WO2006103930A1 - Method for producing material containing aluminum nitride - Google Patents

Method for producing material containing aluminum nitride Download PDF

Info

Publication number
WO2006103930A1
WO2006103930A1 PCT/JP2006/305138 JP2006305138W WO2006103930A1 WO 2006103930 A1 WO2006103930 A1 WO 2006103930A1 JP 2006305138 W JP2006305138 W JP 2006305138W WO 2006103930 A1 WO2006103930 A1 WO 2006103930A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
heat treatment
aluminum
containing material
nitride
Prior art date
Application number
PCT/JP2006/305138
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Seimiya
Original Assignee
Tama-Tlo Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama-Tlo Ltd. filed Critical Tama-Tlo Ltd.
Priority to JP2007510377A priority Critical patent/JP5181329B2/en
Publication of WO2006103930A1 publication Critical patent/WO2006103930A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium

Definitions

  • the present invention relates to a method for producing an aluminum nitride-containing material, and particularly relates to a method for producing a massive aluminum nitride-containing material or powdered aluminum nitride.
  • Aluminum nitride is a material having excellent properties such as high thermal conductivity, low thermal expansion coefficient and low chemical stability. Therefore, in recent years, it is expected to be applied to various fields such as semiconductor devices and engine members.
  • Non-Patent Document 1 discloses a study on the production of aluminum nitride.
  • Non-Patent Document 1 Jun Kobashi, Kenzo Saiki et al., The 104th Annual Meeting of the Japan Institute of Light Metals (2003) 2.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing an aluminum nitride-containing material at a low production cost.
  • the method for producing an aluminum nitride-containing material according to the present invention comprises aluminum and nitrogen in a nitrogen atmosphere.
  • a first heat treatment step for producing an aluminum nitride-containing material containing aluminum nitride by heating the nitride in the same container to melt the aluminum is provided.
  • the aluminum nitride-containing material can be agglomerated and can be powdered
  • the nitride is preferably in the form of powder.
  • the nitride is at least one selected from the group force of, for example, boron nitride, magnesium nitride, or calcium nitride force.
  • the heat treatment temperature in the first heat treatment step is preferably 900 ° C or higher and 1400 ° C or lower.
  • the nitrogen gas atmosphere is preferably a pressurized atmosphere. In this case, the nitrogen gas atmosphere may be 50 atm or less.
  • the method further includes a second heat treatment step after the first heat treatment step, in which the aluminum nitride-containing material is cooled and then heat-treated again in a nitrogen gas atmosphere.
  • the aluminum nitride-containing material contains aluminum nitride and aluminum.
  • the second heat treatment the aluminum nitride content of the aluminum nitride-containing material is increased and the aluminum content is reduced. descend.
  • the nitrogen gas atmosphere is preferably a pressurized atmosphere.
  • the nitrogen gas atmosphere may be 50 atm or less.
  • the second heat treatment step is performed under conditions that facilitate the nitriding reaction of A1 than the first heat treatment step.
  • the heat treatment temperature in the second heat treatment step is preferably equal to or higher than the heat treatment temperature in the first heat treatment step.
  • the heat treatment temperature in the first heat treatment step is preferably 900 ° C. or more and 1200 ° C. or less, and the heat treatment temperature in the second heat treatment step is preferably 1100 ° C. or more and 1200 ° C. or less. In this way, the characteristics of the aluminum nitride-containing material can be improved.
  • the aluminum nitride content can be increased even under low temperature and low pressure conditions.
  • Another method for producing an aluminum nitride-containing material according to the present invention is to heat aluminum and nitride in the same container under an inert gas atmosphere to melt the aluminum.
  • a massive aluminum nitride-containing material containing aluminum nitride and aluminum is produced.
  • an aluminum nitride-containing composition of the present invention it is possible to produce an aluminum nitride-containing material without increasing the pressure to a very high pressure and at a temperature as high as 1600 ° C.
  • a massive aluminum nitride-containing material can be produced directly. For this reason, a manufacturing cost becomes remarkably low.
  • FIG. 1 is a configuration diagram of a carbon resistance furnace which is a manufacturing apparatus used in an aluminum nitride manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is an X-ray diffraction chart obtained in Example 1.
  • FIG. 3 is an energy dispersive X-ray analysis chart obtained in Example 1.
  • FIG. 4 is a differential thermal analysis chart obtained in Example 2.
  • FIG. 5 is a view showing the state of the aluminum nitride-containing composition when the atmospheric nitrogen gas pressure and the heat treatment temperature are variously changed in Example 4.
  • FIG. 6 is a diagram showing the state of the aluminum nitride-containing composition when the atmospheric nitrogen gas pressure and the heat treatment temperature are variously changed in Example 5.
  • FIG. 7 is an X-ray diffraction chart obtained in Example 6.
  • FIG. 8 is an X-ray diffraction chart obtained in Example 6.
  • FIG. 9 is an X-ray diffraction chart obtained in Example 6.
  • FIG. 10 is an X-ray diffraction chart obtained in Example 6.
  • FIG. 11 is a graph showing the relationship between the atmospheric nitrogen pressure in the second heat treatment and the A1N volume fraction in the aluminum nitride-containing material.
  • FIG. 12 is an X-ray diffraction chart obtained in Example 7.
  • FIG. 13 is a graph showing the results of average thermal expansion examined in Example 8.
  • FIG. 14 is a graph showing the coefficient of thermal expansion obtained in Example 9.
  • FIG. 15 is a graph showing the electrical conductivity obtained in Example 10.
  • FIG. 16 is a graph showing the micro Vickers hardness obtained in Example 11.
  • FIG. 17 is a graph showing the thermal conductivity obtained in Example 12.
  • FIG. 18 is a graph showing the relationship between the number of second heat treatments and the aluminum nitride content.
  • FIG. 19 is an SEM photograph of the aluminum nitride-containing material after aluminum is melted.
  • FIG. 1 is a configuration diagram of a single-bonn resistance furnace used in the method for producing an aluminum nitride-containing material according to the first embodiment.
  • This carbon resistance furnace has a reaction chamber 10.
  • the reaction chamber 10 is provided with an exhaust port (not shown) and a gas inlet port 11.
  • a graph eye heater 13 for heating the crucible 12 is provided in the reaction chamber 110. Since the crucible 12 is provided with a thermocouple, the temperature of the crucible 12 can be monitored outside the reaction chamber 10 through the monitor wire 14.
  • the nitride 20 may be a force other nitride such as hexagonal boron nitride (eg, magnesium nitride (Mg N) or calcium nitride (Ca N;)). Boron nitride, nitrogen
  • Magnesium halide and calcium nitride strength group strength may be a mixture of two or more selected.
  • the nitride 20 is positioned below the aluminum.
  • Nitride 20 Or you can stack multiple layers of aluminum and aluminum 21 alternately.
  • the weight ratio of nitride 20 to aluminum is preferably 0.1 or more and 1 or less.
  • the inside of the reaction chamber 10 is evacuated from the exhaust port, and then nitrogen gas is also introduced into the gas inlet 11. As a result, the inside of the reaction chamber 10 becomes a nitrogen atmosphere.
  • the pressure of nitrogen gas inside the reaction chamber 10 is, for example, 5 to 50 atmospheres in a pressurized atmosphere.
  • the crucible 12 is heated by the graph eye heater 13, and the inside of the crucible 12 is heated to a melting point (660 ° C.) or higher of aluminum, preferably 900 ° C. to 1400 ° C.
  • a melting point 660 ° C.
  • aluminum preferably 900 ° C. to 1400 ° C.
  • the aluminum 21 in the crucible 12 is melted, and a solid-liquid two-phase reaction occurs between the molten aluminum 21 and the solid phase nitride 20.
  • nitrogen in the atmosphere also reacts.
  • the nitriding reaction of aluminum proceeds, and an aluminum nitride-containing material and slag are formed (hereinafter referred to as first heat treatment).
  • the nitride 20 other than nitrogen (for example, boron, magnesium, or calcium) is considered to function as a catalyst.
  • the rate at which this nitriding reaction proceeds can be controlled by the processing temperature and the pressure of the atmospheric nitrogen.
  • the nitride 20 other than nitrogen (for example, boron, magnesium, or calcium) hardly exists in the aluminum nitride-containing material.
  • Nitride 20 other than nitrogen (for example, boron, magnesium, or calcium) is considered to be included in the slag.
  • the nitride 20 when the nitride 20 is positioned below the aluminum 21 inside the crucible 12, the molten aluminum 21 penetrates between the powdered nitrides 20. For this reason, the formation reaction of aluminum nitride proceeds efficiently. In addition, since aluminum nitride has a higher specific gravity than aluminum, the produced aluminum nitride is precipitated, and the nitriding reaction of aluminum proceeds above the aluminum nitride.
  • the aluminum nitride content varies depending on the processing conditions of the first heat treatment, such as the processing temperature, the pressure of atmospheric nitrogen, the reaction time, and the ratio of boron nitride to aluminum. Can make different states of inclusions [0026] For example, under predetermined processing conditions, an aluminum nitride-containing material in which a plurality of aluminum nitride particles are bonded by aluminum is obtained in the form of aggregated coalescence (balta), that is, a lump.
  • balta aggregated coalescence
  • the obtained aluminum nitride-containing material has a force in which a plurality of aluminum nitride particles are filled with aluminum, or a network-like or network-grown aluminum nitride is filled with aluminum. Therefore, the porosity is 1. / 0 or less. As described above, the porosity is significantly reduced as compared with the aluminum nitride-containing material obtained by the sintering method, and a balta-like aluminum nitride-containing material can be obtained in a state close to a metal. Note that aluminum located between the network-like or network-like grown aluminum nitrides may contain aluminum nitride particles without forming a network.
  • the aluminum content is 40% or more and 70 or less, the workability of the obtained aluminum nitride-containing material is improved. In addition, when the aluminum content is 20% or less, the mechanical properties (hardness, etc.) of aluminum nitride are high. In addition, when the aluminum content is 5% or less, the characteristics (including thermal conductivity and resistance) of the obtained aluminum nitride-containing material are close to those of pure A1N.
  • the aluminum nitride-containing material When the aluminum contained in the aluminum nitride-containing material is below a certain value, the aluminum nitride-containing material becomes a mixture of agglomerated coal (balta) and a powdered material. As the proportion decreases, the product becomes powdery.
  • the powdered product is high-purity aluminum nitride as shown in the following examples. The powder form is considered to be because there is almost no unreacted A1.
  • the crystal structure of aluminum nitride contained in the aluminum nitride-containing material can be controlled by the pressure of atmospheric nitrogen.
  • the method for producing an aluminum nitride-containing material according to the present invention a massive aluminum nitride-containing material can be easily obtained.
  • the properties of the obtained aluminum nitride-containing material vary depending on the proportion of aluminum.
  • the proportion of aluminum is high When the processability of aluminum nitride-containing materials is improved and the proportion of aluminum is low
  • the characteristics of aluminum nitride inclusions are close to those of A1N.
  • the surfaces of the aluminum nitride particles are covered with aluminum, good moisture resistance can be obtained.
  • the manufacturing conditions are low temperature and low pressure as compared with the conventional method. Therefore, the manufacturing cost is significantly lower than the conventional one. Also, the ability to produce powdered aluminum nitride by adjusting the production conditions. In this case as well, the production conditions are lower and lower pressure than in the past, so the production cost is lower than in the past. Greatly reduced.
  • the bulk aluminum nitride-containing material is produced by the first heat treatment shown in the first embodiment, and the obtained aluminum nitride-containing material is used.
  • the aluminum nitride-containing material is further reheated (hereinafter referred to as second heat treatment) in a nitrogen gas atmosphere.
  • the aluminum nitride is cooled by furnace cooling, for example.
  • the second heat treatment is performed using, for example, the carbon resistance furnace used in the first heat treatment.
  • the second heat treatment is preferably performed under conditions that facilitate the nitriding reaction of aluminum than the first heat treatment.
  • the nitridation reaction of aluminum is an exothermic reaction, so if the first heat treatment is performed under conditions that facilitate the nitridation reaction of aluminum, the nucleation of aluminum nitride proceeds rapidly during the first heat treatment, This is because aluminum nitride is difficult to form a network.
  • the heat treatment temperature in the second heat treatment is preferably equal to or higher than the heat treatment temperature in the first heat treatment.
  • the heat treatment temperature in the first heat treatment is preferably 900 ° C. or higher and 1200 ° C. or lower
  • the heat treatment temperature in the second heat treatment is preferably 1100 ° C. or higher and 1200 ° C. or lower.
  • the pressure of the nitrogen gas atmosphere in the second heat treatment is preferably a pressurized atmosphere, for example, 5 atm or more and 50 atm or less.
  • the processing conditions specifically, temperature and pressure.
  • the proportion of aluminum nitride contained in the aluminum nitride-containing product can be increased and the proportion of aluminum can be decreased. If the nitridation reaction of aluminum proceeds excessively, the aluminum nitride-containing material becomes a mixture of agglomerated (balta) -like material and a powder-like material, and further powdery.
  • the powdered product is high purity aluminum nitride.
  • the second heat treatment that is, the cooling and heating cycle of the aluminum nitride-containing material may be performed a plurality of times.
  • the aluminum content is further reduced and the aluminum nitride content is further increased even at low temperatures (eg, 1100 ° C.) and low pressure conditions (eg, 15 atmospheres).
  • the aluminum nitride content can be increased as compared with the case where the heat treatment time is simply increased.
  • a massive aluminum nitride-containing material can be easily obtained.
  • the characteristics of the obtained aluminum nitride-containing material vary depending on the proportion of aluminum. For example, when the proportion of aluminum is high, the workability of the aluminum nitride-containing material is improved, and when the proportion of aluminum is low, the characteristics of the aluminum nitride-containing material are close to those of A1N. In addition, since the surfaces of the aluminum nitride particles are covered with aluminum, good moisture resistance can be obtained.
  • the manufacturing conditions are low temperature and low pressure as compared with the conventional method. Therefore, the manufacturing cost is significantly reduced compared to the conventional one.
  • powdered aluminum nitride can be produced by adjusting the production conditions. Even in this case, the manufacturing conditions are low temperature and low pressure as compared with the conventional case, and the manufacturing cost is significantly reduced as compared with the conventional case.
  • the second heat treatment may be performed after the shape of the massive aluminum nitride-containing material after the first heat treatment is processed into a desired shape (for example, a heat dissipation substrate, a piston, or a cylinder).
  • a desired shape for example, a heat dissipation substrate, a piston, or a cylinder.
  • the A1 content in the aluminum nitride-containing material after the first heat treatment is set to 40 to 70%, for example, the workability of the aluminum nitride-containing material is improved.
  • the aluminum nitride content of the aluminum nitride-containing material after shape processing can be increased (for example, 98% or more) by the second heat treatment.
  • the atmosphere is a nitrogen atmosphere.
  • the first heat treatment shown in the first embodiment is substantially the same as the first heat treatment except that it is an atmosphere of an inert gas such as argon.
  • the nitride 20 serves as a nitrogen supply source in the aluminum nitride production reaction.
