JP2015081205A - Silicon nitride filler, resin composite, insulating substrate, and semiconductor sealant - Google Patents

Silicon nitride filler, resin composite, insulating substrate, and semiconductor sealant Download PDF

Info

Publication number
JP2015081205A
JP2015081205A JP2013218602A JP2013218602A JP2015081205A JP 2015081205 A JP2015081205 A JP 2015081205A JP 2013218602 A JP2013218602 A JP 2013218602A JP 2013218602 A JP2013218602 A JP 2013218602A JP 2015081205 A JP2015081205 A JP 2015081205A
Authority
JP
Japan
Prior art keywords
silicon nitride
filler
particles
nitride filler
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013218602A
Other languages
Japanese (ja)
Other versions
JP6245602B2 (en
Inventor
平尾 喜代司
Kiyoshi Hirao
喜代司 平尾
裕司 堀田
Yuji Hotta
裕司 堀田
秀樹 日向
Hideki Hiuga
秀樹 日向
彰紘 嶋村
Akihiro Shimamura
彰紘 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013218602A priority Critical patent/JP6245602B2/en
Publication of JP2015081205A publication Critical patent/JP2015081205A/en
Application granted granted Critical
Publication of JP6245602B2 publication Critical patent/JP6245602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride filler that exhibits high heat radiation performance when added to rubber, resin or the like constituting an insulation member to make a resin composite.SOLUTION: A silicon nitride filler comprises 50 vol.% or more of coagulation particles with a particle size of 5 μm or more and 200 μm or less, the coagulation particles containing silicon nitride particles of a columnar shape.

Description

本発明は、窒化ケイ素フィラー、樹脂複合物、絶縁基板、半導体封止材に関する。   The present invention relates to a silicon nitride filler, a resin composite, an insulating substrate, and a semiconductor sealing material.

近年、電子機器、半導体デバイスの高集積化、高電力化に伴い半導体素子から発生する熱の放熱技術が極めて重要になってきている。このため、電子機器や、半導体デバイスで絶縁部材として用いられる樹脂製やゴム製の基板、シート、スペーサー、封止樹脂などにおいて放熱性の向上が求められるようになってきている。   2. Description of the Related Art In recent years, with the high integration and high power of electronic devices and semiconductor devices, a technology for radiating heat generated from semiconductor elements has become extremely important. For this reason, improvement in heat dissipation has been demanded for resin or rubber substrates, sheets, spacers, sealing resins and the like used as insulating members in electronic devices and semiconductor devices.

従来、これらの絶縁部材の放熱性を高める方法として、絶縁部材を構成する樹脂やゴムにアルミナや窒化アルミニウムなどのセラミックフィラーを添加する方法が用いられていた。しかし、アルミナの熱伝導率は40W/(m・K)程度であることから、熱伝導率を十分に向上させるためには添加量を多くする必要があり、絶縁部材の成形性、強度に問題があった。一方、窒化アルミニウムの理論熱伝導率は320W/(m・K)と高いものの、窒化アルミニウムは耐水性に劣るという問題があった。このため、樹脂等に添加する前に球状窒化アルミニウムの表面酸化処理を行う方法や(特許文献1)、窒化アルミニウム焼結体粉末の表面にベーマイト皮膜を形成させ、さらにシランカップリング剤で被覆する方法(特許文献2)等が提案されている。しかし、工程数が増加するため、フィラーのコストが高くなるという問題があった。   Conventionally, as a method of improving the heat dissipation of these insulating members, a method of adding a ceramic filler such as alumina or aluminum nitride to a resin or rubber constituting the insulating member has been used. However, since the thermal conductivity of alumina is about 40 W / (m · K), it is necessary to increase the amount of addition in order to sufficiently improve the thermal conductivity, and there is a problem in the formability and strength of the insulating member. was there. On the other hand, the theoretical thermal conductivity of aluminum nitride is as high as 320 W / (m · K), but aluminum nitride has a problem of poor water resistance. For this reason, a method of performing surface oxidation treatment of spherical aluminum nitride before adding it to a resin or the like (Patent Document 1), a boehmite film is formed on the surface of an aluminum nitride sintered body powder, and further coated with a silane coupling agent A method (Patent Document 2) and the like have been proposed. However, since the number of steps increases, there is a problem that the cost of the filler is increased.

また、純粋なβ相の窒化ケイ素は理論熱伝導率が200W/(m・K)以上であると予測されており(非特許文献1)、窒化アルミニウムに比較して高い耐水性を有しているため、絶縁部材を構成する樹脂等に添加するセラミックフィラーとして期待されている。   In addition, pure β-phase silicon nitride is predicted to have a theoretical thermal conductivity of 200 W / (m · K) or more (Non-Patent Document 1), and has higher water resistance than aluminum nitride. Therefore, it is expected as a ceramic filler to be added to the resin or the like constituting the insulating member.

β相の窒化ケイ素は、理論熱伝導率は高いものの結晶中に欠陥を含む場合、該欠陥が熱伝導を担うフォノンの散乱要因となり熱伝導性を阻害するため、実際の熱伝導率は低くなる。このため、欠陥を低減させる製造方法が検討、提案されている(例えば、特許文献3、非特許文献2)。   β-phase silicon nitride has high theoretical thermal conductivity, but if it contains defects in the crystal, the defects become phonon scattering factors responsible for heat conduction and inhibit thermal conductivity, so the actual thermal conductivity is low. . For this reason, the manufacturing method which reduces a defect is examined and proposed (for example, patent document 3, nonpatent literature 2).

しかしながら、これまで提案された製造方法により得られる窒化ケイ素は、短軸径が1μm程度、アスペクト比が3〜8程度の針状に近い形状であった。このため、絶縁部材を構成する樹脂等への分散性が低く、放熱性能を十分に高めることができていなかった。   However, the silicon nitride obtained by the production methods proposed so far has a needle-like shape with a minor axis diameter of about 1 μm and an aspect ratio of about 3 to 8. For this reason, the dispersibility to resin etc. which comprise an insulating member is low, and the heat dissipation performance was not able to be fully improved.

特開2005−162555号公報JP 2005-162555 A 特開2002−053736号公報JP 2002-053736 A 特開2004−352539号公報JP 2004-352539 A

Physical Review B、vol.65、134110−1〜134110−11(2002)Physical Review B, vol. 65, 134110-1 to 134110-11 (2002) Journal of the Ceramic Society of Japan、101[9]、1078−1080(1993)Journal of the Ceramic Society of Japan, 101 [9], 1078-1080 (1993)

本発明は、上記従来技術の問題点に鑑みてなされたものであって、絶縁部材を構成する樹脂等へ添加し、樹脂複合物とした場合の放熱性能が高い窒化ケイ素フィラーの提供を目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a silicon nitride filler having high heat dissipation performance when added to a resin or the like constituting an insulating member to form a resin composite. To do.

本発明は、粒子径が5μm以上200μm以下の凝結粒子であって、柱状形状の窒化ケイ素粒子を含む凝結粒子を50体積%以上含む窒化ケイ素フィラーを提供する。   The present invention provides a silicon nitride filler containing 50 vol% or more of agglomerated particles having a particle diameter of 5 μm or more and 200 μm or less and containing columnar silicon nitride particles.

本発明によれば、絶縁部材を構成する樹脂等へ添加し、樹脂複合物とした場合の放熱性能が高い窒化ケイ素フィラーを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can add to the resin etc. which comprise an insulating member, and can provide the silicon nitride filler with high heat dissipation performance at the time of setting it as a resin composite.

フィラーの形状と熱伝導パスとの関係の説明図。Explanatory drawing of the relationship between the shape of a filler and a heat conduction path. 自己燃焼反応による窒化ケイ素の凝結塊の製造装置の構成例。The example of a structure of the manufacturing apparatus of the silicon nitride coagulum by a self-combustion reaction. 本発明の実施例1において得られた窒化ケイ素フィラーのSEM画像。The SEM image of the silicon nitride filler obtained in Example 1 of this invention. 本発明の実施例1において得られた窒化ケイ素フィラーの粒子径の頻度分布。The frequency distribution of the particle diameter of the silicon nitride filler obtained in Example 1 of this invention. 本発明の実施例2において得られた窒化ケイ素フィラーの粒子径の頻度分布。The frequency distribution of the particle diameter of the silicon nitride filler obtained in Example 2 of the present invention. 本発明の実施例3において得られた窒化ケイ素フィラーの粒子径の頻度分布。The frequency distribution of the particle diameter of the silicon nitride filler obtained in Example 3 of the present invention. 比較例1で用いた窒化ケイ素フィラーのSEM画像。3 is an SEM image of the silicon nitride filler used in Comparative Example 1. 比較例1で用いた窒化ケイ素フィラーの粒子径の頻度分布。The frequency distribution of the particle diameter of the silicon nitride filler used in Comparative Example 1.

以下、本発明を実施するための形態について説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
(窒化ケイ素フィラーについて)
本実施形態では、本発明の窒化ケイ素フィラーの構成例について説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described. However, the present invention is not limited to the following embodiments, and various modifications and changes can be made to the following embodiments without departing from the scope of the present invention. Substitutions can be added.
(About silicon nitride filler)
In the present embodiment, a configuration example of the silicon nitride filler of the present invention will be described.

