detects the pressure in the apparatus at the time of synthesis, and an external nitrogen source (not shown) that is driven in conjunction with the output from the pressure sensor 14 and through a tube 15 that forms a nitrogen supply mechanism. And a gas pressure control valve 16 capable of controlling the internal pressure of the apparatus by discharging the reaction gas in the apparatus to the outside.
Further, a water cooling jacket 18 covering the entire apparatus and a cooling plate 22 installed in contact with the bottom of the reaction vessel 20 are arranged, and the opening degree of the flow control valve 24 is automatically controlled by the output from the temperature detecting means 23. The temperature is automatically controlled by controlling the amount of cooling water. The flow control valve of the water cooling jacket 18 is not shown. The flow rate control of the cooling plate 22 and the water cooling jacket 18 based on the temperature detection may be performed by both or only one.
In addition, a heating apparatus may be installed in the apparatus as a filling apparatus for excessive cooling during the reaction (not shown).

まず、装置内の空気を真空排気機構17により排出し、装置内を真空状態にする。
次いで、管体15を介して外部窒素源からの窒素を装置内に供給するが、装置内圧力を制御するガス圧力制御弁16を介して、所定量の窒素を装置内に供給しつつ、目標とするシリコン合金(符号26で示す。)が得られる量に秤量装入した金属シリコンとアルミニウムとアルミナ及び/又はシリカ原料に、少なくとも1箇所に設けた着火機構12により着火する。
装置10内の圧力を検出する圧力センサ14と、外部から窒素を供給する管体15と、装置内反応ガスの排出機能を具えたガス圧力制御弁16による圧力制御機構と、反応容器内温度の検知手段23と、装置全体を覆う水冷ジャケット18による第1冷却機構と、装置内に設けた冷却用プレート22による第2冷却機構とを具え、前記温度検知手段23により検出された温度に応じて第1及び第2冷却機構に供給される冷却水量を制御して前記反応容器内温度を制御する温度制御機構によって、装置内圧力と反応容器内温度を所定値に制御しながら制御型燃焼合成を実施する。
First, the air in the apparatus is exhausted by the vacuum exhaust mechanism 17, and the apparatus is evacuated.
Next, nitrogen from an external nitrogen source is supplied into the apparatus through the tube body 15, and a predetermined amount of nitrogen is supplied into the apparatus through the gas pressure control valve 16 that controls the pressure in the apparatus, while the target is supplied. The metal silicon, aluminum, alumina, and / or silica raw material weighed in an amount that yields the silicon alloy to be obtained is ignited by the ignition mechanism 12 provided at least at one location.
A pressure sensor 14 for detecting the pressure in the apparatus 10, a tube 15 for supplying nitrogen from the outside, a pressure control mechanism by a gas pressure control valve 16 having a function of discharging the reaction gas in the apparatus, and the temperature in the reaction vessel a detection unit 23, a first cooling mechanism by a water cooling jacket 18 which covers the entire apparatus, comprising a second cooling mechanism of the cooling plate 22 provided in the apparatus, depending on the temperature detected by the temperature detecting means 23 Controlled combustion synthesis is performed while controlling the pressure in the reaction vessel and the temperature in the reaction vessel to predetermined values by a temperature control mechanism for controlling the temperature in the reaction vessel by controlling the amount of cooling water supplied to the first and second cooling mechanisms. carry out.

前記制御型燃焼合成により合成したシリコン合金について、シリコンを重量%で50に一定値とした場合に、重量%で、窒素10〜45、アルミニウム1〜40、及び酸素1〜40を含有するシリコン合金の生成される領域26を、窒素・アルミニウム・酸素の3元系状態図として図2に示した。窒素・アルミニウム・酸素の3元系状態図の幅の広い領域26はシリコンを主成分とする全率固溶体1相組織であることを、X線回折法(XRD法)の解析から確認している。さらに、鉄、ニッケル、クロム、モリブデン、マンガン、チタン、イットリウム、マグネシウム、カルシウム、ジルコニウム、バナジウム、ボロン、タングステン及びコバルトのうちの少なくとも1種が不可避の不純物として重量%で0.3未満存在しても、全率固溶体領域26は何ら変化しないことを確認している。これにより、前記不可避不純物元素は、シリコン・窒素・アルミニウム・酸素で構成される全率固溶体に固溶することが確証された。 Silicon alloy synthesized by the controlled combustion synthesis, silicon containing nitrogen 10-45, aluminum 1-40, and oxygen 1-40 by weight% when silicon is a constant value of 50% by weight 2 is shown in FIG. 2 as a ternary phase diagram of nitrogen, aluminum, and oxygen. It is confirmed from the analysis of the X-ray diffraction method (XRD method) that the wide region 26 of the ternary phase diagram of nitrogen, aluminum, and oxygen is a full-solid solid solution single-phase structure mainly composed of silicon. . Furthermore, at least one of iron, nickel, chromium, molybdenum, manganese, titanium, yttrium, magnesium, calcium, zirconium, vanadium, boron, tungsten, and cobalt is present as an inevitable impurity in less than 0.3% by weight. However, it has been confirmed that the total solid solution region 26 does not change at all. As a result, it was confirmed that the inevitable impurity element was dissolved in a solid solution consisting of silicon, nitrogen, aluminum, and oxygen.