  • nitride 20 is positioned below the aluminum.
  • the weight ratio of nitride 20 to aluminum is preferably 0.8 or more and 2 or less.
  • the inside of the reaction chamber 10 is evacuated from the exhaust port, and then the inert gas is also introduced into the gas inlet 11.
  • the crucible 12 is heated with the graph eye heater 13, and the inside of the crucible 12 is heated to a temperature equal to or higher than the melting point of aluminum (660 ° C.).
  • the aluminum in the crucible 12 is melted, and a solid-liquid two-phase reaction occurs between the molten aluminum and the solid phase nitride 20.
  • the nitriding reaction of aluminum proceeds, and an aluminum nitride-containing material and slag are formed.
  • the aluminum nitride-containing material can be obtained in the form of an agglomerated solid (balta), that is, a lump by the first heat treatment.
  • This aluminum nitride-containing material is obtained by joining a plurality of aluminum nitride particles to aluminum. Further, by performing the second heat treatment, the remaining aluminum can be nitrided and the content of aluminum nitride can be increased.
  • the production conditions of the aluminum nitride-containing material are lower pressure and lower temperature than the conventional method. Therefore, the manufacturing cost can be greatly reduced.
  • the present invention is not limited to the above-described embodiments, and can be implemented with various modifications without departing from the spirit of the present invention.
  • the manufacturing apparatus described above It is not limited to a carbon resistance furnace.
  • the first heat treatment condition and the second heat treatment condition can be variously changed depending on the intended aluminum nitride content and A1 content.
  • a raw material bulk aluminum crushed into small pieces (purity 99.99% or higher) and powdered hexagonal boron nitride (purity 99.9% or higher) are weighed to a weight ratio of 1: 1,
  • the carbon resistance furnace shown in Fig. 1 was placed in an alumina crucible (inner diameter: 40 mm ⁇ ) and heated to react under the conditions shown below. At this time, the heating rate of the furnace was set to 10 ° CZ.
  • the crystal structure was identified using a Rint 2500 rotary cathode X-ray diffractometer manufactured by Rigaku Corporation.
  • X-ray diffraction Cu ka line was used, and the cathode conditions were 50 kV and 300 mA.
  • FIG. 2 is a chart showing the results of X-ray diffraction. As shown in this chart, diffraction peaks peculiar to aluminum nitride based on the hexagonal system were observed, and the other diffraction peaks were almost unrecognized. As a result, it was found that the obtained agglomerated solid (balta) product had a high aluminum nitride content.
  • elemental analysis contained in the obtained product was performed using an energy dispersive X-ray analyzer by a scanning electron microscope that measures characteristic X-rays by irradiation with an electron beam. It is a chart which shows an elemental analysis result. As shown in this chart, for N
  • the manufacturing method of the present embodiment can produce strong aluminum nitride, which cannot be obtained with a powder in the past, in the form of a high-purity agglomerated solid (balta). I was divided. In addition, this aluminum nitride-containing material was also a composite of aluminum nitride and aluminum. [0053] (Example 2)
  • Fig. 4 is a differential thermal analysis chart when aluminum pieces and BN powder are weighed at a ratio of 6: 1 and subjected to differential thermal analysis in an Ar atmosphere.
  • Example 1 the pressure of the nitrogen (N) gas in the atmosphere was 10 atmospheres, 20 atmospheres, and 30 atmospheres.
  • the crystal structure of A1N is cubic and above 10 atm.
  • Example 4 In Example 1, it was obtained by changing the pressure of the nitrogen atmosphere to 10 atm, 15 atm, 20 atm, 25 atm, and changing the heat treatment temperature to 900 ° C, 1000 ° C, 1100 ° C, 1200 ° C. The state of the aluminum nitride-containing composition was examined.
  • state 1 indicates that a powdery composition was obtained
  • state 2 indicates that a mixture of the agglomerated solid (balta) composition and the powdered composition is present.
  • state 3 indicates that an agglomerated solid (balta) composition was obtained.
  • the above powdery composition is aluminum nitride
  • the agglomerated solid (baltha) composition is a composite of aluminum nitride and aluminum, as shown in FIG.
  • A1N can be generated at lower temperature and lower pressure than previously reported A1N generation conditions. This is because BN decomposes and B binds A1 and N as the temperature rises.
  • Example 1 the aluminum nitride obtained by changing the pressure of the nitrogen atmosphere to 10 atm, 20 atm, 30 atm, 40 atm, and changing the heat treatment temperature to 1100 ° C, 1200 ° C, 1300 ° C
  • the A1N content measured at two points in each sample
  • the presence or absence of an A1 peak by X-ray diffraction and Vickers hardness were examined.
  • agglomerated aluminum (purity 99.99% or more) crushed into small pieces and powdered boron nitride (purity 99.9% or more) were weighed to a weight ratio of 6: 1, and the carbon shown in Fig. 1
  • the first heat treatment was performed by putting it in an alumina crucible (inner diameter: 40 mm ⁇ ) in a resistance furnace.
  • the conditions for the first heat treatment are a nitrogen atmosphere pressure of 10 atm ⁇ 10%, a furnace heating rate of 10 ° CZ min, a heating temperature of 1100 ° C ⁇ 10%, and a heating time of 1 hour.
  • agglomerated solid Balta-like aluminum nitride-containing material (diameter 40 mm ⁇ , thickness 20 mm) was obtained.
  • FIG. 7 is an X-ray diffraction chart of the aluminum nitride-containing material obtained by the first heat treatment, and shows a defract pattern.
  • A1N was added to the diffraction peak of A1N.
  • the other peak is the A1 diffraction peak based on the face-centered cubic lattice. Under the above conditions, it can be seen that A1N and A1 coexist.
  • the weight ratio between A1N and A1 is considered to be that the intensity ratio of the diffraction peak is A1 60% or more and 70% or less.
  • the second heat treatment is performed on the aluminum nitride-containing material obtained by the first heat treatment.
  • Re-heat treatment was performed under a plurality of pressure conditions.
  • the conditions for the second heat treatment are a heating temperature and time of 1300 ° C. for one hour, but the nitrogen atmosphere has four patterns of 10 atm, 30 atm, 35 atm and 40 atm.
  • FIG. 8 shows an X-ray diffraction chart of the aggregated solid (balta) nitride-containing material subjected to the second heat treatment in a nitrogen atmosphere of 10 atm. It can be seen that the diffraction intensity of A1N is significantly increased and the diffraction intensity of A1 is decreased compared to before the second heat treatment. This is thought to be because unreacted A1 was nitrided to A1N by reheat treatment. It was also confirmed that fine aluminum was present on the sample surface. This is thought to be due to the fact that A1, which was not nitrided, spouted to the surface due to reheating.
  • FIG. 9 shows an X-ray diffraction chart of the aggregated solid (balta) nitride-containing material subjected to the second heat treatment in a nitrogen atmosphere of 30 atm. Compared to FIG. 7, it can be seen that the diffraction intensity force S of A1N is further increased and the diffraction intensity of A1 is further decreased.
  • FIG. 10 shows an X-ray diffraction chart of the agglomerated solid (balta) -like aluminum nitride-containing material subjected to the second heat treatment in a nitrogen atmosphere of 35 atm. Compared to Fig. 8, the diffraction intensity of A1N was further increased. Almost no diffraction peak of A1 is seen. In this state, the A1 content in the aluminum nitride-containing material is 2% or less.
  • the aggregated solid (balta) -like aluminum nitride-containing material it is aluminum that joins the plurality of A1N particles.
  • the second heat treatment condition By adjusting the conditions (for example, pressure, temperature, and time), it was found that the A1 content of the aluminum nitride-containing material can be adjusted to achieve characteristics suitable for the intended use.
  • FIG. 11 is a graph showing the relationship between the atmospheric pressure of the nitrogen atmosphere in the second heat treatment and the volume percentage of A1N contained in the generated A1N-containing material.
  • the volume percentage of A1N was calculated based on the X-ray diffraction chart. As shown in this graph, the volume% of A1N increases as the pressure of the nitrogen atmosphere in the second heat treatment increases, and is about 98% by volume when the pressure of the nitrogen atmosphere is 35 atmospheres. This shows that the A1N content contained in the A1N-containing material can be controlled by controlling the pressure of the nitrogen atmosphere in the second heat treatment.
  • the first heat treatment was performed by putting it in an alumina crucible (inner diameter: 40 mm ⁇ ) in a resistance furnace.
  • the conditions for the first heat treatment are a nitrogen atmosphere pressure of 25 atm ⁇ 10%, a furnace heating rate of 10 ° CZ min, a heating temperature of 1250 ° C ⁇ 10%, and a heating time of 1 hour. By this treatment, a powdered aluminum nitride-containing material was obtained.
  • FIG. 12 is an X-ray diffraction chart of the powdered aluminum nitride-containing material obtained by the above treatment. From this chart, it is considered that the powdered aluminum nitride-containing material has a purity of nearly 100%.
  • the conventional A1N powder manufacturing method required high-temperature and high-pressure conditions where the atmospheric pressure of the nitrogen atmosphere was 100 atm and the processing temperature was 1600 ° C. According to this example, the low-temperature and low-pressure conditions of 1250 ° C and 25 atm were used. However, it was confirmed that A1N powder could be produced. This is thought to be because BN, which has excellent wettability with A1, functions as a catalyst.
  • the thermal expansion characteristics of the aluminum nitride-containing material obtained in Example 6 were examined. In addition, the thermal expansion characteristics of aluminum alone and silicon alone were examined. A Shimadzu thermal analyzer TMA-50 was used for the measurement. The rate of temperature increase was 10 ° CZ, and the average amount of thermal expansion from room temperature to 500 ° C was measured.
  • FIG. 13 is a graph showing the measurement results of the thermal expansion amount.
  • the vertical axis is the thermal expansion m)
  • the horizontal axis is temperature (° C).
  • Symbol a is the measurement result of the sample with a nitrogen atmosphere pressure of 10 atm in the second heat treatment (reheat treatment)
  • symbol b is the measurement result of the sample with a nitrogen atmosphere pressure of 30 atm in the second heat treatment (reheat treatment).
  • symbol c is the measurement result of a sample with a nitrogen atmosphere pressure of 35 atm in the second heat treatment (reheat treatment).
  • Symbol d is the measurement result for aluminum alone
  • symbol e is the measurement result for silicon alone.
  • the thermal expansion coefficient of the aluminum nitride-containing material can be made close to the thermal expansion coefficient of A1N alone. Specifically, the higher the pressure of the nitrogen atmosphere in the second heat treatment, the closer the thermal expansion rate of the aluminum nitride-containing material is to the value of A1N alone. Note that the conditions of the second heat treatment of 1300 ° C, 35 atm, and 1 hour are considered to be close to the critical point at which the agglomerated solid (balta) -like force also changes to powder,
  • FIG. 14 is a graph showing the relationship between the thermal expansion coefficient of the aluminum nitride-containing material and the nitrogen atmosphere pressure in the second heat treatment. The same sample as in Example 7 was used. In the figure, X indicates the coefficient of thermal expansion of silicon alone, and y in the figure indicates the coefficient of thermal expansion of aluminum nitride by the conventional sintering method!
  • the pressure of the nitrogen atmosphere in the second heat treatment exceeds 20 atm, the coefficient of thermal expansion decreases rapidly. This is thought to be because the nitriding reaction of A1 and the squeezing effect of A1 become prominent at 20 atm or higher. Therefore, in order to obtain an agglomerated solid (Balta) -like aluminum nitride-containing material that is stable at high temperatures, the pressure of the nitrogen atmosphere in the second heat treatment is preferably 25 to 35 atm. .
  • FIG. 15 is a graph showing the relationship between the electrical conductivity of the aluminum nitride-containing material and the nitrogen atmosphere pressure in the second heat treatment. The same sample as in Example 7 was used. The conductivity was measured by the four-terminal method, using electrical resistance and a saddle shape.
  • the nitride Lumium-containing materials show the same electrical conductivity as ordinary metal materials, but when the second heat treatment is performed at a pressure exceeding 20 atm, the conductivity of aluminum nitride-containing materials decreases rapidly. In particular, at 35 atmospheres or more, the conductivity was almost zero, and it could be said to be an insulator.
  • FIG. 16 is a graph showing the relationship between the atmospheric pressure of the nitrogen atmosphere in the second heat treatment and the Micro Vickers hardness of the generated A1N-containing material.
  • the processing temperature is 1300 ° C. and the processing time is one hour.
  • the micro Vickers hardness of the A1N-containing material increases. Such a tendency can be obtained because, as shown in FIG. 10, the volume percentage of A1N contained in the A1N-containing material increases as the pressure of the nitrogen atmosphere increases.
  • the hardness is slightly higher than that of Duralumin (trademark).
  • the hardness is higher than that of special steel for tools (for example molybdenum steel).
  • the thermal conductivity of the aluminum nitride-containing material obtained in Example 6 was measured.
  • FIG. 17 is a graph showing the relationship between the atmospheric pressure of the nitrogen atmosphere in the second heat treatment and the thermal conductivity of the generated A1N-containing material.
  • the processing temperature is 1300 ° C and the processing time is one hour.
  • the nitrogen atmosphere is 30 atm, it has higher thermal conductivity than the A1N sintered body formed by the sintering method.
  • the A1N-containing material according to this example has excellent heat conduction properties!
  • agglomerated aluminum (purity 99.99% or more) crushed into small pieces and powdered boron nitride (purity 99.9% or more) were weighed to a weight ratio of 6: 1, and the carbon shown in Figure 1
  • the first heat treatment was performed by putting it in an alumina crucible (inner diameter: 40 mm ⁇ ) in a resistance furnace.
  • the conditions for the first heat treatment are a nitrogen atmosphere pressure of 10 atm ⁇ 10%, a furnace heating rate of 10 ° CZ min, a heating temperature of 1100 ° C ⁇ 10%, and a heating time of 1 hour.
  • agglomerated solid Balta-like aluminum nitride-containing material (diameter 40 mm ⁇ , thickness 20 mm) was obtained.
  • the second heat treatment was performed a plurality of times, and the relationship between the aluminum nitride content (measured by X-ray diffraction) of the aluminum nitride-containing material and the number of times of the second heat treatment was determined as follows.
  • the aluminum nitride content increases with a relatively small number of treatments compared to the case where the temperature of the second heat treatment is 1150 ° C. In this case, the nitriding reaction of aluminum proceeds rapidly.
  • the aluminum nitride-containing material obtained in Example 13 (the treatment temperature in the second heat treatment is 1150 ° C. and the number of treatments is 3 times) is immersed in an aqueous solution of sodium hydroxide and the aluminum contained in the aluminum nitride-containing material is removed. Melted.
  • Figure 19 shows the SEM photograph of this sample. From this photograph, it can be seen that aluminum nitride is formed in a network. In the case of aluminum nitride that is isolated without forming a network, the network force is cut off by the dissolution of aluminum and flows into the aqueous sodium hydroxide solution.
  • the aluminum nitride-containing material according to the present invention is hard and has high thermal conductivity, it is used as a semiconductor material, a base for mounting a semiconductor light emitting device such as a light emitting diode and a semiconductor laser, and a material for an internal combustion engine. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

Provided is a method for producing a composition containing aluminum nitride or aluminum nitride in the form of an aggregated solid (bulk) or a powder without the use of a high temperature up to 1600˚C. In the method, aluminum (21) and a boron compound (20) are charged into a reaction vessel [a crucible (12)], and the reaction vessel is heated in a nitrogen atmosphere, to thereby melt the aluminum and form a composition containing aluminum nitride by a solid-liquid two phase reaction between molten aluminum and a solid boron compound.