本実施形態の窒化ケイ素フィラーは、粒子径が5μm以上200μm以下の凝結粒子であって、柱状形状の窒化ケイ素粒子を含む凝結粒子を50体積%以上含むことができる。   The silicon nitride filler of the present embodiment is a condensed particle having a particle diameter of 5 μm or more and 200 μm or less, and can contain 50% by volume or more of the condensed particles containing columnar silicon nitride particles.

従来フィラー用に製造された窒化ケイ素フィラーの樹脂等への分散性が低い原因について検討したところ、原因の一つが上述のように短軸径が1μm程度、アスペクト比が3〜8程度の針状に近い形状であることと判明した。   The reason why the dispersibility of the silicon nitride filler produced conventionally for the filler in the resin or the like was examined was one of the causes. As described above, a needle-like shape having a minor axis diameter of about 1 μm and an aspect ratio of about 3-8. It turned out to be a shape close to.

そしてさらに検討を行ったところ、窒化ケイ素フィラーが、粒子径が5μm以上200μmの凝結粒子を50体積%以上含む構成とすることにより、樹脂等へ添加して樹脂複合物とした場合の熱伝導率を向上できることを見出した。これは、樹脂等への分散性が向上したためと考えられる。   And when further examination was conducted, the thermal conductivity when the silicon nitride filler was added to a resin or the like to form a resin composite by including 50% by volume or more of condensed particles having a particle diameter of 5 μm or more and 200 μm. It was found that can be improved. This is presumably because dispersibility in resin or the like has been improved.

窒化ケイ素フィラーに含まれる粒子のうち、粒子径が5μm未満の粒子の割合が一定以上となると従来技術のように樹脂等への分散性が低下する。また、窒化ケイ素フィラーに含まれる粒子のうち、粒子径が200μmよりも大きい粒子の割合が一定以上となると、樹脂等と混合して得られた樹脂複合物の表面が荒れた状態となり、さらには、該樹脂複合物の機械的強度を低下させる原因となると考えられる。   Among the particles contained in the silicon nitride filler, when the ratio of particles having a particle diameter of less than 5 μm is a certain level or more, dispersibility in a resin or the like is reduced as in the prior art. Moreover, when the ratio of the particles having a particle diameter larger than 200 μm among the particles contained in the silicon nitride filler is a certain value or more, the surface of the resin composite obtained by mixing with a resin or the like becomes rough, This is considered to cause a decrease in the mechanical strength of the resin composite.

そこで、上述のように、窒化ケイ素フィラーが、粒子径が5μm以上200μm以下の凝結粒子を50体積%以上含んでいる場合、粒子径が5μm未満の粒子や、200μmよりも大きい粒子の比率が低下するため、分散性を高めることができる。さらに、樹脂等と混合して得られる樹脂複合物の表面の荒れや、機械的強度の低下を防ぐことができ、熱伝導性を高めることができると考えられる。特に、窒化ケイ素フィラーに含まれる粒子径が5μm以上200μm以下の凝結粒子の比率は高い方がより好ましく、例えば、80体積%以上であることがより好ましく、90体積%以上であることが特に好ましい。窒化ケイ素フィラー中に含まれる粒子径が5μm以上200μm以下の凝結粒子の含有率は高い方が好ましいため、上限は特に限定されるものではなく、例えば100体積%以下とすることができる。   Therefore, as described above, when the silicon nitride filler contains 50% by volume or more of condensed particles having a particle diameter of 5 μm or more and 200 μm or less, the ratio of particles having a particle diameter of less than 5 μm or larger than 200 μm decreases. Therefore, dispersibility can be improved. Furthermore, it is considered that the surface of the resin composite obtained by mixing with a resin or the like and the mechanical strength can be prevented from being lowered, and the thermal conductivity can be increased. In particular, the ratio of the condensed particles having a particle size of 5 μm or more and 200 μm or less contained in the silicon nitride filler is more preferable, for example, 80% by volume or more is more preferable, and 90% by volume or more is particularly preferable. . Since it is preferable that the content of the condensed particles having a particle diameter of 5 μm or more and 200 μm or less contained in the silicon nitride filler is high, the upper limit is not particularly limited and can be, for example, 100% by volume or less.

凝結粒子の形状については特に限定されるものではないが、例えば略球状であることが好ましい。   The shape of the agglomerated particles is not particularly limited, but for example, a substantially spherical shape is preferable.

なお、ここで説明した凝結粒子における凝結の程度は特に限定されるものではないが、樹脂等に添加し、ミキサーや混練機等を用いて混合した際に凝結粒子が破砕されない程度の強度を有していることが好ましい。すなわち、樹脂等と混練した後も、フィラー部分については粒子径が5μm以上200μm以下の凝結粒子を50体積%以上含んでいることが好ましい。   The degree of aggregation in the agglomerated particles described here is not particularly limited, but has a strength that does not crush the agglomerated particles when added to a resin or the like and mixed using a mixer or a kneader. It is preferable. That is, even after kneading with a resin or the like, the filler portion preferably contains 50% by volume or more of condensed particles having a particle size of 5 μm or more and 200 μm or less.

そして、上述した本実施形態の窒化ケイ素フィラーに含まれる粒子径が5μm以上200μm以下の凝結粒子は、柱状(柱状形状)の窒化ケイ素粒子を含んでいることが好ましい。   And it is preferable that the condensed particle | grains whose particle diameter contained in the silicon nitride filler of this embodiment mentioned above is 5 micrometers or more and 200 micrometers or less contain the columnar (columnar shape) silicon nitride particle.

ここで、従来のセラミックフィラーは、例えば図1(a)に示すように、真球に近く表面の滑らかな球状又は略球状の粒子から構成されている場合が多かった。このため、樹脂等に添加した場合に隣接するフィラー同士は1点で接触するのみであり、図中矢印で示した熱伝導のパスは少なかった。   Here, for example, as shown in FIG. 1A, the conventional ceramic filler is often composed of spherical or substantially spherical particles having a surface close to a true sphere and having a smooth surface. For this reason, when added to a resin or the like, adjacent fillers are only in contact at one point, and there are few paths for heat conduction indicated by arrows in the figure.

これに対して、本実施形態の窒化ケイ素フィラーに含まれる凝結粒子は、柱状形状の窒化ケイ素粒子を含んでいるため、例えば図1(b)に示すように該柱状粒子が絡み合い、全体的には球に近い形を有しつつ、表面に凹凸構造を有する形状にできる。そして、凹凸構造が凝結粒子間での接触点を増加させるため、樹脂等に添加して樹脂複合物とした場合に、図中矢印で示したように熱伝導のパスが多くなり、凝結粒子間での熱伝導が従来よりも向上する。このため、本実施形態の窒化ケイ素フィラーと樹脂等とを混練して製造した樹脂複合物の熱伝導率を大きく向上させることができる。   On the other hand, the condensed particles contained in the silicon nitride filler of this embodiment contain columnar-shaped silicon nitride particles. For example, the columnar particles are entangled as shown in FIG. Can be formed into a shape having an uneven structure on the surface while having a shape close to a sphere. And since the uneven structure increases the contact point between the condensed particles, when added to a resin or the like to make a resin composite, the heat conduction path increases as shown by the arrows in the figure, and between the condensed particles The heat conduction in this is improved compared to the conventional case. For this reason, the thermal conductivity of the resin composite produced by kneading the silicon nitride filler of this embodiment with a resin or the like can be greatly improved.

また、β相の窒化ケイ素は六方晶の結晶構造をもち、a軸、c軸の格子定数はそれぞれ0.76nm、0.29nmであり、結晶成長が阻害されない場合、c軸方向に六角柱状に成長することが知られている。このため、結晶面の発達した柱状の自形を持つ粒子として成長させることにより、熱伝導の阻害要因となる粒子内部の欠陥を極めて低いレベルに低減させることができる。すなわち、凝結粒子が柱状の窒化ケイ素粒子を含んでいる場合、該柱状の窒化ケイ素粒子は、内部に欠陥をほとんど含まない粒子とすることができ、フィラーや、該フィラーを含む樹脂複合物の熱伝導率を向上させることができる。   In addition, β-phase silicon nitride has a hexagonal crystal structure, and the lattice constants of the a-axis and c-axis are 0.76 nm and 0.29 nm, respectively. It is known to grow. For this reason, by growing as a self-shaped columnar particle having a developed crystal face, defects inside the particle, which are factors that hinder heat conduction, can be reduced to an extremely low level. That is, when the condensed particles contain columnar silicon nitride particles, the columnar silicon nitride particles can be made into particles containing almost no defects inside, and the heat of the filler or the resin composite containing the filler can be obtained. Conductivity can be improved.

凝結粒子に含まれる柱状の窒化ケイ素粒子の比率は特に限定されるものではないが、上述のように、柱状の窒化ケイ素粒子は、フィラーや、フィラーを含む樹脂複合物の熱伝導率を高めることができる。このため、凝結粒子中に含まれる柱状の窒化ケイ素粒子の比率は高い方が好ましく、例えば凝結粒子の表面部分は柱状の窒化ケイ素粒子により構成されていることがより好ましく、凝結粒子全体が、柱状の窒化ケイ素粒子により構成されていることが特に好ましい。   Although the ratio of the columnar silicon nitride particles contained in the aggregated particles is not particularly limited, as described above, the columnar silicon nitride particles increase the thermal conductivity of the filler and the resin composite containing the filler. Can do. For this reason, it is preferable that the ratio of the columnar silicon nitride particles contained in the condensed particles is higher. For example, the surface portion of the aggregated particles is more preferably composed of columnar silicon nitride particles, and the entire aggregated particles are columnar. It is particularly preferable that the silicon nitride particles are used.