併せて、重量%でシリコン70、40及び30についても同様に全率固溶体1相組織領域を本発明により生成されるシリコン合金の組成領域として特定化している。さらに、鉄、ニッケル、クロム、モリブデン、マンガン、チタン、イットリウム、マグネシウム、カルシウム、ジルコニウム、バナジウム、ボロン、タングステン及びコバルトのうち少なくとも1種を重量%で、0.3以上、10未満
添加した際に構成される全率固溶体1相組織領域も同様に同定された。
In addition, the same applies to silicon 70,40 and 30 wt%, a complete solid solution single-phase region of tissue has identified as composition region of the silicon alloy produced by the present invention. Furthermore, when at least one of iron, nickel, chromium, molybdenum, manganese, titanium, yttrium, magnesium, calcium, zirconium, vanadium, boron, tungsten and cobalt is added in an amount of 0.3 to 10% by weight. The entire solid solution single phase structure region constituted was also identified.

図2において、成分領域26を外れた成分領域28〜34は、シリコン合金に固溶できない金属酸化化合物、又は複合酸窒化化合物が生成され、シリコン合金と金属酸化化合物、又は複合酸窒化化合物との複合相の生成領域となるので、本発明によって生成されるシリコン合金の対象外となる。 In FIG. 2, the component regions 28 to 34 outside the component region 26 generate a metal oxide compound or composite oxynitride compound that cannot be dissolved in the silicon alloy, and the silicon alloy and the metal oxide compound or composite oxynitride compound Since it becomes a production | generation area | region of a composite phase, it becomes the object of the silicon alloy produced | generated by this invention .

定量的数値で表現すると、重量%で、シリコン<30、シリコン>70、窒素<10、窒素>45、アルミニウム<1、アルミニウム>40、酸素<1、酸素>40では複合化合物がシリコン合金に混在して生成し、シリコン合金を脆弱化するので、該成分領域は、本発明によって生成されるシリコン合金の範囲から除外されるWhen expressed in terms of quantitative values, by weight percent, silicon <30, silicon> 70, nitrogen <10, nitrogen> 45, aluminum <1, aluminum> 40, oxygen <1, and oxygen> 40, the compound compound is mixed in the silicon alloy The component region is excluded from the scope of the silicon alloy produced by the present invention .

鉄、ニッケル、クロム、モリブテン、マンガン、チタン、イットリウム、マグネシウム、カルシウム、ジルコニウム、バナジウム、ボロン、タングステン、及びコバルトは、いずれもシリコン合金に固溶して、シリコン合金の硬さ、剛性、耐熱特性、耐食特性を改善する作用を有する。総量添加量が重量%で0.3未満では添加効果が希薄であり、10以上では複合化合物が生成するので、総量添加量は重量%で0.3以上、10未満とした。   Iron, nickel, chromium, molybdenum, manganese, titanium, yttrium, magnesium, calcium, zirconium, vanadium, boron, tungsten, and cobalt are all dissolved in the silicon alloy, and the hardness, rigidity, and heat resistance characteristics of the silicon alloy , Has the effect of improving the corrosion resistance. When the total amount added is less than 0.3% by weight, the effect of addition is dilute. When the total amount is 10 or more, a composite compound is formed. Therefore, the total amount added is 0.3% or more and less than 10% by weight.

本発明の制御型燃焼合成によって得られる、別の優れた特性について以下に説明する。すなわち、燃焼合成されたシリコン合金を中間製品又は完成製品とする為の初期工程に粉砕工程がある。所定の粒径までに粉砕する時間は短時間が好ましい。燃焼合成の際の温度及び圧力を低く制御して燃焼合成したシリコン合金は所定粒径までへの粉砕時間は短縮される。
具体的には、燃焼合成温度2000℃以下、燃焼合成圧力1MPa以下で合成したシリコン合金の所定粒径への粉砕時間は、燃焼合成温度2000℃以上、燃焼合成圧力1MPa以上で行う従来の燃焼合成により合成したシリコン合金に対して、50%以上短縮された。
Another excellent characteristic obtained by the controlled combustion synthesis of the present invention will be described below. That is, there is a pulverization step as an initial step for making a combustion-synthesized silicon alloy into an intermediate product or a finished product. The time for pulverizing to a predetermined particle size is preferably a short time. The silicon alloy that is combustion-synthesized by controlling the temperature and pressure during combustion synthesis to be low shortens the pulverization time to a predetermined particle size.
More specifically, the conventional combustion synthesis performed at a combustion synthesis temperature of 2000 ° C. or more and a combustion synthesis pressure of 1 MPa or more is performed for the grinding time of a silicon alloy synthesized at a combustion synthesis temperature of 2000 ° C. or less and a combustion synthesis pressure of 1 MPa or less. It was shortened by 50% or more with respect to the silicon alloy synthesized by the above.

併せて、燃焼合成温度2000℃以下、燃焼合成圧力1MPa以下で合成したシリコン合金粉末の最適焼結温度は、従来の燃焼合成により合成したシリコン合金に対して、約100℃低下することも確認された。   In addition, the optimum sintering temperature of the silicon alloy powder synthesized at a combustion synthesis temperature of 2000 ° C. or less and a combustion synthesis pressure of 1 MPa or less is confirmed to be about 100 ° C. lower than that of a silicon alloy synthesized by conventional combustion synthesis. It was.

次に、本発明により生成されるシリコン合金から、中間製品又は完成製品の焼結形状品を製造する製造工程について、湿式コンパウンド法と焼結法との組合わせによる製造法について詳細に説明する。 Next, a manufacturing process for manufacturing a sintered product of an intermediate product or a finished product from the silicon alloy produced according to the present invention will be described in detail by a manufacturing method by a combination of a wet compound method and a sintering method.