Description

明 細 書  Specification
窒化アルミニウム含有物の製造方法  Method for producing aluminum nitride-containing material
技術分野  Technical field
[0001] 本発明は、窒化アルミニウム含有物の製造方法に関し、特に、塊状の窒化アルミ- ゥム含有物または粉末状の窒化アルミニウムを製造する方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for producing an aluminum nitride-containing material, and particularly relates to a method for producing a massive aluminum nitride-containing material or powdered aluminum nitride.
背景技術  Background art
[0002] 窒化アルミニウムは、熱伝導率が高ぐ熱膨張係数が低ぐ化学的にも安定である 等、優れた性質を有する材料である。このため、近年、半導体デバイス等やエンジン 部材等等、様々な分野へ応用されることが期待されている。  [0002] Aluminum nitride is a material having excellent properties such as high thermal conductivity, low thermal expansion coefficient and low chemical stability. Therefore, in recent years, it is expected to be applied to various fields such as semiconductor devices and engine members.
[0003] 従来、窒化アルミニウムを製造する方法としては、非常に高い気圧 (例えば 100気 圧)の窒素雰囲気中でアルミニウムを高温 (例えば 1600° )〖こ加熱する方法がある。 この方法によれば、窒化アルミニウムの粉末を得ることができる。非特許文献 1には、 窒化アルミニウムの製造に関する研究が開示されている。  Conventionally, as a method for producing aluminum nitride, there is a method in which aluminum is heated at a high temperature (for example, 1600 °) in a nitrogen atmosphere at a very high atmospheric pressure (for example, 100 atmospheric pressure). According to this method, an aluminum nitride powder can be obtained. Non-Patent Document 1 discloses a study on the production of aluminum nitride.
非特許文献 1 :小橋眞、斎木健蔵ら、日本軽金属学会第 104回講演概要集 (2003) 2.  Non-Patent Document 1: Jun Kobashi, Kenzo Saiki et al., The 104th Annual Meeting of the Japan Institute of Light Metals (2003) 2.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記した方法では、窒化アルミニウムを得るためには、非常に高 、気圧、かつ高温 にする必要がある。従って、窒化アルミニウムの製造コストが高くなつていた。 [0004] In the method described above, in order to obtain aluminum nitride, it is necessary to make the pressure extremely high, atmospheric pressure, and high temperature. Therefore, the manufacturing cost of aluminum nitride has been increasing.
[0005] また、窒化アルミニウムの粉末しか得ることができな 、。このため、所望する形状の 窒化アルミニウム含有物を得るためには、窒化アルミニウムの粉末にバインダーを添 加して所望する形状にした後、焼成する必要があった。このため、塊状の窒化アルミ[0005] Also, only aluminum nitride powder can be obtained. For this reason, in order to obtain an aluminum nitride-containing material having a desired shape, it is necessary to add a binder to the aluminum nitride powder to obtain a desired shape and then to fire. For this reason, massive aluminum nitride
-ゥム含有物の製造コストは更に高くなつていた。 -The production cost of um-containing materials was even higher.
[0006] 本発明は上記のような事情を考慮してなされたものであり、その目的は、製造コスト が低い窒化アルミニウム含有物の製造方法を提供することにある。 [0006] The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing an aluminum nitride-containing material at a low production cost.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の窒化アルミニウム含有物の製造方法は、窒素雰囲気下で、アルミニウムと 窒化物を同一の容器内で加熱して前記アルミニウムを溶融することにより、窒化アル ミニゥムを含有する窒化アルミニウム含有物を生成する第 1熱処理工程を具備する。 前記窒化アルミニウム含有物は塊状とすることができる力 粉末状にすることもできる [0007] The method for producing an aluminum nitride-containing material according to the present invention comprises aluminum and nitrogen in a nitrogen atmosphere. A first heat treatment step for producing an aluminum nitride-containing material containing aluminum nitride by heating the nitride in the same container to melt the aluminum is provided. The aluminum nitride-containing material can be agglomerated and can be powdered
[0008] 前記容器内において、前記窒化物上に前記アルミニウムが位置する状態で加熱を 行うのが好ましい。また、前記窒化物は粉末状であるのが好ましい。前記窒化物は、 例えば窒化ホウ素、窒化マグネシウム、又は窒化カルシウム力 なる群力 選ばれた 少なくとも一種である。 [0008] In the container, it is preferable to perform heating while the aluminum is positioned on the nitride. The nitride is preferably in the form of powder. The nitride is at least one selected from the group force of, for example, boron nitride, magnesium nitride, or calcium nitride force.
[0009] 前記第 1熱処理工程における熱処理温度は、 900°C以上 1400°C以下であるのが 好ましい。また前記第 1熱処理工程において、前記窒素ガス雰囲気を加圧雰囲気に するのが好ましい。この場合、前記窒素ガス雰囲気は 50気圧以下でよい。  [0009] The heat treatment temperature in the first heat treatment step is preferably 900 ° C or higher and 1400 ° C or lower. In the first heat treatment step, the nitrogen gas atmosphere is preferably a pressurized atmosphere. In this case, the nitrogen gas atmosphere may be 50 atm or less.
[0010] 前記第 1熱処理工程の後に、前記窒化アルミニウム含有物を冷却した後窒素ガス 雰囲気下で再び熱処理する第 2熱処理工程を更に具備するのが好ましい。前記第 1 熱処理工程の後において前記窒化アルミニウム含有物は窒化アルミニウム及びアル ミニゥムを含有している力 前記第 2熱処理によって、前記窒化アルミニウム含有物の 窒化アルミニウム含有率は増加し、かつアルミニウム含有率が低下する。  [0010] Preferably, the method further includes a second heat treatment step after the first heat treatment step, in which the aluminum nitride-containing material is cooled and then heat-treated again in a nitrogen gas atmosphere. After the first heat treatment step, the aluminum nitride-containing material contains aluminum nitride and aluminum. By the second heat treatment, the aluminum nitride content of the aluminum nitride-containing material is increased and the aluminum content is reduced. descend.
[0011] 前記第 2熱処理工程において、前記窒素ガス雰囲気を加圧雰囲気にするのが好ま しい。この場合、前記窒素ガス雰囲気は 50気圧以下でよい。  [0011] In the second heat treatment step, the nitrogen gas atmosphere is preferably a pressurized atmosphere. In this case, the nitrogen gas atmosphere may be 50 atm or less.
[0012] 前記第 2熱処理工程は、前記第 1熱処理工程より A1の窒化反応が進行しやすい条 件で行われるのが好ましい。また、前記第 2熱処理工程における熱処理温度は、前 記第 1熱処理工程における熱処理温度以上であるのが好ましい。また、前記第 1熱 処理工程における熱処理温度は 900°C以上 1200°C以下であり、前記第 2熱処理ェ 程における熱処理温度は 1100°C以上 1200°C以下であるのが好ましい。このように すると、窒化アルミニウム含有物の特性を向上させることができる。  [0012] It is preferable that the second heat treatment step is performed under conditions that facilitate the nitriding reaction of A1 than the first heat treatment step. The heat treatment temperature in the second heat treatment step is preferably equal to or higher than the heat treatment temperature in the first heat treatment step. The heat treatment temperature in the first heat treatment step is preferably 900 ° C. or more and 1200 ° C. or less, and the heat treatment temperature in the second heat treatment step is preferably 1100 ° C. or more and 1200 ° C. or less. In this way, the characteristics of the aluminum nitride-containing material can be improved.
[0013] また、前記第 2熱処理工程を複数回繰り返すと、低温かつ低圧条件においても窒 化アルミニウム含有率を高めることができる。  [0013] If the second heat treatment step is repeated a plurality of times, the aluminum nitride content can be increased even under low temperature and low pressure conditions.
[0014] 本発明に係る他の窒化アルミニウム含有物の製造方法は、不活性ガス雰囲気下で アルミニウムと窒化物を同一の容器内で加熱して前記アルミニウムを溶融することに より、窒化アルミニウムとアルミニウムを含有する塊状の窒化アルミニウム含有物を生 成するものである。 [0014] Another method for producing an aluminum nitride-containing material according to the present invention is to heat aluminum and nitride in the same container under an inert gas atmosphere to melt the aluminum. Thus, a massive aluminum nitride-containing material containing aluminum nitride and aluminum is produced.
発明の効果  The invention's effect
[0015] 本発明の窒化アルミニウム含有組成物の製造方法によれば、非常に高い気圧にす ることなく、かつ 1600°Cもの高温にすることなぐ窒化アルミニウム含有物を製造する ことができる。特に、製造の条件を調節することにより、塊状の窒化アルミニウム含有 物を直接製造することができる。このため、製造コストが格段に低くなる。  [0015] According to the method for producing an aluminum nitride-containing composition of the present invention, it is possible to produce an aluminum nitride-containing material without increasing the pressure to a very high pressure and at a temperature as high as 1600 ° C. In particular, by adjusting the production conditions, a massive aluminum nitride-containing material can be produced directly. For this reason, a manufacturing cost becomes remarkably low.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の実施形態に係る窒化アルミニウムの製造方法に用いる製造装置であ るカーボン抵抗炉の構成図。  FIG. 1 is a configuration diagram of a carbon resistance furnace which is a manufacturing apparatus used in an aluminum nitride manufacturing method according to an embodiment of the present invention.
[図 2]実施例 1で得られた X線回折チャート。  FIG. 2 is an X-ray diffraction chart obtained in Example 1.
[図 3]実施例 1で得られたエネルギー分散型 X線分析チャート。  FIG. 3 is an energy dispersive X-ray analysis chart obtained in Example 1.
[図 4]実施例 2で得られた示差熱分析チャート。  FIG. 4 is a differential thermal analysis chart obtained in Example 2.
[図 5]実施例 4において、雰囲気窒素ガス圧力と熱処理温度を種々に変えたときの窒 化アルミニウム含有組成物の状態を示す図である。  FIG. 5 is a view showing the state of the aluminum nitride-containing composition when the atmospheric nitrogen gas pressure and the heat treatment temperature are variously changed in Example 4.
[図 6]実施例 5において、雰囲気窒素ガス圧力と熱処理温度を種々に変えたときの窒 化アルミニウム含有組成物の状態を示す図である。  FIG. 6 is a diagram showing the state of the aluminum nitride-containing composition when the atmospheric nitrogen gas pressure and the heat treatment temperature are variously changed in Example 5.
[図 7]実施例 6で得られた X線回折チャートである。  FIG. 7 is an X-ray diffraction chart obtained in Example 6.
[図 8]実施例 6で得られた X線回折チャートである。  FIG. 8 is an X-ray diffraction chart obtained in Example 6.
[図 9]実施例 6で得られた X線回折チャートである。  FIG. 9 is an X-ray diffraction chart obtained in Example 6.
[図 10]実施例 6で得られた X線回折チャートである。  FIG. 10 is an X-ray diffraction chart obtained in Example 6.
[図 11]第 2熱処理における雰囲気窒素圧力と窒化アルミニウム含有物中の A1N体積 率の関係を示すグラフ。  FIG. 11 is a graph showing the relationship between the atmospheric nitrogen pressure in the second heat treatment and the A1N volume fraction in the aluminum nitride-containing material.
[図 12]実施例 7で得られた X線回折チャートである。  FIG. 12 is an X-ray diffraction chart obtained in Example 7.
[図 13]実施例 8で調べた平均熱膨張量の結果を示す図である。  FIG. 13 is a graph showing the results of average thermal expansion examined in Example 8.
[図 14]実施例 9で得られた熱膨張率を示す図である。  FIG. 14 is a graph showing the coefficient of thermal expansion obtained in Example 9.
[図 15]実施例 10で得られた導電率を示す図である。  FIG. 15 is a graph showing the electrical conductivity obtained in Example 10.
[図 16]実施例 11で得られたマイクロビッカース硬さを示すグラフ。 [図 17]実施例 12で得られた熱伝導率を示すグラフ。 FIG. 16 is a graph showing the micro Vickers hardness obtained in Example 11. FIG. 17 is a graph showing the thermal conductivity obtained in Example 12.
[図 18]第 2熱処理の回数と窒化アルミニウム含有率の関係を示すグラフ。  FIG. 18 is a graph showing the relationship between the number of second heat treatments and the aluminum nitride content.
[図 19]アルミニウムを溶かした後の窒化アルミニウム含有物の SEM写真。  FIG. 19 is an SEM photograph of the aluminum nitride-containing material after aluminum is melted.
符号の説明  Explanation of symbols
[0017] 10…反応チャンバ一 [0017] 10 ... Reaction chamber
11…ガス導入口  11… Gas inlet
12· ··るつぼ (反応容器)  12 ··· Crucible (Reaction vessel)
13· ··グラフアイトヒータ  13 ... Graph Eye Heater
14…熱電対モニター線  14 ... Thermocouple monitor wire
20· ··窒化ホウ素  20 ··· Boron nitride
21…ァノレ ゥム  21… Anoleum
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に、本発明の実施の形態に係る窒化アルミニウム含有組成物の製造方法につ いて、図面を参照して説明する。  [0018] Hereinafter, a method for producing an aluminum nitride-containing composition according to an embodiment of the present invention will be described with reference to the drawings.
[0019] (第 1の実施形態)  [0019] (First embodiment)
図 1は、第 1の実施形態に係る窒化アルミニウム含有物の製造方法に用いられる力 一ボン抵抗炉の構成図である。このカーボン抵抗炉は、反応チャンバ一 10を有して いる。反応チャンバ一 10には排気口(図示せず)及びガス導入口 11が設けられてい る。反応チャンバ一 10内には、ルツボ 12を加熱するためのグラフアイトヒータ 13が設 けられている。ルツボ 12には熱電対が取り付けられているため、モニター線 14を通じ てルツボ 12の温度を反応チャンバ一 10の外部でモニターすることができる。  FIG. 1 is a configuration diagram of a single-bonn resistance furnace used in the method for producing an aluminum nitride-containing material according to the first embodiment. This carbon resistance furnace has a reaction chamber 10. The reaction chamber 10 is provided with an exhaust port (not shown) and a gas inlet port 11. In the reaction chamber 110, a graph eye heater 13 for heating the crucible 12 is provided. Since the crucible 12 is provided with a thermocouple, the temperature of the crucible 12 can be monitored outside the reaction chamber 10 through the monitor wire 14.
[0020] 次に、上記のカーボン抵抗炉を用いた窒化アルミニウム含有物の製造方法につい て説明する。  [0020] Next, a method for producing an aluminum nitride-containing material using the carbon resistance furnace will be described.
まず、小片に砕 、たアルミニウム 21と粉末状の窒化物 20をルツボ 12に投入する。 窒化物 20は、例えば六方晶の窒化ホウ素である力 他の窒化物(例えば窒化マグネ シゥム(Mg N )又は窒化カルシウム(Ca N;) )であってもよい。また、窒化ホウ素、窒  First, aluminum 21 and powdered nitride 20 crushed into small pieces are put into the crucible 12. The nitride 20 may be a force other nitride such as hexagonal boron nitride (eg, magnesium nitride (Mg N) or calcium nitride (Ca N;)). Boron nitride, nitrogen
3 2 3 2  3 2 3 2