ここで、窒化ケイ素には低温安定相であるα相と、高温安定相であるβ相とが存在することが知られている。α相はβ相に比べると理論的な熱伝導率が低く、また高温での熱処理ではβ相に転移する。このため、本実施形態の窒化ケイ素フィラーに含まれる窒化ケイ素の結晶相は、α相よりもβ相の比率が高いことが好ましく、本実施形態の窒化ケイ素フィラーに含まれる窒化ケイ素の結晶相の主相はβ相であることがより好ましい。ここでいう主相とは、窒化ケイ素フィラーに含まれる窒化ケイ素の結晶相のうち、体積比率で50%以上を占めていることを意味し、特に体積比率で80%以上を占めていることがより好ましく、90%以上を占めていることがさらに好ましい。特に、窒化ケイ素フィラーに含まれる窒化ケイ素はβ相により構成されていることが好ましい。   Here, it is known that silicon nitride has an α phase which is a low temperature stable phase and a β phase which is a high temperature stable phase. The α phase has a lower theoretical thermal conductivity than the β phase, and transitions to the β phase upon heat treatment at a high temperature. Therefore, the silicon nitride crystal phase contained in the silicon nitride filler of the present embodiment preferably has a higher β-phase ratio than the α phase, and the silicon nitride crystal phase contained in the silicon nitride filler of the present embodiment More preferably, the main phase is a β phase. The main phase here means that the crystal phase of silicon nitride contained in the silicon nitride filler occupies 50% or more by volume ratio, and particularly occupies 80% or more by volume ratio. More preferably, it occupies 90% or more. In particular, the silicon nitride contained in the silicon nitride filler is preferably composed of a β phase.

ただし、β相の窒化ケイ素結晶の熱伝導率は結晶内部の欠陥の存在により低下し、結晶欠陥のなかでも特に結晶内部(結晶格子中)に固溶した不純物酸素により低下する。このため、本実施形態の窒化ケイ素フィラーにおいては、結晶内部に固溶した不純物酸素量が小さいことが好ましい。   However, the thermal conductivity of the β-phase silicon nitride crystal decreases due to the presence of defects inside the crystal, and among the crystal defects, it decreases particularly due to impurity oxygen dissolved in the crystal (in the crystal lattice). For this reason, in the silicon nitride filler of this embodiment, it is preferable that the amount of impurity oxygen dissolved in the crystal is small.

ここで、窒化ケイ素フィラーの不純物酸素としては、上述の結晶内部に固溶した不純物酸素の他に、窒化ケイ素フィラー表面に酸化物として存在する酸素がある。両者を合わせた窒化ケイ素フィラーに含まれる不純物酸素量は、窒化ケイ素結晶の結晶内部に固溶した不純物酸素量と密接な関係にあり、窒化ケイ素フィラーに含まれるトータルの不純物酸素量が少ないほど結晶内部に固溶した不純物酸素量が少なくなる。   Here, as the impurity oxygen of the silicon nitride filler, there is oxygen existing as an oxide on the surface of the silicon nitride filler in addition to the impurity oxygen solid-solved in the crystal. The amount of impurity oxygen contained in the silicon nitride filler combined with both is closely related to the amount of impurity oxygen dissolved in the crystal of the silicon nitride crystal, and the smaller the total amount of impurity oxygen contained in the silicon nitride filler, the more The amount of impurity oxygen dissolved inside is reduced.

このため、本実施形態の窒化ケイ素フィラーに含まれる不純物酸素量、すなわち、酸素含有量は少ない方が好ましく、例えば、1mass%以下であることが好ましく、0.5mass%以下であることがより好ましい。なお、上述のように窒化ケイ素フィラー中の不純物酸素(酸素含有量)の下限値は特に限定されないが、酸素含有量は少ないほうが好ましいことから、例えば酸素含有量の下限値は0(mass%)以上とすることができる。   For this reason, it is preferable that the amount of impurity oxygen contained in the silicon nitride filler of the present embodiment, that is, the oxygen content is smaller, for example, preferably 1% by mass or less, and more preferably 0.5% by mass or less. . As described above, the lower limit value of the impurity oxygen (oxygen content) in the silicon nitride filler is not particularly limited. However, since the lower oxygen content is preferable, for example, the lower limit value of the oxygen content is 0 (mass%). This can be done.

ここまで説明した本実施形態の窒化ケイ素フィラーは窒化ケイ素から構成されていることが好ましいが、窒化ケイ素以外に不可避的な不純物や、必要に応じて添加した添加剤、助剤等を含むことができる。不可避的な不純物としては、例えば上述の酸素や、未反応原料等が挙げられる。
(窒化ケイ素フィラーの製造について)
次に本実施形態の窒化ケイ素フィラーの製造方法の構成例について説明する。
The silicon nitride filler of the present embodiment described so far is preferably composed of silicon nitride, but may contain inevitable impurities other than silicon nitride, additives added as necessary, auxiliaries, and the like. it can. Examples of inevitable impurities include the above-mentioned oxygen and unreacted raw materials.
(About production of silicon nitride filler)
Next, the structural example of the manufacturing method of the silicon nitride filler of this embodiment is demonstrated.

本実施形態の窒化ケイ素フィラーの製造方法については特に限定されるものではないが、
例えば以下の(a)〜(c)の各工程を有する製造方法により好ましく製造することができる。
(a)ケイ素、または、ケイ素と窒化ケイ素との混合物、を耐熱性容器に充填する工程。
(b)1気圧以上の窒素を含む非酸化性雰囲気中で自己燃焼反応により窒化ケイ素の凝結塊を作製する工程。
(c)窒化ケイ素の凝結塊を粉砕する工程。
The method for producing the silicon nitride filler of the present embodiment is not particularly limited,
For example, it can manufacture preferably with the manufacturing method which has each process of the following (a)-(c).
(A) A step of filling a heat-resistant container with silicon or a mixture of silicon and silicon nitride.
(B) A step of producing a silicon nitride coagulum by a self-combustion reaction in a non-oxidizing atmosphere containing nitrogen of 1 atm or more.
(C) A step of crushing the silicon nitride coagulum.

係る窒化ケイ素フィラーの製造方法においては自己燃焼反応(ケイ素の窒化燃焼反応)を用いていることから、極めて省エネルギーで窒化ケイ素を製造することができる。このため、上述した本実施形態の窒化ケイ素フィラーは上記製造方法により得られていることが好ましい。自己燃焼反応は燃焼合成ともよばれ、耐熱性容器内に充填した出発原料の一端を強熱するだけで、その後の反応は自発的に進行し製造に要するエネルギーが極めて少ないという優れた利点を有する。   In such a method for producing a silicon nitride filler, since self-combustion reaction (silicon nitridation combustion reaction) is used, silicon nitride can be produced with extremely low energy consumption. For this reason, it is preferable that the silicon nitride filler of this embodiment mentioned above is obtained by the said manufacturing method. The self-combustion reaction is also called combustion synthesis, and it has an excellent advantage that only one end of the starting material filled in the heat-resistant container is ignited, and the subsequent reaction proceeds spontaneously and requires very little energy for production.

各工程について以下に説明する。
(a)工程においては、ケイ素、または、ケイ素と窒化ケイ素との混合物を耐熱性容器に充填する。係る工程は窒化ケイ素フィラーの燃焼合成のための出発原料を耐熱性容器に充填する工程である。
Each step will be described below.
In the step (a), a heat-resistant container is filled with silicon or a mixture of silicon and silicon nitride. This process is a process of filling a heat-resistant container with a starting material for combustion synthesis of a silicon nitride filler.

出発原料としては上述のように、ケイ素、または、ケイ素と窒化ケイ素(Si)との混合物を用いることができる。ここで説明する窒化ケイ素の製造方法では、窒素雰囲気下で加熱を行い、耐熱性容器に充填したケイ素と、雰囲気中の窒素とが反応し窒化ケイ素を生成するため、耐熱性容器に充填する出発原料としては上述のようにケイ素のみでもよい。 As described above, silicon or a mixture of silicon and silicon nitride (Si 3 N 4 ) can be used as the starting material. In the manufacturing method of silicon nitride described here, heating is performed in a nitrogen atmosphere, and silicon filled in the heat-resistant container reacts with nitrogen in the atmosphere to generate silicon nitride. As described above, only silicon may be used as a raw material.