表1に詳細工程を記載した。   Table 1 shows detailed steps.

Figure 0004444362
Figure 0004444362

焼結品内部に残存するマイクロポアを極力低減させることが本発明によるシリコン合金を用いた焼結体製造における大きな課題であり、これを解決しうる最善の方法が湿式コンパウンド法と、常圧焼結法・ミリ波焼結法・HIP焼結法のうちの、少なくとも1種の焼結法との組合わせによるシリコン合金焼結法である。ここで、「マイクロポア」とは、顕微鏡レベルで発見される微細な空孔のことである。
なお、本方法は、シリコン合金以外の非導電性紛体の焼結法として活用しても効果を発揮できることを付記しておく。
以下、より詳細に説明する。
Reducing the micropores remaining in the sintered product as much as possible is a major problem in the production of a sintered body using a silicon alloy according to the present invention, and the best methods that can solve this are the wet compound method and the atmospheric pressure sintering. This is a silicon alloy sintering method in combination with at least one of the sintering method, millimeter wave sintering method, and HIP sintering method. Here, the “micropore” is a fine hole discovered at the microscope level.
It should be noted that this method can be effective even when used as a sintering method for non-conductive powders other than silicon alloys.
This will be described in more detail below.

前記制御型燃焼合成装置により合成したシリコン合金を湿式及び/又は乾式粉砕装置により、目標とする粒径1ミクロン以下に粉砕する。ミリ波焼結後の相対密度を向上させる為には、平均粒径で500nm以下までに粉砕するのが好ましい。粉砕の際、又は、この前後に、焼結時の焼結を効果的に行う目的で、焼結助剤としてイットリウム、イッテリビウム、アルミニウム及びジルコニウムを主成分とする酸化物のうち少なくとも1種を重量%で0.1〜10シリコン合金に混合することができる。平均粒径を小とすると焼結助剤の必要添加量は少量となり、平均粒径500nm以下で、焼結助剤の添加なしで、焼結後で高密度の焼結体が確保できる。焼結体の比重は、3.27以上が確保できた。   The silicon alloy synthesized by the controlled combustion synthesizer is pulverized to a target particle size of 1 micron or less by a wet and / or dry pulverizer. In order to improve the relative density after millimeter wave sintering, it is preferable to grind to an average particle size of 500 nm or less. At least one of oxides mainly composed of yttrium, ytterbium, aluminum and zirconium is used as a sintering aid for the purpose of effectively carrying out sintering during or before or after the pulverization. % Can be mixed with 0.1-10 silicon alloy. When the average particle size is small, the required amount of the sintering aid is small, and the average particle size is 500 nm or less, and a high-density sintered body can be secured after sintering without the addition of the sintering aid. The specific gravity of the sintered body was 3.27 or more.

微粉砕粉末に、バインダと水、場合によっては蒸留水又は精製水を添加し、混練機によりコンパウンドを製造する。粉体の粒径が500nm以下の場合には、特に、バインダの添加は不要となる。バインダは無機質が好ましく、シリコン合金の主要構成元素シリコン、アルミニウムを主成分とする無機質バインダが最適である。なお、無機バインダの分散性向上の目的で、pHを管理したアルカリ性水を用いることができる。無機バインダ又はバインダの無添加のコンパウンドで構成したグリーン成形品は、焼結の際に前工程として通常行われる脱バインダ処理が不要となるという大きな利点を有する。   To the finely pulverized powder, a binder and water, optionally distilled water or purified water are added, and a compound is produced by a kneader. When the particle size of the powder is 500 nm or less, it is not necessary to add a binder. The binder is preferably inorganic, and an inorganic binder mainly composed of silicon and main constituent elements of a silicon alloy is optimal. For the purpose of improving the dispersibility of the inorganic binder, alkaline water whose pH is controlled can be used. A green molded article composed of an inorganic binder or a compound free of binders has the great advantage that the binder removal treatment that is normally performed as a pre-process at the time of sintering becomes unnecessary.

含水コンパウンド製造における混練工程及び/又は成形工程を、常圧以下の減圧環境で行うことにより、コンパウンド中に不可避に包含されるマイクロポアを極限値にまで低減することができるので、特に強度が必要とされる用途に使用されるシリコン合金焼結体製造には、本湿式コンパウンド法による成形法は、推奨される必須工程である。   By performing the kneading step and / or the molding step in the production of hydrous compound in a reduced pressure environment below normal pressure, the micropores inevitably included in the compound can be reduced to the limit value, so particularly high strength is required. For the production of a silicon alloy sintered body used for the intended use, the forming method by the wet compound method is a recommended essential process.

次に、包含されるマイクロポアを極力低減して成形した成形体を、乾燥する。乾燥は、自然乾燥が好ましい。   Next, the molded body formed by reducing the included micropores as much as possible is dried. Drying is preferably natural drying.

前記工程により適切に製造したグリーン成形品を、常圧又は常圧以上に保持した窒素雰囲気中において、ミリ波による加熱手段、抵抗加熱手段による通常加熱手段、又はHIP加熱手段のうち少なくとも1種の加熱手段により、所定温度及び所定時間加熱し、シリコン合金の焼結体を製造する。
なお、1300〜1900℃の温度範囲及び30分〜3時間の加熱時間で焼結することを基本とする。
At least one of a heating means using millimeter waves, a normal heating means using resistance heating means, or a HIP heating means in a nitrogen atmosphere in which a green molded article appropriately manufactured by the above process is maintained at normal pressure or above normal pressure. A silicon alloy sintered body is manufactured by heating with a heating means at a predetermined temperature and for a predetermined time.
In addition, sintering is basically performed in a temperature range of 1300 to 1900 ° C. and a heating time of 30 minutes to 3 hours.