化マグネシウム及び窒化カルシウム力 なる群力 選ばれた 2種以上の混合物であ つてもよい。このとき、窒化物 20がアルミニウムの下に位置するようにする。窒化物 20 とアルミニウム 21を交互に複数積層させてもょ 、。アルミニウムに対する窒化物 20の 重量比は 0. 1以上 1以下であるのが好ましい。 Magnesium halide and calcium nitride strength group strength may be a mixture of two or more selected. At this time, the nitride 20 is positioned below the aluminum. Nitride 20 Or you can stack multiple layers of aluminum and aluminum 21 alternately. The weight ratio of nitride 20 to aluminum is preferably 0.1 or more and 1 or less.
[0021] 次に、上記した排気口カゝら反応チャンバ一 10内部を排気し、その後ガス導入口 11 力も窒素ガスを導入する。これにより、反応チャンバ一 10の内部は窒素雰囲気になる 。反応チャンバ一 10内部における窒素ガスの圧力は、加圧雰囲気が好ましぐ例え ば 5気圧以上 50気圧以下である。  Next, the inside of the reaction chamber 10 is evacuated from the exhaust port, and then nitrogen gas is also introduced into the gas inlet 11. As a result, the inside of the reaction chamber 10 becomes a nitrogen atmosphere. The pressure of nitrogen gas inside the reaction chamber 10 is, for example, 5 to 50 atmospheres in a pressurized atmosphere.
[0022] 次に、グラフアイトヒータ 13でルツボ 12を加熱し、ルツボ 12の内部をアルミニウムの 融点(660°C)以上、好ましくは 900°C以上 1400°C以下まで加熱する。これにより、 ルツボ 12内のアルミニウム 21は溶融し、溶融したアルミニウム 21と固相の窒化物 20 との間で固液二相反応が生じる。このとき、雰囲気中の窒素も反応する。これにより、 アルミニウムの窒化反応が進行し、窒化アルミニウム含有物、及びスラグが形成され る(以下、第 1熱処理と記載)。第 1熱処理におけるアルミニウムの窒化反応において 、窒化物 20のうち窒素以外のもの(例えばホウ素、マグネシウム、又はカルシウム)は 触媒として機能すると考えられる。この窒化反応が進行する速度は、処理温度及び 雰囲気窒素の圧力によって制御することができる。  Next, the crucible 12 is heated by the graph eye heater 13, and the inside of the crucible 12 is heated to a melting point (660 ° C.) or higher of aluminum, preferably 900 ° C. to 1400 ° C. As a result, the aluminum 21 in the crucible 12 is melted, and a solid-liquid two-phase reaction occurs between the molten aluminum 21 and the solid phase nitride 20. At this time, nitrogen in the atmosphere also reacts. As a result, the nitriding reaction of aluminum proceeds, and an aluminum nitride-containing material and slag are formed (hereinafter referred to as first heat treatment). In the nitriding reaction of aluminum in the first heat treatment, the nitride 20 other than nitrogen (for example, boron, magnesium, or calcium) is considered to function as a catalyst. The rate at which this nitriding reaction proceeds can be controlled by the processing temperature and the pressure of the atmospheric nitrogen.
[0023] なお、 X線回折によれば、窒化物 20のうち窒素以外のもの(例えばホウ素、マグネ シゥム、又はカルシウム)は、窒化アルミニウム含有物の中にはほとんど存在しない。 窒化物 20のうち窒素以外のもの(例えばホウ素、マグネシウム、又はカルシウム)は、 上記したスラグに含まれると考えられる。  [0023] According to X-ray diffraction, the nitride 20 other than nitrogen (for example, boron, magnesium, or calcium) hardly exists in the aluminum nitride-containing material. Nitride 20 other than nitrogen (for example, boron, magnesium, or calcium) is considered to be included in the slag.
[0024] また、ルツボ 12の内部で窒化物 20をアルミニウム 21の下に位置させた場合、溶融 したアルミニウム 21が粉末状の窒化物 20間に浸透する。このため、窒化アルミニウム の生成反応が効率よく進行する。また、窒化アルミニウムはアルミニウムより比重が大 きいため、生成した窒化アルミニウムが沈殿し、その上方でアルミニウムの窒化反応 が進行する状態になる。  Further, when the nitride 20 is positioned below the aluminum 21 inside the crucible 12, the molten aluminum 21 penetrates between the powdered nitrides 20. For this reason, the formation reaction of aluminum nitride proceeds efficiently. In addition, since aluminum nitride has a higher specific gravity than aluminum, the produced aluminum nitride is precipitated, and the nitriding reaction of aluminum proceeds above the aluminum nitride.
[0025] 本実施形態に係る窒化アルミニウム含有物の製造方法では、第 1熱処理の処理条 件、例えば処理温度、雰囲気窒素の圧力、反応時間、及びアルミニウムに対する窒 化ホウ素の割合等によって、窒化アルミニウム含有物の状態を作り分けることができる [0026] 例えば所定の処理条件では、複数の窒化アルミニウム粒子がアルミニウムによって 接合した窒化アルミニウム含有物が、凝集合体 (バルタ)状すなわち塊状で得られる。 得られた窒化アルミニウム含有物は、複数の窒化アルミニウム粒子の相互間がアルミ -ゥムによって満たされている力、又はネットワーク状すなわち網目状に成長した窒 化アルミニウムの相互間がアルミニウムによって満たされているため、空隙率が 1。/0以 下である。このように、焼結法によって得られた窒化アルミニウム含有物と比較して空 隙率が大幅に低下し、金属に近い状態でバルタ状の窒化アルミニウム含有物が得ら れる。なお、ネットワーク状すなわち網目状に成長した窒化アルミニウムの相互間に 位置するアルミニウム中には、ネットワークを形成して 、な 、窒化アルミニウム粒子が 含まれる場合もある。 [0025] In the method for producing an aluminum nitride-containing material according to the present embodiment, the aluminum nitride content varies depending on the processing conditions of the first heat treatment, such as the processing temperature, the pressure of atmospheric nitrogen, the reaction time, and the ratio of boron nitride to aluminum. Can make different states of inclusions [0026] For example, under predetermined processing conditions, an aluminum nitride-containing material in which a plurality of aluminum nitride particles are bonded by aluminum is obtained in the form of aggregated coalescence (balta), that is, a lump. The obtained aluminum nitride-containing material has a force in which a plurality of aluminum nitride particles are filled with aluminum, or a network-like or network-grown aluminum nitride is filled with aluminum. Therefore, the porosity is 1. / 0 or less. As described above, the porosity is significantly reduced as compared with the aluminum nitride-containing material obtained by the sintering method, and a balta-like aluminum nitride-containing material can be obtained in a state close to a metal. Note that aluminum located between the network-like or network-like grown aluminum nitrides may contain aluminum nitride particles without forming a network.
[0027] そして、窒化アルミニウムの生成反応が促進される条件 (例えば 1300°Cで 40気圧 )では、生成物である窒化アルミニウム含有物に含まれる窒化アルミニウムの割合を 高くし、かつアルミニウムの割合を低くすることができる。  [0027] Under the condition that the formation reaction of aluminum nitride is promoted (for example, 40 atm at 1300 ° C), the proportion of aluminum nitride contained in the product aluminum nitride-containing material is increased and the proportion of aluminum is increased. Can be lowered.
[0028] アルミニウムの含有率が 40%以上 70以下の場合、得られた窒化アルミニウム含有 物の加工性が高くなる。また、アルミニウムの含有率が 20%以下の場合、窒化アルミ -ゥムの機械的特性 (硬度等)が高くなる。また、アルミニウムの含有率が 5%以下の 場合、得られた窒化アルミニウム含有物の特性 (熱伝導率及び抵抗を含む)が、純粋 な A1Nの特性に近くなる。  [0028] When the aluminum content is 40% or more and 70 or less, the workability of the obtained aluminum nitride-containing material is improved. In addition, when the aluminum content is 20% or less, the mechanical properties (hardness, etc.) of aluminum nitride are high. In addition, when the aluminum content is 5% or less, the characteristics (including thermal conductivity and resistance) of the obtained aluminum nitride-containing material are close to those of pure A1N.
[0029] 窒化アルミニウム含有物に含まれるアルミニウムが一定値以下になると、窒化アルミ -ゥム含有物は凝集合体 (バルタ)状の物と粉末状の物の混合物になり、更にアルミ 二ゥムの割合が少なくなると、生成物は粉末状になる。粉末状の生成物は、後述の実 施例に示すように高純度の窒化アルミニウムである。粉末状になるのは、未反応の A1 がほとんど存在しなくなるためと考えられる。  [0029] When the aluminum contained in the aluminum nitride-containing material is below a certain value, the aluminum nitride-containing material becomes a mixture of agglomerated coal (balta) and a powdered material. As the proportion decreases, the product becomes powdery. The powdered product is high-purity aluminum nitride as shown in the following examples. The powder form is considered to be because there is almost no unreacted A1.
[0030] また、後述する実施例で示すように、雰囲気窒素の圧力によって窒化アルミニウム 含有物に含まれる窒化アルミニウムの結晶構造を制御することができる。  [0030] Further, as shown in the examples described later, the crystal structure of aluminum nitride contained in the aluminum nitride-containing material can be controlled by the pressure of atmospheric nitrogen.
[0031] 以上、本発明に係る窒化アルミニウム含有物の製造方法によれば、容易に塊状の 窒化アルミニウム含有物を得ることができる。得られた窒化アルミニウム含有物は、ァ ルミ-ゥムの割合によつて特性が様々に変化する。例えばアルミニウムの割合が高い 場合、窒化アルミニウム含有物の加工性が良くなり、アルミニウムの割合が低い場合[0031] As described above, according to the method for producing an aluminum nitride-containing material according to the present invention, a massive aluminum nitride-containing material can be easily obtained. The properties of the obtained aluminum nitride-containing material vary depending on the proportion of aluminum. For example, the proportion of aluminum is high When the processability of aluminum nitride-containing materials is improved and the proportion of aluminum is low
、窒化アルミニウム含有物の特性が A1Nの特性に近くなる。また、窒化アルミニウムの 粒子の表面がアルミニウムによって被覆されて 、るため、良好な耐湿性を得ることが できる。 The characteristics of aluminum nitride inclusions are close to those of A1N. In addition, since the surfaces of the aluminum nitride particles are covered with aluminum, good moisture resistance can be obtained.
[0032] また、従来方法と比較して製造条件は低温かつ低圧である。従って、製造コストも 従来と比較して大幅に低くなる。また、製造条件を調整することにより、粉末状の窒化 アルミニウムを製造することができる力 この場合においても、従来と比較して製造条 件は低温かつ低圧であるため、製造コストが従来と比較して大幅に低くなる。  [0032] Further, the manufacturing conditions are low temperature and low pressure as compared with the conventional method. Therefore, the manufacturing cost is significantly lower than the conventional one. Also, the ability to produce powdered aluminum nitride by adjusting the production conditions. In this case as well, the production conditions are lower and lower pressure than in the past, so the production cost is lower than in the past. Greatly reduced.
[0033] (第 2の実施形態) [0033] (Second Embodiment)
第 2の実施形態に係る窒化アルミニウム含有物の製造方法は、第 1の実施形態に 示した第 1熱処理によって塊状の窒化アルミニウム含有物を製造し、得られた窒化ァ ルミ-ゥム含有物を冷却した後、更に窒化アルミニウム含有物を窒素ガス雰囲気下で 再熱処理 (以下、第 2熱処理と記載)するものである。窒化アルミニウムの冷却は、例 えば炉冷で行う。第 2熱処理は、例えば第 1熱処理で用いたカーボン抵抗炉を用い て行う。第 2熱処理を行うことにより、窒化アルミニウム含有物に含まれるアルミニウム の窒化反応が進行してアルミニウムの含有率が低下し、かつ窒化アルミニウムの含有 率が上昇する。  In the method for producing an aluminum nitride-containing material according to the second embodiment, the bulk aluminum nitride-containing material is produced by the first heat treatment shown in the first embodiment, and the obtained aluminum nitride-containing material is used. After cooling, the aluminum nitride-containing material is further reheated (hereinafter referred to as second heat treatment) in a nitrogen gas atmosphere. The aluminum nitride is cooled by furnace cooling, for example. The second heat treatment is performed using, for example, the carbon resistance furnace used in the first heat treatment. By performing the second heat treatment, the nitridation reaction of aluminum contained in the aluminum nitride-containing material proceeds, the aluminum content is decreased, and the aluminum nitride content is increased.
[0034] 本実施形態にぉ 、て、第 2熱処理は、第 1熱処理よりアルミニウムの窒化反応が進 行しやすい条件で行われるのが好ましい。これは、アルミニウムの窒化反応は発熱反 応であるため、第 1熱処理をアルミニウムの窒化反応が進行しやすい条件にすると、 第 1熱処理にお!、て窒化アルミニウムの核生成が急激に進行し、窒化アルミニウムが ネットワーク状になりにくいためである。例えば、第 2熱処理における熱処理温度は、 第 1熱処理における熱処理温度以上であるのが好ましい。具体的には、第 1熱処理 における熱処理温度は 900°C以上 1200°C以下であり、第 2熱処理における熱処理 温度は 1100°C以上 1200°C以下であるのが好ましい。  [0034] In the present embodiment, the second heat treatment is preferably performed under conditions that facilitate the nitriding reaction of aluminum than the first heat treatment. This is because the nitridation reaction of aluminum is an exothermic reaction, so if the first heat treatment is performed under conditions that facilitate the nitridation reaction of aluminum, the nucleation of aluminum nitride proceeds rapidly during the first heat treatment, This is because aluminum nitride is difficult to form a network. For example, the heat treatment temperature in the second heat treatment is preferably equal to or higher than the heat treatment temperature in the first heat treatment. Specifically, the heat treatment temperature in the first heat treatment is preferably 900 ° C. or higher and 1200 ° C. or lower, and the heat treatment temperature in the second heat treatment is preferably 1100 ° C. or higher and 1200 ° C. or lower.
また、第 2熱処理における窒素ガス雰囲気の圧力は、加圧雰囲気であるのが好まし ぐ例えば 5気圧以上 50気圧以下である。  In addition, the pressure of the nitrogen gas atmosphere in the second heat treatment is preferably a pressurized atmosphere, for example, 5 atm or more and 50 atm or less.
[0035] 第 2熱処理においても、処理条件 (具体的には温度及び圧力)を変更することにより 窒化アルミニウムの生成反応を促進して、生成物である窒化アルミニウム含有物に含 まれる窒化アルミニウムの割合を高くし、かつアルミニウムの割合を低くすることができ る。なお、アルミニウムの窒化反応が過度に進行すると、窒化アルミニウム含有物は 凝集合体 (バルタ)状の物と粉末状の物の混合物、更には粉末状になる。粉末状の 生成物は高純度の窒化アルミニウムである。 [0035] Also in the second heat treatment, by changing the processing conditions (specifically, temperature and pressure). By promoting the formation reaction of aluminum nitride, the proportion of aluminum nitride contained in the aluminum nitride-containing product can be increased and the proportion of aluminum can be decreased. If the nitridation reaction of aluminum proceeds excessively, the aluminum nitride-containing material becomes a mixture of agglomerated (balta) -like material and a powder-like material, and further powdery. The powdered product is high purity aluminum nitride.