ただし、燃焼生成物は後述のように窒化ケイ素の凝集塊として得られる。このため、本工程で耐熱性容器に充填する出発原料の量が多い場合には中心部に熱が蓄積され、燃焼のフロントで部分的にケイ素原料が溶融し、ケイ素が残留する場合がある。このようにケイ素が溶融・溶着するのを防ぐため、出発原料に希釈剤として窒化ケイ素を燃焼反応の伝播を妨げない範囲で添加することが望ましい。しかし、添加する窒化ケイ素の量が多すぎると自発的な燃焼反応を維持することができない場合があり、また、全体としての収率が低下する恐れがある。このため、窒化ケイ素の添加量はケイ素を窒化ケイ素として換算した際の出発原料粉末中で例えば50mol%以下とすることが好ましく、30mol%以下とすることがより好ましい。上述のように、窒化ケイ素は添加しなくてもよいことから、その下限値は、例えば0mol%以上とすることができ、特に5mol%以上とすることが好ましい。なお、ケイ素を窒化ケイ素として換算した場合とは、ケイ素をケイ素が窒化ケイ素となった場合の物質量に換算した場合を意味している。すなわち、例えば出発原料がケイ素を3molと窒化ケイ素が1molとを含む場合、窒化ケイ素の添加量は50mol%となる。   However, the combustion product is obtained as an agglomerate of silicon nitride as described later. For this reason, when the amount of the starting material to be filled in the heat-resistant container in this step is large, heat is accumulated in the central part, and the silicon raw material may partially melt at the front of combustion, and silicon may remain. In order to prevent the silicon from melting and welding in this way, it is desirable to add silicon nitride as a diluent to the starting material in a range that does not hinder the propagation of the combustion reaction. However, if the amount of silicon nitride added is too large, the spontaneous combustion reaction may not be maintained, and the overall yield may be reduced. For this reason, the addition amount of silicon nitride is preferably 50 mol% or less, and more preferably 30 mol% or less in the starting material powder when silicon is converted into silicon nitride. As described above, since silicon nitride does not need to be added, the lower limit thereof can be set to, for example, 0 mol% or more, and particularly preferably 5 mol% or more. In addition, the case where silicon is converted into silicon nitride means the case where silicon is converted into the amount of substance when silicon is converted into silicon nitride. That is, for example, when the starting material contains 3 mol of silicon and 1 mol of silicon nitride, the amount of silicon nitride added is 50 mol%.

また、原料粉末の粒子径については特に限定されるものではないが、自己燃焼反応を行う場合、反応が十分に進行し燃焼が継続的に行われるように、原料粉末の粒子径は小さい方が好ましい。具体的には例えば、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、原料粉末の粒子径は小さい方が好ましいことから、その下限値は特に限定されるものではないが、取り扱い性等の観点から、例えば10nm以上であることが好ましく、0.1μm以上であることがより好ましい。また、ケイ素と窒化ケイ素を出発原料として用いる場合には、両原料とも、粒子径が上記範囲内であることが好ましい。   Further, the particle size of the raw material powder is not particularly limited, but when performing the self-combustion reaction, the smaller the particle size of the raw material powder, the reaction proceeds sufficiently and the combustion is continuously performed. preferable. Specifically, for example, it is preferably 100 μm or less, and more preferably 50 μm or less. In addition, since the one where the particle diameter of raw material powder is smaller is preferable, the lower limit value is not particularly limited, but from the viewpoint of handleability, for example, it is preferably 10 nm or more, and 0.1 μm or more. It is more preferable. Further, when silicon and silicon nitride are used as starting materials, it is preferable that the particle diameter of both materials is within the above range.

また、出発原料に高熱伝導窒化ケイ素焼結体を作製する際に用いられる希土類酸化物、酸化マグネシウム(MgO)、窒化ケイ素マグネシウム(MgSiN)、酸化セリウム(CeO)などの助剤を添加しておくこともできる。希土類酸化物は、シリカとの親和性が高く、β相窒化ケイ素の粒成長時に粒界に不純物酸素をトラップし、粒内固溶酸素の少ない高熱伝導窒化ケイ素粒子を生成させる役割を果たす。また、酸化マグネシウムなどの助剤は、β窒化ケイ素粒子間の焼結を促進し、柱状粒子間の凝結度合いを高めることができる。 In addition, additives such as rare earth oxide, magnesium oxide (MgO), magnesium magnesium nitride (MgSiN 2 ), and cerium oxide (CeO 2 ) used when producing a high thermal conductivity silicon nitride sintered body as a starting material are added. You can also keep it. The rare earth oxide has a high affinity with silica and plays a role in trapping impurity oxygen at the grain boundary during grain growth of β-phase silicon nitride and generating highly thermally conductive silicon nitride particles with less intragranular dissolved oxygen. Moreover, auxiliary agents, such as magnesium oxide, can accelerate | stimulate sintering between (beta) silicon nitride particles, and can raise the degree of condensation between columnar particles.

目的とする配合組成に秤量した原料粉末は、例えば、乳鉢、ボールミル、遊星ミル、ジェットミルなどを用いて十分に混合することが好ましい。なお、原料粉末は湿式混合することもでき、この場合、原料粉末に溶媒を添加することもできる。得られた混合物は、カーボン製容器などの耐熱性の容器に充填する。   It is preferable to sufficiently mix the raw material powders weighed to the intended blending composition using, for example, a mortar, ball mill, planetary mill, jet mill or the like. The raw material powder can be wet-mixed, and in this case, a solvent can be added to the raw material powder. The obtained mixture is filled in a heat-resistant container such as a carbon container.

次に(b)工程では、1気圧以上の窒素を含む非酸化性雰囲気中で自己燃焼反応により窒化ケイ素の凝結塊を作製する。   Next, in step (b), a silicon nitride coagulum is produced by a self-combustion reaction in a non-oxidizing atmosphere containing nitrogen of 1 atm or more.

本工程は例えば図2に示した装置を用いて実施することができる。まず、(a)工程で原料粉末21を充填した耐熱性容器22を耐圧性容器23内に設置し、耐圧性容器23内部に窒素ボンベ24から窒素を供給し、耐圧性容器23内を、窒素を含む非酸化性の雰囲気とする。窒素を含む非酸化性の雰囲気としては、例えば窒素と不活性ガスとの混合雰囲気とすることができ、窒素雰囲気とすることが好ましい。この際、燃焼の伝播反応を促進するため、耐圧性容器23内の窒素の圧力を1気圧以上に加圧することが好ましく、2気圧以上に加圧することがより好ましい。耐圧性容器23内の窒素圧力の上限値は特に限定されるものではないが、窒素圧力が高くなると耐圧性容器23のコストが高くなり、その結果、窒化ケイ素フィラーのコストが高くなるため好ましくない。このため、例えば2000気圧以下とすることが好ましい。なお、窒素を耐圧性容器23内に供給する前に耐圧性容器23内を図示しない真空ポンプにより一旦真空雰囲気とし、耐圧性容器23内の酸素を十分に除去しておくことが好ましい。   This step can be performed using, for example, the apparatus shown in FIG. First, the heat-resistant container 22 filled with the raw material powder 21 in the step (a) is installed in the pressure-resistant container 23, nitrogen is supplied into the pressure-resistant container 23 from the nitrogen cylinder 24, and the pressure-resistant container 23 is filled with nitrogen. A non-oxidizing atmosphere containing As the non-oxidizing atmosphere containing nitrogen, for example, a mixed atmosphere of nitrogen and an inert gas can be used, and a nitrogen atmosphere is preferable. At this time, in order to promote the propagation reaction of combustion, it is preferable to pressurize the pressure of nitrogen in the pressure-resistant vessel 23 to 1 atm or higher, and more preferable to pressurize to 2 atm or higher. The upper limit value of the nitrogen pressure in the pressure-resistant container 23 is not particularly limited. However, when the nitrogen pressure is increased, the cost of the pressure-resistant container 23 is increased, and as a result, the cost of the silicon nitride filler is increased. . For this reason, it is preferable to set it as 2000 atmospheres or less, for example. Before supplying nitrogen into the pressure resistant container 23, it is preferable that the inside of the pressure resistant container 23 is once evacuated by a vacuum pump (not shown) to sufficiently remove oxygen in the pressure resistant container 23.

そして、耐圧性容器23内の窒素分圧が所定の圧力に達した後に自己燃焼反応を開始することができる。自己燃焼反応を開始する方法としては特に限定されるものではなく、例えば、耐熱性容器22に充填した充填した原料粉末21に接触させた着火剤の燃焼熱を利用して原料粉末21の一部を局所的に加熱する方法が挙げられる。また、カーボンヒータ、タングステンヒータ等のヒータにより耐熱性容器22に充填した原料粉末21の一部を局所的に加熱する方法や、レーザー光等のエネルギー源により耐熱性容器22内に充填した原料粉末21の一部を局所的に加熱する方法等が挙げられる。図2においては、耐熱性容器22に充填した原料粉末21に接触させた着火剤25をヒータ26(例えば、カーボンヒータ)で着火し、その燃焼熱で原料粉末21の窒化燃焼反応を開始する例を示している。   And self-combustion reaction can be started after the nitrogen partial pressure in the pressure-resistant container 23 reaches a predetermined pressure. The method for starting the self-combustion reaction is not particularly limited, and for example, a part of the raw material powder 21 using the combustion heat of the ignition agent brought into contact with the filled raw material powder 21 filled in the heat-resistant container 22. The method of heating locally is mentioned. Further, a method of locally heating a part of the raw material powder 21 filled in the heat resistant container 22 with a heater such as a carbon heater or a tungsten heater, or a raw material powder filled in the heat resistant container 22 with an energy source such as a laser beam. And a method of locally heating a part of 21. In FIG. 2, an igniting agent 25 brought into contact with the raw material powder 21 filled in the heat-resistant container 22 is ignited by a heater 26 (for example, a carbon heater), and the nitriding combustion reaction of the raw material powder 21 is started by the combustion heat. Is shown.