ミリ波による加熱では、加熱はグリーン成形品の中心から加熱が開始される。その際、内在するマイクロポアは成形品の表層部に浮上するので、ミリ波焼結法は、マイクロポアを極限値にまで低下させる最適な焼結処理である。   In the heating by the millimeter wave, the heating is started from the center of the green molded product. At that time, since the existing micropores float on the surface layer portion of the molded product, the millimeter wave sintering method is an optimum sintering process for reducing the micropores to the limit value.

ミリ波による加熱では、被加熱材の芯から加熱が進むので、被加熱材からの熱の放散を極力防止する必要がある。その為に被加熱材の外周に保温材を配置する必要がある。
この作業性の煩わしさを解消する目的で、ミリ波加熱方式と汎用加熱方式とを組合わせて行うハイブリット焼結法が推奨される。
In the heating by the millimeter wave, since the heating proceeds from the core of the material to be heated, it is necessary to prevent the dissipation of heat from the material to be heated as much as possible. Therefore, it is necessary to arrange a heat insulating material on the outer periphery of the material to be heated.
In order to eliminate this troublesome workability, a hybrid sintering method in which a millimeter wave heating method and a general-purpose heating method are combined is recommended.

反応時の温度は2000℃以下、同圧力は1MPa以下に制御して本発明の燃焼合成法により合成したシリコン合金の化学成分とそれぞれの有する構成相を纏めて表2に示した。   Table 2 summarizes the chemical components of the silicon alloys synthesized by the combustion synthesis method of the present invention while controlling the temperature during the reaction to 2000 ° C. or less and the pressure to 1 MPa or less, and the constituent phases of each.

Figure 0004444362
Figure 0004444362

発明材1〜38に本発明の実施例を示した。XRD測定法の結果、全ての発明材が単一な1相構造を有していることが確認された。実施例1〜28は、シリコン、窒素、アルニウム及び酸素の4元素で構成された固溶体であることを、電子線マイクロアナライザー法(EPMA法)による元素イメージ像から確認しており、これらの実施例は本発明により生成されるシリコン合金の基本成分組成の代表例である。実施例29〜38は、シリコン合金の基本組成に、合金元素を添加した実施例であり、いずれの合金元素も基本組成の生地に固溶した固溶体を構成している。 Examples of the present invention are shown in the inventive materials 1 to 38. As a result of the XRD measurement method, it was confirmed that all the inventive materials have a single one-phase structure. Examples 1 to 28 are silicon, nitrogen, that is a solid solution composed of four elements Aluminum bromide and oxygen has confirmed from elemental image image by electron ray microanalyzer method (EPMA method) of The examples are representative examples of the basic component composition of the silicon alloy produced by the present invention. Examples 29 to 38 are examples in which an alloy element was added to the basic composition of a silicon alloy, and each alloy element constituted a solid solution in which the base composition had a solid solution.

なお、シリコン合金の1相構造を確保する目的で、シリコンは重量%で30〜70、窒素は10〜45、アルミニウムは1〜40、及び酸素は1〜40を本発明によって生成されるシリコン合金の基本組成として定めた。 For the purpose of securing a one-phase structure of the silicon alloy, silicon is produced by the present invention by 30 to 70% by weight, 10 to 45 for nitrogen, 1 to 40 for aluminum, and 1 to 40 for oxygen. Was determined as the basic composition.

基本組成のシリコン合金の特性向上の目的で添加する副次的合金元素として、鉄、ニッケル、クロム、モリブデン、マンガン、チタン、イットリウム、マグネシウム、カルシウム、ジルコニウム、バナジウム、ボロン、タングステン、及びコバルトのうちの、少なくとも1種を、重量%で0.3以上、10未満を添加することがある。
なお、添加量が0.3未満ではその効果が希薄になり、10以上では多層構造となる。
Secondary alloying elements added for the purpose of improving the characteristics of silicon alloys with basic compositions include iron, nickel, chromium, molybdenum, manganese, titanium, yttrium, magnesium, calcium, zirconium, vanadium, boron, tungsten, and cobalt. Of these, at least one of them may be added in an amount of 0.3% or more and less than 10% by weight.
When the amount added is less than 0.3, the effect is dilute, and when it is 10 or more, a multilayer structure is obtained.

発明材6に示す化学成分を有するシリコン合金の特性に及ぼす、燃焼合成時の温度及び圧力の影響についての実施例を以下に説明する。   Examples of the influence of temperature and pressure during combustion synthesis on the characteristics of the silicon alloy having the chemical component shown in Invention Material 6 will be described below.

表3に粒径500nmに粉砕するに要する時間比と燃焼合成条件との関係を示す。温度・圧力ともに低い方が被粉砕特性は良好であるが、燃焼合成時間が長くなるので、1800℃、0.8MPaが好ましい。   Table 3 shows the relationship between the time ratio required for grinding to a particle size of 500 nm and the combustion synthesis conditions. The lower the temperature and pressure, the better the properties to be crushed, but the longer the combustion synthesis time, 1800 ° C. and 0.8 MPa are preferred.