[0036] また、第 2熱処理すなわち窒化アルミニウム含有物の冷却及び加熱サイクルを複数 回行っても良い。これにより、低温 (例えば 1100°C)かつ低圧の条件 (例えば 15気圧 )においてもアルミニウムの含有率が更に低下し、かつ窒化アルミニウムの含有率が 更に上昇する。また、単純に熱処理時間を長くする場合と比較して、窒化アルミニゥ ム含有率を高くすることができる。  [0036] The second heat treatment, that is, the cooling and heating cycle of the aluminum nitride-containing material may be performed a plurality of times. As a result, the aluminum content is further reduced and the aluminum nitride content is further increased even at low temperatures (eg, 1100 ° C.) and low pressure conditions (eg, 15 atmospheres). In addition, the aluminum nitride content can be increased as compared with the case where the heat treatment time is simply increased.
[0037] 本実施形態にぉ 、ても、容易に塊状の窒化アルミニウム含有物を得ることができる 。得られた窒化アルミニウム含有物は、アルミニウムの割合によつて特性が様々に変 化する。例えばアルミニウムの割合が高い場合、窒化アルミニウム含有物の加工性が 良くなり、アルミニウムの割合が低い場合、窒化アルミニウム含有物の特性が A1Nの 特性に近くなる。また、窒化アルミニウムの粒子の表面がアルミニウムによって被覆さ れて 、るため、良好な耐湿性を得ることができる。  [0037] Even in this embodiment, a massive aluminum nitride-containing material can be easily obtained. The characteristics of the obtained aluminum nitride-containing material vary depending on the proportion of aluminum. For example, when the proportion of aluminum is high, the workability of the aluminum nitride-containing material is improved, and when the proportion of aluminum is low, the characteristics of the aluminum nitride-containing material are close to those of A1N. In addition, since the surfaces of the aluminum nitride particles are covered with aluminum, good moisture resistance can be obtained.
[0038] また、従来方法と比較して製造条件は低温かつ低圧である。従って、製造コストも 従来と比較して大幅に小さくなる。また、製造条件を調整することにより、粉末状の窒 化アルミニウムを製造することができる。この場合においても、従来と比較して製造条 件は低温かつ低圧であり、製造コストが従来と比較して大幅に小さくなる。  [0038] Further, the manufacturing conditions are low temperature and low pressure as compared with the conventional method. Therefore, the manufacturing cost is significantly reduced compared to the conventional one. In addition, powdered aluminum nitride can be produced by adjusting the production conditions. Even in this case, the manufacturing conditions are low temperature and low pressure as compared with the conventional case, and the manufacturing cost is significantly reduced as compared with the conventional case.
[0039] また、第 1熱処理後の塊状の窒化アルミニウム含有物の形状を所望の形状 (例えば 放熱基板、ピストン、又はシリンダなど)に加工した後、第 2熱処理を行っても良い。特 に、第 1熱処理後の窒化アルミニウム含有物における A1含有率を例えば 40〜70%と なるようにすると、窒化アルミニウム含有物の加工性が高くなる。この場合においても 、第 2熱処理によって形状加工後の窒化アルミニウム含有物の窒化アルミニウム含有 率を高くする(例えば 98%以上)ことができる。  [0039] Alternatively, the second heat treatment may be performed after the shape of the massive aluminum nitride-containing material after the first heat treatment is processed into a desired shape (for example, a heat dissipation substrate, a piston, or a cylinder). In particular, when the A1 content in the aluminum nitride-containing material after the first heat treatment is set to 40 to 70%, for example, the workability of the aluminum nitride-containing material is improved. Even in this case, the aluminum nitride content of the aluminum nitride-containing material after shape processing can be increased (for example, 98% or more) by the second heat treatment.
[0040] (第 3の実施形態)  [0040] (Third embodiment)
第 3の実施形態に係る窒化アルミニウム含有物の製造方法は、雰囲気が窒素雰囲 気ではなくアルゴン等の不活性ガス雰囲気である点を除 、て、第 1の実施形態に示 した第 1熱処理と略同様である。本実施形態では、窒化物 20のみが窒化アルミ-ゥ ムの生成反応における窒素供給源となる。 In the method for producing an aluminum nitride-containing material according to the third embodiment, the atmosphere is a nitrogen atmosphere. The first heat treatment shown in the first embodiment is substantially the same as the first heat treatment except that it is an atmosphere of an inert gas such as argon. In the present embodiment, only the nitride 20 serves as a nitrogen supply source in the aluminum nitride production reaction.
[0041] まず、小片に砕いたアルミニウムと粉末状の窒化物 20をルツボ 12に投入する。この とき、窒化物 20がアルミニウムの下に位置するようにする。アルミニウムに対する窒化 物 20の重量比は 0. 8以上 2以下であるのが好ましい。  First, aluminum crushed into small pieces and powdered nitride 20 are put into the crucible 12. At this time, the nitride 20 is positioned below the aluminum. The weight ratio of nitride 20 to aluminum is preferably 0.8 or more and 2 or less.
[0042] 次に、上記した排気口カゝら反応チャンバ一 10内部を排気し、その後ガス導入口 11 力も不活性ガスを導入する。次に、グラフアイトヒータ 13でルツボ 12を加熱し、ルツボ 12の内部をアルミニウムの融点(660°C)以上の温度まで加熱する。これにより、ルツ ボ 12内のアルミニウムは溶融し、溶融したアルミニウムと固相の窒化物 20との間で固 液二相反応が生じる。これにより、アルミニウムの窒化反応が進行し、窒化アルミ-ゥ ム含有物、及びスラグが形成される。  Next, the inside of the reaction chamber 10 is evacuated from the exhaust port, and then the inert gas is also introduced into the gas inlet 11. Next, the crucible 12 is heated with the graph eye heater 13, and the inside of the crucible 12 is heated to a temperature equal to or higher than the melting point of aluminum (660 ° C.). As a result, the aluminum in the crucible 12 is melted, and a solid-liquid two-phase reaction occurs between the molten aluminum and the solid phase nitride 20. As a result, the nitriding reaction of aluminum proceeds, and an aluminum nitride-containing material and slag are formed.
[0043] 本実施形態においても第 1の実施形態と同様の効果を得ることができる。  [0043] In this embodiment, the same effect as in the first embodiment can be obtained.
[0044] このように、上記した各実施形態に係る窒化アルミニウム含有物の製造方法によれ ば、第 1熱処理により、窒化アルミニウム含有物を凝集固体 (バルタ)状すなわち塊状 で得ることができる。この窒化アルミニウム含有物は、複数の窒化アルミニウムの粒子 をアルミニウムが接合したものである。また、さらに第 2熱処理を行うことにより、残留し て 、るアルミニウムを窒化させ、窒化アルミニウムの含有率を高めることができる。  [0044] Thus, according to the method for producing an aluminum nitride-containing material according to each of the above-described embodiments, the aluminum nitride-containing material can be obtained in the form of an agglomerated solid (balta), that is, a lump by the first heat treatment. This aluminum nitride-containing material is obtained by joining a plurality of aluminum nitride particles to aluminum. Further, by performing the second heat treatment, the remaining aluminum can be nitrided and the content of aluminum nitride can be increased.
[0045] また、本実施形態によれば、窒化アルミニウム含有物の製造条件は、従来方法と比 較して低圧かつ低温である。従って、製造コストを大幅に下げることができる。  [0045] Further, according to the present embodiment, the production conditions of the aluminum nitride-containing material are lower pressure and lower temperature than the conventional method. Therefore, the manufacturing cost can be greatly reduced.
[0046] また、従来方法では、塊状の窒化アルミニウムを得るためには、粉末状で製造され た窒化アルミニウムを焼結する必要があった。また、焼結によって得られた窒化アルミ -ゥムは空隙率が高ぐ割れやすいため、加工性が悪いという欠点があった。しかし、 本実施形態によれば、塊状の窒化アルミニウム含有物を直接製造することができる。 このため、生成した窒化アルミニウム含有物の空隙率は低ぐかつ加工性も優れてい る。  [0046] Further, in the conventional method, in order to obtain massive aluminum nitride, it was necessary to sinter aluminum nitride produced in powder form. In addition, aluminum nitride obtained by sintering has a drawback of poor workability because of its high porosity and easy cracking. However, according to the present embodiment, a massive aluminum nitride-containing material can be directly produced. Therefore, the produced aluminum nitride-containing material has a low porosity and excellent workability.
[0047] 尚、本発明は上述した実施形態に限定されるものではなぐ本発明の主旨を逸脱し ない範囲内で種々変更して実施することが可能である。例えば製造装置は上記した カーボン抵抗炉に限定されない。また、第 1熱処理条件及び第 2熱処理条件は、目 的とする窒化アルミニウムの含有率及び A1の含有率によって様々に変更することが できる。 It should be noted that the present invention is not limited to the above-described embodiments, and can be implemented with various modifications without departing from the spirit of the present invention. For example, the manufacturing apparatus described above It is not limited to a carbon resistance furnace. Further, the first heat treatment condition and the second heat treatment condition can be variously changed depending on the intended aluminum nitride content and A1 content.
実施例 1  Example 1
[0048] (実施例 1) [0048] (Example 1)
原料として小片に砕いた塊状のアルミニウム (純度 99. 99%以上)と粉末状の六方 晶系の窒化ホウ素(純度 99. 9%以上)を重量比で 1 : 1になるように秤量し、図 1に示 すカーボン抵抗炉のアルミナ製のルツボ(内径 40mm φ )に投入し、以下に示す条 件で加熱して反応させた。この際、炉の昇温速度は 10°CZ分とした。  As a raw material, bulk aluminum crushed into small pieces (purity 99.99% or higher) and powdered hexagonal boron nitride (purity 99.9% or higher) are weighed to a weight ratio of 1: 1, The carbon resistance furnace shown in Fig. 1 was placed in an alumina crucible (inner diameter: 40 mmφ) and heated to react under the conditions shown below. At this time, the heating rate of the furnace was set to 10 ° CZ.
•窒素雰囲気、圧力: 20気圧 ± 10%  • Nitrogen atmosphere, pressure: 20 atmospheres ± 10%
•加熱温度並びに時間: 1250°C± 10%、 1時間以上 6時間以内  • Heating temperature and time: 1250 ° C ± 10%, 1 hour to 6 hours
上記の反応により、塊状すなわち凝集固体 (バルタ)状の生成物(直径 40mm φ、 厚み 20mm)が得られた。  By the above reaction, a lump-like, agglomerated solid (balta) -like product (diameter 40 mmφ, thickness 20 mm) was obtained.
[0049] この凝集固体状の生成物について、リガク社製 Rint2500回転体陰極型 X線回折 装置を使用し、結晶構造の同定を行った。 X線回折には Cuの k a線を使用し、陰極 の条件を 50kV、 300mAとした。 [0049] With respect to this aggregated solid product, the crystal structure was identified using a Rint 2500 rotary cathode X-ray diffractometer manufactured by Rigaku Corporation. For X-ray diffraction, Cu ka line was used, and the cathode conditions were 50 kV and 300 mA.
[0050] 図 2は、 X線回折の結果を示すチャートである。本チャートに示すように、六方晶系 を基調とする窒化アルミニウム特有の回折ピークが観察され、それ以外の回折ピーク はほとんど認められな力つた。この結果、得られた凝集固体 (バルタ)状の生成物は 窒化アルミニウムの含有率が高 、ことが分力つた。 FIG. 2 is a chart showing the results of X-ray diffraction. As shown in this chart, diffraction peaks peculiar to aluminum nitride based on the hexagonal system were observed, and the other diffraction peaks were almost unrecognized. As a result, it was found that the obtained agglomerated solid (balta) product had a high aluminum nitride content.
[0051] また、電子線を照射して特性 X線を測定する走査型電子顕微鏡によるエネルギー 分散型 X線分析装置を用いて、得られた生成物に含まれる元素分析を行った、 図 3は、元素分析結果を示すチャートである。本チャートに示すように、 Nに対して[0051] Further, elemental analysis contained in the obtained product was performed using an energy dispersive X-ray analyzer by a scanning electron microscope that measures characteristic X-rays by irradiation with an electron beam. It is a chart which shows an elemental analysis result. As shown in this chart, for N
A1がわずかに多 、ことが分力つた。 There was a slight increase in A1.
[0052] これらの実験結果により、本実施形態の製造方法によって、従来では粉末でし力得 ることができな力つた窒化アルミニウムを、高純度の凝集固体 (バルタ)状に生成でき ることが分力つた。また、この窒化アルミニウム含有物力 窒化アルミニウムとアルミ- ゥムの複合体であることも分力つた。 [0053] (実施例 2) [0052] From these experimental results, the manufacturing method of the present embodiment can produce strong aluminum nitride, which cannot be obtained with a powder in the past, in the form of a high-purity agglomerated solid (balta). I was divided. In addition, this aluminum nitride-containing material was also a composite of aluminum nitride and aluminum. [0053] (Example 2)
窒化アルミニウムが生成するための反応温度を調べるために、島津製作所製 DTA 50型示差熱分析装置を用いた。熱分析時の加熱速度を 10°CZ分として、雰囲気 は Arと Nのそれぞれについて行った。  In order to investigate the reaction temperature for producing aluminum nitride, a DTA 50 type differential thermal analyzer manufactured by Shimadzu Corporation was used. The heating rate during thermal analysis was 10 ° CZ and the atmosphere was Ar and N respectively.
2  2
図 4は、アルミニウム片と BN粉末を 6 : 1の割合で秤量して Ar雰囲気中で示差熱分 析を行ったときの示差熱分析チャートである。  Fig. 4 is a differential thermal analysis chart when aluminum pieces and BN powder are weighed at a ratio of 6: 1 and subjected to differential thermal analysis in an Ar atmosphere.
図 4から、 600°C付近に吸熱ピークが存在し、 1200°C付近に急激な発熱ピークが 認められた。チャートで確認された最初のピークは反応開始温度が 660°Cであり、ァ ルミ-ゥムの融点と一致する。一方、 1200°C付近に認められる発熱ピークは溶融 A1 と BN粉末の固液反応によるものと考えられ、下記の反応式(1)に示す反応の開始温 度が 1200°Cであると考えられる。  From Fig. 4, there was an endothermic peak near 600 ° C and a sharp exothermic peak around 1200 ° C. The first peak confirmed in the chart has a reaction start temperature of 660 ° C, which is consistent with the melting point of aluminum. On the other hand, the exothermic peak near 1200 ° C is considered to be due to the solid-liquid reaction between molten A1 and BN powder, and the reaction starting temperature shown in the following reaction formula (1) is considered to be 1200 ° C. .
[0054] (化 1) [0054]
13A1+ 12BN → 12A1N+A1B …ひ)  13A1 + 12BN → 12A1N + A1B…
12  12
[0055] (実施例 3)  [Example 3]
実施例 1において、雰囲気の窒素 (N )ガスの圧力を 10気圧、 20気圧、 30気圧と  In Example 1, the pressure of the nitrogen (N) gas in the atmosphere was 10 atmospheres, 20 atmospheres, and 30 atmospheres.
2  2
変えたときに得られた窒化アルミニウムの収率や結晶構造を調べた。  The yield and crystal structure of the aluminum nitride obtained when changed were investigated.