自己燃焼反応は、通常、数分から十分程度で完了する。自己燃焼反応が終了後は、生成物が冷却されるのを待って生成物を耐圧性容器23から取り出す。通常、生成物は凝結塊として得られる。なお、冷却する間についても耐圧性容器23内は窒素を含む非酸化性の雰囲気に維持されていることが好ましく、耐圧性容器23内は自己燃焼反応終了後に1気圧以上の窒素圧が維持されていることがより好ましい。   The self-combustion reaction is usually completed within a few minutes to a sufficient degree. After completion of the self-combustion reaction, the product is taken out from the pressure-resistant container 23 after the product is cooled. Usually the product is obtained as a coagulum. During the cooling, the pressure resistant container 23 is preferably maintained in a non-oxidizing atmosphere containing nitrogen, and the pressure resistant container 23 is maintained at a nitrogen pressure of 1 atm or more after the completion of the self-combustion reaction. More preferably.

ケイ素の自己燃焼反応(窒化燃焼反応)は、1900℃以上の高温で進行するため、その反応過程で窒化ケイ素粒子の成長が十分に進み、生成物として結晶面が発達した柱状の形状を有するβ相窒化ケイ素粒子が絡み合った構造を持つ凝結塊を得ることができる。   Since the self-combustion reaction of silicon (nitriding combustion reaction) proceeds at a high temperature of 1900 ° C. or higher, the growth of silicon nitride particles proceeds sufficiently in the reaction process, and β having a columnar shape with a crystal plane developed as a product. A coagulated mass having a structure in which phase silicon nitride particles are intertwined can be obtained.

そして、次に(c)工程において窒化ケイ素の凝結塊を粉砕することができる。   Then, in the step (c), the silicon nitride coagulum can be pulverized.

本工程では、(b)工程で得られた自己燃焼反応により得られた凝結塊は、乳鉢、ボールミル、遊星ミル、ジェットミルなどを用いて、5μm以上200μm以下の凝結粒子を50体積%以上含むように粉砕する。   In this step, the agglomerate obtained by the self-combustion reaction obtained in step (b) contains 50% by volume or more of agglomerated particles of 5 μm or more and 200 μm or less using a mortar, ball mill, planetary mill, jet mill or the like. So as to grind.

凝結塊を粉砕後、篩を用いて所望の粒径分布の粉体を選択することが好ましい。具体的には例えば、50メッシュ以上の篩を用いて篩通しを行うことが好ましく、60メッシュ以上の篩を用いて篩通しを行うことがより好ましい。用いる篩のメッシュの上限は生産性等を考慮すると、例えば440メッシュ以下であることが好ましく、200メッシュ以下であることがより好ましい。このように凝結塊を粉砕した後、篩通し工程を行うことにより、効率的に凝結粒子の大きさを目的とする範囲に整えることができるため好ましい。   After pulverizing the agglomerated mass, it is preferable to select a powder having a desired particle size distribution using a sieve. Specifically, for example, sieving is preferably performed using a sieve of 50 mesh or more, more preferably sieving using a sieve of 60 mesh or more. In consideration of productivity and the like, the upper limit of the mesh of the sieve to be used is preferably 440 mesh or less, and more preferably 200 mesh or less. Thus, it is preferable to perform the sieving step after pulverizing the agglomerated mass, since the size of the agglomerated particles can be efficiently adjusted to the target range.

ここまで自己燃焼法を用いた窒化ケイ素フィラーの製造方法について説明してきたが、係る形態に限定されるものではない。例えば、窒化ケイ素粉末、あるいは焼結助剤を含む窒化ケイ素粉末を耐熱性容器へ充填した状態、あるいは圧粉体や成形体とし、窒素中、1600℃以上に加熱し、得られた加熱物を粉砕することにより製造することができる。また、ケイ素粉末の顆粒体や成形体を窒素中1400℃付近で窒化させ、さらに高温での熱処理によりβ相柱状粒子を発達させ、その凝結塊を粉砕することにより得ることもできる。   Although the manufacturing method of the silicon nitride filler using the self-combustion method has been described so far, it is not limited to such a form. For example, a silicon nitride powder or a silicon nitride powder containing a sintering aid is filled in a heat-resistant container, or a green compact or a molded body, heated in nitrogen to 1600 ° C. or higher, and the resulting heated product It can be manufactured by grinding. It can also be obtained by nitriding silicon powder granules or compacts in the vicinity of 1400 ° C. in nitrogen, further developing β-phase columnar particles by heat treatment at high temperature, and pulverizing the aggregates.

以上に説明した本実施形態の窒化ケイ素フィラーは、該窒化ケイ素フィラーと、樹脂組成物とを含む樹脂複合物とすることができる。ここでの樹脂組成物としては特に限定されないが、例えば、ポリエチレン、ポリカーボネートなどの熱可塑性樹脂、フェノール樹脂、エポキシ樹脂などの熱硬化性樹脂、シリコン樹脂、ゴム等を挙げることができる。   The silicon nitride filler of this embodiment described above can be a resin composite containing the silicon nitride filler and a resin composition. Although it does not specifically limit as a resin composition here, For example, thermosetting resins, such as thermoplastic resins, such as polyethylene and a polycarbonate, a phenol resin, an epoxy resin, a silicone resin, rubber | gum etc. can be mentioned.

係る樹脂複合物は、例えば、ミキサー、混錬機などを用いて、本実施形態の窒化ケイ素フィラーと、樹脂組成物とを混合(混練)することにより製造することができる。   Such a resin composite can be produced, for example, by mixing (kneading) the silicon nitride filler of the present embodiment and the resin composition using a mixer, a kneader or the like.

樹脂やゴム等の樹脂組成物と、本実施形態の窒化ケイ素フィラーとを混合、混練して得られた樹脂複合物において、本実施形態の窒化ケイ素フィラーは、熱伝導性の向上に大きく寄与することができる。   In a resin composite obtained by mixing and kneading a resin composition such as resin or rubber and the silicon nitride filler of the present embodiment, the silicon nitride filler of the present embodiment greatly contributes to improvement in thermal conductivity. be able to.

得られた樹脂複合物の用途としては特に限定されるものではないが、樹脂複合物は放熱性能に優れることから、絶縁基板や、半導体封止材等の用途に用いることができる。   Although it does not specifically limit as a use of the obtained resin composite, Since a resin composite is excellent in heat dissipation performance, it can be used for uses, such as an insulating substrate and a semiconductor sealing material.

絶縁基板や、半導体封止材は、上記樹脂複合物と他の樹脂や他の部材と組み合わせて構成することもでき、例えば、上記樹脂複合物を含む絶縁基板とすることができる。また、上記樹脂複合物を含む半導体封止材とすることもできる。なお、使用態様にあわせて、絶縁基板や半導体封止材は、上記樹脂複合物のみから構成することもできる。   The insulating substrate and the semiconductor sealing material can also be configured by combining the resin composite with another resin or another member. For example, an insulating substrate containing the resin composite can be used. Moreover, it can also be set as the semiconductor sealing material containing the said resin composite. In addition, according to a use aspect, an insulating substrate and a semiconductor sealing material can also be comprised only from the said resin composite.

以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない
[実施例1]
平均粒子径8.5μmのケイ素粉末に比表面積10m(粒子径0.2μmに相当)の窒化ケイ素粉末を添加し、エタノールを溶媒として用い、内容量500mlの樹脂製ポットとアルミナボールを用いて24時間のボールミル混合を行った。この際、ケイ素と窒化ケイ素の割合は、ケイ素を窒化ケイ素として換算した場合のモル比が80:20となるようにした。すなわち、ケイ素を窒化ケイ素として換算した場合の窒化ケイ素の添加量を20mol%とした。ケイ素と窒化ケイ素との混合粉末150gに対して、エタノール溶媒を250ml加えた。なお、ケイ素を窒化ケイ素として換算した場合とは、例えばケイ素を3mol、窒化ケイ素が1mol含む場合、モル比が1:1であることを意味している。また、ここでいう平均粒子径とは、レーザー回折・散乱法における積算値50%での粒径を意味している。ポットミルで混合した後、60℃に加熱した真空エバポレータを用いて溶媒を除去し、原料粉末となる、ケイ素と窒化ケイ素との混合粉末を得た。
The present invention is described below with reference to specific examples, but the present invention is not limited to these examples [Example 1].
A silicon nitride powder having a specific surface area of 10 m 2 (corresponding to a particle diameter of 0.2 μm) is added to silicon powder having an average particle diameter of 8.5 μm, ethanol is used as a solvent, and a resin pot with an internal volume of 500 ml and alumina balls are used. The ball mill mixing was performed for 24 hours. In this case, the ratio of silicon to silicon nitride was such that the molar ratio when silicon was converted to silicon nitride was 80:20. That is, the addition amount of silicon nitride when converting silicon into silicon nitride was 20 mol%. 250 ml of ethanol solvent was added to 150 g of mixed powder of silicon and silicon nitride. When silicon is converted into silicon nitride, for example, when 3 mol of silicon and 1 mol of silicon nitride are contained, the molar ratio is 1: 1. The average particle diameter here means a particle diameter at an integrated value of 50% in the laser diffraction / scattering method. After mixing with a pot mill, the solvent was removed using a vacuum evaporator heated to 60 ° C. to obtain a mixed powder of silicon and silicon nitride serving as a raw material powder.

次に、図2に示した装置を用いて、以下の手順により自己燃焼反応により該混合粉末から窒化ケイ素凝結塊を作製した。   Next, using the apparatus shown in FIG. 2, a silicon nitride coagulated mass was produced from the mixed powder by a self-combustion reaction according to the following procedure.