Figure 0004444362
Figure 0004444362

表4に燒結後の密度、粒成長の観点から決定した最適焼結温度と燃焼合成条件との関係を示す。温度・圧力ともに低くなるに伴い、最適焼結温度は低下するが、燃焼合成時間が長くなるので、1800℃、0.8MPaが好ましい。   Table 4 shows the relationship between the optimum sintering temperature and the combustion synthesis conditions determined from the viewpoints of density after sintering and grain growth. As both the temperature and pressure are lowered, the optimum sintering temperature is lowered, but the combustion synthesis time is lengthened, so 1800 ° C. and 0.8 MPa are preferred.

Figure 0004444362
Figure 0004444362

表5に、重量%で、シリコン30〜70、窒素10〜45、アルミニウム1〜40、及び酸素1〜40の成分域における、主要成分の変化に伴う主要特性値の変化を示す。シリコン・窒素・アルミニウム・酸素の基本元素系のシリコン合金における特性値の内、ヤング率がシリコン量の変化に伴い大きく変化する。ヤング率とは、機械部品の設計基準である疲労強度に影響を及ぼす重要な特性値である。転動的に接触する相手材料のヤング率との相関で最適なヤング率を選ぶことができるので、本発明によるシリコン合金は機械設計上極めて有利である。
ヤング率は材料固有の物性値とされていたが、本発明によるシリコン合金では特定範囲で、ヤング率を任意に変化できることは、ヤング率に関する従来の学術的知見を覆す発見でもある。
Table 5 shows changes in main characteristic values in accordance with changes in main components in the component regions of silicon 30 to 70, nitrogen 10 to 45, aluminum 1 to 40, and oxygen 1 to 40 by weight% . Of the characteristic values of silicon alloys of basic elements such as silicon, nitrogen, aluminum, and oxygen, the Young's modulus varies greatly with changes in the amount of silicon. The Young's modulus is an important characteristic value that affects the fatigue strength, which is a design standard for machine parts. Since the optimum Young's modulus can be selected in correlation with the Young's modulus of the counterpart material that is in rolling contact, the silicon alloy according to the present invention is extremely advantageous in terms of mechanical design.
The Young's modulus was considered to be a physical property value unique to the material. However, the fact that the Young's modulus can be arbitrarily changed within a specific range in the silicon alloy according to the present invention is also a discovery that overturns the conventional academic knowledge regarding Young's modulus.

合金元素として粒界エネルギーを添加する硼素を添加すると破壊靭性の向上が認められ、又、非酸化性の金属元素を添加すると耐食性と耐熱性が向上する。   When boron, which adds grain boundary energy, is added as an alloy element, an improvement in fracture toughness is observed, and when a non-oxidizing metal element is added, corrosion resistance and heat resistance are improved.

Figure 0004444362
Figure 0004444362

表6に本発明によるシリコン合金の焼結特性について纏めて示す。本発明によるシリコン合金の良好な粉砕性により500nm以下の超微粉末への加工が低コストで実施できる。この特徴によって、従来の技術では認識され得ない数々の新規な特性が得られている。 Table 6 summarizes the sintering characteristics of the silicon alloy according to the present invention. Due to the good grindability of the silicon alloy according to the present invention, processing into ultrafine powder of 500 nm or less can be carried out at low cost. This feature provides a number of new characteristics that cannot be recognized by the prior art.

Figure 0004444362
Figure 0004444362

本シリコン合金の微粉末からコンパウンド製造を介して素形材を製造する工程が推奨工程である。乾燥粉末から、造粒工程を介しての工程よりも高い生産性が確保できるからである。素形材の主要工程を表1に示してある。   The recommended process is to manufacture the base material from the silicon alloy fine powder through compound manufacturing. It is because productivity higher than the process through a granulation process can be ensured from dry powder. Table 1 shows the main steps of the raw material.

粒径500nm以下では、コンパウンド製造の際にバインダの添加は不要である。そうすると、脱バインダ工程が省略できるので、生産性の向上と良好な品質が確保できる。安定製造確保の目的で、重量%で、0.1〜10のシリコン、アルミニウムを主成分とする無機バインダを添加することができる。   When the particle size is 500 nm or less, it is not necessary to add a binder during the production of the compound. As a result, the binder removal step can be omitted, so that productivity can be improved and good quality can be ensured. For the purpose of ensuring stable production, an inorganic binder having 0.1 to 10 silicon and aluminum as main components can be added by weight%.

粒径500nm以下では焼結助剤の添加は不要であるが、品質の安定確保を目的にイットリウム、イッテリビウム、アルミニウム及びジルコニウムを主成分とする酸化物のうち少なくとも1種を焼結助剤として重量%で、0.1〜10混合添加し、最小限の焼結助剤を添加することができる。   When the particle size is 500 nm or less, it is not necessary to add a sintering aid, but for the purpose of ensuring stable quality, at least one oxide of yttrium, ytterbium, aluminum and zirconium as a main component is used as a sintering aid. %, 0.1 to 10 can be added and a minimum amount of sintering aid can be added.

焼結処理A;ミリ波加熱窒素雰囲気常圧焼結1700℃X1h,焼結処理B;通常加熱窒素雰囲気常圧焼結1700℃X3h,焼結処理C;CIP+窒素雰囲気200MPa HIP1700℃X1hの3種の焼結処理をシリコン合金の燒結処理として選定している。特に、常圧焼結処理、焼結処理Bで高度な焼結素形材が形成できるのは、低価格製造の視点から工業技術上極めて価値があるといえる。   Sintering treatment A: Millimeter-wave heated nitrogen atmosphere atmospheric pressure sintering 1700 ° C. X 1 h, sintering treatment B: Normal heating nitrogen atmosphere atmospheric pressure sintering 1700 ° C. X 3 h, sintering treatment C; CIP + nitrogen atmosphere 200 MPa HIP 1700 ° C. X 1 h Is selected as a sintering process for silicon alloys. In particular, it can be said that it is extremely valuable in terms of industrial technology from the viewpoint of low-cost manufacturing that an advanced sintered body can be formed by atmospheric pressure sintering treatment and sintering treatment B.