同様にして、雰囲気ガスをアルゴン (Ar)に変え、圧力を 10気圧、 20気圧、 30気圧 と変えたときに得られた窒化アルミニウムの収率や結晶構造を調べた。  Similarly, the yield and crystal structure of aluminum nitride obtained when the atmospheric gas was changed to argon (Ar) and the pressure was changed to 10, 20, and 30 atmospheres were examined.
[0056] Arガス雰囲気中で反応させた場合の生成物は、ガス圧に関係なく立方晶系と六方 晶系の 2種類の結晶構造を有する A1Nが共存することを明らかにした。 [0056] It was clarified that A1N having two types of crystal structures, cubic and hexagonal, coexists in the product when reacted in an Ar gas atmosphere regardless of the gas pressure.
一方、 Nガス雰囲気中では、 10気圧以下と以上で A1Nの結晶構造が立方晶系と On the other hand, in the N gas atmosphere, the crystal structure of A1N is cubic and above 10 atm.
2 2
六方晶系に変化して生成することが明らかになった。  It was revealed that it was transformed into a hexagonal system.
一方で、従来より反応生成物であると考えられている A1B の回折ピークは観察さ  On the other hand, the diffraction peak of A1B, which is conventionally considered to be a reaction product, was observed.
12  12
れなかった。  It wasn't.
[0057] また、立方晶と六方晶の結晶構造を有する A1Nをマイクロビッカース試験機で硬度 測定を行った結果、立方晶系 A1Nは Hv= 19程度であるのに対し、六方晶系 A1Nは Ην= 900前後の硬度を示すことが分かった。  [0057] The hardness of A1N having a cubic and hexagonal crystal structure was measured with a micro Vickers tester. As a result, cubic A1N had a Hv of about 19, whereas hexagonal A1N = Found to show a hardness of around 900.
[0058] (実施例 4) 実施例 1において、窒素雰囲気の圧力を 10気圧、 15気圧、 20気圧、 25気圧と変 え、また、熱処理温度を 900°C、 1000°C、 1100°C、 1200°Cと変えて得られた窒化 アルミニウム含有組成物の状態を調べた。 [Example 4] In Example 1, it was obtained by changing the pressure of the nitrogen atmosphere to 10 atm, 15 atm, 20 atm, 25 atm, and changing the heat treatment temperature to 900 ° C, 1000 ° C, 1100 ° C, 1200 ° C. The state of the aluminum nitride-containing composition was examined.
[0059] 結果を図 5に示す。図 5中、上記の各気圧及び温度に対応する状態として、状態 1 は粉末状組成物が得られたことを示し、状態 2は凝集固体 (バルタ)状組成物と粉末 状組成物の混合物が得られたことを示し、状態 3は凝集固体 (バルタ)状の組成物が 得られたことを示す。  [0059] The results are shown in FIG. In FIG. 5, as states corresponding to the respective atmospheric pressures and temperatures described above, state 1 indicates that a powdery composition was obtained, and state 2 indicates that a mixture of the agglomerated solid (balta) composition and the powdered composition is present. State 3 indicates that an agglomerated solid (balta) composition was obtained.
[0060] 上記の X線回折によれば上記の粉末状の組成物は窒化アルミニウムであり、凝集 固体 (バルタ)状の組成物は窒化アルミニウムとアルミニウムの複合体であり、図 5から [0060] According to the above X-ray diffraction, the above powdery composition is aluminum nitride, and the agglomerated solid (baltha) composition is a composite of aluminum nitride and aluminum, as shown in FIG.
、従来報告されて ヽる A1N生成条件より低温低圧で A1Nが生成可能であることを示し ている。これは、温度が上昇するに従って BNが分解し Bが A1と Nを結びつける触媒 This shows that A1N can be generated at lower temperature and lower pressure than previously reported A1N generation conditions. This is because BN decomposes and B binds A1 and N as the temperature rises.
2  2
的働きをして 、るためと考えられる。  It is thought to be the purpose of working.
[0061] (実施例 5)  [Example 5]
実施例 1において、窒素雰囲気の圧力を 10気圧、 20気圧、 30気圧、 40気圧と変 え、また、熱処理温度を 1100°C、 1200°C、 1300°Cと変えて得られた窒化アルミ-ゥ ム含有物それぞれに対し、 A1N含有率 (各サンプルで 2箇所測定)、 X線回折による A1ピークの有無、及びビッカース硬さを調べた。  In Example 1, the aluminum nitride obtained by changing the pressure of the nitrogen atmosphere to 10 atm, 20 atm, 30 atm, 40 atm, and changing the heat treatment temperature to 1100 ° C, 1200 ° C, 1300 ° C For each of the humic substances, the A1N content (measured at two points in each sample), the presence or absence of an A1 peak by X-ray diffraction, and Vickers hardness were examined.
[0062] 結果を図 6に示す。図 6において黒丸は A1ピークが観察されな力つたことを示して いる。また各点の上方に記載された数値は A1N含有率(%)であり、各点の下方に記 載された数値はビッカース硬さ(Hv)を示している。本図から、熱処理温度が 1200°C 前後でアルミニウムの窒化反応が最も進行し、かつ A1N含有物が硬くなることができ ることがゎカゝる。  [0062] The results are shown in FIG. In Fig. 6, the black circles indicate that the A1 peak was not observed. The numerical value above each point is the A1N content (%), and the numerical value below each point is Vickers hardness (Hv). From this figure, it is clear that the nitriding reaction of aluminum is most advanced when the heat treatment temperature is around 1200 ° C, and that the A1N-containing material can be hardened.
[0063] (実施例 6)  [0063] (Example 6)
原料として小片に砕いた塊状のアルミニウム (純度 99. 99%以上)と粉末状の窒化 ホウ素(純度 99. 9%以上)を重量比で 6 : 1になるように秤量し、図 1に示すカーボン 抵抗炉のアルミナ製のルツボ(内径 40mm φ )に投入し、第 1熱処理を行った。第 1 熱処理の条件は、窒素雰囲気の圧力が 10気圧 ± 10%、炉の昇温速度が 10°CZ分 、加熱温度が 1100°C± 10%、加熱時間が 1時間である。本処理により、凝集固体( バルタ)状の窒化アルミニウム含有物(直径 40mm φ、厚み 20mm)が得られた。 As a raw material, agglomerated aluminum (purity 99.99% or more) crushed into small pieces and powdered boron nitride (purity 99.9% or more) were weighed to a weight ratio of 6: 1, and the carbon shown in Fig. 1 The first heat treatment was performed by putting it in an alumina crucible (inner diameter: 40 mmφ) in a resistance furnace. The conditions for the first heat treatment are a nitrogen atmosphere pressure of 10 atm ± 10%, a furnace heating rate of 10 ° CZ min, a heating temperature of 1100 ° C ± 10%, and a heating time of 1 hour. By this treatment, agglomerated solid ( Balta-like aluminum nitride-containing material (diameter 40 mmφ, thickness 20 mm) was obtained.
[0064] 図 7は、第 1熱処理によって得られた窒化アルミニウム含有物の X線回折チャートで あり、デフラクトパターンを示している。 JCPDSカードに基づいて、 A1Nの回折ピーク に「A1N」と付した。他のピークは、面心立方格子を基調とする A1の回折ピークである 。上記した条件では、 A1Nと A1が共存していることが分かる。なお、 A1Nと A1の重量 比率は、回折ピークの強度比力も A1が 60%以上 70%以下であると考えられる。  FIG. 7 is an X-ray diffraction chart of the aluminum nitride-containing material obtained by the first heat treatment, and shows a defract pattern. Based on the JCPDS card, “A1N” was added to the diffraction peak of A1N. The other peak is the A1 diffraction peak based on the face-centered cubic lattice. Under the above conditions, it can be seen that A1N and A1 coexist. The weight ratio between A1N and A1 is considered to be that the intensity ratio of the diffraction peak is A1 60% or more and 70% or less.
[0065] そして、第 1熱処理によって得られた窒化アルミニウム含有物に対して、第 2熱処理  [0065] Then, the second heat treatment is performed on the aluminum nitride-containing material obtained by the first heat treatment.
(再熱処理)を、複数の圧力条件下で行った。第 2熱処理の条件は、加熱温度及び 時間が 1300°C及び一時間であるが、窒素雰囲気の圧力が、 10気圧、 30気圧、 35 気圧、及び 40気圧の 4パターンである。  (Re-heat treatment) was performed under a plurality of pressure conditions. The conditions for the second heat treatment are a heating temperature and time of 1300 ° C. for one hour, but the nitrogen atmosphere has four patterns of 10 atm, 30 atm, 35 atm and 40 atm.
[0066] 図 8は、 10気圧の窒素雰囲気下で第 2熱処理された凝集固体 (バルタ)状の窒化ァ ルミ-ゥム含有物の X線回折チャートを示している。第 2熱処理前と比較して、 A1Nの 回折強度が大幅に上昇し、かつ A1の回折強度が低下していることが分かる。これは、 再熱処理によって未反応の A1が窒化して A1Nになったためと考えられる。また、試料 表面には微細なアルミニウムが存在していることが認められた。これは、再熱処理に よって、窒化しな力つた A1が表面に噴出したものと考えられる。  FIG. 8 shows an X-ray diffraction chart of the aggregated solid (balta) nitride-containing material subjected to the second heat treatment in a nitrogen atmosphere of 10 atm. It can be seen that the diffraction intensity of A1N is significantly increased and the diffraction intensity of A1 is decreased compared to before the second heat treatment. This is thought to be because unreacted A1 was nitrided to A1N by reheat treatment. It was also confirmed that fine aluminum was present on the sample surface. This is thought to be due to the fact that A1, which was not nitrided, spouted to the surface due to reheating.
[0067] 図 9は、 30気圧の窒素雰囲気下で第 2熱処理された凝集固体 (バルタ)状の窒化ァ ルミ-ゥム含有物の X線回折チャートを示している。図 7と比較して、 A1Nの回折強度 力 Sさらに上昇し、かつ A1の回折強度がさらに低下して 、ることが分かる。  [0067] FIG. 9 shows an X-ray diffraction chart of the aggregated solid (balta) nitride-containing material subjected to the second heat treatment in a nitrogen atmosphere of 30 atm. Compared to FIG. 7, it can be seen that the diffraction intensity force S of A1N is further increased and the diffraction intensity of A1 is further decreased.
[0068] 図 10は、 35気圧の窒素雰囲気下で第 2熱処理された凝集固体 (バルタ)状の窒化 アルミニウム含有物の X線回折チャートを示している。図 8と比較して、 A1Nの回折強 度がさらに上昇した。また、 A1の回折ピークはほとんど見られない。この状態におい て、窒化アルミニウム含有物における A1含有率は 2%以下である。  FIG. 10 shows an X-ray diffraction chart of the agglomerated solid (balta) -like aluminum nitride-containing material subjected to the second heat treatment in a nitrogen atmosphere of 35 atm. Compared to Fig. 8, the diffraction intensity of A1N was further increased. Almost no diffraction peak of A1 is seen. In this state, the A1 content in the aluminum nitride-containing material is 2% or less.
[0069] また、凝集固体 (バルタ)状の窒化アルミニウム含有物を 40気圧の窒素雰囲気下で 第 2熱処理すると、粉末状の窒化アルミニウムが得られる。これは、窒化アルミニウム の粒子を接合していた A1のほとんどが A1Nに変化したためと考えられる。  [0069] When the aggregated solid (balta) -like aluminum nitride-containing material is subjected to a second heat treatment in a nitrogen atmosphere of 40 atm, powdered aluminum nitride is obtained. This is probably because most of A1 that joined the aluminum nitride particles changed to A1N.
[0070] 上記結果から、凝集固体 (バルタ)状の窒化アルミニウム含有物において、複数の A1N粒子を接合しているのはアルミニウムであることが分かる。また、第 2熱処理の条 件 (例えば圧力、温度、時間)を調節することにより、窒化アルミニウム含有物の A1含 有率を調節して、使用目的に合った特性にすることができることがわ力つた。 [0070] From the above results, it is understood that in the aggregated solid (balta) -like aluminum nitride-containing material, it is aluminum that joins the plurality of A1N particles. Also, the second heat treatment condition By adjusting the conditions (for example, pressure, temperature, and time), it was found that the A1 content of the aluminum nitride-containing material can be adjusted to achieve characteristics suitable for the intended use.
[0071] 図 11は、第二熱処理における窒素雰囲気の気圧と、生成した A1N含有物に含まれ る A1Nの体積%の関係を示すグラフである。 A1Nの体積%は、 X線回折チャートに基 づいて算出した。本グラフに示すように、第二熱処理における窒素雰囲気の気圧が 上がるにつれて、 A1Nの体積%が上昇しており、窒素雰囲気の気圧が 35気圧の場 合は約 98体積%となる。このことから、第二熱処理における窒素雰囲気の気圧を制 御することにより、 A1N含有物に含まれる A1N含有率を制御できることが分かる。  FIG. 11 is a graph showing the relationship between the atmospheric pressure of the nitrogen atmosphere in the second heat treatment and the volume percentage of A1N contained in the generated A1N-containing material. The volume percentage of A1N was calculated based on the X-ray diffraction chart. As shown in this graph, the volume% of A1N increases as the pressure of the nitrogen atmosphere in the second heat treatment increases, and is about 98% by volume when the pressure of the nitrogen atmosphere is 35 atmospheres. This shows that the A1N content contained in the A1N-containing material can be controlled by controlling the pressure of the nitrogen atmosphere in the second heat treatment.
[0072] (実施例 7)  [Example 7]
原料として小片に砕いた塊状のアルミニウム (純度 99. 99%以上)と粉末状の窒化 ホウ素(純度 99. 9%以上)を重量比で 1 : 1になるように秤量し、図 1に示すカーボン 抵抗炉のアルミナ製のルツボ(内径 40mm φ )に投入し、第 1熱処理を行った。第 1 熱処理の条件は、窒素雰囲気の圧力が 25気圧 ± 10%、炉の昇温速度が 10°CZ分 、加熱温度が 1250°C± 10%、加熱時間が 1時間である。本処理により、粉末状の窒 化アルミニウム含有物が得られた。  As a raw material, bulk aluminum crushed into small pieces (purity 99.99% or more) and powdered boron nitride (purity 99.9% or more) were weighed at a weight ratio of 1: 1, and the carbon shown in Fig. 1 was measured. The first heat treatment was performed by putting it in an alumina crucible (inner diameter: 40 mmφ) in a resistance furnace. The conditions for the first heat treatment are a nitrogen atmosphere pressure of 25 atm ± 10%, a furnace heating rate of 10 ° CZ min, a heating temperature of 1250 ° C ± 10%, and a heating time of 1 hour. By this treatment, a powdered aluminum nitride-containing material was obtained.
[0073] 図 12は、上記処理により得られた粉末状の窒化アルミニウム含有物の X線回折チ ヤートである。本チャートから、粉末状の窒化アルミニウム含有物は窒化アルミニウム の純度が 100%に近いと考えられる。  FIG. 12 is an X-ray diffraction chart of the powdered aluminum nitride-containing material obtained by the above treatment. From this chart, it is considered that the powdered aluminum nitride-containing material has a purity of nearly 100%.
従来の A1N粉末製造方法では、窒素雰囲気の気圧が 100気圧、処理温度が 160 0°Cの高温高圧条件が必要だったが、本実施例によれば、 1250°C、 25気圧の低温 低圧条件でも A1Nの粉末が製造できることが確認された。これは、 A1との濡れ性に優 れた BNが触媒として機能することによると考えられる。  The conventional A1N powder manufacturing method required high-temperature and high-pressure conditions where the atmospheric pressure of the nitrogen atmosphere was 100 atm and the processing temperature was 1600 ° C. According to this example, the low-temperature and low-pressure conditions of 1250 ° C and 25 atm were used. However, it was confirmed that A1N powder could be produced. This is thought to be because BN, which has excellent wettability with A1, functions as a catalyst.