まず、原料粉末21である上記混合粉末を耐熱性容器22であるカーボン製のルツボに充填し、充填した混合粉末の上端に着火剤25として、チタンとカーボンの混合粉末成形体を配置した。この際、着火剤25はTi:Cがモル比で1:1になるように混合した着火材用の混合粉末を用いた。そして、耐熱性容器22を、着火剤25の上部にヒータ26であるカーボンヒータが位置するように、耐圧性容器23である高圧容器内に設置した。   First, the mixed powder as the raw material powder 21 was filled in a carbon crucible as the heat-resistant container 22, and a mixed powder compact of titanium and carbon was placed as an igniter 25 on the upper end of the filled mixed powder. At this time, as the igniting agent 25, a mixed powder for an igniting material mixed so that Ti: C was 1: 1 at a molar ratio was used. The heat-resistant container 22 was installed in the high-pressure container that is the pressure-resistant container 23 so that the carbon heater that is the heater 26 is positioned above the igniting agent 25.

次に、耐圧性容器23内を図示しない真空ポンプで真空引きした後、耐圧性容器23内に窒素を5気圧の圧力まで充填した。そして、ヒータ26を加熱して着火剤25を燃焼させ、TiC生成時に生ずる熱でケイ素の自己燃焼反応を励起させた。原料粉末21であるケイ素と窒化ケイ素の混合粉末は5分程度燃焼した。なお、本実験においては、燃焼により消費される窒素が容器内に充填した窒素に比べて小さく、冷却後においても耐熱性容器内の圧力はほぼ5気圧であった。そして、冷却後に耐圧性容器23から得られた燃焼生成物を取り出した。   Next, after evacuating the pressure-resistant container 23 with a vacuum pump (not shown), the pressure-resistant container 23 was filled with nitrogen up to a pressure of 5 atm. Then, the heater 26 was heated to burn the igniter 25, and the self-combustion reaction of silicon was excited by the heat generated when TiC was generated. The mixed powder of silicon and silicon nitride as the raw material powder 21 burned for about 5 minutes. In this experiment, the nitrogen consumed by combustion was smaller than the nitrogen charged in the container, and the pressure in the heat-resistant container was approximately 5 atm even after cooling. And the combustion product obtained from the pressure-resistant container 23 after cooling was taken out.

得られた燃焼生成物である凝結塊をアルミナ製乳鉢と乳棒で粉砕し、60メッシュの篩を用いて篩通しを行い、窒化ケイ素フィラーを作製した。   The agglomerated mass obtained as a combustion product was pulverized with an alumina mortar and pestle and sieved using a 60 mesh sieve to produce a silicon nitride filler.

得られた窒化ケイ素フィラーについて以下のように分析を行った。   The obtained silicon nitride filler was analyzed as follows.

図3(a)、(b)に得られた窒化ケイ素フィラーの走査型電子顕微鏡写真を示す。図3(a)、(b)から、短軸径1μm程度の柱状形状の窒化ケイ素粒子が強固に凝集して大きさ数十μmの凝結粒子を形成していることが確認できた。   FIGS. 3A and 3B show scanning electron micrographs of the silicon nitride filler obtained. 3A and 3B, it was confirmed that the columnar silicon nitride particles having a minor axis diameter of about 1 μm were strongly aggregated to form aggregated particles having a size of several tens of μm.

また、X線粉末回折で合成物はβ−Si単一相であることが確認できた。 Further, it was confirmed by X-ray powder diffraction that the synthesized product was a β-Si 3 N 4 single phase.

不活性ガス中で加熱融解法を用いた酸素・窒素同時分析装置(LECO社製 型式:TC−436)により、不純物酸素量を測定した結果、0.29mass%であった。   It was 0.29 mass% as a result of measuring the amount of impurity oxygen with an oxygen / nitrogen simultaneous analyzer (type: TC-436, manufactured by LECO) using a heat melting method in an inert gas.

レーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製 型式:LA−920)を用いて、窒化ケイ素フィラーの粒径分布を測定した。図4に得られた窒化ケイ素フィラーの粒子径の頻度分布を示す。また、表1に測定結果を示す。表1に示したように、窒化ケイ素フィラーの平均粒子径(メジアン径)は29μm、5μm以上200μm以下の粒子径を有する粒子の体積比率は98体積%であった。   The particle size distribution of the silicon nitride filler was measured using a laser diffraction / scattering particle size distribution measuring apparatus (Model: LA-920, manufactured by Horiba, Ltd.). FIG. 4 shows the frequency distribution of the particle size of the silicon nitride filler obtained. Table 1 shows the measurement results. As shown in Table 1, the average particle diameter (median diameter) of the silicon nitride filler was 29 μm, and the volume ratio of particles having a particle diameter of 5 μm or more and 200 μm or less was 98% by volume.

次に、得られた窒化ケイ素フィラーにエポキシ樹脂を加え、自転公転ミキサー(シンキ株式会社製 型式:ARE−310)で撹拌、脱泡を各2分間ずつ行った。なお、エポキシ樹脂と窒化ケイ素フィラーの混合比率は体積比率で、エポキシ樹脂:窒化ケイ素フィラー=45:55とした。そして、撹拌、脱泡を行った窒化ケイ素フィラーとエポキシ樹脂の混合物に、硬化剤を加え、自転公転ミキサーで再度、撹拌、脱泡を各2分間ずつ行った。 Next, an epoxy resin was added to the obtained silicon nitride filler, and stirring and defoaming were performed for 2 minutes each with a rotation and revolution mixer (model: ARE-310, manufactured by Shinki Co., Ltd.). The mixing ratio of the epoxy resin and the silicon nitride filler was a volume ratio, and epoxy resin: silicon nitride filler = 45: 55. And the hardening | curing agent was added to the mixture of the silicon nitride filler and epoxy resin which performed stirring and defoaming, and stirring and defoaming were again performed for 2 minutes each with the autorotation revolution mixer.

得られた窒化ケイ素フィラーとエポキシ樹脂との混合物を金型(直径11.7mm)に移し、120℃、2時間、約170MPaで圧縮加熱した。加熱後、金型から取り出し、室温で放冷して複合体、すなわち、樹脂複合物を得た。   The resulting mixture of silicon nitride filler and epoxy resin was transferred to a mold (diameter 11.7 mm) and compressed and heated at about 170 MPa at 120 ° C. for 2 hours. After heating, it was removed from the mold and allowed to cool at room temperature to obtain a composite, that is, a resin composite.

作製した樹脂複合物についてレーザーフラッシュ法による熱定数測定装置(株式会社アルバック製、型式:TC−3000)により比熱(Cp)と熱拡散率(α)を測定した。また、アルキメデス法により密度(ρ)の測定を行った。熱伝導率kは、以下の式1により算出した。

k=ρ×Cp×α ・・・ (式1)
測定結果を表2に示す。表2に示すように、樹脂複合物の熱伝導率は5.0W/(m・K)と高い熱伝導率を有することが確認できた。
Specific heat (Cp) and thermal diffusivity (α) of the resin composite thus prepared were measured using a laser flash method thermal constant measuring device (manufactured by ULVAC, Inc., model: TC-3000). Further, the density (ρ) was measured by the Archimedes method. The thermal conductivity k was calculated by the following formula 1.

k = ρ × Cp × α (Formula 1)
The measurement results are shown in Table 2. As shown in Table 2, it was confirmed that the resin composite had a high thermal conductivity of 5.0 W / (m · K).

[実施例2]
実施例1と同じ燃焼合成プロセスで窒化ケイ素凝結塊を作製した。得られた凝結塊をアルミナ製乳鉢と乳棒で粉砕し、50メッシュの篩を用いて篩通しを行った。実施例1と同様にして不純物酸素量を測定した結果、0.28mass%であった。
[Example 2]
A silicon nitride agglomerate was produced by the same combustion synthesis process as in Example 1. The obtained agglomerated mass was pulverized with an alumina mortar and pestle and sieved using a 50 mesh sieve. The amount of impurity oxygen was measured in the same manner as in Example 1. As a result, it was 0.28 mass%.

また、実施例1と同様にして、窒化ケイ素フィラーの粒径分布を測定した。図5にフィラーの粒径の頻度分布を示す。また、表1に測定結果を示す。表1に示したように窒化ケイ素フィラーのメジアン径は77μm、5μm以上200μm以下の粒子径を有する粒子の体積比率は98体積%であった。また、走査型電子顕微鏡で確認したところ、凝結粒子が柱状形状の窒化ケイ素粒子を含んでいることが確認できた。   Further, in the same manner as in Example 1, the particle size distribution of the silicon nitride filler was measured. FIG. 5 shows the frequency distribution of the particle size of the filler. Table 1 shows the measurement results. As shown in Table 1, the median diameter of the silicon nitride filler was 77 μm, and the volume ratio of particles having a particle diameter of 5 μm or more and 200 μm or less was 98% by volume. Further, when confirmed with a scanning electron microscope, it was confirmed that the condensed particles contained columnar silicon nitride particles.