粒径500nm以下のシリコン合金は、いずれの焼結処理においても、比重3.25以上が確保できている。特に、シリコン合金の常圧焼結Bで得られる比重は、現存する非酸化物系セラミックス窒化ケイ素のHIP燒結Cで報告されている比重を凌駕していることは注目に値する。   A silicon alloy having a particle size of 500 nm or less can secure a specific gravity of 3.25 or more in any sintering process. In particular, it is noteworthy that the specific gravity obtained by atmospheric pressure sintering B of silicon alloy exceeds the specific gravity reported in HIP sintering C of existing non-oxide ceramic silicon nitride.

粒径500nm以下としたシリコン合金の焼結材には、いずれの焼結処理においても、顕微鏡レベルの広域観測結果で、マイクロポアは認められない。金属相及びセラミックス異相も認められない。   In the sintered material of the silicon alloy having a particle size of 500 nm or less, micropores are not recognized in any of the sintering treatments as a result of wide-area observation at the microscope level. Neither metal phase nor ceramic phase is observed.

いずれの焼結処理においても、良好な焼結特性が得られている理由は、粒径500nm以下のシリコン合金微粉末が焼結特性に優れているためと結論することができる。   It can be concluded that the reason why good sintering characteristics are obtained in any of the sintering treatments is that the silicon alloy fine powder having a particle size of 500 nm or less is excellent in sintering characteristics.

本発明の目的は、地殻に最も大量に存在するシリコンを工業用途に、汎用素材として活用することにある。工業用途に現在活用されているシリコン系のセラミックスである窒化ケイ素、及びサイアロンと本発明により得られるシリコン合金との特性値及び想定される製造価格について比較して纏めて表7に示した。
なお、サイアロンは窒化ケイ素と同じ価格の原料を用い焼結法として高価な反応焼結法を用いるため、窒化ケイ素の素形材製造価格対比で高価であるが、参考として表示している。
An object of the present invention is to utilize silicon present in the largest amount in the earth's crust as a general-purpose material for industrial use. Table 7 summarizes the characteristic values of silicon nitride, which is a silicon-based ceramic currently used for industrial applications, and sialon and the silicon alloy obtained by the present invention, and the expected manufacturing price.
Sialon uses a raw material of the same price as silicon nitride and uses an expensive reactive sintering method as a sintering method, and is expensive in comparison with the silicon nitride shape material manufacturing price, but is shown for reference.

特性値において最も特徴的な相違は、焼結後に残存するマイクロポアにある。本発明により得られるシリコン合金では残存するマイクロポアはゼロであるが、窒化ケイ素では不可避にマイクロポアが残存している。これに伴い、本発明材の比重は窒化ケイ素のそれよりも大となっている。 The most characteristic difference in characteristic values is in the micropores remaining after sintering. In the silicon alloy obtained by the present invention, the remaining micropores are zero, but in silicon nitride, micropores are unavoidably left. Accordingly, the specific gravity of the material of the present invention is larger than that of silicon nitride.

焼結素形材の製造工程としてベアリングボール製造を例にとり、特殊鋼製のベアリングボールの製造価格を基準値1に設定して、本発明によるシリコン合金、窒化ケイ素及び、サイアロン製ベアリングボールのそれぞれの製造価格比を表示した。 Taking the production of a bearing ball as an example of the production process of the sintered body, the production price of the bearing ball made of special steel is set to the reference value 1, and each of the silicon alloy , silicon nitride and sialon bearing balls according to the present invention is set. The production price ratio was displayed.

Figure 0004444362
Figure 0004444362

先ず原料となる粉末の価格の特徴は、
(1)主原料となる金属シリコンは低価格材であるが、窒化ケイ素用の金属シリコンは高グレード材で高価である。
(2)燃焼合成の際、投入するエネルギーはゼロである。
(3)本発明により得られるシリコン合金は粉砕性が良好な為粉砕コストが低廉である。現用の窒化ケイ素は粉砕性が劣悪なため粉砕コストが大である。
(4)このような製造プロセスの相違から、焼結素形材の原料となる500nmシリコン合金の粉末と窒化ケイ素粉末との間に大きな価格差が生じる。
(5)この結果、原料の価格において、本発明によるシリコン合金は窒化ケイ素の約1/10以下となる。
First, the price characteristics of the raw material powder
(1) Metal silicon as a main raw material is a low-priced material, but metal silicon for silicon nitride is a high-grade material and expensive.
(2) The energy input during combustion synthesis is zero.
(3) Since the silicon alloy obtained by the present invention has good pulverization properties, the pulverization cost is low. Current silicon nitride has a high pulverization cost because of its poor pulverizability.
(4) Due to the difference in the manufacturing process, a large price difference occurs between the 500 nm silicon alloy powder and the silicon nitride powder, which are the raw materials for the sintered body.
(5) As a result, the silicon alloy according to the present invention is about 1/10 or less of silicon nitride at the raw material price.