[0074] (実施例 8)  [Example 8]
実施例 6で得られた窒化アルミニウム含有物の熱膨張特性をそれぞれ調べた。また 、アルミニウム単体、及びシリコン単体の熱膨張特性をそれぞれ調べた。測定には島 津製作所製熱分析装置 TMA— 50を用いた。昇温速度は 10°CZ分であり、常温か ら 500°Cまでの平均熱膨張量を測定した。  The thermal expansion characteristics of the aluminum nitride-containing material obtained in Example 6 were examined. In addition, the thermal expansion characteristics of aluminum alone and silicon alone were examined. A Shimadzu thermal analyzer TMA-50 was used for the measurement. The rate of temperature increase was 10 ° CZ, and the average amount of thermal expansion from room temperature to 500 ° C was measured.
[0075] 図 13は、熱膨張量の測定結果を示すグラフである。縦軸は熱膨張量 m)であり 、横軸は温度 (°C)である。記号 aは、第 2熱処理 (再熱処理)における窒素雰囲気圧 が 10気圧の試料の測定結果であり、記号 bは、第 2熱処理 (再熱処理)における窒素 雰囲気圧が 30気圧の試料の測定結果であり、記号 cは、第 2熱処理 (再熱処理)にお ける窒素雰囲気圧が 35気圧の試料の測定結果である。記号 dはアルミニウム単体の 測定結果であり、記号 eはシリコン単体の測定結果である。 FIG. 13 is a graph showing the measurement results of the thermal expansion amount. The vertical axis is the thermal expansion m) The horizontal axis is temperature (° C). Symbol a is the measurement result of the sample with a nitrogen atmosphere pressure of 10 atm in the second heat treatment (reheat treatment), and symbol b is the measurement result of the sample with a nitrogen atmosphere pressure of 30 atm in the second heat treatment (reheat treatment). Yes, symbol c is the measurement result of a sample with a nitrogen atmosphere pressure of 35 atm in the second heat treatment (reheat treatment). Symbol d is the measurement result for aluminum alone, and symbol e is the measurement result for silicon alone.
[0076] 本図から、第 2熱処理 (再熱処理)を行うことによって、残留して 、る A1を A1Nに変 化させ、かつ残留している A1を試料の表面に搾り出すことにより、熱膨張率を低くで きることが分力つた。そして、第 2熱処理の条件を調整することにより、窒化アルミ-ゥ ム含有物の熱膨張率を A1N単体の熱膨張率に近づけることができる。具体的には、 第 2熱処理における窒素雰囲気の圧力が高いほど、窒化アルミニウム含有物の熱膨 張率は A1N単体の値に近くなる。なお、 1300°C、 35気圧、 1時間という第 2熱処理の 条件は、凝集固体 (バルタ)状力も粉末状に変わる臨界点に近い状態にあると考えら れる、 [0076] From this figure, by performing the second heat treatment (re-heat treatment), the remaining A1 is changed to A1N, and the remaining A1 is squeezed onto the surface of the sample, so that the thermal expansion is achieved. It was possible to reduce the rate. By adjusting the conditions for the second heat treatment, the thermal expansion coefficient of the aluminum nitride-containing material can be made close to the thermal expansion coefficient of A1N alone. Specifically, the higher the pressure of the nitrogen atmosphere in the second heat treatment, the closer the thermal expansion rate of the aluminum nitride-containing material is to the value of A1N alone. Note that the conditions of the second heat treatment of 1300 ° C, 35 atm, and 1 hour are considered to be close to the critical point at which the agglomerated solid (balta) -like force also changes to powder,
[0077] (実施例 9)  [0077] (Example 9)
図 14は、窒化アルミニウム含有物の熱膨張率と、第 2熱処理における窒素雰囲気 圧の関係を示すグラフである。試料は、実施例 7と同様のものを用いた。なお、図中 X はシリコン単体の熱膨張率を示しており、図中 yは従来の焼結法による窒化アルミ- ゥムの熱膨張率を示して!/ヽる。  FIG. 14 is a graph showing the relationship between the thermal expansion coefficient of the aluminum nitride-containing material and the nitrogen atmosphere pressure in the second heat treatment. The same sample as in Example 7 was used. In the figure, X indicates the coefficient of thermal expansion of silicon alone, and y in the figure indicates the coefficient of thermal expansion of aluminum nitride by the conventional sintering method!
[0078] 本図によれば、第 2熱処理における窒素雰囲気の圧力が 20気圧を超えると熱膨張 率が急激に小さくなる。これは、 A1の窒化反応、及び A1の搾り出し効果が 20気圧以 上で顕著になるためと考えられる。従って、高温で安定な凝集個体 (バルタ)状の窒 化アルミニウム含有物を得るためには、第 2熱処理における窒素雰囲気の圧力を、 2 5気圧以上 35気圧以下にするのが好ま 、と考えられる。  [0078] According to this figure, when the pressure of the nitrogen atmosphere in the second heat treatment exceeds 20 atm, the coefficient of thermal expansion decreases rapidly. This is thought to be because the nitriding reaction of A1 and the squeezing effect of A1 become prominent at 20 atm or higher. Therefore, in order to obtain an agglomerated solid (Balta) -like aluminum nitride-containing material that is stable at high temperatures, the pressure of the nitrogen atmosphere in the second heat treatment is preferably 25 to 35 atm. .
[0079] (実施例 10)  [Example 10]
図 15は、窒化アルミニウム含有物の導電率と、第 2熱処理における窒素雰囲気圧 の関係を示すグラフである。試料は実施例 7と同様のものを用いた。導電率の測定は 4端子法によって行 ヽ、電気抵抗と ヽぅ形で測定した。  FIG. 15 is a graph showing the relationship between the electrical conductivity of the aluminum nitride-containing material and the nitrogen atmosphere pressure in the second heat treatment. The same sample as in Example 7 was used. The conductivity was measured by the four-terminal method, using electrical resistance and a saddle shape.
[0080] 本図によれば、第 2熱処理における窒素雰囲気の圧力が 20気圧以下では、窒化ァ ルミ-ゥム含有物は通常の金属材料と同程度の導電率を示すが、 20気圧を超えた 圧力で第 2熱処理を行うと、窒化アルミニウム含有物の導電率が急激に小さくなる。 特に 35気圧以上では、導電率は略 0になり、絶縁物といえる状態になった。 [0080] According to this figure, when the pressure of the nitrogen atmosphere in the second heat treatment is 20 atm or less, the nitride Lumium-containing materials show the same electrical conductivity as ordinary metal materials, but when the second heat treatment is performed at a pressure exceeding 20 atm, the conductivity of aluminum nitride-containing materials decreases rapidly. In particular, at 35 atmospheres or more, the conductivity was almost zero, and it could be said to be an insulator.
[0081] (実施例 11) [0081] (Example 11)
実施例 6で得られた窒化アルミニウム含有物のマイクロビッカース硬さを測定した。 図 16は、第二熱処理における窒素雰囲気の気圧と、生成した A1N含有物のマイク ロビッカース硬さの関係を示すグラフである。全ての試料において、処理温度は 130 0°Cであり、処理時間は一時間である。窒素雰囲気の気圧が上がるにつれて、 A1N 含有物のマイクロビッカース硬さが上昇している。このような傾向が得られるのは、図 1 0に示したように、窒素雰囲気の気圧が上がるにつれて、 A1N含有物に含まれる A1N の体積%は上昇する為と考えられる。  The micro Vickers hardness of the aluminum nitride-containing material obtained in Example 6 was measured. FIG. 16 is a graph showing the relationship between the atmospheric pressure of the nitrogen atmosphere in the second heat treatment and the Micro Vickers hardness of the generated A1N-containing material. In all samples, the processing temperature is 1300 ° C. and the processing time is one hour. As the atmospheric pressure in the nitrogen atmosphere increases, the micro Vickers hardness of the A1N-containing material increases. Such a tendency can be obtained because, as shown in FIG. 10, the volume percentage of A1N contained in the A1N-containing material increases as the pressure of the nitrogen atmosphere increases.
[0082] 詳細には、窒素雰囲気が 20気圧の場合はジュラルミン (商標)よりやや高い硬さを 有している。また、窒素雰囲気が 30気圧の場合は工具用の特殊鋼 (例えばモリブデ ン鋼)より高い硬さを示している。このように、本実施例に係る窒化アルミニウム含有物 は、高い硬さを有しており、耐磨耗性が高ぐ機械的特性も優れていることが分かる。 [0082] Specifically, when the nitrogen atmosphere is 20 atm, the hardness is slightly higher than that of Duralumin (trademark). In addition, when the nitrogen atmosphere is 30 atm, the hardness is higher than that of special steel for tools (for example molybdenum steel). Thus, it can be seen that the aluminum nitride-containing material according to the present example has high hardness, high wear resistance, and excellent mechanical properties.
[0083] (実施例 12) [0083] (Example 12)
実施例 6で得られた窒化アルミニウム含有物の熱伝導率を測定した。  The thermal conductivity of the aluminum nitride-containing material obtained in Example 6 was measured.
図 17は、第 2熱処理における窒素雰囲気の気圧と、生成した A1N含有物の熱伝導 率の関係を示すグラフである。全ての試料において、処理温度は 1300°Cであり、処 理時間は一時間である。本図に示すように、窒素雰囲気が 30気圧の場合は、焼結 法により形成された A1N焼結体より高い熱伝導率を有している。このように、本実施 例に係る A1N含有物は、熱伝導特性も優れて!/、ることが分かる。  FIG. 17 is a graph showing the relationship between the atmospheric pressure of the nitrogen atmosphere in the second heat treatment and the thermal conductivity of the generated A1N-containing material. For all samples, the processing temperature is 1300 ° C and the processing time is one hour. As shown in this figure, when the nitrogen atmosphere is 30 atm, it has higher thermal conductivity than the A1N sintered body formed by the sintering method. Thus, it can be seen that the A1N-containing material according to this example has excellent heat conduction properties!
[0084] (実施例 13) [0084] (Example 13)
原料として小片に砕いた塊状のアルミニウム (純度 99. 99%以上)と粉末状の窒化 ホウ素(純度 99. 9%以上)を重量比で 6: 1になるように秤量し、図 1に示すカーボン 抵抗炉のアルミナ製のルツボ(内径 40mm φ )に投入し、第 1熱処理を行った。第 1 熱処理の条件は、窒素雰囲気の圧力が 10気圧 ± 10%、炉の昇温速度が 10°CZ分 、加熱温度が 1100°C± 10%、加熱時間が 1時間である。本処理により、凝集固体( バルタ)状の窒化アルミニウム含有物(直径 40mm φ、厚み 20mm)が得られた。 As a raw material, agglomerated aluminum (purity 99.99% or more) crushed into small pieces and powdered boron nitride (purity 99.9% or more) were weighed to a weight ratio of 6: 1, and the carbon shown in Figure 1 The first heat treatment was performed by putting it in an alumina crucible (inner diameter: 40 mmφ) in a resistance furnace. The conditions for the first heat treatment are a nitrogen atmosphere pressure of 10 atm ± 10%, a furnace heating rate of 10 ° CZ min, a heating temperature of 1100 ° C ± 10%, and a heating time of 1 hour. By this treatment, agglomerated solid ( Balta-like aluminum nitride-containing material (diameter 40 mmφ, thickness 20 mm) was obtained.
[0085] その後、第 2熱処理を複数回行い、窒化アルミニウム含有物の窒化アルミニウム含 有率 (X線回折により測定)と第 2熱処理の回数の関係を、第 2熱処理の温度が 1150[0085] After that, the second heat treatment was performed a plurality of times, and the relationship between the aluminum nitride content (measured by X-ray diffraction) of the aluminum nitride-containing material and the number of times of the second heat treatment was determined as follows.
°Cの場合と 1200°Cの場合それぞれにおいて調べた。全ての第 2熱処理において、 窒素雰囲気圧は 15気圧である。 It investigated in the case of ° C and the case of 1200 ° C, respectively. In all second heat treatments, the nitrogen atmosphere pressure is 15 atmospheres.
[0086] 結果を図 18に示す。本図から、第 2熱処理の回数が増加するにつれて窒化アルミ[0086] The results are shown in FIG. From this figure, as the number of second heat treatment increases, aluminum nitride
-ゥム含有率が高くなることが分かる。また、窒化アルミニウム含有率は、長時間の第-It can be seen that the content of hum increases. Also, the aluminum nitride content is
2熱処理を一回行う場合よりも、短時間の第 2熱処理を複数回行う場合のほうが増加 する。 (2) The number of times of performing the second heat treatment in a short time is increased more than when the heat treatment is performed once.
[0087] また、第 2熱処理の温度が 1200°Cの場合は、第 2熱処理の温度が 1150°Cの場合 と比較して、相対的に少ない処理回数で窒化アルミニウム含有率が増加する。この場 合、アルミニウムの窒化反応が急激に進む。  [0087] In addition, when the temperature of the second heat treatment is 1200 ° C, the aluminum nitride content increases with a relatively small number of treatments compared to the case where the temperature of the second heat treatment is 1150 ° C. In this case, the nitriding reaction of aluminum proceeds rapidly.
[0088] (実施例 14)  [0088] (Example 14)
実施例 13で得られた窒化アルミニウム含有物(第 2熱処理における処理温度は 11 50°C、処理回数は 3回)を水酸ィ匕ナトリウム水溶液に浸漬し、窒化アルミニウム含有 物に含まれるアルミニウムを溶かした。この試料の SEM写真を図 19に示す。本写真 から、窒化アルミニウムがネットワーク状に形成されていることが分かる。なお窒化ァ ルミ-ゥムのうちネットワークを形成せずに孤立しているものは、アルミニウムが溶け出 すことによりネットワーク力も切り離され、水酸化ナトリウム水溶液中に流れ出て 、る。  The aluminum nitride-containing material obtained in Example 13 (the treatment temperature in the second heat treatment is 1150 ° C. and the number of treatments is 3 times) is immersed in an aqueous solution of sodium hydroxide and the aluminum contained in the aluminum nitride-containing material is removed. Melted. Figure 19 shows the SEM photograph of this sample. From this photograph, it can be seen that aluminum nitride is formed in a network. In the case of aluminum nitride that is isolated without forming a network, the network force is cut off by the dissolution of aluminum and flows into the aqueous sodium hydroxide solution.
[0089] なお、上記した実施例においては窒化物として窒化ホウ素を用いた力 窒化マグネ シゥム及び窒化カルシウムも窒化ホウ素に近い生成自由エネルギーを有しているた め、同様の結果を得られると考える。 [0089] In the above-described embodiments, the force using boron nitride as the nitride. Magnesium nitride and calcium nitride also have the free energy of formation close to that of boron nitride, and it is considered that similar results can be obtained. .
産業上の利用可能性  Industrial applicability
[0090] 本発明に係る窒化アルミニウム含有物は、硬ぐかつ熱伝導率が高いため、半導体 材料、発光ダイオード及び半導体レーザ等の半導体発光素子をマウントする基台、 並びに内燃機関の材料として利用することができる。 Since the aluminum nitride-containing material according to the present invention is hard and has high thermal conductivity, it is used as a semiconductor material, a base for mounting a semiconductor light emitting device such as a light emitting diode and a semiconductor laser, and a material for an internal combustion engine. be able to.