得られた窒化ケイ素フィラーを用いて、実施例1と同じ手順、条件でエポキシ樹脂との樹脂複合物を作製した。作製された樹脂複合物について実施例1と同様にして比熱、熱拡散率、密度を測定し、熱伝導率を算出した。その結果、表2に示すように、樹脂複合物の熱伝導率は3.7W/(m・K)と高い熱伝導率を有することが確認できた。
[実施例3]
実施例1と同じ燃焼合成プロセスで窒化ケイ素凝結塊を作製した。得られた凝結塊をアルミナ製乳鉢と乳棒で粉砕し、150メッシュの篩を用いて篩通しを行った。実施例1と同様にして不純物酸素量を測定した結果、0.30mass%であった。
Using the obtained silicon nitride filler, a resin composite with an epoxy resin was produced in the same procedure and conditions as in Example 1. The produced resin composite was measured for specific heat, thermal diffusivity, and density in the same manner as in Example 1, and the thermal conductivity was calculated. As a result, as shown in Table 2, it was confirmed that the resin composite had a high thermal conductivity of 3.7 W / (m · K).
[Example 3]
A silicon nitride agglomerate was produced by the same combustion synthesis process as in Example 1. The resulting agglomerated mass was pulverized with an alumina mortar and pestle and sieved using a 150 mesh sieve. As a result of measuring the amount of impurity oxygen in the same manner as in Example 1, it was 0.30 mass%.

また、実施例1と同様にして、窒化ケイ素フィラーの粒径分布を測定した。図5にフィラーの粒径の頻度分布を示す。また、表1に測定結果を示す。表1に示したように窒化ケイ素フィラーのメジアン径は26μm、5μm以上200μm以下の粒子径を有する粒子の体積比率は99体積%であった。また、走査型電子顕微鏡で確認したところ、凝結粒子が柱状形状の窒化ケイ素粒子を含んでいることが確認できた。   Further, in the same manner as in Example 1, the particle size distribution of the silicon nitride filler was measured. FIG. 5 shows the frequency distribution of the particle size of the filler. Table 1 shows the measurement results. As shown in Table 1, the median diameter of the silicon nitride filler was 26 μm, and the volume ratio of particles having a particle diameter of 5 μm to 200 μm was 99% by volume. Further, when confirmed with a scanning electron microscope, it was confirmed that the condensed particles contained columnar silicon nitride particles.

得られた窒化ケイ素フィラーを用いて、実施例1と同じ手順、条件でエポキシ樹脂との樹脂複合物を作製した。作製された樹脂複合物について実施例1と同様にして比熱、熱拡散率、密度を測定し、熱伝導率を算出した。その結果、表2に示すように、樹脂複合物の熱伝導率は3.3W/(m・K)と高い熱伝導率を有することが確認できた。
[比較例1]
市販のβ−Si粉末(電気化学工業株式会社製 SN−F1グレード)について、実施例1と同様に評価を行い、さらに、該β−Si粉末を用いて実施例1と同様に樹脂との樹脂複合物を作製した。なお、係るβ−Si粉末はカタログ値によると、平均粒子径2.3μm、比表面積3m/gであった。
Using the obtained silicon nitride filler, a resin composite with an epoxy resin was produced in the same procedure and conditions as in Example 1. The produced resin composite was measured for specific heat, thermal diffusivity, and density in the same manner as in Example 1, and the thermal conductivity was calculated. As a result, as shown in Table 2, it was confirmed that the resin composite had a high thermal conductivity of 3.3 W / (m · K).
[Comparative Example 1]
Commercially available β-Si 3 N 4 powder (manufactured by Denki Kagaku Kogyo Co., Ltd., SN-F1 grade) was evaluated in the same manner as in Example 1, and further with Example 1 using the β-Si 3 N 4 powder. Similarly, a resin composite with resin was prepared. In addition, according to the catalog value, the β-Si 3 N 4 powder had an average particle diameter of 2.3 μm and a specific surface area of 3 m 2 / g.

まず、係るβ−Si粉末について、実施例1と同様に、走査型電子顕微鏡による観察、粒径分布の測定、不純物酸素量の定量評価を行った。結果を表1に示す。また、図7に粉末の走査型電子顕微鏡写真を、図8に実施例1と同様にして測定したβ−Si粉末の粒子径の頻度分布をそれぞれ示す。 First, the β-Si 3 N 4 powder was subjected to observation with a scanning electron microscope, measurement of particle size distribution, and quantitative evaluation of the amount of impurity oxygen in the same manner as in Example 1. The results are shown in Table 1. FIG. 7 shows a scanning electron micrograph of the powder, and FIG. 8 shows the frequency distribution of the particle diameter of the β-Si 3 N 4 powder measured in the same manner as in Example 1.

図7に示すように、粉末は粒径数ミクロンの程度の球状あるいは柱状の形状を持つ粒子よりなり、粒子が凝結した構造は認められない。また、表1にまとめたようにβ−Si粉末のメジアン径は、4.5μm、5μm以上200μm以下の粒子径を有する粒子の体積比率は37体積%であった。不純物酸素量は1.81mass%であった。 As shown in FIG. 7, the powder is composed of particles having a spherical or columnar shape with a particle size of several microns, and a structure in which the particles are condensed is not recognized. Moreover, as summarized in Table 1, the median diameter of the β-Si 3 N 4 powder was 4.5 μm, and the volume ratio of particles having a particle diameter of 5 μm or more and 200 μm or less was 37% by volume. The amount of impurity oxygen was 1.81 mass%.

そして、実施例1と同様の手順、条件でエポキシ樹脂とβ−Si粉末との樹脂複合物を作製した。作製された樹脂複合物について実施例1と同様にして熱伝導率を測定したところ、表2に示すように、樹脂複合物の熱伝導率は1.5W/(m・K)であり、実施例1から3の樹脂複合物と比べて熱伝導率は約1/2から1/3程度低かった。 Then, the procedure as in Example 1, to prepare a resin composite of an epoxy resin and β-Si 3 N 4 powder conditions. When the thermal conductivity of the produced resin composite was measured in the same manner as in Example 1, as shown in Table 2, the thermal conductivity of the resin composite was 1.5 W / (m · K). Compared to the resin composites of Examples 1 to 3, the thermal conductivity was about 1/2 to 1/3 lower.

以上、実施例、比較例について説明してきたが、実施例1〜3と比較例1とを比較すると明らかなように、実施例1〜3においては、樹脂との複合物とした場合に熱伝導率が高くなることが確認できた。これは、窒化ケイ素フィラーに含まれる凝結粒子が所定の粒径分布を有し、柱状形状の窒化ケイ素粒子を含むため、窒化ケイ素フィラーの樹脂等への分散性が高くなり、さらには、窒化ケイ素フィラー間での熱伝導のパスが増えたためと考えられる。   As mentioned above, although an Example and a comparative example were demonstrated, in Examples 1-3, when it makes it a composite with resin so that it is clear when comparing Examples 1-3 with Comparative Example 1, heat conduction is carried out. It was confirmed that the rate increased. This is because the condensed particles contained in the silicon nitride filler have a predetermined particle size distribution and contain columnar-shaped silicon nitride particles, so that the dispersibility of the silicon nitride filler in a resin or the like is increased. This is probably because the number of heat conduction paths between fillers has increased.

22 耐熱性容器 22 Heat resistant container

Claims (6)

粒子径が5μm以上200μm以下の凝結粒子であって、柱状形状の窒化ケイ素粒子を含む凝結粒子を50体積%以上含む窒化ケイ素フィラー。   A silicon nitride filler having a particle diameter of 5 μm or more and 200 μm or less and 50% by volume or more of condensed particles containing columnar silicon nitride particles. 前記窒化ケイ素フィラーは酸素含有量が1mass%以下であり、前記窒化ケイ素フィラーに含まれる窒化ケイ素の結晶相は、α相よりもβ相の比率が高い請求項1に記載の窒化ケイ素フィラー。   2. The silicon nitride filler according to claim 1, wherein the silicon nitride filler has an oxygen content of 1 mass% or less, and a crystal phase of silicon nitride contained in the silicon nitride filler has a higher β-phase ratio than an α-phase. ケイ素、または、ケイ素と窒化ケイ素との混合物、を耐熱性容器に充填する工程と、
1気圧以上の窒素を含む非酸化性雰囲気中で自己燃焼反応により窒化ケイ素の凝結塊を作製する工程と、
前記窒化ケイ素の凝結塊を粉砕する工程と、を有する製造方法により得られた請求項1または2に記載の窒化ケイ素フィラー。
Filling a heat-resistant container with silicon or a mixture of silicon and silicon nitride;
Producing a silicon nitride coagulum by a self-combustion reaction in a non-oxidizing atmosphere containing nitrogen of 1 atm or higher;
The silicon nitride filler according to claim 1, obtained by a production method comprising: crushing the silicon nitride agglomerates.
請求項1乃至3いずれか一項に記載の窒化ケイ素フィラーと、樹脂組成物と、を含む樹脂複合物。   The resin composite containing the silicon nitride filler as described in any one of Claims 1 thru | or 3, and a resin composition. 請求項4に記載の樹脂複合物を含む絶縁基板。   An insulating substrate comprising the resin composite according to claim 4. 請求項4に記載の樹脂複合物を含む半導体封止材。
The semiconductor sealing material containing the resin compound of Claim 4.
JP2013218602A 2013-10-21 2013-10-21 Silicon nitride filler, resin composite, insulating substrate, semiconductor encapsulant, method for producing silicon nitride filler Active JP6245602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013218602A JP6245602B2 (en) 2013-10-21 2013-10-21 Silicon nitride filler, resin composite, insulating substrate, semiconductor encapsulant, method for producing silicon nitride filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013218602A JP6245602B2 (en) 2013-10-21 2013-10-21 Silicon nitride filler, resin composite, insulating substrate, semiconductor encapsulant, method for producing silicon nitride filler