素形材としてのベアリングボール製造においても、本発明によるシリコン合金の価格上の優位性が発揮される。
(1)500nmの微粉末のコンパウンドから高速成形装置を用いて、効率良くベアリングボールのグリーン素球が製造できる。高速成形装置は丸薬の製造装置を本発明によるシリコン合金用に改善したもので、1分間当たりの製造個数は、3000個である。窒化ケイ素製素球製造では数十個、軸受鋼における素球製造では700個である。
(2)本発明によるシリコン合金のグリーン素球の焼結は、通常加熱法による窒素常圧焼結法を用いることができるので、窒化ケイ素のHIP焼結法に対して極めて低価格となる。
(3)この結果、(1)及び(2)の工程により製造する本発明によるシリコン合金製のベアリングボール製造価格は特殊鋼製のベアリングボールの製造価格の5倍以下となる。
Also in the production of bearing balls as the base material, the price advantage of the silicon alloy according to the present invention is exhibited.
(1) A green ball of bearing balls can be efficiently produced from a compound of fine powder of 500 nm using a high-speed molding apparatus. The high-speed molding apparatus is an improved pill manufacturing apparatus for the silicon alloy according to the present invention , and the number of manufactured per minute is 3000. Dozens of silicon nitride balls are manufactured, and 700 balls are manufactured in bearing steel.
(2) Sintering of green silicon balls of a silicon alloy according to the present invention can be performed at a very low cost compared with the HIP sintering method of silicon nitride because a nitrogen normal pressure sintering method by a normal heating method can be used.
(3) As a result, the manufacturing price of the bearing ball made of silicon alloy according to the present invention manufactured by the processes of (1) and (2) is not more than 5 times the manufacturing price of the bearing ball made of special steel.

本発明によるシリコン合金の比重は特殊鋼の比重対比で40%である為、比重換算すると製造価格は約2倍となり、本発明によるシリコン合金製のベアリングボールが特殊鋼製のベアリングボールに代替して大量生産・大量需要される可能性は極めて高い。 Since the specific gravity of the silicon alloy according to the present invention is 40% of the specific gravity of the special steel, the production price is approximately doubled when the specific gravity is converted, and the bearing ball made of the silicon alloy according to the present invention is replaced with the special steel bearing ball. The possibility of mass production and mass demand is extremely high.

本発明により生成されるシリコン合金は、特殊鋼と同等の製造価格で製造できるので、特殊鋼に代替して、特に工業用の汎用素材として大量に活用される可能性がある。将来、特殊鋼の年間生産量2000万トンの10%に相当する200万トンの年間需要が見込まれる。
Since the silicon alloy produced by the present invention can be manufactured at a production price equivalent to that of special steel, it can be used in large quantities as a general-purpose material for industrial use in place of special steel. In the future, annual demand of 2 million tons, equivalent to 10% of the annual production of 20 million tons of special steel, is expected.

本発明の制御型燃焼合成装置の概念的構成図。The conceptual block diagram of the control-type combustion synthesis apparatus of this invention. シリコン50重量%の場合における、シリコン合金の生成領域を示す、窒素・アルミニウム・酸素の3元系状態図。FIG. 3 is a ternary phase diagram of nitrogen, aluminum, and oxygen showing a silicon alloy generation region in the case of 50 wt% silicon.

10:制御型燃焼合成装置
12:着火機構
14:圧力センサ
15:管体(窒素供給機構)
16:ガス圧力制御弁(圧力制御機構)
18:水冷ジャケット(第1冷却手段)
20:反応容器
22:冷却用プレート(第2冷却手段)
23:温度検知手段(温度制御機構)
24:流量制御バルブ(温度制御機構)




10: Controlled combustion synthesizer 12: Ignition mechanism 14: Pressure sensor 15: Tube (nitrogen supply mechanism)
16: Gas pressure control valve (pressure control mechanism)
18: Water cooling jacket (first cooling means)
20: Reaction vessel 22: Cooling plate (second cooling means)
23: Temperature detection means (temperature control mechanism)
24: Flow control valve (temperature control mechanism)




Claims (2)