Claims

請求の範囲  The scope of the claims
[I] 窒素雰囲気下で、アルミニウムと窒化物を同一の容器内で加熱して前記アルミニゥ ムを溶融することにより、窒化アルミニウムを含有する窒化アルミニウム含有物を生成 する第 1熱処理工程を具備する窒化アルミニウム含有物の製造方法。  [I] A nitridation comprising a first heat treatment step for producing an aluminum nitride-containing material containing aluminum nitride by heating aluminum and nitride in the same container under a nitrogen atmosphere to melt the aluminum. A method for producing an aluminum-containing material.
[2] 前記容器内において、前記窒化物上に前記アルミニウムが位置する状態で加熱を 行う請求項 1に記載の窒化アルミニウム含有物の製造方法。 [2] The method for producing an aluminum nitride-containing material according to [1], wherein heating is performed in a state where the aluminum is positioned on the nitride in the container.
[3] 前記窒化物は粉末状である請求項 1又は 2に記載の窒化アルミニウム含有物の製 造方法。 [3] The method for producing an aluminum nitride-containing material according to [1] or [2], wherein the nitride is in a powder form.
[4] 前記窒化物は窒化ホウ素、窒化マグネシウム、又は窒化カルシウム力 なる群から 選ばれた少なくとも一種である請求項 1〜3のいずれか一項に記載の窒化アルミニゥ ム含有物の製造方法。  [4] The method for producing an aluminum nitride-containing material according to any one of [1] to [3], wherein the nitride is at least one selected from the group consisting of boron nitride, magnesium nitride, and calcium nitride force.
[5] 前記第 1熱処理工程における熱処理温度を、 900°C以上 1400°C以下にする請求 項 1〜4のいずれか一項に記載の窒化アルミニウム含有物の製造方法。  [5] The method for producing an aluminum nitride-containing material according to any one of [1] to [4], wherein a heat treatment temperature in the first heat treatment step is set to 900 ° C or higher and 1400 ° C or lower.
[6] 前記第 1熱処理工程において、前記窒素ガス雰囲気を加圧雰囲気にする請求項 1 〜5のいずれか一項に記載の窒化アルミニウム含有物の製造方法。  6. The method for producing an aluminum nitride-containing material according to any one of claims 1 to 5, wherein in the first heat treatment step, the nitrogen gas atmosphere is a pressurized atmosphere.
[7] 前記窒素ガス雰囲気は 50気圧以下である請求項 6に記載の窒化アルミニウム含有 物の製造方法。  7. The method for producing an aluminum nitride-containing material according to claim 6, wherein the nitrogen gas atmosphere is 50 atm or less.
[8] 前記窒化アルミニウム含有物は塊状である請求項 1〜7のいずれか一項に記載の 窒化アルミニウム含有物の製造方法。  8. The method for producing an aluminum nitride-containing material according to any one of claims 1 to 7, wherein the aluminum nitride-containing material is in a lump shape.
[9] 前記第 1熱処理工程の後に、前記窒化アルミニウム含有物を冷却した後窒素ガス 雰囲気下で再び熱処理する第 2熱処理工程を更に具備する請求項 1〜8のいずれ か一項に記載の窒化アルミニウム含有物の製造方法。 [9] The nitriding according to any one of [1] to [8], further comprising a second heat treatment step of cooling the aluminum nitride-containing material after the first heat treatment step and then heat-treating again in a nitrogen gas atmosphere. A method for producing an aluminum-containing material.
[10] 前記第 1熱処理工程の後において前記窒化アルミニウム含有物は窒化アルミ-ゥ ム及びアルミニウムを含有し、 [10] After the first heat treatment step, the aluminum nitride-containing material contains aluminum nitride and aluminum,
前記第 2熱処理によって、前記窒化アルミニウム含有物の窒化アルミニウム含有率 は増加し、かつアルミニウム含有率が低下する請求項 9に記載の窒化アルミニウム含 有物の製造方法。  10. The method for producing an aluminum nitride-containing material according to claim 9, wherein the second heat treatment increases the aluminum nitride content of the aluminum nitride-containing material and decreases the aluminum content.
[II] 前記第 2熱処理工程において、前記窒素ガス雰囲気を加圧雰囲気にする請求項 9 又は 10に記載の窒化アルミニウム含有物の製造方法。 [II] In the second heat treatment step, the nitrogen gas atmosphere is a pressurized atmosphere. Or the manufacturing method of the aluminum nitride containing material of 10.
[12] 前記第 2熱処理工程における前記窒素ガス雰囲気は 50気圧以下である請求項 11 に記載の窒化アルミニウム含有物の製造方法。 12. The method for producing an aluminum nitride-containing material according to claim 11, wherein the nitrogen gas atmosphere in the second heat treatment step is 50 atm or less.
[13] 前記第 2熱処理工程は、前記第 1熱処理工程より A1の窒化反応が進行しやすい条 件で行われる請求項 10〜 12のいずれか一項に記載の窒化アルミニウム含有物の製 造方法。 [13] The method for producing an aluminum nitride-containing material according to any one of [10] to [12], wherein the second heat treatment step is performed under a condition in which the nitriding reaction of A1 proceeds more easily than the first heat treatment step. .
[14] 前記第 2熱処理工程における熱処理温度は、前記第 1熱処理工程における熱処理 温度以上である請求項 10〜 12のいずれか一項に記載の窒化アルミニウム含有物の 製造方法。  14. The method for producing an aluminum nitride-containing material according to any one of claims 10 to 12, wherein a heat treatment temperature in the second heat treatment step is equal to or higher than a heat treatment temperature in the first heat treatment step.
[15] 前記第 1熱処理工程における熱処理温度は 900°C以上 1200°C以下であり、前記 第 2熱処理工程における熱処理温度は 1100°C以上 1200°C以下である請求項 10 〜 12の 、ずれか一項に記載の窒化アルミニウム含有物の製造方法。  15. The heat treatment temperature in the first heat treatment step is 900 ° C. or more and 1200 ° C. or less, and the heat treatment temperature in the second heat treatment step is 1100 ° C. or more and 1200 ° C. or less. A method for producing an aluminum nitride-containing material according to claim 1.
[16] 前記第 2熱処理工程を複数回繰り返す請求項 9〜 15のいずれか一項に記載の窒 化アルミニウム含有物の製造方法。  [16] The method for producing an aluminum nitride-containing material according to any one of [9] to [15], wherein the second heat treatment step is repeated a plurality of times.
[17] 不活性ガス雰囲気下でアルミニウムと窒化物を同一の容器内で加熱して前記アル ミニゥムを溶融することにより、窒化アルミニウムとアルミニウムを含有する塊状の窒化 アルミニウム含有物を生成する窒化アルミニウム含有物の製造方法。  [17] Aluminum nitride containing aluminum nitride and aluminum nitride are produced by heating aluminum and nitride in the same container in an inert gas atmosphere to melt the aluminum, thereby forming a massive aluminum nitride containing material containing aluminum nitride and aluminum Manufacturing method.
PCT/JP2006/305138 2005-03-29 2006-03-15 Method for producing material containing aluminum nitride WO2006103930A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510377A JP5181329B2 (en) 2005-03-29 2006-03-15 Method for producing aluminum nitride-containing material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-093998 2005-03-29
JP2005093998 2005-03-29
JP2005-297371 2005-10-12
JP2005297371 2005-10-12

Publications (1)

Publication Number Publication Date
WO2006103930A1 true WO2006103930A1 (en) 2006-10-05

Family

ID=37053193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305138 WO2006103930A1 (en) 2005-03-29 2006-03-15 Method for producing material containing aluminum nitride

Country Status (2)

Country Link
JP (1) JP5181329B2 (en)
WO (1) WO2006103930A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115068A (en) * 2006-06-30 2008-05-22 Tama Tlo Kk Process for producing aluminum nitride containing material
JP2012066975A (en) * 2010-09-24 2012-04-05 Denso Corp Method for producing aluminum nitride material, aluminum nitride material, and heat exchanger
WO2018159218A1 (en) * 2017-02-28 2018-09-07 株式会社デンソー Method for preparing aln
JP2020001981A (en) * 2018-06-29 2020-01-09 日本バイリーン株式会社 Aluminum nitride composition and method of producing the same, composite containing the aluminum nitride composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271060B1 (en) * 2018-05-18 2021-06-29 연세대학교 산학협력단 Layered AlN, manufacturing method thereof and exfoliated AlN nanosheet therefrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217161A (en) * 1985-07-16 1987-01-26 Toyo Alum Kk Production of aluminum nitride
JPS63277503A (en) * 1987-05-08 1988-11-15 Showa Alum Corp Continuous production of high-purity aluminum nitride powder and apparatus therefor
JPH01264914A (en) * 1988-04-14 1989-10-23 Univ Osaka Production of aluminum nitride powder and powder composition
JPH05279002A (en) * 1992-03-31 1993-10-26 Toshiba Ceramics Co Ltd Production of al nitride powder
JPH08508460A (en) * 1993-04-02 1996-09-10 ザ・ダウ・ケミカル・カンパニー Aluminum nitride, solid solution containing aluminum nitride and aluminum nitride composite prepared by combustion synthesis
JP2000016804A (en) * 1998-07-03 2000-01-18 Toyo Alum Kk Self-propagating superheating synthesis apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217161A (en) * 1985-07-16 1987-01-26 Toyo Alum Kk Production of aluminum nitride
JPS63277503A (en) * 1987-05-08 1988-11-15 Showa Alum Corp Continuous production of high-purity aluminum nitride powder and apparatus therefor
JPH01264914A (en) * 1988-04-14 1989-10-23 Univ Osaka Production of aluminum nitride powder and powder composition
JPH05279002A (en) * 1992-03-31 1993-10-26 Toshiba Ceramics Co Ltd Production of al nitride powder
JPH08508460A (en) * 1993-04-02 1996-09-10 ザ・ダウ・ケミカル・カンパニー Aluminum nitride, solid solution containing aluminum nitride and aluminum nitride composite prepared by combustion synthesis
JP2000016804A (en) * 1998-07-03 2000-01-18 Toyo Alum Kk Self-propagating superheating synthesis apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115068A (en) * 2006-06-30 2008-05-22 Tama Tlo Kk Process for producing aluminum nitride containing material
JP2012066975A (en) * 2010-09-24 2012-04-05 Denso Corp Method for producing aluminum nitride material, aluminum nitride material, and heat exchanger
WO2018159218A1 (en) * 2017-02-28 2018-09-07 株式会社デンソー Method for preparing aln
JP2018140904A (en) * 2017-02-28 2018-09-13 株式会社デンソー Method for producing AlN
JP2020001981A (en) * 2018-06-29 2020-01-09 日本バイリーン株式会社 Aluminum nitride composition and method of producing the same, composite containing the aluminum nitride composition
JP7175110B2 (en) 2018-06-29 2022-11-18 日本バイリーン株式会社 ALUMINUM NITRIDE COMPOSITION, MANUFACTURING METHOD THEREOF, COMPOSITE CONTAINING THE ALUMINUM NITRIDE COMPOSITION

Also Published As

Publication number Publication date
JPWO2006103930A1 (en) 2008-09-04
JP5181329B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
Feng et al. Two‐step synthesis process for high‐entropy diboride powders
KR101659700B1 (en) A novel method for the production of aluminum nitride and aluminum nitride-based composite substances
US5942455A (en) Synthesis of 312 phases and composites thereof
JP4989636B2 (en) High strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite manufacturing method
WO1997018162A9 (en) Synthesis of 312 phases and composites thereof
WO2006005267A1 (en) A A12O3 DISPERSION-STRENGTHENED Ti2AlN CERAMIC COMPOSITE MATERIAL AND ITS PREPARATION
US20120157292A1 (en) Dense boron carbide ceramic and process for producing the same
JP5181329B2 (en) Method for producing aluminum nitride-containing material
Niyomwas Synthesis and characterization of silicon-silicon carbide composites from rice husk ash via self-propagating high temperature synthesis
JP2016113696A (en) Manufacturing method of aluminum matrix composite material and aluminum matrix composite material manufactured by the same
CN100516262C (en) Method for preparing magnesium and magnesium alloy composite grain refiner
Kota et al. Thermal stability of the nanolayered Fe2AlB2 in nitrogen and argon atmospheres
JP2020029390A (en) Method for producing aluminum silicon carbide
Yin et al. Ultra-fast synthesis and thermodynamic analysis of MoAlB by self-propagating high temperature combustion synthesis
WO2006103931A1 (en) Material containing aluminum nitride
Pourali et al. Microstructures and Mechanical Behavior of Ti 3 SiC 2/Al 2 O 3-Ni Composites Synthesized by Pulse Discharge Sintering
JP2011068538A (en) Method for producing titanium silicon carbide ceramic
TW200526795A (en) Ceramic sintered compact, method for producing ceramic sintered compact, exothermic element for vapor deposition of metal
WO2008001661A1 (en) Process for production of aluminum nitride containing materials
Tavassoli et al. Influence of NH4F additive on the combustion synthesis of β-SiAlON in air
Khajelakzay et al. Synthesis and spark plasma sintering of Mg2Si nanopowder by mechanical alloying and heat treatment
JP4060803B2 (en) Method for producing zirconium boride powder
Shi et al. Combustion synthesis of rod-like AlN nanoparticles
JP4836120B2 (en) Method for producing aluminum nitride-containing material
JP2010138011A (en) Method of producing aluminum nitride powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007510377

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729159

Country of ref document: EP

Kind code of ref document: A1