Publications (2)

Publication Number Publication Date
JP2015081205A true JP2015081205A (en) 2015-04-27
JP6245602B2 JP6245602B2 (en) 2017-12-13

Family

ID=53012015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013218602A Active JP6245602B2 (en) 2013-10-21 2013-10-21 Silicon nitride filler, resin composite, insulating substrate, semiconductor encapsulant, method for producing silicon nitride filler

Country Status (1)

Country Link
JP (1) JP6245602B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216318A (en) * 2015-05-25 2016-12-22 Dic株式会社 MANUFACTURING METHOD OF COAGULATED β TYPE SILICON NITRIDE, COAGULATED β TYPE SILICON NITRIDE, RESIN COMPOSITION CONTAINING THE SAME, AND THERMAL CONDUCTIVE MATERIAL
KR20170076542A (en) 2015-12-24 2017-07-04 주식회사 엘지화학 METHOD OF PRODUCING α-SILICON NITRIDE
WO2018110564A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Silicon nitride powder and method for producing silicon nitride sintered body
WO2018110560A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
WO2018110565A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Method for producing high-purity silicon nitride powder
WO2018110567A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Silicon nitride powder, mold release agent for polycrystalline silicon ingots, and method for producing polycrystalline silicon ingots
WO2019167879A1 (en) * 2018-02-28 2019-09-06 株式会社トクヤマ Method for manufacturing silicon nitride powder
WO2020194974A1 (en) * 2019-03-22 2020-10-01 株式会社フジミインコーポレーテッド Filler, molded body, heat dissipating material
JP2022522311A (en) * 2019-03-18 2022-04-15 青島瓷興新材料有限公司 Ultra-purity, low-radioactive spherical silicon nitride powder, its manufacturing method and applications
JP7353994B2 (en) 2020-01-17 2023-10-02 株式会社トクヤマ Silicon nitride manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761206A (en) * 2019-03-18 2019-05-17 青岛瓷兴新材料有限公司 A kind of spherical beta silicon nitride powder of high-purity low aluminium, its manufacturing method and application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223218A (en) * 1986-03-25 1987-10-01 Toshiba Corp Epoxy resin composition and resin-sealed semiconductor device sealed therewith
JPS63239104A (en) * 1986-12-11 1988-10-05 Sumitomo Chem Co Ltd Production of fine silicon nitride powder containing beta-phase
JPH1067562A (en) * 1996-08-22 1998-03-10 Agency Of Ind Science & Technol Production of porous ceramic having silicon nitride-based fibrous texture
JPH11100274A (en) * 1997-09-26 1999-04-13 Denki Kagaku Kogyo Kk Silicon nitride sintered compact, its production and circuit board
JPH11268903A (en) * 1998-03-24 1999-10-05 Denki Kagaku Kogyo Kk Silicon nitride-based filler and resin composition for sealing semiconductor
JP2000169118A (en) * 1998-12-01 2000-06-20 Mitsubishi Heavy Ind Ltd Silicon nitride powder and its production
JP2011079729A (en) * 2009-09-14 2011-04-21 Osaka Univ beta-Si3N4 NANOWIRE, METHOD FOR PRODUCTION OF THE SAME, AND RESIN COMPOSITION USING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223218A (en) * 1986-03-25 1987-10-01 Toshiba Corp Epoxy resin composition and resin-sealed semiconductor device sealed therewith
JPS63239104A (en) * 1986-12-11 1988-10-05 Sumitomo Chem Co Ltd Production of fine silicon nitride powder containing beta-phase
JPH1067562A (en) * 1996-08-22 1998-03-10 Agency Of Ind Science & Technol Production of porous ceramic having silicon nitride-based fibrous texture
JPH11100274A (en) * 1997-09-26 1999-04-13 Denki Kagaku Kogyo Kk Silicon nitride sintered compact, its production and circuit board
JPH11268903A (en) * 1998-03-24 1999-10-05 Denki Kagaku Kogyo Kk Silicon nitride-based filler and resin composition for sealing semiconductor
JP2000169118A (en) * 1998-12-01 2000-06-20 Mitsubishi Heavy Ind Ltd Silicon nitride powder and its production
JP2011079729A (en) * 2009-09-14 2011-04-21 Osaka Univ beta-Si3N4 NANOWIRE, METHOD FOR PRODUCTION OF THE SAME, AND RESIN COMPOSITION USING THE SAME

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216318A (en) * 2015-05-25 2016-12-22 Dic株式会社 MANUFACTURING METHOD OF COAGULATED β TYPE SILICON NITRIDE, COAGULATED β TYPE SILICON NITRIDE, RESIN COMPOSITION CONTAINING THE SAME, AND THERMAL CONDUCTIVE MATERIAL
KR20170076542A (en) 2015-12-24 2017-07-04 주식회사 엘지화학 METHOD OF PRODUCING α-SILICON NITRIDE
JPWO2018110560A1 (en) * 2016-12-12 2019-07-04 宇部興産株式会社 Silicon nitride powder, mold release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
WO2018110560A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Silicon nitride powder, release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
WO2018110565A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Method for producing high-purity silicon nitride powder
WO2018110567A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Silicon nitride powder, mold release agent for polycrystalline silicon ingots, and method for producing polycrystalline silicon ingots
JPWO2018110567A1 (en) * 2016-12-12 2019-06-24 宇部興産株式会社 Silicon nitride powder, mold release agent for polycrystalline silicon ingot, and method for producing polycrystalline silicon ingot
JPWO2018110564A1 (en) * 2016-12-12 2019-06-27 宇部興産株式会社 Silicon nitride powder and method of manufacturing sintered silicon nitride
WO2018110564A1 (en) * 2016-12-12 2018-06-21 宇部興産株式会社 Silicon nitride powder and method for producing silicon nitride sintered body
WO2019167879A1 (en) * 2018-02-28 2019-09-06 株式会社トクヤマ Method for manufacturing silicon nitride powder
KR20200127178A (en) * 2018-02-28 2020-11-10 가부시끼가이샤 도꾸야마 Method for producing silicon nitride powder
JPWO2019167879A1 (en) * 2018-02-28 2021-02-12 株式会社トクヤマ Method for manufacturing silicon nitride powder
JP7358331B2 (en) 2018-02-28 2023-10-10 株式会社トクヤマ Method for manufacturing silicon nitride powder
KR102643831B1 (en) 2018-02-28 2024-03-07 가부시끼가이샤 도꾸야마 Method for producing silicon nitride powder
JP2022522311A (en) * 2019-03-18 2022-04-15 青島瓷興新材料有限公司 Ultra-purity, low-radioactive spherical silicon nitride powder, its manufacturing method and applications
WO2020194974A1 (en) * 2019-03-22 2020-10-01 株式会社フジミインコーポレーテッド Filler, molded body, heat dissipating material
JP7353994B2 (en) 2020-01-17 2023-10-02 株式会社トクヤマ Silicon nitride manufacturing method

Also Published As

Publication number Publication date
JP6245602B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6245602B2 (en) Silicon nitride filler, resin composite, insulating substrate, semiconductor encapsulant, method for producing silicon nitride filler
JP7069314B2 (en) Bulked boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat dissipation member
JP2024003261A (en) Boron nitride aggregated particle, method for producing boron nitride aggregated particle, resin composition containing boron nitride aggregated particle, and molding
KR101659700B1 (en) A novel method for the production of aluminum nitride and aluminum nitride-based composite substances
EP3696140B1 (en) Boron nitride powder, method for producing same, and heat-dissipating member produced using same
JP4762892B2 (en) α-sialon and method for producing the same
JP5602480B2 (en) Method for producing alumina particles provided with AlN modified layer
JP6690734B2 (en) Method for producing silicon nitride powder and silicon nitride sintered body
JP6364883B2 (en) Boron nitride particles, boron nitride particle manufacturing method, heat-dissipating sheet coating solution containing boron nitride particles, heat-dissipating sheet containing boron nitride particles, and power device device
JP6500339B2 (en) Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device
TW201605763A (en) Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
WO2020145304A1 (en) Spherical aln particle production method and spherical aln particles
JP2006045271A (en) alpha-SIALON POWDER AND ITS MANUFACTURING METHOD
JP2019073409A (en) Method for producing bulk boron nitride powder and heat radiation member using the same
TW201829299A (en) Method for producing high-purity silicon nitride powder
JP2017036190A (en) Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
JP6256158B2 (en) Heat dissipation sheet and heat dissipation sheet manufacturing method, slurry for heat dissipation sheet, and power device device
TW202039359A (en) Method for producing granular boron nitride and granular boron nitride
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
JP4123388B2 (en) Zinc antimony compound sintered compact
JP2022178471A (en) Boron nitride powder, method of producing boron nitride powder, and resin composition
JP3704556B2 (en) Method for producing zinc antimony compound
JP3564541B2 (en) Sintered zinc antimony compound and method for producing the same
WO2021200868A1 (en) Silicon nitride powder and method for producing silicon nitride sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171108

R150 Certificate of patent or registration of utility model

Ref document number: 6245602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250