真空状態とした装置内に、所定量の窒素を供給し、A predetermined amount of nitrogen is supplied into the apparatus in a vacuum state,
金属シリコン、アルミニウム、アルミナ及び/又はシリカを装置内の反応容器中に供給して、着火して燃焼させ、Metal silicon, aluminum, alumina and / or silica are supplied into a reaction vessel in the apparatus, ignited and burned,
圧力センサにより装置内の圧力を検出し、窒素供給機能と装置内の反応ガス排出機能とを具えたガス圧力制御弁により装置内の圧力を制御し、The pressure in the device is detected by a pressure sensor, and the pressure in the device is controlled by a gas pressure control valve having a nitrogen supply function and a reactive gas discharge function in the device.
温度検知手段により前記反応容器内温度を検出し、前記温度検知手段により検出された温度に応じて、装置全体を覆う水冷ジャケットによる第1冷却機構と、装置内に設けた冷却用プレートによる第2冷却機構に供給される冷却水量を制御して前記反応容器内温度を制御し、The temperature in the reaction vessel is detected by a temperature detection means, and a second cooling mechanism by a water cooling jacket that covers the entire apparatus according to the temperature detected by the temperature detection means, and a second by a cooling plate provided in the apparatus. Controlling the temperature in the reaction vessel by controlling the amount of cooling water supplied to the cooling mechanism,
装置内圧力を1MPa以下、前記反応容器内温度を2000℃以下に制御しながら燃焼合成することを特徴とする、Combustion synthesis is carried out while controlling the internal pressure of the apparatus to 1 MPa or less and the reaction container temperature to 2000 ° C. or less.
シリコン合金の燃焼合成方法。Combustion synthesis method of silicon alloy.
少なくとも1つの着火機構と、装置内の圧力を検出する圧力センサと、外部から窒素を供給する窒素供給機構と、窒素供給機能と装置内の反応ガス排出機能とを具えたガス圧力制御弁による圧力制御機構と、反応容器内温度の検知手段と、装置全体を覆う水冷ジャケットによる第1冷却機構と、装置内に設けた冷却用プレートによる第2冷却機構とを有し、
前記検知手段により検出された温度に応じて前記第1及び/又は第2冷却機構に供給される冷却水量を制御して前記反応容器内温度を制御する温度制御機構をさらに具え、
装置内圧力を1MPa以下、前記反応容器内温度を2000℃以下に制御しながら燃焼合成することを特徴とする、
シリコン合金の制御型燃焼合成装置。
Pressure by a gas pressure control valve comprising at least one ignition mechanism, a pressure sensor for detecting the pressure in the apparatus, a nitrogen supply mechanism for supplying nitrogen from the outside, a nitrogen supply function and a reaction gas discharge function in the apparatus A control mechanism, a means for detecting the temperature in the reaction vessel, a first cooling mechanism by a water cooling jacket covering the entire apparatus, and a second cooling mechanism by a cooling plate provided in the apparatus,
A temperature control mechanism for controlling the temperature in the reaction vessel by controlling the amount of cooling water supplied to the first and / or second cooling mechanism according to the temperature detected by the detection means;
Combustion synthesis is carried out while controlling the internal pressure of the apparatus to 1 MPa or less and the reaction container temperature to 2000 ° C. or less.
Silicon alloy controlled combustion synthesizer.
JP2009060453A 2009-03-13 2009-03-13 Combustion synthesis method and combustion synthesis apparatus for silicon alloy Expired - Fee Related JP4444362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060453A JP4444362B2 (en) 2009-03-13 2009-03-13 Combustion synthesis method and combustion synthesis apparatus for silicon alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060453A JP4444362B2 (en) 2009-03-13 2009-03-13 Combustion synthesis method and combustion synthesis apparatus for silicon alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006354835A Division JP4339352B2 (en) 2006-12-28 2006-12-28 Method for producing sintered silicon alloy

Publications (2)

Publication Number Publication Date
JP2009132612A JP2009132612A (en) 2009-06-18
JP4444362B2 true JP4444362B2 (en) 2010-03-31

Family

ID=40864883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060453A Expired - Fee Related JP4444362B2 (en) 2009-03-13 2009-03-13 Combustion synthesis method and combustion synthesis apparatus for silicon alloy

Country Status (1)

Country Link
JP (1) JP4444362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001797A (en) * 2011-06-16 2013-01-07 Sumikin Bussan Co Ltd Series of silicon alloy fluorescent material, method for producing the same, and luminescent device using the series, and light transmission material thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049677A1 (en) * 2012-09-25 2014-04-03 住金物産株式会社 Silicon alloy phosphor series, production method therefor, light-emitting device using silicon alloy phosphor series, and translucent material for device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001797A (en) * 2011-06-16 2013-01-07 Sumikin Bussan Co Ltd Series of silicon alloy fluorescent material, method for producing the same, and luminescent device using the series, and light transmission material thereof

Also Published As

Publication number Publication date
JP2009132612A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP4339352B2 (en) Method for producing sintered silicon alloy
Gu et al. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
Ryu et al. Preparation of zirconium-based ceramic and composite fine-grained powders
Dash et al. Preparation of multi-phase composite of tungsten carbide, tungsten boride and carbon by arc plasma melting: characterization of melt-cast product
CN104894641B (en) It is a kind of high fine and close(LaxCa1‑x)B6Polycrystalline cathode material and preparation method thereof
Niu et al. Salt-assisted combustion synthesis of β-SiAlON fine powders
CN101863663A (en) Combustion method for preparing submicron grade titanium carbide polycrystal powder
Istomina et al. Preparation of Ti 3 SiC 2 through reduction of titanium dioxide with silicon carbide
CN107285329B (en) Tungsten diboride hard material and preparation method and application thereof
JP4444362B2 (en) Combustion synthesis method and combustion synthesis apparatus for silicon alloy
CN104446496B (en) Preparation method of AlON powder and transparent ceramics prepared from AlON powder
KR102084452B1 (en) MANUFACTURING METHOD OF Mo-Si-B ALLOY
KR101352371B1 (en) Fabrication method of low oxygen titanium powders by Self-propagating High-temperature synthesis
Solodkyi et al. B6O ceramic by in-situ reactive spark plasma sintering of a B2O3 and B powder mixture
JP2008031016A (en) Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method
Ko et al. Rapid consolidation of nanocrystalline NbSi 2-Si 3 N 4 composites by pulsed current activated combustion synthesis
Shon et al. Rapid consolidation of nanostructured TiCu compound by high frequency induction heating and its mechanical properties
TWI773218B (en) Cr-Si-based sintered body, sputtering target, and method for producing thin film
Razavi et al. Syntheses of Fe-TiC nanocomposite from ilmenite concentrate via microwave heating
JP4060803B2 (en) Method for producing zirconium boride powder
Kero Ti3SiC2 synthesis by powder metallurgical methods
Yang et al. Preparation of single-phase magnesium silicon nitride powder by a two-step process
JP2007046119A (en) METHOD FOR PRODUCING Mg2Ni ALLOY, AND ITS UTILIZATION
Liu et al. Combustion synthesis of TiCxN1− x–TiB2 ceramic composites in a high-gravity field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees